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Executive Summary 
This study of Multisource Data Fusion for Real-Time and Accurate Traffic Incident Detection 
via Predictive Analytics, was undertaken as part of the Massachusetts Department of 
Transportation Research Program. This program is funded with Federal Highway Administration 
(FHWA) State Planning and Research (SPR) funds. Through this program, applied research is 
conducted on topics of importance to the Commonwealth of Massachusetts transportation 
agencies. 
This report presents the results of a research project conducted by the University of 
Massachusetts Lowell for MassDOT under an Intergovernmental Service Agreement titled 
“Multisource Data Fusion for Real-Time and Accurate Traffic Incident Detection via Predictive 
Analytics.” The project aims to fuse data from multiple sources to enable rapid detection of 
traffic incidents in real time. Accurate and fast incident detection is essential for triggering 
Highway Operations Center (HOC) response plans that aim to reduce incident-related congestion. 
The objectives of this research were to 

• Identify data sets in MassDOT current environs as well as data sets from other sources and 
providers that can be harvested to support real-time incident detection, understanding of 
data latency, and value to program. 

• Investigate how data from these and other sources can be merged for accurate and real-
time traffic incident detection and improved travel time reliability. 

• Develop guidance for setting trigger points to alert HOC operators to incidents that affect 
travel on the roadway. These trigger points must be sensitive enough to detect disruptive 
events, and yet refined sufficiently to not create false positives. Different roadways may 
have different trigger points based on temporal and spatial conditions such as direction, 
weather, time of day, and season. 

The results of the study, including the data sources, corridor selection, model development, and 
field testing, are described in the following sections. 
 
Section 2: Literature Review 
Traffic incident management (TIM) performance can be assessed in terms of the various time-
based components of the incident timeline, which starts when an incident occurs, identifies key 
interim activities, and finishes with traffic returning to normal. The goal of TIM and related 
HOC activities is to shorten the gap between these two times. 
An automatic incident detection (AID) system consists of two parts: (a) data collected from 
various sources and (b) data processed by a suitable AID algorithm. The section reviews the 
different data sources and collection methods and lists the principal incident detection 
performance indicators: 

• Detection Rate (DR) 
• False Alarm Rate (FAR) 
• Mean Time to Detect (MTTD) 
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For effective Traffic Management Center operations, an AID system should have a short MTTD 
while maximizing DR and minimizing FAR. However, these measures are not independent since 
there is a trade-off between detection rate, detection time, and false alarm rate. For most 
algorithms, the detection rate tends to increase the longer the algorithm takes in evaluating the 
detector data. Conversely, the false alarm rate tends to decrease as the detection time increases. 
Therefore, to maximize the detection rate while minimizing the false alarm rate, the detection 
time needs to increase. If the algorithm thresholds are adjusted to detect less severe incidents 
more quickly, minor fluctuations in traffic demands can cause the false alarm rate to rise. To 
minimize detection times, AID systems must detect only those incidents that have a major 
impact on traffic by reducing the sensitivity of the AID algorithms. 
 
Section 3: Available Data Sources 
Information on roadway traffic conditions that can be used for the purpose of incident detection 
has to be reliable and must be available with very short latency. Several information sources are 
available to MassDOT. 
Regional Integrated Transportation Information Data: RITIS fuses data from INRIX and 
local transportation agencies. INRIX data are based on GPS readings from several different 
sources including fleet vehicles such as delivery vans, long haul trucks, and taxis. The 
information available through the RITIS platform is aggregated over one-minute time intervals 
and over distinct roadway segments (called XD segments) and includes the following: 

• one-minute average values of the space mean speed, 
• travel times, 
• reference speed, 
• the confidence value (C-value), and 
• the confidence score. 

Data can be averaged for different time periods ranging from five minutes to one hour. Speed 
information is also available in a graphic form, called a “congestion scan.” RITIS has included 
Waze reports in these congestion scans, shown as tags at the location and time the report was 
generated. 
MassDOT GoTime Data: The MassDOT GoTime program uses Bluetooth sensors installed 
along several state highways to collect information on the time and Mac-Address of devices on 
vehicles as they pass in front of the sensor. Using data from sequentially placed sensors, the 
system can determine travel times on segments of the roadway using the locations of the sensors. 
The GoTime data are averaged over one-minute time intervals and are incorporated in the RITIS 
platform. The information that is available through the platform for each segment is similar to 
the INRIX data: 

• one-minute average values of the space mean speed, 
• travel times, and 
• reference speed. 

Waze Reports: Waze collects traffic information through crowdsourcing on traffic events such 
as traffic incidents, crashes, stopped vehicles, road construction, debris on the road, and so forth, 
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in the form of reports created by its users. Such information can be used, primarily for verifying 
the presence of an incident detected by an AID algorithm but also for detecting incidents, 
especially under light traffic conditions, when the occurrence of a traffic incident will cause 
minor reductions to the average speed. 
In conclusion, data available to MassDOT can be used in an AID system. Such data include one-
minute space mean speeds on roadway segments, for the entire network, with very short latency. 
These data sets can be used for the development/training and testing of candidate methodologies 
for automatic incident detection. 
 
Section 4: Corridor Selection 
The first step in selecting the corridor was to count the number of incidents that occurred on 
different state roadways. Interstates I-93, I-95, and I-495 appear to have the most incidents; they 
also have very high average daily volumes. Selecting a corridor simply based on route incident 
frequency can lead to biased results, since longer routes often have more incidents. Therefore, 
the team took into consideration both route length and route incident frequency. The incident 
records provided by MassDOT covered 136 state roadways for the period of January 2017 to 
April 2021. Based on this information it was calculated that Interstate 93 has more than double 
the number of incidents of any other state route; therefore, it appeared to be a good candidate as 
a test bed for developing and testing the incident detection strategy. To focus on a specific 
section of the roadway, the average number of incidents per mile per direction of I-93, split in 
two parts (Quincy–Boston, Boston–NH border) was calculated. During the period considered 
(i.e., 1/2017 to 4/2021), the segment of I-93 in District 6 (I-93-D6) had about three times the 
number of incidents per mile per direction than any other state route and, therefore, was selected 
as the test bed. The high incident frequency for I-93-D6 is most likely due to the high traffic 
volumes carried by this freeway segment. 
A variety of distributions of incidents on I-93-D6 were prepared using data for the calendar years 
from 2018 to 2020. The following distributions were considered: 

• incidents in each month of the year, 
• incidents in each day of the week, 
• incidents in each hour of the day, and 
• spatial distribution of incidents along the selected roadway. 

This analysis was performed to ensure there was a sufficient number of incidents that could be 
used for the development and testing of the incident detection strategy, comprising a variety of 
traffic, weather, and light conditions, to name a few. 
One-minute space-mean-speed data for the period 1/2018 to 12/2021 were downloaded from the 
RITIS platform for each eXtreme Definition (XD) segment of the roadway. There are a total of 
57 XD segments in the section of I-93 in District 6: there are 24 XD segments in the northbound 
direction and 23 XD segments in the southbound direction. INRIX XD segments are an INRIX-
proprietary road segmentation system. The incidents included in the database provided by 
MassDOT HOC were stratified based on the time of occurrence (month of the year, 
workday/weekend, time of day), and within each strata a fraction of the incidents was used for 
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the development of the incident detection strategy. The remainder of the incidents were used for 
testing the strategy. 
 

 

Section 5: Model Development and Implementation 
Two models for detection of traffic incidents were developed and tested in this study. The first 
model is based on Artificial Intelligence (AI) and the second is an empirical rule-based model. 
The two models were applied for detection of traffic incidents on the selected segment of 
Interstate 93. 
AI Model: AI has been widely used for solving regression and classification problems. Traffic 
incident detection essentially is a classification problem. The traffic state at a specific moment is 
characterized by a feature vector representing speed, occupancy, and so forth. This feature vector 
is then fed into a pretrained AI classifier and classified as either incident or non-incident. Two 
key elements for a successful AI-based classification application are choice of classifier and 
feature selection. 
There are two main types of classifiers: supervised and unsupervised. Supervised classifiers 
require each input feature to be clearly labeled (e.g., as incident or non-incident). Labeling input 
features can be very time-consuming process. Some recent methods such as deep learning 
typically require a large set of labeled input features to avoid model overfitting. On the other 
hand, unsupervised classifiers only need the input features and do not need labels. These 
methods can calculate the similarity/dissimilarity among the input features based on some 
distance metrics and automatically classify them into different categories. A supervised learning 
method integrating long short-term memory (LSTM) and variational autoencoders (VAE) is 
adopted in this study. 
Two performance metrics are used in this study, which are FAR and DR. Smaller FAR and 
larger DR values are more desirable. Various VAE model configurations have been evaluated. 
The best performing VAE model are FAR = 0.0069% and DR = 91.70%. 
Empirical Rule-Based Methods: This method uses threshold values on the observed traffic 
parameters, i.e., space mean speeds along with their corresponding confidence parameters, 
available through the RITIS platform. When the currently observed speed on a road segment 
drops below the selected threshold value, an alarm will be issued requiring the HOC operator’s 
attention. For this purpose, first the distributions of speeds at different time periods and different 
locations must be developed, and then various percentile values of speed, to be set as thresholds, 
can be tested for their effectiveness in detecting incidents. Once the distributions for all XD 
segments in the test corridor and for all time periods were developed, the threshold values of 
speeds observed in these segments for non-incident conditions must be established. If the speed 
observed in a segment falls below the threshold value, an alarm will be issued requiring the 
operator’s attention to verify that there is an incident or cancel the alarm. 
Comparison of AI and Rule-Based Methods: The AI model appears to be able to detect more 
incidents than the rule-based methods in some cases. However, it is difficult to understand how 
the AI model works. On the other hand, the various rule-based methods also perform well. An 
important benefit of the rule-based methods is that users can adjust the parameters based on 
experience. The effects of these parameters are easy to understand. 
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Section 6: Field Testing 
To test further the incident detection methodologies described above, under a variety of 
situations, selected strategies were applied to both the northbound and southbound directions of 
the test corridor over a continuous 30-day period. During June 2021, there were 24 Level 2 
events recorded by the MassDOT HOC, with eight of them involving disabled motor vehicles 
(DMV) and the rest being traffic crashes. All the events recorded by the HOC were detected by 
the strategy described above. For most of these events, the detection time was well before the 
SENT-ON time recorded in the HOC database. Overall, the strategy that was developed using 
the empirical rules described above can detect incidents that result in perturbations in the one-
minute average speeds observed for at least three consecutive minutes. Minor events that do not 
cause such perturbations cannot be detected.  
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1  Introduction 
 

Traffic incidents are a leading contributor to non-recurring congestion and secondary crashes. 
Each year congestion and crashes together cost the nation more than $1 trillion. Once traffic 
queues are formed, it is very difficult to dissipate them and return traffic to normal operations. 
This is especially true for highway segments where traffic demands are near capacity and where 
any disturbance may lead to long queues and stop-and-go conditions. Therefore, real-time and 
accurate incident detection plays a critical role in TIM and congestion mitigation. The sooner 
incidents are detected, the sooner safety personnel can respond to the incidents and clear them 
from the roads, thereby allowing traffic lanes to reopen, allowing the system to recover, and 
helping to prevent secondary incidents. 

The ability to detect, respond, and clear such non-recurring events will lead to improved travel 
conditions by reducing congestion and traffic emissions, safer roads, more robust highway 
operations, and enhanced travel time reliability, resulting in better traveler experience, which are 
critical to strengthening the economy of Massachusetts and improving the environment and 
quality of life. These are all directly linked to the mission of MassDOT. 

MassDOT, through its Highway Operations Center and other departments, has access to traffic 
information from multiple sources that can be used for the accurate and timely detection of such 
events. 

Hence, the following research objectives were identified: 

• Identify data sets in MassDOT current environments as well as data sets from other sources 
and providers that can be harvested to support real-time incident detection and understand 
data latency and their impacts on traffic incident detection. 

• Investigate how data from different sources can be merged for accurate and real-time traffic 
incident detection and improved travel time reliability. 

• Develop guidance for the setting of trigger points to alert HOC operators to incidents that 
affect travel on the roadway. These trigger points must be sensitive enough to detect 
disruptive events, and yet refined sufficiently to not create false positives. Different 
roadways may have different trigger points based on temporal and spatial conditions such 
as direction, weather, time of day, and season. 

To achieve those objectives the research consisted of the four tasks described next. 

1.1 Task 1: Review of Literature, Current Practices, and Available Data 

Task 1 starts with a review of the current state of the art in traffic incident detection strategies 
and identifying relevant data sets that MassDOT has access to or may acquire. The reliability of 
these data sources will be considered. The traffic incident detection practices of other state DOTs 
and regional organizations will be reviewed. This will include how they collect, integrate, 
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analyze, and archive data and use them for incident detection. It will include review of the 
algorithms they use for incident detection. We will also review scientific publications to ensure 
that the latest developments in incident detection using advanced data analytics are considered. 

1.2 Task 2: Corridor Selection and Data Collection 

Task 2 is to identify a corridor to be used as a test bed for evaluating and enhancing the 
candidate incident detection models. The corridor must have a sufficient number of incidents and 
be covered by the data sources identified in Task 1, such that deployment of the model will have 
the most impact. Historical data should be available to confirm the types, times, locations, and 
durations of those traffic incidents in this corridor. Ideally, the selected corridor is covered by 
traffic cameras so that video data can be collected to verify incidents. Also, data should be 
available for the corridor during both normal operations and incident conditions over an 
extended period of time covering different weather conditions (e.g., sunny, rainy, foggy, snowy). 
As part of the corridor selection, the team will also collect related incident, traffic, and weather 
data, which will be used in Task 3. 

1.3 Task 3: Model Evaluation 

Using historical data, the team will evaluate advanced algorithms off-line to detect the onset and 
location of congestion that can be used as a trigger to alert HOC operators so they can identify 
the incident in real time and initiate a response. The historical incident data will be separated into 
training and validation sets for testing and enhancing the algorithms. The trigger can be defined 
based on measures such as speed (from loop detectors and crowdsourcing) and occupancy. For 
example, a trigger will be generated if certain speed and occupancy criteria on a roadway 
segment surpass, or drop below, prespecified threshold values. These trigger points must be 
sensitive enough to detect incidents and yet sufficiently refined to not create false positives. The 
team will also explore AI methods (e.g., long short-term memory networks) that may be more 
flexible and reliable in handling data from multiple sources. 

1.4 Task 4: Testing of Algorithm 

In Task 4, field testing of the model will be performed. Measures of effectiveness and reliability 
that will be used include the detection rate, false alarm rates, and mean time to detect. The trigger 
points will be based on the model developed in Task 3. Field implementation results will be used 
to further fine-tune the candidate models. In addition, the outcome will be used to develop 
guidance for the setting of trigger points or threshold values to alert HOC operators about 
incidents on the roadway. Different roadways have different characteristics and therefore may 
require a different set of trigger points. Guidance on how such trigger points can be adjusted will 
also be provided. The results of the study, including the data sources, corridor selection, model 
development, and field testing, are described in the next sections. 
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2 Literature Review 

2.1  Traffic Incident Detection: Current Practices 

Non-recurring traffic incidents, caused by accidents, breakdowns, or sudden lane drops resulting 
from debris can lead to congestion and interruption of traffic flow. Not all vehicle accidents 
result in traffic interruptions, therefore from the perspective of traffic management, it is more 
effective to detect interruptions to traffic rather than detect vehicle accidents exclusively. Traffic 
managers are tasked with the detection, response, and clearing incidents in a timely manner. The 
faster incidents are cleared, the lower the chance for secondary incidents to occur. 
TIM performance can be assessed in terms of the various time-based components of the incident 
timeline, as indicated in Figure 2.1 [1]. 

 

Figure 2.1: Incident timeline 

The incident timeline starts when an incident occurs, identifies key interim activities, and 
finishes with traffic returning to normal. 
The detection time (T1 – T0) is the time between the incident occurring and the incident being 
reported. It is the role of incident detection algorithms to make this time as short, but also as 
reliable, as possible. 
The verification time (T2 – T1) is the time between the incident being reported and the incident 
being verified. Traffic management centers can typically assist with verification through use of 
their closed-circuit television (CCTV) cameras. 
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The response time (T4 – T2) is the time between the incident being verified and the responder 
arriving on scene. Response time is dependent on the incident location and each responding 
party’s proximity to the incident. 
The goal of TIM and related Traffic Management Center activities is to shorten the gap between 
T0 and T7. Traffic monitoring for incident management, traveler information, and traffic 
management is predominantly done using CCTV systems, driver reports, and highway crew 
patrols. Traffic management centers have been researching and implementing various automatic 
incident detection (AID) algorithms/procedures in their advance transportation management 
systems (ATMS). The reliability and efficacy of these systems depend on the sources of traffic 
data they use. 
An AID system consists of two parts: (a) data collected from various sources and (b) data 
processed by a suitable AID algorithm. The following sections review methods being 
implemented by traffic management centers or traffic operations centers (TOC), and methods 
being researched or proposed by researchers. 

2.2 Data Sources and Collection Methods 

• Inductive loop detector: This is one of the most common data sources for AID systems. 
Inductive loop detectors have been widely used by state Departments of Transportation 
(DOTs) to collect traffic count, speed, occupancy, and so forth, on highways. They have 
also been extensively used at intersections to provide input data to traffic signal controllers. 
These detectors are less sensitive to the environment (e.g., temperature, lighting, snow, 
strong wind, vibration) and provide robust traffic measurements. However, since they are 
installed underneath the pavement, it is difficult to repair them if broken. Another major 
issue is that such detectors often are used to generate annual average daily traffic (AADT) 
data to meet the Highway Performance Monitoring System (HPMS) reporting 
requirements. The generated traffic measurements are not streamed in real time to HOC, 
making them unsuitable for incident detection. Additionally, these detectors are installed 
at limited locations on major highways and intersections [2]. Therefore, they can only 
provide situational awareness for highway segments near those locations. For incidents that 
happen far away from those locations, they will not be detected in a timely manner, which 
is critical to emergency response. Even if an incident is detected, it is difficult to accurately 
estimate its location with a sparse inductive loop detector network. Again, knowing the 
location of an incident is very important for efficient emergency response operations. These 
problems can be addressed by adding more detectors and investing in communication and 
Intelligent Transportation infrastructure. For example, Caltrans maintains PeMS 
(performance measurement system), which consists of about 40,000 detectors covering 
freeways across all major metropolitan areas of California, providing both real-time and 
historical traffic data. However, the cost can be prohibitive, especially for states with a 
significant portion of their highways in rural areas. 

• Microwave sensor: Similar to inductive loop detectors, microwave sensors are installed at 
limited locations. Also, the collected data often are not streamed in real time to HOC for 
AID purposes. In this sense, microwave sensors share the aforementioned limitations of 
inductive loop detectors. However, compared to inductive loop detectors, microwave 
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sensors are easier and less expensive to install and maintain. Some new microwave sensors 
can cover multilane road segments of several hundred feet long and track individual 
vehicles in these segments, while inductive loop detectors can only measure traffic at a 
single point or a very short segment (e.g., 20 ft). 

• CCTV camera: All state DOTs operate and maintain a CCTV camera network. These 
cameras provide important video feeds for identifying and confirming traffic incidents. 
However, in most state DOTs, such CCTV traffic videos are reviewed manually to confirm 
traffic incidents (detected/reported using other methods) and/or provide traffic situational 
awareness. They are not utilized to automatically detect traffic incidents, although 
technically it is possible to utilize video image processing (VIP) algorithms to process live 
feeds from CCTV cameras and generate data such as vehicle count, speed, and density for 
detecting incidents [2]. Like inductive loop and microwave detectors, CCTV cameras are 
deployed at limited locations, although they are getting increasingly popular. One concern 
with CCTV is privacy, especially for high-definition cameras. Such a problem can be 
addressed in many ways. One solution is to utilize edge computing devices to process 
videos in the field and discard them after processing (i.e., only keep and stream the 
extracted traffic measurements). With the wide deployment of CCTV cameras and 
adoption of AI based video processing algorithms, CCTV cameras may potentially become 
a major data source in the future for traffic incident detection. Some toll road authorities 
are using high-definition CCTV cameras for toll-by-plate purposes. This application can 
generate segment travel time data beyond count, speed, and density, similar to what 
Bluetooth readers (see discussion below) can do. Such travel time data allows HOC 
operators to identify congested segments. However, it cannot provide much useful 
information related to location (e.g., where the congestion starting and ending points are), 
unless the distance between upstream and downstream cameras is really short. 

• Bluetooth data: Bluetooth technology has been widely used in collecting travel time data. 
It detects the media access control (MAC) addresses of Bluetooth devices on vehicles 
passing by and matches upstream and downstream MAC addresses to derive travel time. 
This is similar to matching upstream and downstream license plate numbers as some toll 
road authorities are doing (see discussion above) to determine the toll rate and charge users. 
The difference is that Bluetooth readers are less expensive and do not require sophisticated 
data processing algorithms (e.g., AI algorithms for detecting and recognizing license 
plates). Portable Bluetooth readers have been developed and can be easily deployed as 
needed. Given that most new cars are equipped with Bluetooth, this data source is 
becoming increasingly important and reliable. However, there are two major limitations 
for Bluetooth data. First, the data sample is often biased. It is not uncommon to have 
multiple people (i.e., multiple Bluetooth devices) in one vehicle. This often leads to biased 
travel time measurements. Second, like all previously discussed data sources, the coverage 
of Bluetooth readers is still limited for incident detection purposes. A dense network of 
Bluetooth readers is needed to quickly detect incidents and accurately estimate their 
locations. 

• E-ZPass data: E-ZPass (or other similar systems such as SunPass) data is similar to 
Bluetooth data. The main difference is that E-ZPass uses the dedicated short-range 
communications (DSRC) technology to read transponders in individual vehicles instead of 
MAC addresses. Since each vehicle has a unique transponder ID, the travel time data 



 

6 
 

generated by E-ZPass data is more reliable than Bluetooth data. A clear limitation with the 
E-ZPass data is that it is only available for toll roads. 

• Probe vehicle and GPS data: Data generated by mobile devices (e.g., smartphones) and 
commercial fleets (i.e., on-board GPS) are playing an increasingly important role in 
traveler information systems and incident detection. These GPS devices generate detailed 
vehicle trajectories (e.g., vehicle locations every 1 second). A significant advantage of 
probe vehicle and GPS data is that state DOTs do not need to invest in any data collection 
infrastructure and do not need to worry about the maintenance of data collection systems 
either. Although purchasing data from the private sector can be expensive, DOTs can save 
the trouble and cost associated with maintaining their own data collection infrastructure. 
Probe vehicle and GPS data usually have a much larger coverage than traditional data 
sources such as inductive loop detectors, microwave detectors, and CCTV cameras. The 
actual coverage depends on how many users are contributing their data. Many data 
sources/vendors can be considered under this probe vehicle and GPS data category, 
including Google, Wejo, INRIX, and HERE. Most of these data vendors provide 
aggregated information, such as segment speed and travel time. State DOTs take what these 
vendors provide and are not given the details of how the data are aggregated. The length 
of each segment is also decided by the vendors. Different vendors often have different 
standards/ways to divide roads into segments. When DOTs obtain data from multiple 
vendors, they face the challenge of reconciling data aggregated using different segment 
definitions, which is not a trivial task. In addition, state DOTs lose the opportunity to 
extract more granular and useful information from the aggregated probe vehicle and GPS 
data. Using AID as one example, DOTs may want to have short segments in areas prone 
to incidents (ideally in all areas if computational power is not a constraint). With short 
segments, changes in individual vehicles’ speeds and travel times can be quickly reflected 
in the corresponding segment measures. On the other hand, providing aggregated data and 
hiding the details to some extent is beneficial to DOTs, as they often do not have the 
resources to handle the large volume of raw trajectory data and extract critical information 
from them. 

• Driver incident reports: Almost every driver now has a smartphone. When a crash occurs, 
it typically does not take much time for the driver(s) involved or for passing by drivers to 
call 911 and report it. Some state DOTs rely a lot on such information for AID. A limitation 
of driver incident reporting is that non-collision (e.g., road debris) and property-damage-
only (PDO) incidents may be underreported. 

• Social media: Some researchers proposed to use data from social media such as Twitter 
for AID. They use the natural language processing (NLP) method to extract useful 
information from social media feeds for AID. For instance, after identifying an incident-
related tweet, words related to “when,” “where,” and “how bad the incident is” will be 
extracted and analyzed if they exist. A major issue with this data source is that incidents 
are not guaranteed to be posted in a timely manner and with sufficient details to determine 
their nature and location information. 

• Crowdsourced reports (i.e., Waze): This data source is related to both driver incident 
reports and social media. Waze can be considered a social media, although it is used 
specifically for travel. In the meantime, many Waze users/drivers do report incidents they 
see on the road, but not directly to 911. Therefore, it is listed as a separate data source. 
Crowdsourced reports here specifically refer to the information (e.g., speed trap, object on 
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road, crash) reported by drivers, not the location information anonymously collected by 
Waze from users (which is considered as probe vehicle and GPS data in this report). Many 
state DOTs are using Waze incident reports for AID. Issues with Waze incident reports are 
these: (1) submitting a Waze incident report while driving is dangerous; (2) usually there 
are delays between when an incident is spotted and when it is reported by different drivers, 
and such delays make it difficult to identify the exact incident location; and (3) sometimes 
there are incorrect reports. For example, an incident has already been cleared, but it still 
shows up in Waze. In a quantitative comparison by Iowa DOT (IDOT) of various sources 
of incident detection, Waze was ranked the 4th (out of 8) largest contributing sources. 
While essentially free, Waze incident reports still must be validated by other means, and it 
captured only 43.2% of ATMS recorded incidents during the analysis period (although this 
most likely has increased as the number of users increases) [3]. 

• Connected Vehicles (CV) as Data Sources: Recent studies have demonstrated that 
connected vehicle (CV) data provide an abundant source of information for enhancing the 
comprehension of traffic flows and developing advanced traffic management strategies 
[4 ,5]. The availability of such rich data sources makes it practical for transportation 
agencies to incorporate them into traffic management systems. Two companies, Wejo and 
Waycare, have announced that they will jointly deliver CV data for 20 locations across the 
United States [6]. In collaboration with Waycare, Wejo offers raw probe vehicle trajectory 
data for traffic management, providing traffic managers with the ability to detect and 
predict incidents, and to respond more efficiently based on real-world, near real-time data 
in a single platform. Wejo’s data is collected from OEM devices in some new vehicles and 
offers a 1–3 second data capture rate with a latency of 30 seconds. As the number of 
connected vehicles sold globally is expected to rise, the sampling rate and reliability of 
such probe vehicle data will improve significantly. With appropriately developed 
algorithms, such raw data can be very useful for AID purposes. 

• Unmanned Aerial Vehicles in Traffic Management: The utilization of small unmanned 
aerial vehicles (UAVs), commonly referred to as drones, is on the rise across all industries. 
Drone-based traffic monitoring can overcome the limitations of traditional monitoring 
methods due to its simplicity, mobility, and ability to cover large areas. Real-time high-
resolution videos captured by drones can be transmitted to TMCs to assist on-ground 
personnel in road monitoring, traffic guidance, traffic activity analysis, individual vehicle 
identification and tracking, license plate reading, and other related activities. A recent paper 
provides a comprehensive review of research studies that employ UAV technology for 
online and off-line extraction of traffic parameters from video data using vision processing 
techniques, thereby enhancing traffic surveillance and monitoring mechanisms [7]. 
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2.3 Incident Detection Performance Indicators 

Incident detection algorithms are used to process traffic data from a variety of sources and need 
to be tailored to the individual characteristics of each road segment. Algorithms can be automatic 
or non-automatic. Automatic incident detection (AID) algorithms will automatically trigger an 
alarm when traffic conditions deviate from previously defined limits, whereas non-automatic 
algorithms are based on witness reports. 
Several indicators are used to evaluate and compare the performance of automatic incident 
detection (AID) systems and algorithms [8]. The three principal incident detection performance 
indicators employed in incident detection are as follows: 

• Detection Rate: DR is defined as the ratio of the number of incidents detected by an 
algorithm and the number of incidents known to have occurred within a specified time 
period and network area. The total number of incidents in a measurement period is usually 
compiled from incident reports from police and the public, and from observations at a 
Traffic Management Center. DR is usually expressed as a percentage. 

 

 

 

• False Alarm Rate: The FAR is a measure of the accuracy of an AID algorithm. An 
algorithm must decide whether an incident exists in every time period for every location 
where the algorithm is applied. A false alarm arises when an algorithm incorrectly reports 
an incident where no incident actually exists. Therefore, the FAR is typically defined as 
the ratio of the number of incidents falsely reported by an algorithm to the number of 
incident decisions the algorithm has to make. 

For a FAR of 1% and a 1-min decision interval, the number of potential false alarms in an 
hour is 60 × 1% = 0.6 per hour. With a 20-s decision interval, the number of potential false 
alarms becomes three times as much or 1.8 per hour. FAR is also defined as the ratio of the 
number of false detections versus the number of verified incidents known to have occurred. 
The FAR is usually greater when defined in terms of total incidents rather than incident 
decision intervals. The interval-based FAR definition is more commonly reported in the 
literature. Minimization of the FAR is critical to gain credibility for any AID system. 

• Time to detect or mean time to detect: The TTD measures how efficiently an incident 
detection algorithm performs. The TTD is the difference between the time the incident is 
detected by the algorithm and the time the incident occurred. The MTTD is widely used in 
the literature and is defined as the average TTD of a number of incidents (n) detected. TTD 
and MTTD values are expressed in seconds or minutes. 
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where n is the number of incidents detected. 

For effective Traffic Management Center operations, an AID system should have a short MTTD 
while maximizing DR and minimizing FAR. However, these measures are not independent since 
there is a trade-off between detection rate, detection time, and false alarm rate. Figure 2.2 shows 
the general relationship that typically exists between these measures [9]. For most algorithms, 
especially the comparative incident detection algorithms, the detection rate tends to increase the 
longer the algorithm takes in evaluating the detector data. Conversely, the false alarm rate tends 
to decrease as the detection time increases. Therefore, if we want to maximize the detection rate 
while minimizing the false alarm rate, the detection time needs to increase. 
As indicated above, the goal of most incident detection algorithms is to minimize the detection 
time to shorten the overall response time. If the algorithm thresholds are adjusted to detect less 
severe incidents more quickly, minor fluctuations in traffic demands can cause the false alarm 
rate to rise. Therefore, to minimize detection times, agencies must be willing to live with 
detecting only those incidents that have a major impact on traffic demands by reducing the 
sensitivity of the AID algorithms. 
 

 

 

Figure 2.2: DR and FAR as a function of MTTD 

Given these relationships, a given deployment must consider the relative importance of DR, 
FAR, and MTTD. One approach is to compute a performance index (PI) as suggested by Chung 
and Rosalion [10]: 
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where m, n, p are coefficients that indicate the relative importance of MTTD, FAR, and DR (m, 
n, p > 0). A larger coefficient value denotes a greater importance for the specific measure. For 
equal importance, all coefficients can be set to one. A lower PI value indicates a better algorithm 
performance. Determining a set of coefficients that minimizes the PI involves an optimization 
process across a large incident data set, as indicated in Chung and Rosalion [10]. Given the 
different operating needs among agencies, the target values of the performance indicators can 
vary among different systems. Table 2.1 provides a set of possible target values based on 
calibration tests and a review of practices [11]. 
 

Table 2.1: Recommended target values of performance indicators 

Performance Indicators Target Values 

Detection Rate ≥ 80% 

False Alarm Rate ≤ 1% 

Mean Time to Detect ≤ 5 min 

2.4 Incident Detection Algorithms 

Incident detection algorithms are based on observation of the traffic state of roadway segments. 
Significant fluctuation of parameters describing the traffic state of a segment can be used for 
detecting traffic incidents. Flow rate, spot speed, and occupancy at certain locations have been 
used extensively in a wide variety of incident detection methodologies over the years (e.g., 
California and University of California Berkeley algorithms). The performance of such 
algorithms, using fixed point observations, depends greatly on the location and density of 
detectors. 
Incident detection methodologies using probe vehicles (from commercial vehicles with data 
collection equipment) have been developed over the last few decades: an incident can be 
detected by observing the acceleration-deceleration rates of probe vehicles [12], by statistical 
differences in the average travel times on a segment and travel times of adjacent segments 
[13,14], or by trying to detect abnormal car movements that occur during incidents [15]. Using 
real-time GPS data, trajectories of vehicles can be traced to detect incidents [16]. The data must 
be preprocessed to match each trace to a map position. Using a phone-based app push traffic 
alerts and route alternatives were offered to motorists in exchange for their position data. 
To achieve better results in determining the traffic state, fusing information from different 
sources, for example fixed detector data with probe vehicle data, has been considered. Fusion of 
data from multiple sources can enhance the reliability of the input data to an AID algorithm and 
thus enhance its performance. Data fusion methods can be based on statistical (multivariate 
analysis and data mining), probabilistic (Bayesian) or AI (ANN, PNN, evolutionary algorithms) 
approaches [17,18]. Data fusion in complex systems, such as traffic networks, requires a layered 
approach. In El Faouzi et al. [18], five levels of data fusion are recommended: 
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• Level 0: preprocessing data from each source to common formats and representations, 
• Level 1: gathering data from all sources into a common framework for analysis, 
• Level 2: state estimation using Level 1 data sets and other institutional knowledge, 
• Level 3: incident/event identification and processing in the context of state estimation, and 
• Level 4: continual refinement and integration of new information. 

A comparison of AID algorithms that have been deployed and in use in Australia is shown in 
Table 2.2. AI approaches using ANN and PNN exhibit high performance implying high value for 
TMCs in deployment [11]. 
 
 

Table 2.2: AID performance review in Australia in 2010 

Algorithm  DR (%)  FAR (%)  MTTD (min)  

McMaster [19]  68–88  <0.01  2.1–3.2  

DELOS [20]  78  0.176  1.1  

ANN [21]  89  0  2.4  

ANN [21]  89  0  2.4  

ANN [22]  83  0.065  3.4  

PNN [23]  98–100  0–0.5  0.3–2.5  

California 8 Algorithm [10]  71  0.005  8.9  

DELOS [10]  73  0.03  5.5  

ANN [10]  97  0.176  5.2  

PNN [24] 93  0.057  2.7  

ANN [24]  83  0.065  3.4  

California 8 (2010) [11] 84  0.075  8.3  

ARRB VicRoads [11] 84  0  6.7  

 
Incident detection methodologies based on AI algorithms and combining information from 
different sources have the potential to detect incidents successfully and efficiently. There are 
several different procedures based on AI that take advantage of the specific data available and 
with various levels of performance. The most notable such methodologies are listed next. 
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• Some studies treat AID as a classification problem. Within a data set, records are classified 
into two categories: (i) normal traffic records and (ii) incident records. The AI model 
identifies and classifies upcoming records into one of the categories, and the one that falls 
into the incident-class would be the incident detected. To resolve the problem of 
imbalanced and small training samples (due to the rarity of incidents compared to normal 
conditions), a generative adversarial network (GAN) is used to generate data with the same 
statistics as the training set. Information from several detectors in sequence is considered 
to ultimately classify a record. To generate such a model, a support vector machine (SVM) 
algorithm was used that reached a 90.68% detection rate and a 7.11% the false alarm rate 
[25]. 

• Some studies tried to monitor changes in the value of certain traffic parameters. It is 
assumed that if such changes exceed or drop below a certain threshold value, this indicates 
that an incident occurred. Historical data is used to determine the threshold values (Figure 
2.3). Some denoizing methods could also be applied on the threshold, by using external 
data sets, such as weather, spatiotemporal information, or more, to increase the accuracy 
[26]. 

 

Sensor data will be 
used to compare 

speed and 
occupancy with 
weekly averages 

first. If the 
differences are 

greater than 
thresholds, then 

there might be an 
incident. 

Compare the 
current sensor data 

with those from 
the previous time 
interval (i.e., 15 

mins). If the 
differences are still 

greater than 
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there is an 
incident. 

The traffic flow 
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for CTM (Cell 
Transmission 
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Figure 2.3: AID using loop detector data 

• In a more elaborate model, the correlation between certain traffic parameters is recognized. 
Consequently, the autocorrelation between those parameters should stay relatively similar 
if the traffic state remains unchanged and vice versa. Hence, incidents can be detected by 
tracking the evolution of the autocorrelation between these parameters. Such algorithms 
reached a 92.8% detection rate and 7.1% for the false alarm [27]. 

• Another study practices a more brute force approach: after partitioning the traffic network 
into multiple segments, the average speed of each segment would be computed. If the 
average speed difference between downstream and upstream is more than a threshold, then 
there is an incident [28]. 

• Researchers also generate different methods to handle non-numerical data sets, such as 
video sets or photosets. Some studies use surveillance videos as one of the input data to 
find deep representations of spatiotemporal video volumes (STVV). From these deep 
features, they use the one-class SVM to generate incident scores for this STVV. The 
incident would be detected by comparing the incident scores [29]. 
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• Mining texts from social media platforms, such as Twitter, has also been used for incident 
detection, as an efficient and cost-effective alternative. The process of adaptive data 
acquisition (Twitter data) establishes a dictionary of important keywords and their 
combinations that can imply traffic incidents (TI). A tweet is then mapped into a high 
dimensional binary vector in a feature space formed by the dictionary and classified into 
either TI related or not. All the TI tweets are then geocoded to determine their locations, 
and further classified into one of the five incident categories. The “bag of words” model is 
applied, meaning that only the count of the occurrences of words in Twitter Text Dictionary 
is used, regardless of the order [30]. 

• Besides these newer methods, some classical data mining algorithms and prevalent deep 
neural network methods have been used for AID as well. A probabilistic neural network 
(Naïve Bayes neural network), for instance, is mostly applied on classification and pattern 
recognition problems. It detects an incident based on the probability distribution functions 
of each class between accident and non-accident conditions [31,32,3323,32,36]. 

To improve the detection rate and reduce the false alarm rate of an algorithm, more data features 
can be used, and more complex models can be built. However, the inevitable direct result of this 
will be to raise the computational time. Real-time incident detection models require us to 
discover the incident as soon as possible. One of the evaluation measurements is MTTD. 
Therefore, it is essential to utilize the minimum number of variables that are sufficient to reflect 
and estimate the current traffic state. Table 2.3 lists the AI and statistical applications for incident 
detection that have been reviewed for this study. 
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Table 2.3: AI and statistical procedures for AID 

Strategy Method Name Publication/Article Summary 

Machine learning 
algorithms  

RoadCast incident 
detection (RCID) 

A random forest incident 
detection algorithm that 

incorporates contexts [34]. 

RoadCast uses one random forest algorithm for each detector and each target 
variable being forecasted. 

RCID had a 25% lower false alert rate when incorporating contextual data 
(external factors). But there is a trade-off to be made between detection and 

false alert rates. 

Speed threshold 
determination 

(SND) algorithm 

Data-driven parallelizable traffic 
incident detection using spatio-

temporally denoized robust 
thresholds [35]. 

Univariate speed threshold determination algorithm: Determination of robust 
summary statistics (thresholds) of each univariate time series of speeds from 

each road segment. 

Multivariate spatiotemporal threshold denoizing (bilateral filter and total 
variation). The thresholds determined in the previous step are denoized 

using the spatiotemporal correlations of the adjacent thresholds. 

Semi-naïve-Bayes 
algorithm (SNB) 
and supervised 
latent Dirichlet 

allocation (sLDA) 

Real-time incident detection 
using social media data [30]. 

This research project mines tweet texts to extract incident information on 
both highways and arterials as an efficient and cost-effective alternative to 

existing data sources. 

Isolation tree Automatic incident detection on 
freeways based on Bluetooth 

traffic monitoring. [33]. 

Incident detection based on comparison of the degree of anomaly of a data 
instance with the average path length (from the leaf nodes to the root nodes 

in the isolation tree). 
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Data 
augmentation 

Generative 
adversarial networks 

(GAN) 

Automated traffic incident 
detection with a smaller data set 
based on generative adversarial 

networks [25]. 

Using GAN to generate new fake balanced data set based on the known 
sample. 

The balance of the data set can improve the detection rate from 87.48% to 
90.68% and reduce the false alarm rate from 12.76% to 7.11%. 

Synthetic Minority 
Oversampling 

TEchnique 
(SMOTE) 

Real-time accident detection: 
Coping with imbalanced data 

[31]. 

Using SMOTE to increase the incident data sample. For regular SMOTE, 
PNN (Probabilistic Neural Network) achieves best at a TTD (Time-To-

Detection) of 5 min with an ACC, DR, and FAR of 99%, 80%, and 0.5% 
respectively, compared to 99%, 48%, and 0.1% for SVM.  

Statistical 
approach 

N/A Incident detection in freeways 
based on autocorrelation factor of 

GPS probe data [27]. 

Use a statistical approach for AID. 

92.8% detection rate and 7.1% for the false alarm. 

N/A Buffalo-Niagara transportation 
data-warehouse prototype and 

real-time incident detection [36]. 

Simple speed thresholds method using volume-related factors, in a binary 
outcome model. 

N/A A methodology to assess the 
quality of travel time estimation 
and incident detection based on 

connected vehicle data [28]. 

Network is divided into several segments and the average speed of each 
segment is computed. If the average speed difference between downstream 

and upstream is more than a threshold, then there is incident. 

Technical 
University of 

Munich Algorithm 

Bluetooth-based travel times for 
automatic incident detection – A 

systematic description of the 
characteristics for traffic 

management purposes [32]. 

This algorithm belongs to the category of spatial measurement-based 
algorithms and detects changes in travel times that could lead to an incident 

occurrence. 

N/A Real-time incident detection and 
capacity estimation using loop 

detector data [26]. 

Data-driven framework using inductance loop detectors for real-time 
incident detection, road capacity and incident location estimation. The 

algorithm is based on the variation in traffic flow parameters acquired from 
inductance loop detectors. Threshold values of speed and occupancy are 

determined for incident detection based on the PeMS database. 
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Video based  N/A Development of automated 
incident detection system using 

existing ATMS CCTV [37]. 

Determines the traffic incidents based on the traffic flow data reported by 
CCTV streams. 

SVM (support 
vector machine) 

Deep spatiotemporal 
representation for detection of 
road accidents using stacked 

autoencoder [29]. 

Use one-class SVM to generate the outlier score of intermediate 
representation for a given STVV and the reconstruction error value. After 

combining these scores, final accident score would be generated. At the end, 
compare the final score with the empirical threshold to determine whether 

there is an accident. 

Neural network Spatiotemporal 
pattern network 

(STPN) 

Traffic dynamics exploration and 
incident detection using 
spatiotemporal graphical 

modeling [38]. 

STPN + RBM (Restricted Boltzmann machine): From STPN, learn APs 
(Atomic pattern), RPs (Relational pattern) and importance metric. Assign 

binary state for each AP and RP. Using RBM to model system-wide 
behavior on AP and RP. Then detection is implemented by computing the 
probability of occurrence of a test STPN pattern vector via trained RBM. 

Severity study Naïve Bayes, k-
nearest neighbor, 

support vector 
machines, decision 

tree 

Automatic classification of traffic 
incident's severity using machine 

learning approaches. [39]. 

The classification model achieved nearly 90% accuracy in fivefold cross-
validation. 
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3  Available Data Sources 
 
Information from roadways on traffic conditions that can be used for the purpose of incident 
detection has to be reliable and must be available with very short latency. The following section 
presents the types of information that are available to MassDOT. 

3.1 RITIS Data 

RITIS fuses data from INRIX and local transportation agencies and has the potential for effective 
incident detection and incident response. INRIX data is based on GPS readings from several 
different sources including fleet vehicles such as delivery vans, long haul trucks and taxis, users 
of the INRIX traffic app, and connected vehicles. Processed INRIX data is incorporated in the 
RITIS/CATT-LAB platform through which it can be visualized in map form. 
The information available through the RITIS platform is aggregated over one-minute time 
intervals and over distinct roadway segments. Roadway segments identification can be done 
based on two different schemes: The Traffic Message Channel (TMC) code or the eXtreme 
Definition (XD) code. 
The information that is available through the RITIS platform for each segment of the network is 

• one-minute average values of the space mean speed (over the TMC or the XD segment), 
• travel times (speed/length of segment), 
• reference speed, 
• the confidence value (C-value), indicating that current readings represent the actual 

roadway conditions based on recent and historical trends, and 
• the confidence score, a discrete variable indicating whether the values reported are real-

time data. The variable takes the values of 
• 30: values are based on real-time data, segment has adequate GPS readings, 
• 20: historic averages, segment does not have sufficient real-time readings (15-

minute granularity), or 
• 10: reference speed, no real-time readings. 

Exported data can be averaged for different time periods ranging from five minutes to one hour. 
Besides the information listed above, speed information is also available in a graphic form, a 
“congestion scan.” Figure 3.1 is a 24-h congestion scan generated by RITIS on June 1, 2021, 
along South I-93. The colors (Figure 3.2) are based on the current one-minute average speed 
value, without taking into consideration historical speed patterns at that location and for that 
period of time (time of the day, day of the week, season, etc.). Recently, RITIS has included 
Waze reports in these congestion scans, shown as tags at the location and time the report was 
generated. The length of the line attached to each of these icons indicates the time that the report 
stays active. The different types of Waze reports included in these scans are explained in Figure 
3.3. 
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Figure 3.1: RITIS-generated 24-hour congestion scan 

Figure 3.2: Color thresholds used in RITIS congestion scans 

Figure 3.3: Icons for Waze reports used in RITIS congestion scans  
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Roadway segments can be identified based on XD or TMC codes. The difference between the 
two schemes is the length of the roadway segments that corresponds to a code, as follows: 

• TMC segments range in length from very long, i.e., 30 miles (or even longer in some 
instances) to very short, i.e., 0.2 miles (Figure 3.4: the long segment 120+05791 surrounded 
by two very short segments 120P05791 and 120P05790); and 

 

 

Figure 3.4: TMC consecutive segments 120P05791, 120+05791, and 120P05790 along I-90 
W 

• XD segments are more uniform in length and always shorter than one mile (Figure 3.5). 
Figure 3.6 shows the three XD segments nested inside the long TMC segment 120+05791 
shown in Figure 3.4. It is expected that the spatial data granularity obtained through the 
XD geometry enables faster and more accurate detection of incidents. 

Figure 3.5: XD consecutive segments 1263123361, 1263123409, and 429079803 along I-90 
WB 



 

20 
 

 

 

Figure 3.6: Comparison between XD segments (1263123361, 1263123409, and 429079803) 
in cyan and a long TMC segment (120+05791) in black  

Information from sequential segments along a roadway has to be considered for the correct 
detection of an incident and the issuing of an alert. Figure 3.7 to Figure 3.9 show the values of 
the four parameters included in each record (speed, travel time, confidence score, and C-value), 
versus time (in minutes), during an incident on I-90 WB for XD segments 1263123361, 
1263123409, and 429079803 in Figure 3.6. The incident occurred on XD segment 1263123409 
(the middle segment among the 3 XD segments in Figure 3.5). The dashed lines indicate the start 
and end times of the incident, reported by MassDOT HOC. 

Speed 

Travel Time (sec) 

Confidence Score 

C-Value 

Figure 3.7: Data on XD segment 1263123361 (upstream from segment with the incident) 
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Figure 3.8: Data on XD segment 1263123409 (segment with the incident) 

Speed 

Travel Time (sec) 

Confidence Score 

C-Value

Figure 3.9: Data on XD segment 429079803 (downstream from segment with the incident) 
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3.2 MassDOT GoTime Data 

The MassDOT GoTime program uses Bluetooth sensors installed along several state highways to 
collect information on the time and Mac-Address of devices on vehicles as they pass in front of 
the sensor. Using data from sequentially placed sensors the system can determine travel times on 
segments of the roadway based on the locations of the sensors. 
The GoTime data are averaged over one-minute time intervals and are incorporated into the 
RITIS platform. The information that is available through the platform for each segment is 
similar to the INRIX data: 

• one-minute average values of the space mean speed (over the GoTime segment),
• travel times (speed/length of segment), and
• reference speed.

The length of the segments for which data are available can be too long (longer than 30 miles), 
especially in rural areas. Figure 3.10 shows the GoTime segments that correspond to the incident 
shown in Figure 3.4. 

Figure 3.10: GoTime consecutive segments along I-90 WB 

For comparison purposes the three TMC segments shown in Figure 3.4 are superimposed along 
the three GoTime segments in Figure 3.11. 
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Figure 3.11: Comparison of GoTime and TMC segments along I-90 WB 

Because of the long length of the segments in the GoTime program, data from this system were 
not used in this study. If an incident occurs at the beginning of the segment, depending on the 
amount of traffic, it will take too long for the average speed on the entire segment to drop 
enough, so the incident can be detected; if the incident occurs at the end of the segment, the 
average speed may not be affected at all. 

3.3 Waze Reports 

Waze collects traffic information through crowdsourcing on traffic events such as traffic 
incidents, crashes, stopped vehicles, road construction, debris on the road, etc. in the form of 
reports created by its users. Such information can be used, primarily for verifying the presence of 
an incident detected by an AID algorithm, but also for detecting incidents, especially under light 
traffic conditions, when the occurrence of a traffic incident causes minor reductions to the 
average speed. 
Until February 2022, Waze reports were available through a platform supported by Waze (the 
Kibana platform). A user could specify the roadway segment and the time period for which 
reports were recovered. For the purposes of this study, for developing and testing the incident 
detection strategy, Waze reports would be recovered during a traffic event and for the roadway 
segment where the event took place. However, Waze stopped supporting the Kibana platform. 
MassDOT is developing a platform through which such information will be available, but until 
June 2022, only current events were recoverable. 
Recently, RITIS incorporated Waze reports into its congestion scans, however this is not part of 
the information that can be downloaded from RITIS and used for the development and testing of 
incident detection strategies. 
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3.4 Conclusions 

• Sources of traffic information that can be used for incident detection, ranging from 
conventional detectors to probe vehicles, GPS, crowdsourced data, and connected 
vehicles, are becoming increasingly abundant and have the potential to provide reliable 
and fast information on traffic incidents. 

• Emerging methodologies for incident detection have the potential to correctly and 
quickly detect traffic incidents. They include field evaluations, ranging from traditional 
approaches using measurements of traffic stream characteristics, to automated incident 
detection based on various Artificial Intelligence strategies. AI methods can take 
advantage of the plethora of data available and recognize anomalies indicating the 
presence of a traffic incident by considering spatial and temporal relationships of data 
streams. 

• Data available to MassDOT can be used in an AID system. Such data include one-minute 
space mean speeds on roadway segments and for the entire network, with very short 
latency. These data sets can be used for the development/training and testing of candidate 
methodologies for automatic incident detection. 
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4  Corridor Selection 
 

  

The data sources that were used for developing and evaluating the incident detection strategy in 
this study included the one- and five-minute space mean speeds of the XD segments of the 
selected corridor as well as Waze incident records for the corridor. Waze reports were used for 
verifying the incidents detected by the proposed strategy. Both data sources cover all state 
roadways in Massachusetts. The corresponding data were available for 2022 and several past 
years. Therefore, the main criterion for selecting the corridor was the frequency of incidents. 
Traffic incidents are rare events as shown by the statistics in Section 2.2. For the purpose of 
demonstrating the effectiveness of the proposed algorithms, this research focused on a corridor 
with the highest incident frequencies. 
The incidents used for selecting the corridor were provided by the MassDOT HOC for the period 
of January 2017 to April 2021. Only Roadway/Traffic events with a severity of Level 2 or above 
were considered. Such events include crashes, breakdowns, debris on the roadway, and so forth, 
and have a significant impact on traffic operations. 
Based on the analysis outlined in this section, I-93-D6 was selected as the test bed for the 
development and the testing of the incident detection strategy. This corridor has all the properties 
required: it is covered by the available data to MassDOT; and it has a sufficient number of 
incidents during different weather, traffic and light conditions and on sections with different 
geometric characteristics. 

4.1 Incident Frequencies 

The first step in selecting the corridor was to count the number of incidents that occurred on 
different state roadways. During the period of January 2017 to April 2021, the incident records 
provided by MassDOT covered 136 state roadways. Table 4.1 summarizes the numbers of such 
incidents during this period on different state routes, which are ranked by their total number of 
incidents. The last row of Table 4.1 is for all remaining state routes with fewer than 450 
incidents each. 
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Table 4.1: Incidents on Massachusetts state routes from 1/2017 to 4/2021 

State Route 2017 2018 2019 2020 2021 Total 

I-495 1,130 818 1,347 612 214 4,121 

I-93 1,026 842 1,347 622 233 4,070 

I-95 805 678 1,088 620 234 3,425 

US-1 413 436 734 360 130 2,073 

I-90 446 438 813 149 99 1945 

RT-28 341 471 812 205 85 1914 

RT-24 227 303 455 244 190 1,419 

US-6 243 266 364 156 120 1,149 

RT-3 242 227 381 147 79 1,076 

I-195 215 186 321 204 80 1,006 

RT-2 236 165 309 160 74 944 

I-91 173 237 351 62 39 862 

RT-128 217 144 230 107 101 799 

I-290 185 190 318 34 22 749 

RT-38 99 136 258 120 9 622 

RT-1A 114 146 250 63 13 586 

RT-3A 144 138 197 60 21 560 

RT-9 124 122 174 51 19 490 

US-3 124 93 196 38 25 476 

Other State Routes 1,371 1,597 2,590 874 391 6,823 
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The number of incidents for 2021, in Table 4.1, is only for the first four months of the year. The 
year-to-year percent change in reported incidents, for the calendar years 2017 to 2020, is shown 
in Table 4.2. During 2019 there was a sharp increase in reported incidents throughout the state, 
while during 2020 there was a sharp decrease, evidently due to the reduced traffic because of the 
COVID-19 pandemic. 
 

 

Table 4.2: Year-to-Year Change of Incidents on Massachusetts State Routes 

State Route 2017–2018 2018–2019 2019–2020 

I-495 −28% 65% −55% 

I-93 −18% 60% −54% 

I-95 −16% 60% −43% 

US-1 6% 68% −51% 

I-90 −2% 86% −82% 

RT-28 38% 72% −75% 

RT-24 33% 50% −46% 

US-6 9% 37% −57% 

RT-3 −6% 68% −61% 

I-195 −13% 73% −36% 

RT-2 −30% 87% −48% 

I-91 37% 48% −82% 

RT-128 −34% 60% −53% 

I-290 3% 67% −89% 

RT-38 37% 90% −53% 

RT-1A 28% 71% −75% 

RT-3A −4% 43% −70% 

RT-9 −2% 43% −71% 

US-3 −25% 111% −81% 

Other 16% 62% −66% 

After discussions with the project monitor and other MassDOT HOC personnel it was decided to 
exclude Interstate I-90. For the remaining top six routes, the total number of incidents from 2017 
to 2021 is shown in Figure 4.1. Interstates I-93, I-95, and I-495 have the most incidents, and they 
also have very high average daily volumes. 
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Figure 4.1: Incidents on the top six state routes  

Selecting a corridor simply based on route incident frequency can lead to biased results, since 
longer routes often have more incidents. Therefore, the team took into consideration both route 
length and route incident frequency. The lengths of the six routes and their average numbers of 
incidents per mile per direction were calculated and are shown in Table 4.3 and Figure 4.2. 

Table 4.3: Incidents per mile per direction for the top six routes 

Route 
number 

Number of 
incidents 

Route 
length (mi) 

Number of 
incidents/ 
mi/direction 

I-93 4,070 46.4 43.9 

I-495 4,121 120.6 17.1 

I-95 3,425 90.1 19.0 

US-1 2,073 85.9 12.1 

Rt. 24 1,419 40.1 17.7 

Rt. 28 1,914 150.4 6.4 
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Figure 4.2: Incidents/mile/direction on the top six state routes 

Interstate 93 has more than double the number of incidents of any other state route, therefore it is 
a good candidate as a test bed for developing and testing the incident detection strategy. The 
entire I-93 is too long to be used as a test bed for a pilot study; therefore, it was divided into two 
parts: (a) from its start at the Quincy split to Boston (segment of I-93 in District 6) and (b) from 
Boston to the New Hampshire border (segment of I-93 in District 4). The number of incidents in 
each segment and their lengths are: (a) 2,005 incidents over 10.4 miles and (b) 2,065 incidents 
over 36 miles, respectively. The average number of incidents per mile per direction with I-93 
split into these two parts are shown in Figure 4.3, in which I-93 is split into District 6 and 
District 4 segments. 
During the period considered (1/2017 to 4/2021), the segment of I-93 in District 6 (I-93-D6), 
shown in Figure 4.4 had about three times the number of incidents per mile per direction than 
any other state route. The high incident frequency for I-93-D6 is most likely due to the high 
traffic volumes carried by this freeway segment. 
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Figure 4.3: Incidents/mile/direction on the top six state routes  

Figure 4.4: South segment of I-93 in District 6 (I-93-D6) from Boston to Quincy split 
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4.2 Distributions of Incidents on I-93-D6 

In this section, various distributions of the incidents on I-93-D6 were prepared. For this purpose, 
we used the data during the calendar years from 2018 to 2020. The distributions considered are 

• incidents in each month of the year, 
• incidents in each day of the week, 
• incidents in each hour of the day, and 
• spatial distribution of incidents along the selected corridor. 

This analysis was performed to ensure there is a sufficient number of incidents that can be used 
for developing and testing the incident detection strategy, comprising a variety of conditions, 
such as traffic, weather, light, and so forth. The number of incidents in each month of the year 
during the period of January 2018 through December 2020 is shown in Figure 4.4. 

`

 
Figure 4.4: Incidents per month on I-93-D6  

 

Figure 4.4 shows that each month has a significant number of incidents, with at least 120 
recorded. The summer months of June to August display a peak, likely due to the surge in traffic 
toward the Cape and Islands. The ample number of incidents throughout the year guarantees that 
there are occurrences under diverse weather conditions that can be utilized for training and 
testing the incident detection model. 
The number of incidents on each day of the week for the same period is shown in Figure 4.5, 
while the number of incidents in every hour of the day is shown in Figure 4.6. The number of 
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incidents follows the same pattern as the traffic volumes throughout the week. Higher traffic 
incident frequencies occur during the middle of the week, while lower frequencies are observed 
during the weekend when traffic volumes are also typically lower. 
 

 

 

Figure 4.5: Incidents per day on I-93-D6  

The same pattern is observed for the number of incidents during a day: there is an increase in 
incident frequency during the morning and afternoon peaks. A relatively high number of 
incidents (probably disproportional to the amount of traffic on the roadway) is observed during 
late-night hours between 10:00 p.m. and 1:00 a.m. 
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Figure 4.6: Incidents per hour of the day on I-93-D6  

Figure 4.7: Incident locations on I-93-D6  
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The south segment of I-93 in District 6 consists of sections with different geometric 
characteristics, i.e., number of travel lanes, width of travel lanes and shoulders, and the presence 
of the HOV lane on a section of this south segment. The spatial distribution of incidents along 
this roadway for the period of January 2021 to April 2021 is shown in Figure 4.7. Incidents 
appear to be uniformly distributed, thus the geometric characteristics of different sections are not 
the predominant contributing factor in their occurrences. 
Based on these observations, I-93-D6 has a sufficient number of incidents during different traffic 
and weather conditions and on sections with different geometric characteristics that enables the 
development and the testing of incident detection strategy. This analysis also provides insights 
into how historical incident data should be stratified for the establishment of base values for the 
activation of alarms. 
Table 4.4 lists the 57 XD segments that are included in the section of I-93 in District 6. There are 
24 XD segments in the northbound direction and 23 XD segments in the southbound direction. 
One-minute space-mean-speed data for the period 1/2018 to 12/2021 were downloaded from the 
RITIS platform for these XD segments. These records were used for the development of the base 
distributions of space mean speeds under normal conditions, so current observations can be 
characterized as inliers or as outliers indicating the presence of an incident leading to the 
activation of an alarm. 
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Table 4.4: XD segments on I-93-D6 

Northbound Southbound 

128959360 386964859 

386905455 386964865 

386905454 440978614 

386906636 1262964277 

429056927 1262977162 

1262968954 1262985447 

1262974027 1262986958 

1262974043 1263020045 

1262986967 1263020294 

1262988665 1263046143 

1262993272 1263090316 

1262993306 1263111350 

1262993322 1263133715 

1262997395 1263156327 

1263011589 1263156342 

1263047749 1263166971 

1263071978 1263178282 

1263156377 1263184372 

1263162675 1263187978 

1263166461 1263204379 

1263166988 1263217624 

1263226435 1263230448 

1263231759 1263233170 

1263232751 — 
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5 Model Development and Implementation 
 
Two models for detection of traffic incidents were developed and tested in this study. The first 
model is based on AI and the second is an empirical rule-based model. These models were 
applied for detection of traffic incidents on a segment of Interstate 93 southbound. The two 
models require the input data to be prepared in different ways. In this section, the two models 
and their corresponding input data preparation procedures are described in detail. 
Implementation results for the two models are also presented and compared. 

5.1  AI Model 

5.1.1 Description of AI Model and Model Inputs 

AI has been widely used for solving regression and classification problems. Traffic incident 
detection essentially is a classification problem. The traffic state at a specific moment is 
characterized by a feature vector representing speed, occupancy, and so forth. This feature vector 
is then fed into a pretrained AI classifier and classified as either incident or non-incident. Two 
key elements for a successful AI-based classification application are choice of classifier and 
feature selection. 
For any classification model (either AI, statistical, or other methods), selecting the right features 
is critical. Traditionally, occupancy, speed, and flow derived from point detectors such as 
inductive loops are used as input features for traffic incident detection. However, in many cases 
inductive loop detectors are available only at limited locations. Recently, data from in-vehicle 
navigation systems and mobile devices have been widely used by state DOTs. Such data has a 
much wider area coverage than traditional inductive loops and provides new opportunities for 
improving existing traffic incident detection practices. With these new data sources, the entire 
highway system is divided into small segments and the aggregated speeds of sampled vehicles on 
these segments within a short time interval (e.g., average speed for every 1-, 5-, or 10-minute 
interval) can be made available for incident detection purposes. INRIX data is used in this study. 
INRIX divides highways into small sections called XD segments. The input features include 

1. lengths of the upstream, current, and downstream XD segments, 
2. number of lanes of the current XD segment, 
3. speed, average speed, and C-value of the upstream XD segment, 
4. speed, average speed, and C-value of the current XD segment, and 
5. speed, average speed, and C-value of the downstream XD segment. 

To improve model performance, a 3-minute delay is introduced. For instance, the model makes a 
prediction at the end of 8:03 a.m. of what happened at 8:00 a.m. (i.e., three minutes ago) based 
on the 1-minute data points from 7:57 a.m. to 8:03 a.m. Therefore, for items 3 through 5 above, 
the speed, average speed, and C-value each refers to seven 1-minute observations. Each input 
feature in the data set is manually assigned a label (or target value) indicating whether it is an 
incident or not. 
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There are two main types of classifiers: supervised and unsupervised. Supervised classifiers 
require each input feature to be clearly labeled (e.g., as incident or non-incident). Labeling input 
features often is a very time-consuming process. Some recent methods such as deep learning 
typically require a large set of labeled input features to avoid model overfitting. On the other 
hand, unsupervised classifiers only need the input features and do not need labels. These 
methods can calculate the similarity/dissimilarity among the input features based on some 
distance metrics and automatically classify them into different categories. 
A supervised learning method integrating LSTM [40] and variational autoencoders (VAE) [41] 
is adopted in this study. VAE is based on Autoencoder [42], which mainly consists of an encoder 
and a decoder. The encoder converts the input feature into a new feature in a latent space. This 
new feature is then decoded by the decoder. Through this encoding and decoding process, our 
goal is to reduce the noise or unwanted information in the data and reduce the dimensionality. A 
drawback of the original Autoencoder model is that the latent space depends heavily on the input 
data [43], making the model prone to overfitting. In the VAE model, the input features are 
encoded into a normal distribution over a latent space [44], which can help to mitigate the model 
overfitting issue. 
Since the input features are time series in nature, we use an LSTM layer as the encoder. For the 
decoder, a multilayer perceptron (MLP) layer is used. The proposed algorithm samples a point 
from the encoded normal distribution and decodes it using the MLP layer. The decoder’s job is 
to decode the hidden features and classify them as either incidents or non-incidents. More 
specifically, the decoded result is the probability for the input feature to be labeled as 1 (i.e., 
incident). A threshold can be chosen to further turn the probabilities into binary outcomes. For 
example, if the probability threshold is set to 0.9, input features with probability greater than 
(less than or equal to) 0.9 will be labeled as incidents (non-incidents). 

 
Figure 5.1: Structure of the proposed VAE model 

Figure 5.1 [45] illustrates the proposed VAE model. Data samples (input features) in the original 
domain space are fed into an encoder. This encoder learns and generates a hidden normal 
distribution of the input features. From this learnable hidden distribution, the VAE model selects 
the same number (as the number of input features/records) of hidden representations in the latent 
space and sends them into the decoder to produce the classification labels, which are denoted as    
Ŷi (Y_hat in Figure 5.1). At the end, the VAE model compares the generated labels with the 
ground-truth labels to calculate the loss and backpropagation. 
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In the backpropagation phase, both the standard binary cross-entropy (BCE) loss function and 
the focal loss function are evaluated. The focal loss function is an enhanced version of the cross-
entropy loss function and is introduced to address the class imbalance problem. It gives more 
attention to samples in minor groups, which usually are more likely to be misclassified. This is 
achieved by assigning larger weights to those easily misclassified samples and smaller weights to 
samples that are typically classified correctly. However, our evaluation results suggest that the 
focal loss function does not perform any better than the BCE loss function shown in Eq. (5-1). 
Therefore, the BCE loss function is finally chosen in this study. 

 

 
 
 

 

 

The BCE loss function measures how well a machine learning model predicts the likelihood of a 
binary outcome. It is calculated by taking the average of the cross-entropy loss over all the 
training samples, where the cross-entropy loss is defined as the sum of the negative log 
likelihoods of all the correct predictions. The BCE loss function is widely used when training 
models for binary classification tasks. Figure 5.2 is an example showing how the BCE loss 
function value decreases as the number of epochs increases. 

Figure 5.2: Structure of the proposed VAE model 

LSTM is one of the well-known recurrent neural networks and a typical LSTM model is 
illustrated in Figure 5.3 [40]. It consists of four main components: a cell, an input gate, an output 
gate, and a forget gate. The cell remembers the values over time and the three gates update the 
cell values. The input gate embeds and determines the input information and updates the cell 
state. The forget gate decides whether information should be passed into the next layer or 
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forgotten at this stage. The output gate is to aggregate the information for the next layer of the 
LSTM model. 
 

 

 

Figure 5.3: Structure of a typical LSTM model [40] 

5.1.2 Data Preparation 

Since a supervised learning model is used as the classifier in this study, a critical step is to 
identify traffic incidents from historical data and label them. The project team was provided with 
two sets of historical data: traffic incident records from the MassDOT HOC and the speed and 
travel time data made available through the RITIS platform. 
From the HOC incident records, we can obtain the locations, start times, and durations of 
individual traffic incidents based on attribute fields “STARTED DATE,” “END DATE,” and 
“PRIMARY COORDINATE.” Because such data was manually entered into the incident 
database, errors were difficult to avoid. In some cases, we found the incident locations were not 
on any highways. In other cases, we checked the start and end times of some incidents and could 
not find any matching signs of traffic congestion in the RITIS data. A possible explanation for 
the second issue is that some minor incidents did not cause any noticeable congestion. The RITIS 
data also includes the incidents reported by Waze App users. Again, the Waze incident reports 
do not always match the HOC incident records or the RITIS data. Some Waze reported incidents 
(e.g., a speed trap) are not associated with any traffic slowdowns manifested by the RITIS speed 
data. Since this study relies on RITIS speed and travel time data to detect traffic incidents, the 
developed algorithms cannot detect minor events that do not cause any speed disturbances. 
The RITIS data is organized using two geographic units: TMC and XD segments. RITIS 
provides the speed, average speed, and C-value information for individual TMC or XD 
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segments. Each XD segment is usually less than 1 mile long. For XD segments near 
interchanges, where roadway geometry (e.g., number of lanes) changes frequently, their lengths 
are much shorter so that the resultant XD segments are homogenous. XD segments in general are 
shorter than TMC segments and provide more granular information. Shorter segments are also 
helpful in more accurately determining incident locations. Therefore, the XD segment data is 
used in this research instead of the TMC data. 
To prepare the data needed for developing and testing our models, we started with selecting a 
highway segment. All incidents on this segment in the HOC database were identified. Based on 
the locations of such incidents, their XD segments (including upstream and downstream XD 
segments) were determined. The corresponding traffic data for these XD segments were 
extracted from the RITIS platform. Specifically, a segment of I-93 (shown in Figure 5.4) 
between Downtown Boston and Quincy was selected, which consists of 55 XD segments. 
Incident records for these XD segments between January 2021 to April 2021 were extracted from 
the HOC database. The RITIS data in 1-minute interval was considered. Although the data is 
also available in 5-minute and 15-minute intervals, a shorter interval will allow us to detect 
incidents more quickly. 
 

 

 

Figure 5.4: Segment of I-93 selected for this study 

To develop incident detection models, an important step is to prepare the input features and label 
each one of them appropriately. This was done by manually correlating the HOC incident 
records to the RITIS data. Based on the start time, duration, and location of an incident in the 
HOC database, we checked the RITIS data to find the best matching XD segment. As discussed 
before, we considered the speed data 3 minutes before and 3 minutes after an incident. In other 
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words, a 7-minute time window was considered to generate the input features. We also included 
the speed data from neighboring XD segments immediately upstream and downstream of the 
incident. This is because incidents typically result in a pattern of increased downstream XD 
segment speed and decreased upstream XD segment speed. Finally, the 1-minute speeds, average 
speeds, and C-values of the three XD segments 3 minutes before and after the incident start time 
were used to form one input feature and this feature was labeled as “incident.” Following the 
same approach, many “non-incident” input features were also generated. In total, we obtained 
about 1,500 labeled incident features and more than 2 million labeled non-incident features. 
While the preceding procedure to prepare and label input features is seemingly straightforward, 
in general, several issues were encountered when implementing it. For example, for some 
incidents in the HOC database the RITIS speed data do not show any signs of congestion; speed 
reductions happen significantly before or after the incident start time recorded in the HOC 
database; and the upstream speed goes down earlier than the speed of the subject XD segment 
where the incident occurs, or the speed goes up and down without a clear pattern. These events 
were not used in our model development and testing. These examples indicate that preparing and 
labeling the input data is not straightforward, but rather a time-consuming and complicated 
process. It is significantly affected by the quality of the input data. For example, the HOC 
database suggests there were seven major incident-free periods between January 2021 and April 
2021. Therefore, based on the HOC data, many non-incident features were generated for this 
period. Later, using the Congestion Scan tool in RITIS we found a major congestion event (not 
during rush hours due to recurring congestion) in one of the seven incident-free periods. 
Therefore, we had to go back and exclude all the corresponding input features. 

5.1.3 Results of AI Method 

Two performance metrics are used in this study, which are detection rate (DR) and FAR [Eqs. 2-
1 and 2-1]. As the definitions [46] of FAR and DR suggest, smaller FAR and larger DR values 
are more desirable. 
Various VAE model configurations have been evaluated in this study. The results of the best 
performing VAE model are FAR = 0.0069% and DR = 91.70%. This model considers the 
following hyperparameters: two LSTM layers, batch size = 1,024, learning rate = 0.01, and no 
focal loss. 
Hyperparameters can have significant impacts on the VAE model results. For example, the 
number of LSTM layers affects the overall VAE model complicity and training time. The batch 
size also affects the time needed to train a VAE model. Properly choosing the batch size together 
with the learning rate can help to prevent the overfitting problem. 
Besides the hyperparameters, choosing the right variables for the input features is critical for the 
model performance. Different variables were considered and evaluated. Among them, the 3+3 
strategy (3 minutes before and after a decision point) appears to be the best one. We also 
examined other strategies such as 5+3, 4+4, and the 3+3 strategy with additional temporal and 
spatial features. As the name suggests, the 𝑚𝑚 + 𝑛𝑛 strategy means we consider the speed, average 
speed, C-value of the upstream, current, and downstream XD segments 𝑚𝑚 minutes before and 𝑛𝑛 
minutes after a decision point. 
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Based on the 3+3 strategy, additional temporal and spatial features were also explored. For the 
spatial features, we added the number of lanes for the upstream and downstream XD segments. 
For the temporal features, we encoded the timestamps by using cyclical encoding. The purpose 
of encoding the timestamps is to find out if the time stamp information is associated with traffic 
congestion. One day is equivalent to 1,440 minutes, and each minute was coded using a sine and 
a cosine value. Although we spent a lot of time exploring all these strategies, it was found that 
the original 3+3 strategy worked the best. 
In addition, some data augmentation methods have been tried to address the imbalanced data set 
issue. One of the most popular methods for this purpose is the SMOTE [47]. In this research, an 
extension of the SMOTE called adaptive synthetic sampling (ADASYN) [48] was adopted, since 
some researchers [48] showed that ADASYN performed better than SMOTE. The evaluation 
results in this study show that ADASYN does not lead to better FAR and DR values. 
As discussed earlier in this section, a threshold value is needed to turn the generated probabilities 
into incidents and non-incidents. Four candidate threshold values are experimented with in this 
study, which are 0.9990, 0.9985, 0.9980, 0.9975, and 0.9970. We select one day from each 
month between January and June to evaluate these candidate threshold values and try to find the 
best one. The evaluation results are presented in Figure 5.5 through Figure 5.14. There is a 
description at the top of each of these figures. For example, Figure 5.5 has 
“2021_0115_0.999_SB” at its top, which means this figure is for the results on 01/15/2021 using 
a threshold value of 0.999. “SB” at the end suggests that this figure is for the southbound of the 
selected corridor in Figure 5.4. The x-axis is time, and the y-axis is the distance from the 
beginning of the corridor. Note that due to missing values in RITIS, the x-axis intervals 
sometimes are not equal to 30 minutes. Figures 5.5 through 5.10 show results for January 15, 
2021, and Figures 5.11 through 5.14 show results for March 15, 2021. All figures show 
southbound traffic. 
As can be seen in Figure 5.5 through Figure 5.14, 0.9990 and 0.9985 seem to be better choices. 
Starting from 0.9980, the detection seems more reliable. By further decreasing the threshold 
value, the detection results become increasingly noisy especially when its value reaches 0.9970. 
It is found that the optimal threshold value varies in different months. For March, it is clear that 
0.9980 is not good enough to detect traffic incidents, while 0.9975 and 0.9970 perform better. 
This is evidenced by the congestion scan results for March 15 in Figure 5.14. When a threshold 
of 0.9980 is used, it is difficult to match the incident beginning location and time in Figure 5.11 
with those in Figure 5.14, but under 0.9975 (Figure 5.12) and 0.9970 (Figure 5.13), we can find a 
better match with the incident start time and location in the congestion scan map in Figure 5.14. 
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Figure 5.5: AI model incident detection results using a threshold value of 0.9990  

Figure 5.6: AI model incident detection results using a threshold value of 0.9985  
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Figure 5.7: AI model incident detection results using a threshold value of 0.9980 

Figure 5.8: AI model incident detection results using a threshold value of 0.9975 
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Figure 5.9: AI model incident detection results using a threshold value of 0.9970 

Figure 5.10: Congestion scan results for southbound traffic 
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Figure 5.11: AI model incident detection results using a threshold value of 0.9980 

Figure 5.12: AI model incident detection results using a threshold value of 0.9975 
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Figure 5.13: AI model incident detection results using a threshold value of 0.9970 

Figure 5.14: Congestion scan results for southbound traffic 
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5.2 Empirical Rule-Based Methods 

5.2.1 Overview of the Rule-Based Methods 

The AI method in the previous section is a Blackbox solution. Although it works, we do not 
know exactly the underlying mechanism. For transportation agencies, knowing how the system 
works is also important. Therefore, we also develop an empirical rule-based method. This 
method uses threshold values on the observed traffic parameters, i.e., space mean speeds along 
with their corresponding confidence parameters, available through the RITIS platform. When the 
currently observed speed on a road segment drops below the selected threshold value an alarm 
will be issued, requiring the HOC operator’s attention. For this purpose, first the distributions of 
speeds at different time periods and different locations must be developed, and then various 
percentile values of speed, to be set as thresholds, can be tested for their effectiveness in 
detecting incidents. 

5.2.2 Data 

The same corridor (Figure 5.4) for developing the AI method is also considered here. This 
corridor consists of 55 XD segments. Figure 5.15 shows how the speeds of adjacent XD 
segments change over time due to an incident that occurred around 5:06 p.m. on 3/8/2021 in XD 
segment 1263231759. The corresponding congestion scan map generated by RITIS is shown in 
Figure 5.16. The top half of Figure 5.15 is for speed changes and its y-axis measures miles per 
hour. The bottom half shows the confidence values of those speeds, and its y-axis values are 
between 0 and 100, with 100 being the most confident. The two vertical yellow lines represent 
the reported incident start time, which was obtained from the MassDOT HOC database. Figure 
5.15 shows that the speeds of all three XD segments decreased before the reported incident start 
time, suggesting there was a delay between when the incident occurred and when it was 
documented. Among the three XD segments, the current XD segment speed (continous line) 
went down more quickly than the other two, since vehicles in that segment were affected 
immediately by the incident. The downstream XD segment speed dashed line) also went down 
significantly. This probably was because the incident location was close to the beginning of the 
downstream segment, and it took drivers some time to speed up. Note that the downstream XD 
segment speed recovered earlier than the other two XD segments, which is reasonable. 
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Figure 5.15: Speed changes on consecutive XD segments due to an incident 

Figure 5.16: Congestion scan results for an incident in XD segment 1263231759 

5.2.3 Speed Distributions 

The RITIS platform provides speed data for every one-minute time interval for each XD 
segment. The records used in the following analysis are from January to December 2019 and 
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2021 and January to October 2022. Records during 2020 were omitted due to the impacts of the 
pandemic that may have caused the data to be biased—observed space mean speeds were 
generally higher than normal. The time stamp of each speed data record provides information 
such as year, month, weekday versus weekend, exact time, and so forth. Such information allows 
us to generate speed distributions for a specific time frame (e.g., a month, winter, summer, 
weekdays, weekends) or exclude the impacts of holidays. 
To establish the distributions of speeds at different time periods and different locations certain 
levels of data aggregation must be applied. This is necessary, so the distributions can be 
developed by using a reasonable number of observed values. Therefore, time periods when 
traffic patterns are expected to be similar must be identified and grouped together. The following 
procedures were used: 

• It is reasonable to assume that traffic patterns (and speeds) are similar during weekdays but 
different during weekends; therefore, records were grouped based on weekdays and 
weekends. 

• To take into consideration seasonal effects, observed speed records were grouped for each 
two consecutive months (January and February, March and April, etc.) for the three years 
the data were used. 

Based on this, for each XD segment there are 17,280 distributions (60 minutes/hour × 24 
hours/day × 2 types of days × 6 two-month-periods/year); and each distribution is constructed 
based on 130 speed observations for weekday distributions and 52 speed observations for 
weekend distributions (on average; the exact number depends on the numbers of weekdays and 
weekends in each 2-month period). Figure 5.17 shows these distributions for the XD segment 
1263156377 (I-93 northbound) for weekdays and for the June to July period (a total of 1,440 
distributions). Each graph includes 60 such distributions for each hour of the day. The x-axis is 
for speed, the y-axis is for minutes in an hour, and the z-axis is for speed frequency. 
Figure 5.18 shows more clearly these speed distributions for the period of 5:00 a.m. to 6:00 a.m. 
It can be seen that their shapes are quite irregular, mostly due to the limited number of 
observations. 
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Figure 5.17: One-minute distributions of observed speeds 
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Figure 5.18: One-minute distributions of observed speeds, 5:00–6:00 a.m. 

To improve the shape of these distributions, a two-step strategy is used which includes averaging 
and kernel density estimation (KDE) smoothing steps. 

• RITIS provides average speeds using 1-minute as well as 5-minute intervals. Instead of the
1-minute speed values that exhibit too much randomness, the 5-minute average speeds are
used since this data is less noisy. In the averaging step, we further consider the average
speeds of the previous, current, and next 5-minute intervals. These three 5-minute average
speeds are averaged again, and the mean value is then assigned to the current 5-minute
interval. In other words, for every 5-minute interval, its average speed is calculated from a
15-minute time window. The 5-minute speed distribution for the same XD segment and
period as in Figure 5.18 (i.e., 1263156377) is shown in Figure 5.19. The new distribution
clearly looks smoother, but still, they look like discrete histograms, with the height of each
bar representing the percentage of points in each 1 mi/h speed increment.
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Figure 5.19: Five-min. distributions of observed speeds, 5:00–6:00 a.m. 

• To convert the histogram to a continuous curve, the KDE is used. KDE is a non-parametric 
method for estimating the probability density function of the speeds, based on the limited 
data sample obtained through the previous step. KDE uses the normal distribution kernel 
to represent the points, then all the kernels are summed up to generate the final distribution. 

The results of this two-step approach, for the same period and same XD segment as in Figure 
5.19, are shown in Figure 5.20. By using 5-minute distributions, instead of 1 minute, for each 
XD segment the number of distributions is reduced to 3,456. For comparison purposes Figure 
5.21.a and Figure 5.21.b show the speed distributions for the same XD segment (XD 
1263156377) and the same time period (5:00–6:00 a.m.), but for the months of January and 
February and for weekdays (Figure 5.21.a) and weekends (Figure 5.21.b).  
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Figure 5.20: Smoothed 5-minute speed distributions, 5:00–6:00 a.m. 

Figure 5.21: Smoothed 5-minute speed distributions: (a) weekdays; (b)weekends 

(a) (b) 
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5.2.4 Establishment of Threshold Values 

Once the distributions for all XD segments in the test corridor and for all time periods were 
developed, the threshold values of speeds observed in these segments for non-incident conditions 
must be established. If the speed observed in a segment falls below the threshold value, an alarm 
will be issued requiring the operator’s attention to verify that there is an incident or cancel the 
alarm. 
As a first approach for establishing effective thresholds, for each of these distributions the mean 
μ and the standard deviation σ are calculated. The threshold value 𝑉𝑉𝑡𝑡,𝑠𝑠

𝑇𝑇  for segment s at time t is 
calculated as: 

 

 

where 𝛽𝛽 is the number of standard deviations the threshold is set below the mean value. 

We tested four different values for 𝛽𝛽, 1.5, 1.75, 2.0 and 2.25. If the current speed is higher or 
equal to the threshold, then this record is labeled as 0, which implies normal conditions. On the 
contrary, if the current speed is lower than the threshold, the record is labeled as 1, which 
indicates non-normal conditions, and an alarm is issued. 
We tested this approach on the 1-minute records downloaded from the RITIS platform. The 
records were not prelabeled before the run of the tests, because of the difficulties described in 
5.2.2. The performance of the selected thresholds is done by comparing the labeling of records (0 
or 1) against congestions scans available in RITIS. 
An example of this analysis is shown in Figure 5.22 through Figure 5.25. The congestion scan 
for Friday, January 15, 2021, for the entire test corridor in the southbound direction is shown in 
Figure 5.10. It should be noted that on that date, there were no events reported in the data 
provided by MassDOT HOC. 
Figure 5.22 through Figure 5.25 show the results of labeling the 1-minute records based on the 
thresholds described in Eq. (5-2) for 𝛽𝛽 =1.5, 1.75, 2.0, and 2.25. The horizontal axis in these 
graphs is the time of the day (24 hours), while the vertical axis is the length of the corridor. The 
bars in these figures, indicate speeds below the corresponding threshold value. Note that the bars 
are not drawn to be equal to the length of the XD segment, resulting in some locations along the 
corridor being in gaps between the rows of markers. Each graph includes 23 rows of markers, 
one for each XD segment along the southbound of the test corridor. 

The smaller the value of 𝛽𝛽, the more records are identified as abnormal operational conditions 
leading to several false alarms. For higher values of 𝛽𝛽, i.e., 𝛽𝛽=2.25, small fluctuations of speeds 
do not trigger an alarm, while significant events, such as the slow speeds on XD segments 
1263046143 (Freeport St.) to 1263020045 (Purchase St./Summer St./Congress St./Pearl St.) are 
detected. The slow speeds between 1:00 p.m. and 4:00 p.m., especially in the northern part of the 
corridor, are similar to what is experienced on the corridor at that location on a daily basis due to 
recurring congestion, thus no alarms are issued. Such recurring congestion can be seen in Figure 
5.26 and Figure 5.27, showing the congestion scans for two Fridays, January 8 and 22, 2021. 
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Figure 5.22: Incident detection results on 01/15/2021 using a 𝜷𝜷=1.5 for SB I-93 

Figure 5.23: Incident detection results on 01/15/2021 with 𝜷𝜷=1.75 for SB I-93 
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Figure 5.24: Incident detection results on 01/15/2021 with 𝜷𝜷=2 for SB I-93 

Figure 5.25: Incident detection results on 01/15/2021 with 𝜷𝜷=2.25 for SB I-93 
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Figure 5.26: Congestion map for SB I-93, Friday, January 08, 2021 

Figure 5.27: Congestion scan for SB I-93, Friday, January 22, 2021 
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5.2.5 Threshold by persisting speed differences on current and adjacent XD segments 

To reduce false alarms that appear in the results obtained by considering instantaneous speed 
differences only on the XD segment under consideration, the rule for issuing an alert, described 
in the previous section, is expanded as follows: 

 

 
  

where Vt−2,s, Vt−1,s are the speed values observed two and one minute earlier than the current 
speed observation Vt,s. Vt,s−1 is the speed observed currently on the upstream XD segment, and 
μt,s and σt,s are the corresponding mean and standard deviation values. To label a record as a 
abnormal record (label 1) all these conditions must be satisfied: the speed on the segment under 
consideration must be lower than the mean value by β standard deviations at least for three 
consecutive minutes, and the current speed on the upstream segment must be also lower than the 
mean value by β standard deviations. If any of these conditions is not satisfied the record is 
labeled as 0, which indicates normal conditions, and no alarm is issued. Note that the implication 
of this is that the labeling of a record is not based on a single threshold value but rather four 
values considered simultaneously. 
The results of this set of rules [Eq. (5-3)], for β = 1.5, 1.75, 2.0 and 2.25, for Friday, January 15, 
2021, for the entire test corridor in the southbound direction (same day as in previous example), 
are shown in Figure 5.28 to Figure 5.31. 
Short duration reductions of speed (less than three minutes) do not generate an alarm. Reduced 
speeds, and therefore queues, must have propagated to the upstream segment. This reduces the 
number of false alarms but increases unavoidably the detection time by at least two minutes, plus 
the time it takes for queues to propagate to the upstream segment and affect its speed. Generally, 
the length of the XD segments is very short, so queues should transfer quickly to the upstream 
segment. However, for minor incidents and during low traffic conditions queues may not 
propagate upstream, or if they do it may take more than two minutes. Therefore, the 
disadvantage of this approach is that incidents that affect only the segment where they occurred 
may not be detectable or if they are, they have longer detection times. Generally, using this set of 
rules for labeling speed records results in less noise, alarms lasting only a few minutes and 
scattered at disjoint XD segments. 
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Figure 5.28: Incident detection results with Eq. (5-3) and 𝜷𝜷=1.5 for SB I-93 

Figure 5.29: Incident detection results with Eq. (5-3) and 𝜷𝜷=1.75 for SB I-93 
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Figure 5.30: Incident detection results with Eq. (5-3) and 𝜷𝜷=2.0 for SB I-93 

Figure 5.31: Incident detection results with Eq. (5-3) and 𝜷𝜷=2.25 for SB I-93.
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A variation of the previous set of rules is to consider the traffic conditions on the downstream 
XD segment. When an incident occurs, it creates a bottleneck to the flow of traffic, resulting in 
reduced speeds on the segments where it occurred and possibly on upstream segments as well. 
Downstream segments should be unaffected. The modified set of rules is presented in Eq. (5-4): 

if 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜇𝜇𝑡𝑡−2,𝑠𝑠 −  𝑉𝑉𝑡𝑡−2,𝑠𝑠

𝜎𝜎𝑡𝑡−2,𝑠𝑠
−
𝜇𝜇𝑡𝑡−2,𝑠𝑠+1 −  𝑉𝑉𝑡𝑡−2,𝑠𝑠+1

𝜎𝜎𝑡𝑡−2,𝑠𝑠+1
> 𝛽𝛽

𝜇𝜇𝑡𝑡−1,𝑠𝑠 −  𝑉𝑉𝑡𝑡−1,𝑠𝑠

𝜎𝜎𝑡𝑡−1,𝑠𝑠
−
𝜇𝜇𝑡𝑡−1,𝑠𝑠+1 −  𝑉𝑉𝑡𝑡,𝑠𝑠+1

𝜎𝜎𝑡𝑡−1,𝑠𝑠+1
> 𝛽𝛽

𝜇𝜇𝑡𝑡,𝑠𝑠 −  𝑉𝑉𝑡𝑡−1,𝑠𝑠

𝜎𝜎𝑡𝑡,𝑠𝑠
−
𝜇𝜇𝑡𝑡,𝑠𝑠+1 −  𝑉𝑉𝑡𝑡,𝑠𝑠+1

𝜎𝜎𝑡𝑡,𝑠𝑠+1
> 𝛽𝛽

⎭
⎪⎪
⎬

⎪⎪
⎫

⇒  label = 1 

 

(5-1) 

 
 
 
 
 
 

To compare the speed on the segment under consideration to the speed on the downstream 
segment, the values must be “normalized,” and the difference of the normalized values must be 
greater than 𝛽𝛽 standard deviations of the standard normal distribution (which is equal to 1). The 
time subscripts 𝑡𝑡, 𝑡𝑡 − 1, 𝑡𝑡 − 2, correspond to current, one-minute earlier and two minutes earlier 
speed observation and corresponding distribution parameters, while the segment subscripts 𝑠𝑠, 𝑠𝑠 +
1, correspond to the XD segment under consideration and the downstream segment. If the 
difference of these “normalized” speeds are greater than or equal to 𝛽𝛽 for three consecutive 
minutes the current record is labeled 1, which indicates abnormal conditions, and an alarm is 
issued. 

The results of using this set of rules [Eq. (5-4)], for 𝛽𝛽 =1.5, 1.75, 2.0 and 2.25, for Friday, 
January 15, 2021, for the entire test corridor in the southbound direction (same day as in previous 
example), are shown in Figure 5.32 to Figure 5.35. 
Notice that for the event that occurs at 7:00 p.m. only the first XD segment is flagged, since for 
segments further upstream speeds may be lower than normal but the differences of their 
normalized values will be smaller than 𝛽𝛽, as both the segment under consideration and the 
immediate downstream segment are experiencing low speeds. This may be advantageous, since 
the operators will not have to deal with multiple alarms for the same incident. For larger values 
of 𝛽𝛽, i.e., 2.0 and 2.25, there is very little noise and only major events are identified. 
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Figure 5.32: Incident detection results with Eq. (5-4) and 𝜷𝜷=1.5 for SB I-93

Figure 5.33: Incident detection results with Eq. (5-4) and 𝜷𝜷=1.75 for SB I-93
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Figure 5.34: Incident detection results with Eq. (5-4) and 𝜷𝜷=2.0 for SB I-93 

 Figure 5.35: Incident detection results with Eq. (5-4) and 𝜷𝜷=2.25 for SB I-93
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5.2.6 Beta Distribution 

In the analysis performed so far, the implicit assumption was that under normal operational 
conditions, for any time period and at any XD segment, the distribution of observed speeds 
follows a normal distribution. An alternative distribution that can be used to describe the speed 
data is the Beta distribution, which is actually a family of distributions defined in the interval [0, 
1] in terms of two positive parameters, 𝛼𝛼 and 𝛽𝛽. Since speeds are non-negative, using a Beta 
distribution is more reasonable than a normal distribution. 

The parameters 𝛼𝛼 and 𝛽𝛽 can be estimated from the values of the observed speeds, and the Beta 
distribution can be shifted and scaled, to fit the range of these observed speeds [49]. To establish 
these parameters with greater reliability, 5-minute speed observations are grouped together for 
every hour of the day (thus 24 distributions for each day). Similar to the analysis performed 
before, different Beta distributions are developed for each hour of the day, for weekdays and 
weekends, for every two-month season and for every XD segment. 
With the Beta distribution, we can simply choose the 1st, 1.25th, 1.5th, 1.75th, 2nd, or 2.25th 
percentile as the threshold for incident detection. If the newly observed 1-minute speed is below 
the threshold, an alert can be triggered. To fit the speed data using the Beta distribution, the 
SciPy Python package [50] can be used This package generates four parameters for the Beta 
distribution, which are 𝛼𝛼, 𝛽𝛽, shift, and scale. 
Figure 5.36 and Figure 5.37 show the fitted Beta probability density functions (PDF) for XD 
segment 1262993306 for two 1-hour time periods on weekdays. The 1st, 1.25th, 1.5th, 1.75th, 
2nd, or 2.25th percentiles during 11:00 a.m. to 12 noon are 37.4, 38.5, 39.4, 40.2, 40.9, and 40.6 
mi/h, respectively. The same percentiles during 15:00 p.m. to 16:00 p.m. are much lower: 8.1, 
8.6, 9.0, 9.5, 9.9, and 10.3 mi/h, respectively. 
The results of using the Beta distribution for the 1st, 1.25th, 1.5th, 1.75th, 2nd, and 2.25th 
percentiles, for Friday, January 15, 2021, for the entire test corridor in the southbound direction 
(same day as in previous examples), are shown in Figure 5.38 to Figure 5.43. In these tests, 
information only from the current XD segment and during the current time interval is considered. 
Generally, the smaller the percentile (i.e., 1st or 1.25th percentiles) the lower the threshold value 
for the observed speeds to indicate abnormal conditions. Compared to the results using the 
normal distribution (Figure 5.22 to Figure 5.25), using the Beta distribution results in less noise, 
i.e., false alarms. 
The Beta distribution theoretically is more reasonable since the random variable is assumed to be 
non-negative. Therefore, considering the Beta distribution is still a very promising direction for 
future work. 

Another method to estimate 𝛼𝛼 and 𝛽𝛽 is the Method of Moments [51]. To apply the Method of 
Moments, we need first to normalize the input speeds and convert them to a range between 0 and 
1. In this way, the shift and scale coefficients of the Beta distribution are 0 and 1, respectively. 
We only need to focus on estimating 𝛼𝛼 and 𝛽𝛽. Once Beta distributions are fitted based on the 
observed speed data, the speed thresholds can be calculated and further used for incident 
detection. Given the limited time for this study, the Beta distribution approach has not been 
evaluated thoroughly and should be further explored in future research.  



67 

Figure 5.36: Beta probability density functions 11:00 a.m. to 12:00 noon weekdays 

Figure 5.37: Beta probability density functions 3:00 p.m. to 4:00 p.m. weekdays 
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Figure 5.38: Incident detection results using Beta distribution, 1st percentile 

Figure 5.39: Incident detection results using Beta distribution, 1.25th percentile 
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 Figure 5.40: Incident detection results using Beta distribution, 1.5th percentile

Figure 5.41: Incident detection results using Beta distribution, 1.75th percentile 
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Figure 5.42: Incident detection results using Beta distribution, 2nd percentile

Figure 5.43: Incident detection results using Beta distribution, 2.25th percentile
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5.3 Comparison of AI and Rule-Based Methods 

The AI model appears to be able to detect more incidents than the rule-based methods in some 
cases. However, it is difficult to understand how the AI model works. On the other hand, the 
various rule-based methods also perform well. An important benefit of the rule-based methods is 
that users can adjust the parameters based on experience. The effects of these parameters are 
easy to understand. 
Two examples for comparing the AI and rule-based methods are provided in Figure 5.44 through 
Figure 5.49. The first example is for the northbound direction of the corridor on 01/15/2021 
(Figures 5.44 through 5.46). The AI model threshold is 0.998 and the rule-based model threshold 
is 2 (only the beta threshold is considered, no other criteria). The entire event marked by the 
black dashed rectangle in Figure 5.44 is missed by the rule-based model (see Figure 5.45). 
However, the AI model can detect some parts of it as shown in Figure 5.46. In addition, the event 
marked by the black oval in Figure 5.44 is again missed by the rule-based model, while the entire 
event is mostly captured by the AI model. 
The second example (Figures 5.47 through 5.49) is for the southbound direction of the corridor 
on 05/15/2021. Two major incidents occurred on that day at different locations. The same 
threshold values used in the first example are considered here. The incident in the black oval in 
Figure 5.47 is largely missed by the rule-based method but mostly captured by the AI model. 

Figure 5.44: Congestion scan results for NB traffic on 01/15/2021 
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Figure 5.45: Incident detection results using a beta threshold value of 2.0 for NB traffic 

Figure 5.46: AI model incident detection results using a threshold value of 0.9980 for NB 
traffic 
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Figure 5.47: Congestion scan results for SB traffic on 05/15/2021 

Figure 5.48: Incident detection results using a beta threshold value of 2.0 for SB traffic 
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Figure 5.49: AI model incident detection results using a threshold value of 0.9980 for SB 
traffic 

5.4 Other Modeling Efforts 

Several other methods have been evaluated in this research. One of them is PyCaret [52], which 
is an open-source machine learning library for classification, regression, etc. A small data set 
with only one incident on 02/04/2021 was used to evaluate the methods in this library. The 
methods evaluated were Angle base Outlier Detection, Clustering-Based Local Outlier, 
Connectivity-Based Local Outlier, Isolation Forest, Histogram-based Outlier Detection, K-
Nearest Neighbors Detector, Local Outlier Factor, One-class SVM detector, Principal 
Component Analysis, Minimum, Covariance Determinant, Subspace Outlier Detection, and 
Stochastic Outlier Selection. Overall, the results were unsatisfactory. As can be seen in Figure 
5.50, the red dots indicate the abnormal events detected by the methods in the PyCaret library, 
which are all over the place. When applying the methods in PyCaret, the input data was simply 
treated as time series without considering upstream and downstream XD segment speeds. This 
might be one of the reasons for the poor performance. 
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Figure 5.50: PyCaret evaluation results 

We also investigated the applicability of two other models: Deep SAD [5351] and Unsupervised 
Data Augmentation (UDA) [5452]. Given the difficulties in labeling incident data, exploring 
unsupervised and semisupervised methods for detecting traffic incidents appears to be a 
promising direction. Although we were unsuccessful in obtaining good results from these 
models, these and similar unsupervised and semisupervised methods are worth exploring in the 
future. 
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6  Field Testing 
 

  

To further test the incident detection methodologies described above, under a variety of 
situations, selected strategies were applied to both the northbound and southbound directions of 
the test corridor over a continuous 30-day period. The period used was between June 1 and June 
30, 2021. To keep the calculation of the threshold values as simple as possible, so that the 
selected procedure can be applied easily on different roadways, the procedures discussed in 5.2.4 
and 5.2.5 were used. Although the beta distribution approach also generates good incident 
detection results, calculating its thresholds is less straightforward and involves the estimation of 
distribution parameters and various percentile values. Therefore, the beta distribution approach 
was not used in this field test. 
When the incident detection strategy described in 5.2.5 was applied [i.e., using the speed of the 
downstream segment as defined by the rule in Eq. (5-4)], the detection rate was rather poor. This 
is because such a rule can only capture events that result in significant differences in the speeds 
of the current and downstream XD segments, which would be observed in the case of an incident 
occurrence during off-peak periods. During the test period, the test corridor has long periods of 
recurring congestion on all its segments. As a result of this, in the event of a traffic incident, the 
downstream segment is also congested due to recurring congestion. Therefore, the difference 
between the speed on the incident segment and the speed on the downstream segment is not large 
enough to satisfy the rule described by Eq. (5-4). 
Based on these results it was decided that the second incident detection strategy should be tested, 
which is described in Eq. (5-2) considering a 𝛽𝛽 = 2.25 standard deviation. Before an incident 
alert is generated, the condition in Eq. (5-2) should be valid for at least three consecutive 
minutes. Generally, the relatively large value of 𝛽𝛽 and the three-minute rule kept the false alarm 
rate low and resulted in fast detections of speed anomalies. 
A problem identified during these tests was that congested periods often have large standard 
deviations and low mean values for speed. In these cases, using the normal distribution often 
resulted in extremely low or even negative (in which case it was set to 0) threshold speed values. 
For example, the average speed for northbound XD segment 1263148464 during weekdays and 
around 2:25 pm drops to about 14 mi/h and the corresponding standard deviation is around 11 
mi/h (Table 6.1). Using the rule in Eq. (5-2) and 𝛽𝛽 = 2.25, the resultant threshold value is 0 
mi/h. In this case, even very low observed speeds (e.g., 3 or 4 mi/h) do not trigger an alarm 
(Table 6.2). 



 

78 
 

Table 6.1: Mean and standard deviation of speed distributions on XD 1263148464 
XDID Month 1 Month 2 Weekday Time Mean Std. Dev. 

1263148464 5 6 1 2:00 PM 27.18 16.34 
1263148464 5 6 1 2:05 PM 23.95 15.64 
1263148464 5 6 1 2:10 PM 20.62 14.02 
1263148464 5 6 1 2:15 PM 17.80 12.73 
1263148464 5 6 1 2:20 PM 15.51 11.85 
1263148464 5 6 1 2:25 PM 13.89 10.94 
1263148464 5 6 1 2:30 PM 12.73 10.29 
1263148464 5 6 1 2:35 PM 12.04 9.68 
1263148464 5 6 1 2:40 PM 11.84 9.80 
1263148464 5 6 1 2:45 PM 11.58 9.60 
1263148464 5 6 1 2:50 PM 11.38 9.19 
1263148464 5 6 1 2:55 PM 11.12 8.99 

 

Table 6.2: One-minute speed observations on XD 1263148464 
XDID Time stamp Speed Prediction 

1263148464 6/1/2021 2:02 PM 48 0 
1263148464 6/1/2021 2:03 PM 48 0 
1263148464 6/1/2021 2:04 PM 47 0 
1263148464 6/1/2021 2:05 PM 47 0 
1263148464 6/1/2021 2:06 PM 47 0 
1263148464 6/1/2021 2:07 PM 43 0 
1263148464 6/1/2021 2:08 PM 42 0 
1263148464 6/1/2021 2:09 PM 43 0 
1263148464 6/1/2021 2:10 PM 43 0 
1263148464 6/1/2021 2:11 PM 40 0 
1263148464 6/1/2021 2:12 PM 40 0 
1263148464 6/1/2021 2:13 PM 30 0 
1263148464 6/1/2021 2:14 PM 18 0 
1263148464 6/1/2021 2:15 PM 17 0 
1263148464 6/1/2021 2:16 PM 17 0 
1263148464 6/1/2021 2:17 PM 14 0 
1263148464 6/1/2021 2:18 PM 11 0 
1263148464 6/1/2021 2:19 PM 9 0 
1263148464 6/1/2021 2:20 PM 9 0 
1263148464 6/1/2021 2:21 PM 11 0 
1263148464 6/1/2021 2:22 PM 10 0 
1263148464 6/1/2021 2:23 PM 9 0 
1263148464 6/1/2021 2:24 PM 9 0 
1263148464 6/1/2021 2:25 PM 8 0 
1263148464 6/1/2021 2:26 PM 9 0 
1263148464 6/1/2021 2:27 PM 9 0 
1263148464 6/1/2021 2:28 PM 10 0 
1263148464 6/1/2021 2:29 PM 11 0 
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To eliminate this problem of negative speed threshold values, the percentiles of the observed 
speeds were used to set the threshold values, instead of the ones based on the normal 
distributions. The empirical distributions of the observed speeds that were used were the ones 
generated after the two-step smoothing described in 5.2.3. Thresholds between the 1st and 1.5th 
percentiles of the observed speeds were tested. For example, the 1st, 1.25th, and 1.5th percentiles 
of the observed speeds for the same period and segment as above (2:00 p.m. to 3:00 p.m., 
weekdays, XD segment 1263148464) are shown in Table 6.3. These percentiles clearly can avoid 
the extremely small or even negative threshold values. 

Table 6.3: Percentiles of observed speeds on XD 1263148464 
XDID MONTH1 MONTH2 WEEKDAY TIME 1% 1.25% 1.50% 

1263148464 5 6 1 2:00 PM 6.00 6.00 6.00 

1263148464 5 6 1 2:05 PM 5.29 5.61 5.94 
1263148464 5 6 1 2:10 PM 5.29 5.61 5.94 
1263148464 5 6 1 2:15 PM 5.29 5.61 5.94 
1263148464 5 6 1 2:20 PM 6.00 6.00 6.00 
1263148464 5 6 1 2:25 PM 6.00 6.00 6.00 
1263148464 5 6 1 2:30 PM 5.29 5.61 5.94 
1263148464 5 6 1 2:35 PM 5.00 5.00 5.00 
1263148464 5 6 1 2:40 PM 5.29 5.61 5.94 
1263148464 5 6 1 2:45 PM 5.29 5.61 5.94 
1263148464 5 6 1 2:50 PM 4.58 5.23 5.87 
1263148464 5 6 1 2:55 PM 4.29 4.61 4.94 

The results for the 30-day test are shown in Appendix 8.2, except for the days of June 5th and 
June 16th, for which the data available on the RITIS platform were corrupt. During the month of 
June 2021 there were 24 Level 2 events recorded by the MassDOT HOC, with eight of them 
being DMV and the rest being traffic crashes. These events are listed in Table 8.1 in Appendix 
8.1. Most of the events recorded by the HOC were detected by the strategy described above. For 
most of these events the detection time was well before the “SENT-ON” time recorded in the 
HOC database. For the few events that were not detected, the speed disturbance was not 
significant, compared to the historical speed pattern at that time and location. Beyond these 24 
events recorded by HOC and considering the events indicated by Waze reports included in the 
congestion scans generated by RITIS, the strategy used could detect several of them. 
On the other hand, alarms were issued during probable periods of recurring congestion. An 
explanation of this is that the start and end of recurring congestion varies from day to day by 
several minutes, so during transient states when the observed speeds are low, alarms are issued. 
Overall, the strategy that was developed using the empirical rules described above can detect 
incidents that result in perturbations in the one-minute average speeds observed for at least three 
consecutive minutes. Minor events that do not cause such perturbations cannot be detected.  
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7 Conclusions 

 
**In this study data sets available to MassDOT that can be used for real-time incident detection 
were identified. Such data included speed and travel time data through the GoTime and the 
RITIS platforms and Waze reports. From these data sets, the one available through the RITIS 
platform was the most suitable for developing and testing incident detection strategies. Speed 
data obtained through the RITIS platform was aggregated over one-minute time intervals and 
over short distinct roadway segments (i.e., XD segments). 
For detection of traffic incidents, two models were developed and tested in this study. The first 
model is based on AI and the second is an empirical rule-based model. The two models were 
applied for detection of traffic incidents on the selected section of Interstate 93 between Quincy 
and Boston in MassDOT District 6. 

• AI Model: Traffic incident detection essentially can be modeled as a classification 
problem. The traffic state at a specific moment is characterized by a feature vector 
representing speeds on the current XD segment as well as its neighbors, and 
corresponding confidence parameters. This feature vector is then fed into a pretrained AI 
classifier and classified as either incident or non-incident. Several classifiers, using 
supervised and unsupervised learning, have been tested. A supervised learning method 
integrating LSTM and Variational Autoencoders (VAE) is adopted. This requires (for the 
training phase and testing of the model) each record to be clearly labeled as incident or 
non-incident. This labeling process is too time consuming, so testing was limited to only 
a few 24-hour periods. Various VAE model configurations have been evaluated. The 
results of the best performing VAE model are FAR = 0.0069%, DR = 91.70%. 

• Empirical Rule-Based Methods: This method uses threshold values on the observed 
speeds, available through the RITIS platform. For this purpose, first the distributions of 
speeds at different time periods and locations are developed. Various percentile values of 
speed, to be set as thresholds, are tested for their effectiveness in detecting incidents. If 
the speed observed in an XD segment falls below the threshold value, an alarm will be 
issued requiring the operator’s attention to verify that there is an incident or cancel the 
alarm. For the calculation of the percentiles, different distributions are developed and 
tested, including the normal, the Beta and the empirical distributions of historical speeds 
over the last three years. An off-line test was completed for a continuous 30-day period, 
during which most of the event recorded by the MassDOT HOC were detected, and for 
most of them the detection time was well before the SENT-ON time recorded in the HOC 
database. In addition, the developed strategy can detect events indicated by Waze reports 
included in the congestion scans generated by RITIS, although these events are not 
recorded in the HOC database. Some false alarms were issued during periods of recurring 
congestion, probably because the start and end of recurring congestion varies from day to 
day by several minutes. Therefore, during transition periods when the observed speeds 
are low, alarms are issued. 

Future research on both models is very likely to further improve their performance. For the AI 
model the performance of unsupervised learning methods should be explored, while for the 
empirical rule-based method, procedures for updating the speed distributions to include the most 
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recent observations should be investigated. The application of different empirical procedures at 
different locations and time periods, tailored to the historic traffic conditions, will most likely 
improve the performance of the model. Furthermore, combining the two models, the AI model 
with the empirical rules (e.g., those in Eq. (5-4)), is expected to improve the performance even 
more. 
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8  Appendixes 

8.1 Events Reported by MassDOT HOC on South I-93, June 1 to June 30, 2021 

Table 8.1: Events reported by MassDOT HOC on SB and NB of South I-93 (test corridor) 
during June 2021 

Sent On Rt. No. Direction City DMV/Crash XD Segment 
Jun 01, 2021, 14:27:07 EDT I-93 NB MILTON Crash 1262986967 
Jun 02, 2021, 13:36:56 EDT I-93 NB BOSTON DMV 1263231759 
Jun 02, 2021, 15:29:01 EDT I-93 NB MILTON DMV 1262993322 
Jun 03, 2021, 16:24:42 EDT I-93 SB BOSTON Crash 1263156327 
Jun 04, 2021, 06:51:24 EDT I-93 NB BOSTON Crash 1263111350 
Jun 05, 2021, 18:41:42 EDT I-93 SB BOSTON DMV 386964859 
Jun 07, 2021, 10:10:47 EDT I-93 NB BOSTON Crash 1262997395 
Jun 07, 2021, 15:50:58 EDT I-93 NB MILTON Crash 1262993272 
Jun 08, 2021, 10:32:52 EDT I-93 SB BOSTON DMV 1263217624 
Jun 08, 2021, 17:55:10 EDT I-93 NB BOSTON Crash 1262974043 
Jun 09, 2021, 16:14:52 EDT I-93 NB BOSTON Crash 1263162675 
Jun 11, 2021, 08:36:10 EDT I-93 NB BOSTON DMV 1263047749 
Jun 11, 2021, 18:05:30 EDT I-93 SB BOSTON Crash 1263156327 
Jun 13, 2021, 21:01:05 EDT I-93 NB BOSTON Crash 1262968954 
Jun 14, 2021, 16:02:36 EDT I-93 SB BOSTON Crash 386964859 
Jun 16, 2021, 07:52:43 EDT I-93 SB BOSTON Crash 1263184372 
Jun 19, 2021, 12:57:17 EDT I-93 NB BOSTON Crash 1263217624 
Jun 23, 2021, 01:35:24 EDT I-93 SB QUINCY DMV 1263156342 
Jun 24, 2021, 01:37:39 EDT I-93 NB BRAINTREE Crash 1263096881 
Jun 24, 2021, 16:53:14 EDT I-93 SB BOSTON Crash 1263046143 
Jun 25, 2021, 02:17:04 EDT I-93 NB MILTON Crash 1262974027 
Jun 26, 2021, 05:09:49 EDT I-93 NB BOSTON DMV 386896207 
Jun 26, 2021, 05:09:49 EDT I-93 NB BOSTON DMV 1263231759 
Jun 26, 2021, 18:24:32 EDT I-93 NB BOSTON Crash 1262974027 
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8.2 Results of Incident Detection Strategy Test, June 1 to June 30, 2021 

In Figures 8.1 through 8.28, (a) shows the congestion scan and (b) shows the alarms issued by 
incident detection strategy, for southbound and northbound of south I-93 on successive days in 
June 2021. 

 
(a) 

 

 
(b) 

Figure 8.1: June 1, 2021 
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Figure 8.2: June 2, 2021 
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Figure 8.3: June 3, 2021 
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Figure 8.4: June 4, 2021 
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Figure 8.5: June 6, 2021 
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Figure 8.6: June 7, 2021 
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Figure 8.7: June 8, 2021 
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Figure 8.8: June 9, 2021 
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Figure 8.9: June 10, 2021 
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Figure 8.10: June 11, 2021 
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Figure 8.11: June 12, 2021 
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Figure 8.12: June 13, 2021 
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Figure 8.13: June 14, 2021 
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Figure 8.14: June 15, 2021 
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Figure 8.15: June 17, 2021 
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Figure 8.16: June 18, 2021 
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Figure 8.17: June 19, 2021 



 

101 
 

 

 

 

(a) 

(b) 

 
  

Figure 8.18: June 20, 2021 
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Figure 8.19: June 21, 2021 



 

103 
 

 

 

 

(a) 

(b) 

 
  

Figure 8.20: June 22, 2021 
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Figure 8.21: June 23, 2021 



 

105 
 

 

 

 

(a) 

(b) 

 
  

Figure 8.22: June 24, 2021 
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Figure 8.23: June 25, 2021 
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Figure 8.24: June 26, 2021 
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Figure 8.25: June 27, 2021 
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Figure 8.26: June 28, 2021 
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Figure 8.27: June 29, 2021 
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Figure 8.28: June 30, 2021 



 

112 
 

 

This page left blank intentionally.  



 

113 
 

9 References 
 

 

1  FHWA, 2021. Process for Establishing, Implementing, and Institutionalizing a Traffic 
Incident Management Performance Measurement Program, 
https://ops.fhwa.dot.gov/publications/fhwahop15028/step1.htm. 

2  Parkany, E. and Xie, C., 2005. A Complete Review of Incident Detection Algorithms & 
Their Deployment: What Works and What Doesn’t. Report NETCR37, The New England 
Transportation Consortium. 

3  Goodall, N. and Lee, E., 2019. Comparison of Waze crash and disabled vehicle records 
with video ground truth, Transportation Research Interdisciplinary Perspectives, Volume 1, 
100019, https://doi.org/10.1016/j.trip.2019.100019. 

4  Hadi, M. et al, 2017. Utilization of Connected Vehicle Data to Support Traffic 
Management Decisions. Final Report prepared for Florida Dept. of Transportation. 

5  Wolfgram, J. et al, 2018. A Quick and Reliable Traffic Incident Detection Methodology 
Using Connected Vehicle Data. Paper sponsored by TRB committee ABJ35 Standing 
Committee on Highway Traffic Monitoring. 

6  Stone, Tom, 2021. Wejo connected vehicle data integrated into Waycare traffic 
management platform. Traffic Technology International, June 2021. 

7  Outay F, Mengash A., and Adnan M, 2020. Applications of unmanned aerial vehicle 
(UAV) in road safety, traffic and highway infrastructure management: Recent advances 
and challenges. Transp Res Part A, 141: 116–129. 

8  Rindt, C., 2018. Situational Awareness for Transportation Management: Automated Video 
Incident Detection and Other Machine Learning Technologies for the Traffic Management 
Center. Report No. CA18-2531. Institute of Transportation Studies, University of 
California - Irvine. 

9  Brydia, R., Johnson, J, and Balke, K., 2005. An Investigation into the Evaluation and 
Optimization of the Automatic Incident Detection Algorithm used in TXDOT Traffic 
Management Systems. Texas Transportation Institute Report 0-4770-1. URL: 
http://tti.tamu.edu/documents/0-4770-1.pdf. 

10  Chung, E and Rosalion, N., 1999. Effective incident detection and management on 
freeways, Research Report ARR 327, ARRB Transport Research, Vermont South, Victoria. 

11  Luk, J., Han, C. and Chin, D., 2010. Automatic Freeway Incident Detection: Review of 
Practices and Guidance. 24th ARRB Conference – Building on 50 years of road and 
transport research, Melbourne, Australia 2010. 

12  Petty, K.F., Skabardonis, A. and Varaiya, P.P., 1997. Incident detection with probe 
vehicles: performance infrastructure requirement and feasibility. In: Transportation 

 



 

114 
 

 
Systems 1997. Proceedings Volume from the 8th IFAC/IFIP/IFORS Symposium, Chania, 
Greece, 16–18 June 1997. 

13  Cheu, R.L., Qi, H. and Lee, D.H., 2002. Mobile sensor and sample-based algorithm for 
freeway incident detection. Transport. Res. Rec.: J. Transport. Res. Board 1811, 12–20. 

14  Li, Y., McDonald, M., 2005. Motorway incident detection using probe vehicles. Proc. Inst. 
Civil Eng.-Transport 158, 11–15. 

15  Kinoshita, A., Takasu, A. and Adachi, J., 2014. Traffic Incident detection using 
probabilistic topic model. In: Proceedings of the Workshops of the Joint Conference 
EDBT/ICDT 2014, Athens, Greece, 28 March 2014. 

16  Eleonora D’Andrea and Francesco Marcelloni, 2016: Detection of traffic congestion and 
incidents from GPS trace analysis, Dipartimento di Ingegneria dell’Informazione, 
University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy. 

17  Nanthawichit, C., Nakatsuji, T., Suzuki, H., 2003. Application of probe-vehicle data for 
real-time traffic state estimation and short term travel time prediction on a freeway. 
Transport. Res. Rec. 1855, 49–59. 

18  El Faouzi, N.-E., Leung, H. and Kurian, A., 2011. Data fusion in intelligent transportation 
systems: progress and challenges-A survey. Inform. Fusion 12 (1), 4–10. 

19  Hall, F.L, Shi, Y. and Atala, G., 2018. On-line testing of the McMaster algorithm under 
recurrent congestion. Transportation Research Record, no. 1394, pp.1-7. 

20  Chassiakos, A.P. and Stephanedes, Y.J., 1993. Smoothing algorithms for incident 
detection. Transportation Research Record, no. 1394, pp.8-16. 

21  Ritchie, S.G. and Cheu, R.L., 1993. Simulation of freeway incident detection using 
artificial neural networks, Transportation Research, vol. 1C, no. 3, pp.203-17. 

22  Dia, H. and Rose, G., 1997. Development and evaluation of neural network freeway 
incident detection models using field data, Transportation Research, vol. 5c, no. 5, pp.313-
31. 

23  Abdulhai, B., and Ritchie, S.G., 1999. Enhancing the universality and transferability of 
freeway incident detection using a Bayesian-based neural network, Transportation 
Research, vol. 7C, no. 5, pp.261-80. 

24  Zhang, K., and Taylor, M.A.P., 2006. Towards universal freeway incident detection 
algorithms, Transportation Research, vol. 14C, no. 2, pp.68-80. 

25  Lin, Y., Li, L., Jing, H., Ran, B. and Sun, D., 2020. Automated traffic incident detection 
with a smaller dataset based on generative adversarial networks. Accident Analysis & 
Prevention, 144, p.105628. 

26  Rizvi, S.M.A., Ahmed, A. and Shen, Y., 2020. Real-Time Incident Detection and Capacity 
Estimation Using Loop Detector Data. Journal of Advanced Transportation. 

 



 

115 
 

 
27  Jalali, A. and Nejad, H.T., 2020. Incident Detection in Freeway Based on Autocorrelation 

Factor of GPS Probe Data. International Journal of Intelligent Transportation Systems 
Research, 18(1), pp.174-182. 

28  Iqbal, M.S., Khazraeian, S. and Hadi, M., 2018. A Methodology to Assess the Quality of 
Travel Time Estimation and Incident Detection Based on Connected Vehicle Data. 
Transportation Research Record, 2672(42), pp.203-212. 

29  Singh, D. and Mohan, C.K., 2018. Deep spatio-temporal representation for detection of 
road accidents using stacked autoencoder. IEEE Transactions on Intelligent Transportation 
Systems, 20(3), pp.879-887. 

30  Qian, Z.S., 2016. Real-time incident detection using social media data (No. FHWA-PA-
2016-004-CMU WO 03). Pennsylvania. Dept. of Transportation. 

31  Parsa, A.B., Taghipour, H., Derrible, S. and Mohammadian, A.K., 2019. Real-time 
accident detection: coping with imbalanced data. Accident Analysis & Prevention, 129, 
pp.202-210. 

32  Karatsoli, M., Margreiter, M. and Spangler, M., 2017. Bluetooth-based travel times for 
automatic incident detection–A systematic description of the characteristics for traffic 
management purposes. Transportation research procedia, 24, pp.204-211. 

33  Mercader, P. and Haddad, J., 2020. Automatic incident detection on freeways based on 
Bluetooth traffic monitoring. Accident Analysis & Prevention, 146, p.105703.. 

34  Evans, J., Waterson, B. and Hamilton, A., 2020. A random forest incident detection 
algorithm that incorporates contexts. International Journal of Intelligent Transportation 
Systems Research, 18(2), pp.230-242. 

35  Chakraborty, P., Hegde, C. and Sharma, A., 2019. Data-driven parallelizable traffic 
incident detection using spatio-temporally denoised robust thresholds. Transportation 
research part C: emerging technologies, 105, pp.81-99. 

36  Bartlett, A. and Sadek, A.W., 2017. Buffalo-Niagara Transportation Data-warehouse 
Prototype and Real-time Incident Detection. 

37  Chien, S., Chen, Y., Yi, Q. and Ding, Z., 2019. Development of Automated Incident 
Detection System Using Existing ATMS CCTV. 

38  Liu, C., Zhao, M., Sharma, A. and Sarkar, S., 2019. Traffic dynamics exploration and 
incident detection using spatiotemporal graphical modeling. Journal of Big Data Analytics 
in Transportation, 1(1), pp.37-55. 

39  Nguyen, H., Cai, C. and Chen, F., 2017. Automatic classification of traffic incident's 
severity using machine learning approaches. IET Intelligent Transport Systems, 11(10), 
pp.615-623. 

40  Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2021). Dive into deep learning. arXiv 
preprint arXiv:2106.11342. 

 



 

116 
 

 
41  Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. 

Foundations and Trends® in Machine Learning, 12(4), 307-392. 
42  Bank, D., Koenigstein, N., & Giryes, R. (2020). Autoencoders. arXiv preprint 

arXiv:2003.05991. 
43  Rocca, J. (2019). Understanding Variational Autoencoders (VAEs). Available online at 

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-
f70510919f73, Accessed on December 31, 2022. 

44  Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint 
arXiv:1312.6114. 

45  Alto, V. (2021). Variational Autoencoders in Computer Vision. Available online at 
https://valentinaalto.medium.com/variational-autoencoders-in-computer-vision-
f198cefe12ca, Accessed on December 31, 2022. 

46  Martin, P. T., Perrin, J., Hansen, B., Kump, R., & Moore, D. (2001). Incident detection 
algorithm evaluation (No. MPC-01-122). Upper Great Plains Transportation Institute. 

47  Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: 
synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 
321-357. 

48  He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic 
sampling approach for imbalanced learning. In 2008 IEEE international joint conference on 
neural networks (IEEE world congress on computational intelligence) (pp. 1322-1328). 
IEEE. 

49  D. R. Drew, “Traffic Flow Theory and Control”, McGraw Hill Book Co., 1968. 
50  SciPy. Available online at https://scipy.org/, Accessed on December 31, 2022. 
51  Wikipedia - Beta distribution. Available online at 

https://en.wikipedia.org/wiki/Beta_distribution#Two_unknown_parameters, Accessed on 
December 31, 2022. 

52  PyCaret. Available online at https://github.com/pycaret/pycaret, Accessed on December 31, 
2022. 

53  Ruff, L., Vandermeulen, R. A., Görnitz, N., Binder, A., Müller, E., Müller, K. R., & Kloft, 
M. (2019). Deep semi-supervised anomaly detection. arXiv preprint arXiv:1906.02694. 

54  Xie, Q., Dai, Z., Hovy, E., Luong, T., & Le, Q. (2020). Unsupervised data augmentation 
for consistency training. Advances in Neural Information Processing Systems, 33, 6256–
6268. 


	Multisource_April2023
	Final Report_multisource_5-19-23
	Technical Report Document Page
	Acknowledgments
	Disclaimer
	Executive Summary
	Table of Contents
	Table of Tables
	Table of Figures
	List of Acronyms
	1  Introduction
	1.1 Task 1: Review of Literature, Current Practices, and Available Data
	1.2 Task 2: Corridor Selection and Data Collection
	1.3 Task 3: Model Evaluation
	1.4 Task 4: Testing of Algorithm

	2  Literature Review
	2.1  Traffic Incident Detection: Current Practices
	2.2 Data Sources and Collection Methods
	2.3 Incident Detection Performance Indicators
	2.4 Incident Detection Algorithms

	3  Available Data Sources
	3.1 RITIS Data
	3.2 MassDOT GoTime Data
	3.3 Waze Reports
	3.4 Conclusions

	4  Corridor Selection
	4.1 Incident Frequencies
	4.2 Distributions of Incidents on I-93-D6

	5 Model Development and Implementation
	5.1  AI Model
	5.1.1 Description of AI Model and Model Inputs
	5.1.2 Data Preparation
	5.1.3 Results of AI Method

	5.2 Empirical Rule-Based Methods
	5.2.1 Overview of the Rule-Based Methods
	5.2.2 Data
	5.2.3 Speed Distributions
	5.2.4 Establishment of Threshold Values
	5.2.5 Threshold by persisting speed differences on current and adjacent XD segments
	5.2.6 Beta Distribution

	5.3 Comparison of AI and Rule-Based Methods
	5.4 Other Modeling Efforts

	6  Field Testing
	7 Conclusions
	8  Appendixes
	8.1 Events Reported by MassDOT HOC on South I-93, June 1 to June 30, 2021
	8.2 Results of Incident Detection Strategy Test, June 1 to June 30, 2021

	9 References





Accessibility Report





		Filename: 

		Final Report_multisource_5-17-23_2.pdf









		Report created by: 

		



		Organization: 

		







[Enter personal and organization information through the Preferences > Identity dialog.]



Summary



The checker found no problems in this document.





		Needs manual check: 0



		Passed manually: 2



		Failed manually: 0



		Skipped: 1



		Passed: 29



		Failed: 0







Detailed Report





		Document





		Rule Name		Status		Description



		Accessibility permission flag		Passed		Accessibility permission flag must be set



		Image-only PDF		Passed		Document is not image-only PDF



		Tagged PDF		Passed		Document is tagged PDF



		Logical Reading Order		Passed manually		Document structure provides a logical reading order



		Primary language		Passed		Text language is specified



		Title		Passed		Document title is showing in title bar



		Bookmarks		Passed		Bookmarks are present in large documents



		Color contrast		Passed manually		Document has appropriate color contrast



		Page Content





		Rule Name		Status		Description



		Tagged content		Passed		All page content is tagged



		Tagged annotations		Passed		All annotations are tagged



		Tab order		Passed		Tab order is consistent with structure order



		Character encoding		Passed		Reliable character encoding is provided



		Tagged multimedia		Passed		All multimedia objects are tagged



		Screen flicker		Passed		Page will not cause screen flicker



		Scripts		Passed		No inaccessible scripts



		Timed responses		Passed		Page does not require timed responses



		Navigation links		Passed		Navigation links are not repetitive



		Forms





		Rule Name		Status		Description



		Tagged form fields		Passed		All form fields are tagged



		Field descriptions		Passed		All form fields have description



		Alternate Text





		Rule Name		Status		Description



		Figures alternate text		Passed		Figures require alternate text



		Nested alternate text		Passed		Alternate text that will never be read



		Associated with content		Passed		Alternate text must be associated with some content



		Hides annotation		Passed		Alternate text should not hide annotation



		Other elements alternate text		Passed		Other elements that require alternate text



		Tables





		Rule Name		Status		Description



		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot



		TH and TD		Passed		TH and TD must be children of TR



		Headers		Passed		Tables should have headers



		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column



		Summary		Skipped		Tables must have a summary



		Lists





		Rule Name		Status		Description



		List items		Passed		LI must be a child of L



		Lbl and LBody		Passed		Lbl and LBody must be children of LI



		Headings





		Rule Name		Status		Description



		Appropriate nesting		Passed		Appropriate nesting










Back to Top



