

NEWBURYPORT DISTRICT COURTHOUSE HVAC SYSTEM EVALUATION SUMMARY

Visited August 26, 2020. While on site inspected the air handling equipment located in the mechanical rooms and toured the facility to determine if the spaces generally matched usages noted on the architectural plans. The Newburyport District Courthouse was constructed in 1991 and is approximately 57,000 square feet in size.

1.0 Airflow Rate per Person (Reduced Occupancy)

		Total	l Air	Outdoor Air		
Courtroom	Total People	Supply Airflow (CFM)	Airflow Rate (CFM/Person)	Outside Airflow (CFM)	Airflow Rate (CFM/Person)	
Jury Pool Room	16	1,800	113	540	34	
Courtroom C 202	17	3,000	176	960	56	
Courtroom C 206	23	3,000	130	900	39	
Courtroom C 212	16	3,000	188	960	60	
Courtroom C 236	18	3,000	167	900	50	

2.0 Recommendations

Section	Recommendation/Finding	Action
2.1	Filtration Efficiency	
RF-1	Replace filters with MERV 13	In-progress
RF-3	Install a differential pressure sensor across the filter banks	In-progress
RF-3b	Display pressure sensor and connect to BMS	In-progress
2.2	Testing and Balancing	
RTB-1	Test and rebalance air handling unit supply air and minimum outside air flow rates	Complete
2.3	Equipment Maintenance and Upgrades	
RE-1	Test existing air handling system dampers and actuators for proper operation	Complete
2.4	Control System	
RC-1	Implement a pre and post-occupancy flush sequence	Complete
2.5	Additional Filtration and Air Cleaning	
RFC-1	Install portable HEPA filters in high traffic areas – <i>if courthouse is to operate at a high occupancy (i.e. 50-75% or greater), install portable HEPA filters in high traffic areas.</i>	Complete
2.6	Humidity Control	On-going
2.7	Other Recommendations	
2.7.1	Study courthouse to determine feasibility of installing mechanical ventilation in all occupied spaces.	Deferred – added to 5-year Capital Plan
1 P a g e	7 / 1 / 2 0 2 1	

2.7.2	Replace Fan coil units	Deferred- added to 5-year Capital Plan
2.7.3	Install a Building Management System	In-progress
2.7.4	Convert chilled and hot water systems to variable flow	Deferred- added to 5-year Capital Plan
2.7.5	Replace pneumatic damper and valve actuators with electronic actuators	Deferred- added to 5-year Capital Plan

Newburyport District Court Newburyport, MA

HVAC SYSTEM EVALUATIONS COVID-19

Office of Court Management

March 22, 2021

Tighe&Bond

100% Recyclable

Section 1 Existing Conditions & Site Observations

Tighe & Bond visited the Newburyport District Courthouse on August 26, 2020. While on site we inspected the air handling equipment located in the mechanical rooms and toured the facility to determine if the spaces generally matched usages noted on the architectural plans.

Site Visit Attendees:

- Office of Court Management:
 - Anthony Imperial, Courthouse Facilities Staff
- Tighe & Bond
 - Jason Urso, PE, Mechanical Engineer
 - Tim Bill, Staff Engineer

1.1 Existing Ventilation System

The Newburyport District Courthouse was constructed in 1991 and is approximately 57,000 square feet in size. One York air handling unit provides ventilation air to the basement holding area and associated office and conference rooms. The remainder of the building is served by fan coil units.

The air handling unit (AHU-1) contains a supply fan, hot water heating coil, chilled water cooling, and 2" MERV 8 filters. The air handling unit appears to be original from 1991 is in poor condition. The heating and cooling coils are in poor condition. There are holes in one of the coils. The cooling coil condensate pan is rusted and was flooded at the time of the visit. Since the condensate drain pan isn't draining properly, the condensate trap may be incorrectly sized. The outdoor air damper is rusty, in poor condition, and was closed during our site investigation. The actuator appeared to be newer.

We inspected two of the fan coil units while on site to generally understand the condition of the units. They appear to be in fair (borderline poor) condition and contain a 1" filter. The MERV rating is unknown. We presume all fan coil units are of the same condition and contain the same type of filter.

Two roof mounted exhaust fans serve toilet rooms in the building. The fans are in good condition and appear to be newer.

Table 1 summarizes the air handling units' designed airflow rates, the MERV rating of the installed filters, and the condition.

Existing Air I	Handling Units			
Unit	Original Design Airflow (CFM)	Original Design Min. O.A. (CFM)	Pre/Final Filters	Condition
AHU-1	4,950	2,500	2" MERV 8	Poor
FC-4	600	180	1" MERV Unknown	Fair
FC-5	800	240	1" MERV Unknown	Fair
FC-6	1,000	300	1" MERV Unknown	Fair
FC-7	1,400	420	1" MERV Unknown	Fair
FC-8	1,500	450	1" MERV Unknown	Fair
FC-9	1,800	540	1" MERV Unknown	Fair
FC-10	2,800	840	1" MERV Unknown	Fair
FC-11	2,800	840	1" MERV Unknown	Fair
FC-12	3,000	900	1" MERV Unknown	Fair
FC-13	3,800	1140	1" MERV Unknown	Fair

TABLE 1

Note 1: FC-1,2,3,14, and 15 do not provide outdoor air.

Photo 1 – Air Handler AHU-1

1.2 Existing Control System

A pneumatic system controls the existing HVAC air handling equipment. It is an old, obsolete system; however, some components do appear to be newer. We did not see any evidence or components of a Building Management System (BMS) during our site visit. We are not aware of any demand control ventilation sequences in use at this courthouse.

AHU-1 dampers and coils are controlled with pneumatic actuators and appear to be in good condition. According to staff, the actuators have been replaced in the last 10 years.

Section 2 Recommendations

Below is a list of recommendations that we propose for the Newburyport District Courthouse. Please refer to the "Master Recommendation List" for further explanation and requirements of the stated recommendations.

2.1 Filtration Efficiency Recommendations

We recommend the following measures be implemented the existing air handling units:

RF-1: Replace 2" MERV-8 filters with MERV-13 filters in AHU-1.

The TAB Contractor and/or Engineer shall verify that the air handler can accommodate a MERV-13 filter per Appendix A in the overview of recommendations report.

The fan coil units contain a 1" filter and based on the two fan coil units we observed, it may be difficult to add a 2" filter. The units may also not have adequate fan power to overcome the additional pressure drop of a MERV 13 filter.

RF-3: Install a differential pressure sensor with a display across the filter bank.

RF-3a: Connect the pressure sensor to a local alarm.

2.2 Testing & Balancing Recommendations

The air handling unit and fan coil units are approximately 30 years old and it is unknown to Tighe & Bond when the last time the units were tested and balanced. Also, the code requirements to determine the outside air flow rates that were used to design the original system were different than the 2015 International Mechanical Code (IMC) and current ASHRAE Standard 62.1 requirements.

We recommend the following testing and balancing measures be implemented:

RTB-1: Test and rebalance air handling unit supply air and minimum outside air flow rates.

We recommend testing and balancing the outdoor air flow rates for air handling unit AHU-1 and all fan coil units to the recommended minimum O.A. rates listed in Table 2.

Our ventilation air analysis discovered that the two Jury Conference rooms were not receiving the correct quantity of outdoor air based on today's code requirements at full occupancy. Our calculations showed that the quantity of outdoor air required per code would result in a significant increase in outdoor air for the fan coil unit serving these spaces. The additional outdoor air appears to exceed the capacity of the existing coils in the fan coil unit. We recommend to temporarily limit the occupancy of these spaces. Table 3 lists the recommended reduced occupancy that can accommodate the original outdoor airflow specified.

Unit	Original Supply Original Design Airflow Min. O.A. (CFM) (CFM)		Current Code Min. O.A. Requirements (CFM)	Recommended Minimum O.A. (CFM)	
AHU-1	4,950	2,500	1,225	2,500	
FC-4	600	180	611	180	
FC-5	800	240	40	240	
FC-6	1,000	300	110	300	
FC-7	1,400	420	190	420	
FC-8	1,500	450	330	450	
FC-9	1,800	540	425	540	
FC-10	2,800	840	150	840	
FC-11	2,800	840	350	840	
FC-12A (Courtroom C202)	3,000	900	900 960		
FC-12B (Courtroom C212)	3,000	900	600	900	
FC-12C (Courtroom C206)	3,000	900	960	960	
FC-12D (Courtroom C236)	3,000	900	690	900	
FC-13	3,800	1,140	315	1140	

TABLE 2

Recommended Air Handler O.A. Flow Rates

Note: Although the ASHRAE Position Document on Infectious Aerosols recommends using the latest published standards and codes as a baseline for minimum ventilation, the mechanical code in effect at the time the HVAC systems were designed and constructed is what governs the required outdoor air flowrate for the HVAC equipment, if there have been no additions, renovations, alterations or changes in occupancy to the building. The 2015 International Mechanical Code does not prevent the continued use of existing systems.

TABLE 3 Recommended Occupancy During COVID-19 Pandemic						
Room & Associated AHU/FCU	2015 IMC Permitted Occupancy (# of People)	Recommended Occupancy (# of People)				
<u>FCU-4</u> Jury Conference Room C244	15	6				

Jury Conference Room C235 14 6

The average airflow rate per person is shown below in Table 4 These values are based on the original design supply airflow rate and the recommended outdoor air flow rates shown in Table 2. The airflow rate per person assumes a diversity factor of 70%, meaning the maximum number of occupants assumed to be in all zones at all times equates to 70% of the code required occupancy.

TABLE 4

Average Airflow Rate per Person

	All spaces	Courtrooms	Non-Courtroom Spaces
Total Occupancy (People)	527	307	221
Total Supply Air (CFM/Person)	98	39	180
Outdoor Air (CFM/Person)	32	12	59

The airflow rate per person for each Courtroom and the Jury Pool Room is shown below in Table 5. These values are based on full occupancy without taking diversity into account, the original design supply airflow rate, and the recommended outdoor airflow rate. The airflow rate per person assumes the full supply airflow is being delivered to the room. At times when the supply airflow is reduced due to the space temperature being satisfied, the airflow rate per person will also be reduced.

TABLE 5

Airflow Rate per Person (Full Occupancy)

		Total Air		Outdo	oor Air
Courtroom	Total People	Supply Airflow (CFM)	Airflow Rate (CFM/Person)	Outside Airflow (CFM)	Airflow Rate (CFM/Person)
Jury Pool Room	55	1,800	33	540	10
Courtroom C 202	131	3,000	23	960	7
Courtroom C 206	131	3,000	23	900	7
Courtroom C 212	82	3,000	37	960	12
Courtroom C 236	94	3,000	32	900	10

Note: Courtroom occupant density is based on 70 people/1,000 square feet, per the 2015 International Mechanical Code

The airflow rate per person for each Courtroom and the Jury Pool Room, based on a reduced occupancy schedule determined by the Office of Court Management, is shown below in Table 5a. The airflow rate per person assumes the full supply airflow is being delivered to the room. At times when the supply airflow is reduced due to the space temperature being satisfied, the airflow rate per person will also be reduced.

		Total Air		Outdoor Air		
Courtroom	Total People	Supply Airflow (CFM)	Airflow Rate (CFM/Person)	Outside Airflow (CFM)	Airflow Rate (CFM/Person)	
Jury Pool Room	16	1,800	113	540	34	
Courtroom C 202	17	3,000	176	960	56	
Courtroom C 206	23	3,000	130	900	39	
Courtroom C 212	16	3,000	188	960	60	
Courtroom C 236	18	3,000	167	900	50	

TABLE 5a

Airflow Rate per Person (Reduced Occupancy)

Note: If occupancy is further reduced, the airflow rate per person will increase, assuming full airflow is being delivered to the space.

RTB-3: Increase outside air flow rate beyond minimum under non-peak conditions.

Due to the age of the units, the ability for the coils to maintain the supply air temperature is uncertain. We recommend increasing the outdoor air flow rate by only 10% beyond the recommended outdoor air flow rates. We do not believe this would cause a threat of a potential coil to freeze given the amount of outside air as a percentage of total supply air, however cold spots on the coil may develop due to poor mixing. This may cause nuisance freeze stat trips via the existing freeze stat.

RTB-4: Test and balance air handler chilled and hot water coils.

Testing and balancing the air handler hot and chilled water coils will help ensure the coils are receiving the proper water flow rates. Due to the age of the coils, the coils may not perform as required to properly temper the supply air. Coils become fouled over time, which degrades the performance.

2.3 Equipment Maintenance & Upgrades

We recommend the following equipment maintenance and upgrades:

RE-1: Test existing air handling system dampers and actuators for proper operation.

Replace dampers and actuators that are not functioning properly.

- **RE-2:** Clean air handler coils and drain pans.
- **RE-5:** Install freeze stat or confirm the existing freeze stat is working correctly on each air handling unit.
- **RE-7:** Test the existing air handler control valves and actuators for proper operation.

2.4 Control System Recommendations

We recommend the following for the control system:

RC-1: *Implement a pre and post-occupancy flush sequence.*

RC-2: Install controls required to introduce outside air beyond the minimum requirements.

Prior to implementing this control strategy, the TAB Contractor should verify the quantity of outside air the outdoor air louvers can accommodate without exceeding an intake air velocity of 450 feet/minute (FPM). Exceeding this air velocity through an intake air louver may result in rain or snow entering the louver.

2.5 Additional Filtration and Air Cleaning

We recommend the installation of the following air cleaning devices:

RFC-1: Install portable HEPA filters.

If the Courthouse is to operate at a high capacity (i.e. 50% occupancy or greater), we recommend installing portable HEPA filters in high traffic areas, such as entrance lobbies. They should also be considered for Courtrooms, depending on the occupancy of the room and how much noise is generated from the filters. The noise levels will vary depending on the manufacturer.

2.6 Humidity Control

Installing duct mounted or portable humidifiers can help maintain the relative humidity levels recommended by ASHRAE. The feasibility of using duct mounted humidification or portable humidifiers is determined by the building envelope. Buildings that were not designed to operate with active humidification can potentially be damaged due to a lack of a vapor barrier, adequate insulation, and air tightness. We are not aware if this building was constructed to accommodate a humidification system.

Duct mounted humidifiers must be engineered, integrated into the building control system, tested, and commissioned. They are available in many configurations, but require substantial maintenance and additional controls. They also run the risk of adversely affecting IAQ from growing microorganisms, or leaking water through poorly sealed ductwork damaging insulation and ceilings. Portable humidifiers are easier to install and require less maintenance, but still have the potential to damage the building envelope.

While active humidification is not recommended as a whole building solution due to high installation costs, operational costs, potential to damage the building envelope and adversely affect poor IAQ, it may be warranted as a temporary solution in some areas.

2.7 Other Recommendations

2.7.1 Repair AHU-1Replace AHU-1 Coil and Outdoor Air Damper or Consider Replacing AHU-1

There are several issues with AHU-1. One of the coils contains a hole, which affects the performance of the coil. The outdoor air damper is rusted and may need replacement and a properly sized condensate trap should be installed to allow the unit to drain properly. As an alternative, replacing the entire air handler should be considered. The unit is 30 years old and is in fair to poor condition and nearing the end of its useful life.

2.7.2 Replace Fan Coil Units

The average life expectancy of fan coil units is approximately 35 years old. Assuming all fan coil units are original, they are 30 years old and should be considered for replacement within 5 years.

To reduce the maintenance costs associated with multiple fan coil units, a central air handling system may be able to be installed to replace the fan coil units. A further evaluation is required to determine the feasibility of this suggestion.

2.7.3 Install a Building Management System

We recommend replacing the pneumatic control system with a Building Management System to control and monitor HVAC equipment. Pneumatic air systems are antiquated and do not offer the same benefits as a BMS. This recommendation is an energy saving and maintenance measure and does not affect the indoor air quality of the building.

2.7.4 Convert Chilled and Hot Water Systems to Variable Flow

According to the 1989 design drawings, the hot and chilled water hydronic systems are constant flow. Constant flow pumps circulate the same volume of water to the air handling unit and fan coil units regardless of whether the water is required or not. If units do not require this water, the three-way valves serving the air handler and fan coil unit coils bypass the water around the coils and is pumped back to the chiller or boiler plant. We recommend investigating the possibility of converting these systems to variable flow. The three-way valves serving the air handler and fan coil units would have to be replaced with two-way valves, as well as any other three-way valves that are in the system. Variable frequency drives (VFD) may be able to be connected to the existing hot and chilled water pumps, allowing the pumps to vary the flow rate to match the demand. This recommendation is an energy saving measure and does not affect the indoor air quality of the building.

2.7.5 Replace Pneumatic Damper and Valve Actuators with Electronic Actuators

If the existing pneumatic system can cycle damper and valve actuators and position the valves and dampers in their correct position repeatedly, then immediate replacement is not necessary. If the system cannot cycle the actuators to correct damper or valve positions, this may cause too little or too much outdoor air flow and water flow through the units, affecting the quantity of ventilation air and heating and cooling capacity of the coils.

Section 3 Testing & Balancing Results

Milharmer Associates, Inc. visited the Newburyport District Courthouse on January 6, 2021 to test the airflow rates of the air handling units and the exhaust fans. A summary of the tested airflow rates versus the design airflow rates are shown below in Tables 6 and 7. The full testing and balancing report is attached

TABLE 6

Air Handler Testing & Balancing Results

	Design			Actual		
Unit	Total Supply Fan Airflow (CFM)	Recommended Outdoor Airflow (CFM)	Return Fan Airflow (CFM)	Supply Fan Airflow (CFM)	Outdoor Airflow (CFM)	Return Fan Airflow (CFM)
AHU-1	4,950	2,500	2,450	3,387	1,564	1,823
FCU-4 (2 nd fl. offices)	600	180	420	569	166	403
FCU-4 (2 nd fl. offices)	600	180	420	531	188	343
FCU-5 (Rm 207)	800	240	560	689	67	622
FCU-6A (Rm 110)	1,000	300	700	200	159	41
FCU-6B (Rm 101)	1,000	300	700	Unit is not operating		
FCU-7 (Clerks)	1,400	420	980	1,199	189	1,010
FCU-8 (Lobby)	1,500	450	1,050	1,369	409	960
FCU-8 (Lobby)	1,500	450	1,050	1,221	416	805
FCU-8 (Lobby)	1,500	450	1,050	1,400	433	967
FCU-8 (Lobby)	1,500	450	1,050	1,322	420	902
FCU-9A (Rm 109)	1,800	540	1,260	1,694	362	1,332
FCU-9B (Rm 118)	1,800	540	1,260	1,645	349	1,296
FCU-10 (Rm 122)	2,800	840	1,960	2,040	557	1,483
FCU-11A (Corridor)	2,800	840	1,960	Unit	is not opera	ating

Newburyport District Courthouse HVAC System Evaluation - COVID 19

Section 3 Testing & Balancing Results			Tig	he&Bon	d	
FCU-11B	2,800	840	1,960	384	0	384
FCU-12 (Court. C202)	3,000	900	2,100	1,995	0	1,995
FCU-12 (Court. 206)	3,000	900	2,100	2,212	0	2,212
FCU-12 (Court. 212)	3,000	900	2,100	2,245	0	2,245
FCU-12 (Court. C236)	3,000	900	2,100	2,166	0	2,166

TABLE 7

Exhaus	Exhaust Fan Testing & Balancing Results				
		Design Return/Exhaust Airflow	Actual Return/Exhaust Airflow		
Unit	Serving	(CFM)	(CFM)		
EF-1	Toilet RM	1,100	1,133		
EF-2	Toilet RM	2,265	Not Running		

Typical balancing tolerances for air systems is $\pm 10\%$ of the design airflow. In reviewing the airflow report data, the following should be noted:

- 1. AHU-1 is providing total supply and outdoor air significant less than design. The TAB Contractor concluded a sheave change is required to increase airflow.
- 2. Several fan coil units were supplying total and outside air below design, and some were not functional. We recommend all fan coil units be serviced to correct possible motor issues or replace fan belts. Some fan coil units appear to need full replacement. We recommend additional air and water balancing once the issues have been corrected.
- 3. It was noted that some fan coil unit outdoor air dampers were found to be fully closed. Courthouse staff mentioned to the TAB Contractor that these dampers were fully closed due to coil freezes, therefore the dampers were not adjusted. We recommend further investigation to determine if glycol can be added to the hot water system to prevent coil freezes.
- 4. Toilet exhaust fan EF-2 is not running.

Disclaimer

Tighe and Bond cannot in anyway guarantee the effectiveness of the proposed recommendations to reduce the presence or transmission of viral infection. Our scope of work is intended to inform the Office of Court Management on recommendations for best practices based on the guidelines published by ASHRAE and the CDC. Please note that these recommendations are measures that may help reduce the risk of airborne exposure to COVID-19 but cannot eliminate the exposure or the threat of the virus. Implementing the proposed recommendations will not guarantee the safety of building occupants. Tighe & Bond will not be held responsible should building occupants contract the virus. The Office of Court Management should refer to other guidelines, published by the CDC and other governing entities, such as social distancing, wearing face masks, cleaning and disinfecting surfaces, etc. to help reduce the risk of exposure of COVID-19 to building occupants.

J:\M\M1671 Comm. of MA Court System\011 - COVID-19 Courthouse Evaluations\Report_Evaluation\Draft Reports\Newburyport Disctrict Courthouse\Newburyport District Courthouse Report - Draft.docx

MILHARMER ASSOCIATES, INC.

534 New State Highway, Route 44, Suite 3 Raynham, MA 02767 Tel.: 508-823-8500; Facsimile: 508-823-8600

TEST AND BALANCE REPORT

Project:

Newburyport District Court

188 State St., Newburyport, MA

Project No.:

21-014

Project Date:

3/4/2021

MECHANICAL CONTRACTOR

Tighe & Bond

A N.E.B.B. Certified Company

Project:	Newburyport District Court		
Address:	188 State St., Newburyport,	MA	
Date:	3/4/2021	Project No.	21-014
		CERTIFICATION	
		Submitted & Certified by: Milharmer Associates,	Inc.
		,	
Certification N	lo.: 3384		Certification Expiration Date: 3-31-21
have been obt Testing, Adju s	resented in this Report is a recor ained in accordance with the cu sting and Balancing of Environn B. tolerances, are noted in the T	urrent edition of the N.E.B.B. nental Systems Any variance	A Procedural Standards for ses from design quantities which
N.E.B.B. Qual	ified TAB Supervisor Name: Sc	ott F. Miller	
N.EB.B. Qual	ified TAB Supervisor Signature:		
		NEBB	

FOR THE NEBB BOARD OF DIRECTORS Testing, Adjusting and Balancing of Environmental Systems A NOL Syffing Schoole **NEBB** President-Elect **NEBB** President HAS MET ALL REQUIREMENTS FOR NEBB CERTIFICATION IN THE FOLLOWING DISCIPLINE Milharmer Associates, Inc. THIS IS TO CERTIFY THAT Certification **NEBB** Certification Number March 31, 2021 **Expiration Date** 3384

n Board	ssional er	LEMENTS FOR VL STATUS IN	'nvíronmental Systems	Firm and associated NEBB Certification pation in the NEBB Quality Assurance NEBB Certified Firm.	Richard Tant	NEBB Certification Board Chairman	ly minia abush	NEBB Certification Director	tion Board Policy Manual governs use of this certificate.
NEBB Certification Board	NEBB Certified Professional Scott F. Miller	HAS MET ALL THE NEBB REQUIREMENTS FOR NEBB CERTIFIED PROFESSIONAL STATUS IN	Testing, Adjusting and Balancing of Environmental Systems	This Certificate, as well as individual affiliation with a NEBB Certified Firm and associated NEBB Certification Stamp are REQUIRED to provide a NEBB Certified Report. Participation in the NEBB Quality Assurance Program requires the Certificant be affiliated with a NEBB Certified Firm.	March 31, 2021	Expiration Date	23541	NEBB Certificant Number	The NEBB Certification Board retains sole ownership of all certificates. The NEBB Certification Board Policy Manual governs use of this certificate.

Project:	Newburyport District Court		
Address	188 State St., Newburyport, MA	Ą	
Date:	3/4/2021	Project No.	21-014
	TA	BLEOFCONTENTS	
SECTION 1	TAB Qualific	ations	
		Company Certificate Supervisor Certificate t Sheet	
SECTION 2	2 TAB Building	g Systems	

Project:	Newburyport District Court		
Address:	188 State St., Newburyport, MA		
Date:	3/4/2021	Project No.	21-014
	INSTRUM	NENT SHEET	
The following is	a list of Instruments surged and encreted by	Ailbormar Amaziataa Ina and yaad	
-	s a list of Instruments owned and operated by N	witharmer Associates, inc. and used o	וזכ
this project.			
Instrument	Instrument	Calibration	Calibration
Instrument ID Number	Instrument	Calibration Date	Calibration Due Date
	Instrument ADM-870 Digital Multimeter		
ID Number		Date	Due Date
ID Number 1	ADM-870 Digital Multimeter	Date 8-20-20	Due Date 8-20-21
ID Number 1 2	ADM-870 Digital Multimeter Shortridge Flow Hood	Date 8-20-20 8-20-20	Due Date 8-20-21 8-20-21
ID Number 1 2 3	ADM-870 Digital Multimeter Shortridge Flow Hood Ampmeter	Date 8-20-20 8-20-20 8-20-20 8-20-20	Due Date 8-20-21 8-20-21 8-20-21
ID Number 1 2 3 4	ADM-870 Digital Multimeter Shortridge Flow Hood Ampmeter Tachometer	Date 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20	Due Date 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21
ID Number 1 2 3 4 5	ADM-870 Digital Multimeter Shortridge Flow Hood Ampmeter Tachometer Airflow Anemometer	Date 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20	Due Date 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21
ID Number 1 2 3 4 5	ADM-870 Digital Multimeter Shortridge Flow Hood Ampmeter Tachometer Airflow Anemometer	Date 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20	Due Date 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21
ID Number 1 2 3 4 5 6	ADM-870 Digital Multimeter Shortridge Flow Hood Ampmeter Tachometer Airflow Anemometer Digital Thermometers	Date 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20	Due Date 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21
ID Number 1 2 3 4 5 6	ADM-870 Digital Multimeter Shortridge Flow Hood Ampmeter Tachometer Airflow Anemometer Digital Thermometers	Date 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20	Due Date 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21
ID Number 1 2 3 4 5 6 7	ADM-870 Digital Multimeter Shortridge Flow Hood Ampmeter Tachometer Airflow Anemometer Digital Thermometers Shortridge Water Meter	Date 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20 8-20-20	Due Date 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21 8-20-21

Please Note: Instruments are tested annually at the M.A.I. Lab. and sent back to the factory if deviation exceeds manufacturing tolerance.

Technician:

SYMBOL SHEET

	Air Handling Unit	HEATER O.L.	Thermal Overload
AC or ACU	Air Conditioner Unit		Protection For Motors
ACCU	Air Cooled Condensing Unit		Located at Starter Motor
ADJ P.D.	Adjusted Pitch Diameter		
AMP	Amperage	HEPA	High Efficiency Particulate
AVG	Average		Arrestance
A.D.	Air Density	HOA	Hand/Off/Auto Switch
		H.P.	Horsepower
B.H.P.	Brake Horsepower	HPS	High Pressure Steam
		HRC	Heat (Recovery or Recliam) Co
CFM	Cubic Feet Per Minute	HVAC	Heating, Ventilation and
СН	Chiller		Air Conditioning
CHWR	Chilled Water Return	HWR	Hot Water Return or
CHW or CHWS	Chilled Water Supply		Heating Water Return
СТ	Cooling Tower	HWS	Hot Water Supply or
CWR	Condenser Water Return		Heating Water Supply
CW or CWS	Condenser Water Supply	HX	Heat Exchanger
DB	Dry Bulb	I.D.	Inside Diameter
D.D.	Direct Drive	1.D.	mside Diameter
DIA	Diameter	LAT	Leaving Air Temperature
	Diameter	L.D.	Linear Supply Diffuser
EAT	Entering Air Temperature	L.D. LPS	Low Pressure Steam
EDC	Electric Duct Coil	LIS L.T.	Light Troffer
EDH	Electric Duct Heater	L.T. LWT	Leaving Water Temperature
EF	Exhaust Fan		Leaving water reinperature
EMS	Energy Mgt System	MAU/MUA	Make Up Air Unit
EWIS	Entering Water Temperature	MBH	1,000 BTU's per Hour
	Entering water remperature	МВП	1,000 BTO's per Hour
FCU	Fan Coil Unit	N.A.	Not Accessible
FH	Fume Hood	N/A	Not Applicable
F.L.A.	Full Load Amperage	N.I.	Not Installed
FPB	Fan Powered Box	N.L.	Not Listed
FPM	Feet Per Minute		
	Feet of Head		
FT. HD.			

SYMBOL SHEET CONTINUED

O.D.	Outside Diameter	TAB	Testing, Adjusting, and Balancing
OA Min	Outside Air Minimum	TSP	Total Static Pressure
OAT	Outside Air Total	TP	Thermally Protected
PF	Power Factor	UH	Unit Heater
PHC	Preheat Coil		
PH	Phase(s)	V	Volts
PSI	Pounds Per Square Inch	VAV	Variable Air Volume
P.T.	Pitot Traverse	VD	Volume Damper
		VFD	Variable Frequency Drive
RA	Return Air	VP	Velocity Pressure
RF	Return Air Fan		-
R.G.	Return Grille	W	Watts
RHC	Reheat Coil	WB	Wet Bulb
RPM	Revolutions per Minute	W.D.	Water Density
		W.G.	Water Guage
SA	Supply Air		
SAT	Supply Air Temperature	F	Degrees Fahrenheit
S.D.	Supply Diffuser		-
SEF	Smoke Exhaust Fan	ΔP	Differential (Delta) Pressure or
SF (AIR)	Supply Fan		Pressure Drop
S.F.(Elect)	Service Factors		-
SHC	Steam Heating Coil	ΔT	Differential (Delta) Temperature,
S.P. "W.C."	Static Pressure		Net Temperature
	Measured in Inches of		Decrease or Increase
	Water Column	#	PSI or Pounds Per Square Inch
			Decrease or Increase
11			

Project:	Newburyport District Court						
Address:	188 State St., Newburyport, MA						
Date:	3/4/2021	Project No.	21-014				
		•					
	REPORT SU	MMARY					
	The following is the report for the Newburyport		ned				
	on AHU-1 and the fan coil serving the floors unit	ts with the following comments:					
	1 ALUL 1 was tested at 2 207 CEM and is desired	mod for 4.050 CEM. A for above					
	1. AHU-1 was tested at 3,387 CFM and is designed in order to increase the						
	change would be required in order to increase the airflow to design. The new motor sheave would need to be a 1VP71 x 1 1/8" with an BX78 Belt.						
	2. The Fan Coil Units on the 1st and 2nd Floors						
	would not run and have been noted. The units have fresh air being fed through ductwork connected to outside air louvres. The ductwork has a manual volume						
	damper installed and they were set to various pe		d.				
	We were informed by the court that they were cl	• • • • • • • • • • • • • • • • • • •					
	subsequently decided not to adjust any of the da						
	in need of service or even replacement in some	cases and would require a comple	te				
	air and water rebalance once put back in service	е.					
	3. EF-1 and 2 serve the toilets and EF-1 was tes	sted and is low on airflow and EF-2					
	was not running and needs to be re-wired.						

Project No.

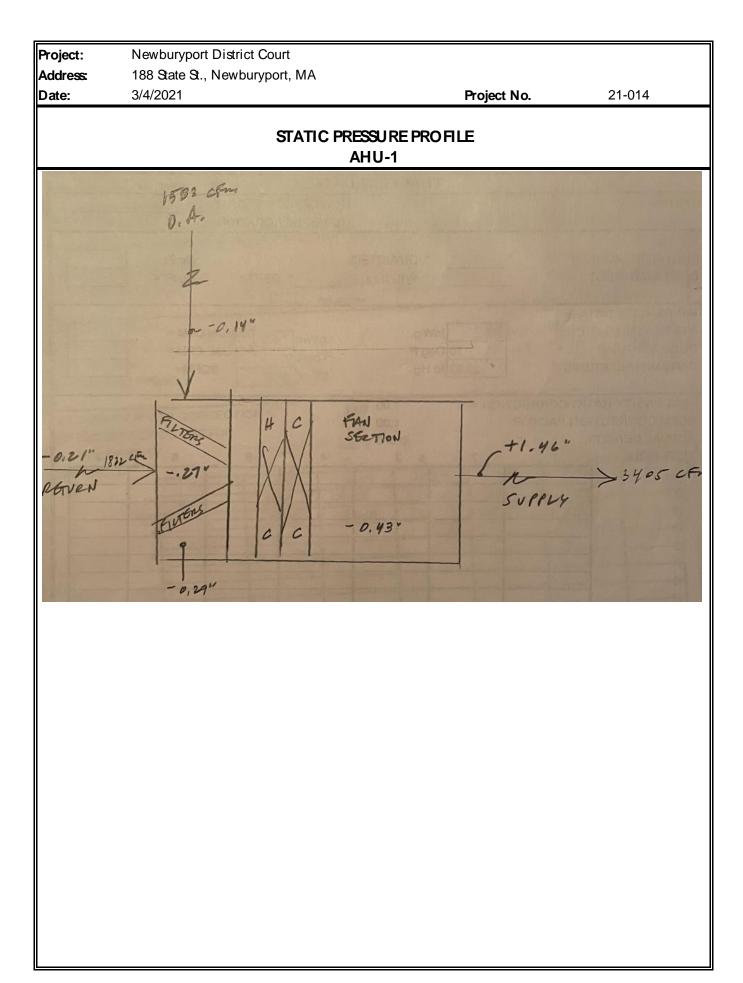
21-014

REPORT SUMMARY

AIR HANDLING UNITS

UNIT	SUPPLY	RETURN	OUTSIDE AIR
AHU-1	3,387 CFM	1,823 CFM	1,564 CFM

FAN COIL UNITS


UNIT	TOTAL	OUTSIDE AIR	ROOM
-			
FCU-10	2040	557	122
FCU-6B	*		101
FCU-6A	159	200	110
FCU-11A	*	587	Hallway
FCU-11B	384		
FCU-7	1199	189	Clerks
FCU-9A	1694	362	109
FCU-9B	1645	349	118
2nd FLOOR			
FCU-5	689	67	207
FCU-12	1995	**	202
FCU-12	2212	**	206
FCU-12	2166	**	C236
FCU-12	2245	**	C212
FCU-4	569	166	Offices
FCU-4	531	188	Offices
FCU-8	1369	409	Lobby
FCU-8	1221	416	Lobby
FCU-8	1400	433	Lobby
FCU-8	1322	420	Lobby

* Units not running.

** Outside air damper closed

Address: 188 State St., Newburyport, MA					
Date:	3/4/2021			Project No.	21-014
		FÆ	AN DATA SHEET		
		FAN NO.	AHU-1	FAN N	0.
Serves / Locati	on:		Basement		
Manufacturer:		YORK			
Model Numbe	r:	C5113SBYP			
Size:		NL			
Serial Number	:	89-809229A			
M	OTOR	DESIGN	TESTED	DESIGN	TESTED
Manufacturer:		NL	US		
Frame Numbe	r:	NL	184T		
Horsepower:		5	5		
Brake Horsepo	wer:	NL	2.9		
Safety Factor:		NL	1.25		
Volts/Phase:		208/230-460	460		
Motor Ampera	ge:	15-13.6/6.8	3.4/3.5/4.0		
Motor RPM:		1740	1740		
Speeds:		NL	1		
Heater Size:		NL	NA		
Heater Amps.:		NL	NA		
	FAN	DESIGN	TESTED	DESIGN	TESTED
Supply Air CFN	M:	4950	3387		
Return Air CFN	Л:	NL	1823		
Exhaust Air CF	M:				
Outside Air CF	TM:	2500	1564		
Suction Pressu	re:	NL	0.43		
Discharge Pres	sure:	NL	1.46		
Fan Static Pres	sure:	NL	1.89		
External Pressu	ıre:	NL	NA		
	RPM	DESIGN	TESTED	DESIGN	TESTED
Fan RPM:		NL	NA		
Motor Drive:		NL	1VP52		
Motor Size/Bo	re:	NL	1 1/8"		
Fan Drive:		NL	AK77		
Fan Size/Bore:		NL	1 1/16		
Belt Size / Nur	nber:	NL	1/B75		
Shafts C-C:		NL	31 1/2		
Turns Open:		NL	4		

I

Project:	Newburyport Dist	rict Court						
Address:	188 State St., New	buryport, MA						
Date:	3/4/2021				Project No.	21-(014	
					-			
TRAVERSE DATA								
SYSTEM:	AHU-1			TRAVERSEN	IUMBER :	T1		
	Supply			TRAVERSEL	OCATION:	Basement		
DUCT SIZE (RC	DUND)		" DIAMETER			Sq Ft =	0.00	
DUCT SIZE (RE	CT.)	34	" WIDTH x	16 "	DEPTH	Sq Ft =	3.78	
AIR DENSITY D		1						
STATIC PRESS (1.4 InWg.		DESIGN				
DUCT AIR TEM		70 De	-	ACTUA				
BAROMETRIC I	PRESS :	29.92 In	Hg.		S	CFM=	3400	
			4.00					
)N =	1.00					
SCFM CORREC ACTUAL DENS			1.00					
TEST HOLE	1 I	2	0.075 3	4	5	6	7	
	754	2 1019	3 1051	4 1087	1076	1123	,	
A B	831	929	915	815	905	1055		
С	803	929 867	820	540	903 658	888		
D	003	007	020	540	030	000		
E								
F								
G								
Н								
NO. OF READINGS= 18 AVERAG				M =	896			
J								
К								
L								
М								
N								
0								
Р								
Q								
R								
TECHNICIAN:	Brian Murphy							

Project:	Newburyport Dist	rict Court						
Address:	188 State St., Newburyport, MA							
Date:	3/4/2021				Project No.	21-0	014	
TRAVERSEDATA								
SYSTEM:	AHU-1			TRAVERSE N	UMBER :	T1		
	Return			TRAVERSE LO	DCATION:	Basement		
DUCT SIZE (RO	UND)		" DIAMETER			Sq Ft =	0.00	
DUCT SIZE (RE	CT.)	36	" WIDTH x	18"	DEPTH	Sq Ft =	4.50	
AIR DENSITY D	ATA							
STATIC PRESS (2) CL:	0.22 In\	Ng.	DESIGN CFM =			NL	
DUCT AIR TEM		70 De	eg F				1823	
BAROMETRIC F	PRESS :	29.92 In	Hg.		SC	CFM=	1825	
	ATIO CORRECTIC	N =	1.00					
SCFM CORREC			1.00					
ACTUAL DENS			0.075					
TEST HOLE	1	2	3	4	5	6	7	
А	341	375	372	343	338	354		
В	398	435	430	370	458	444		
С	435	433	436	483	423	424		
D								
E								
F								
G								
H								
I								
		40		.,	105			
NO. OF READII	NGS=	18	AVERAGE FP	IVI =	405			
Ј К								
M								
N								
0							1	
P								
Q								
R								
TECHNICIAN:	Brian Murphy							

Project:	Newbury	oort District Court					
Address:		St., Newburyport, MA					
Date:	3/4/2021		Project No. 21-014				
				-			
			N DATA SHEET				
a (1 - 1		FAN NO.		FAN NO.	 		
Serves / Locatio	n:						
Manufacturer:		PENN BARRY		PENN BARRY			
Model Number:		DX11B		DX12B			
Size:		NL		NL			
Serial Number:		L18AN68035		L18AN68036			
	TOR	DESIGN	TESTED	DESIGN	TESTED		
Manufacturer:		NL	USMOTORS	NL	USMOTORS		
Frame Number:		NL	56H	NL	56H		
Horsepower:		NL	3/4	NL	1/2		
Brake Horsepower:		NL	NA	NL	NA		
Safety Factor:		NL	NA	NL	1.25		
Volts/Phase:		208/3	208	208/3			
Motor Amperag	je:	1.9	NA	1.9			
Motor RPM:		1775	1775	1775			
Speeds:		NL	1	NL			
Heater Size:		NL	NA	NL	NA		
Heater Amps.:		NL	NA	NL	NA		
FAN		DESIGN	TESTED	DESIGN	TESTED		
Supply Air CFM			-				
Return Air CFM:			-				
Exhaust Air CFM:		2000	1133	2000	*1		
Outside Air CF			-				
Suction Pressure			-				
Discharge Press			-				
Fan Static Press		0.25		0.25			
External Pressur							
	PM	DESIGN	TESTED	DESIGN	TESTED		
Fan RPM:		NL	1586	NL			
Motor Drive:		NL	1VP42	NL	MVL34		
Motor Size/Bore	e:	NL	1/2	NL	5/8		
Fan Drive:		NL	AK49	NL	Ak44		
Fan Size/Bore:		NL	3/4	NL	3/4		
Belt Size / Num	ber:	NL	4L240/1	NL	41220		
Shafts C-C:		NL	6"	NL	6"		
Turns Open: Comments: *1 Fan is not ru		NL	2	NL	2		

Comments: *1 Fan is not running.

I

Project:	Newburyport Dist	rict Court						
Address:	188 State St., Newburyport, MA							
Date: 3	3/4/2021				Project No.	21	-014	
TRAVERSE DATA								
SYSTEM: E	T -1			TRAVERSE NUMBER :		T1		
				TRAVERS	ELOCATION:	2nd FI Bathroom		
DUCT SIZE (ROI	(חאו		" DIAMETER			Sq Ft =	0.00	
DUCT SIZE (REC		20	" WIDTH x	10	" DEPTH	Sq Ft =	1.39	
	,)	20	WID III X	10		щн-	1.00	
AIR DENSITY DA	ATA							
STATIC PRESS @	CL:	-0.618 InWg.			DESIGN	CFM = NL		
DUCT AIR TEMP	P :	70 De	eg F		ACTUAL	_ CFM = 1133		
BAROMETRIC P	RESS:	29.92 In	Hg.		9	SCFM= 1131		
AIR DENSITY RA)N -	1.00					
SCFM CORRECT		/// –	1.00					
ACTUAL DENS			0.075					
TEST HOLE	1	2	3	4	5	6	7	
A	621	802	782	4	5	0	· · ·	
В	853	913	745				_	
С	884	963	745				_	
D	004	903	770				_	
E							_	
F							_	
G								
н								
1								
NO. OF READINGS = 9 AVERAGE FPM = 815								
J								
К								
L								
М								
N								
0								
Р								
Q								
R								
TECHNICIAN:	Brian Murphy							