The Climate Project Screening Tool Report for the Massachusetts Division of Fisheries and Wildlife's Northeast District

Rebekah Zimmerer, Toni Lyn Morelli, Melissa Ocana, John O'Leary

Table of Contents

Introduction	3
Methods	4
Overview of the CPST	4
CPST Column Descriptions	5
Project activities of focus for the discussion	5
General climate change trends and local impacts	5
Key questions for managers	5
Response narrative	6
Continue with project?	6
Results	16
Overview	16
Interesting Findings	17
Climate Change Adaptation Techniques Already in Use	17
Using the Climate Action Tool	17
Conclusions	19
Works Cited	20
Appendices	21
Appendix 1: WMAs Not Discussed	21
Appendix 2: Additional Resources	21

Table of Tables

Table 1. Climate Project Screening Tool with responses from the Northeast District8

Introduction

As the influence of climate change on wildlife and their habitats increases, it is important to consider how adaptation techniques can be integrated into current natural resource management to reduce vulnerabilities to wildlife and their habitats over time. Climate change adaptation in the near term is essential because, owing to inherent time lags in climate impacts, the effects of increased atmospheric greenhouse gases will be felt for decades even if effective mitigation begins immediately (Melillo et al. 2014). However, climate science is a particularly challenging field given the level of technical expertise required, its high degree of uncertainty, and the lack of knowledge of climate change impacts at biologically relevant scales. Thus, climate change adaptation, although understood to be important to resource management, has not been explicitly incorporated into most wildlife management plans or actions.

Some decision-support tools have been developed to aid climate change planning and preparedness in response to the needs of resource managers (Climate Change Resource Center 2017). One such decision-support tool is the Climate Project Screening Tool (CPST) (Morelli et al. 2012), developed initially to aid national forests in the early stages of incorporating climate concerns into operational work and recently modified to aid fish and wildlife management in Massachusetts.

The CPST is a platform that natural resource managers can readily use to assess the potential impacts of climate change on projects and management goals. The CPST is a review and assessment tool that allows managers to explicitly and methodically consider current and impending projects and priorities through the lens of climate change. It provides space to assess whether a specific goal or project is appropriate in light of future climate trends. Through the

CPST process, some projects might be deemed inappropriate as originally designed and be recommended for comprehensive redesign or removal from activity lists.

The CPST is a broad tool that can be modified to accommodate many different working groups and management goals. For the Massachusetts Division of Fisheries and Wildlife (MassWildlife), the tool was modified to focus on projects within the Wildlife Management Areas (WMAs) owned by the agency. Within MassWildlife, there are 5 Districts (Central, Western, Connecticut Valley, Southeast, and Northeast), all with their own - and occasionally overlapping - WMAs for which they are responsible. Information about many of the WMAs, including key target species, can be found on the <u>MassWildlife Lands Viewer</u>, although this information was not available at the time of these discussions.

This report focuses on the results of a meeting with the Northeast District's Management team using the CPST to facilitate a discussion of climate change activities on select WMAs. This report provides specific responses to the discussion and process questions as well as general findings and useful resources. Not all WMAs were discussed during the 3-hour meeting. Those not discussed can be analyzed using this Climate Project Screening Tool at a future date.

Methods

Overview of the CPST

The CPST is a table where the first column lists specific project or management activities of interest. Next, the tool provides a summary of climate change impacts relevant to the specific management activity, poses useful discussion and process questions, and provides space for response and record-keeping. Each management activity section concludes with a question of whether to continue with the specific activity or not, and if so, if any portion of the activity should be modified.

CPST Column Descriptions

(See Table 1 for the CPST layout and specific responses by managers at the meeting)

Project activities of focus for the discussion

• An important first step is to identify the appropriate scale at which relevant activities will be evaluated. To this end, all management activity categories were identified from the Federal Aid report produced by MassWildlife. District managers were asked to fill out a spreadsheet identifying which activities were being considered or actively done on each WMA. This process allowed the CPST to be tailored to each District and provided a coherent and efficient structure for the meeting.

General climate change trends and local impacts

• Information about projected climate and ecosystem responses can be gathered from many sources and summarized for key indicators of relevance to the local environment. The scientific literature (including a report done specifically for the northeastern states, see Useful Resources) and experts at the Department of Interior Northeast Climate Science Center were the primary sources for local climate data for this report. The purpose of this summary is to give managers a broad sense of anticipated and ongoing changes in climate and related ecological responses throughout their District. The local impacts focus on effects at a scale that is relevant to project design and highlight appropriate changes to the project.

Key questions for managers

• The purpose of this column is to facilitate thinking about the potential impacts of climate change on a specific project type. The questions used to guide the discussion were originally developed through meetings with US Forest Service resource specialists and then modified with MassWildlife staff. Additionally, information on some project

activities was gathered from the MassWildlife website. After the questions were used in the first meeting (with the Central District), modifications were made to enhance relevance in future meetings.

Response narrative

• The response narrative in the fourth column is the centerpiece of the CPST, where managers or facilitators record their answers to the questions and thus their thinking about the interaction between climate change and the project. Users are encouraged to identify and document sources for their answers.

Continue with project?

• The last column is where the user concludes whether to proceed with, modify, or cancel the project given the response narrative. It is intended as a recommendation regarding whether or not climate change impacts are likely to be: 1) insignificant enough to proceed as originally designed, 2) substantial enough to require modification to the proposed activities, or 3) whether the project cannot be adequately modified given relevant climate change effects and thus should be withdrawn. Selection and documentation of one of the three recommendations can then become part of a public report on how resource managers considered climate change prior to project implementation.

Table 1.	Climate	Project	Screening	Tool with	responses	from the	Northeast	District
I upic II	Cinnate	IIUJUU	Servening	I OOI WITH	responses		, i toi theast	Distitut

Project	Climate Change Trends	Key Questions for	Response Narrative	Continue
Activity	(for more information:	Managers	(please complete)	with Project?
	climateactiontool.org)			110jeet.
Vegetation Control – mowing, hand cutting, herbicide	Trends – Increased fuel buildup and risk of wildfire; increased interannual variability in precipitation, leading to fuels build up and causing additional forest stress; increased stress to forests during periodic multi-year droughts; Local Impacts – Densification of vegetation; increased invasive aquatic, plant, and forest pests; earlier and longer growing season	 Will the activity be sufficient to control invasives that grow larger and more abundantly? Does the project area include anticipated future vulnerable areas (i.e. higher elevation sites, riparian areas, soil types or ecosystems not previously recorded as invaded)? Will the treatment season need to be adjusted for the earlier growing season? 	 No, it's difficult to control invasives as they are now. Not even enough time to monitor and record what invasives there are, let alone control them No, though increased wetland loss is occurring. Also, less water will cause expansion of <i>Phragmites</i> and other invasives. Yes Treatment currently in spring and fall (Japanese knotweed & Phragmites) 	□ Yes □ No □ Yes, with modification:
		• Will additional invasives require more work hours to control?	• Yes, as stated above, not enough hours currently to control them	
Prescribed Burning	Trends – Increased fuel buildup and risk of wildfire; increased interannual <u>variability in precipitation</u> , leading to fuels build up and causing additional forest stress;	• Are there techniques that can be used to effectively manage a burn considering increased fuel loads and droughty conditions?	 Training required, and more information would be needed. Most burns happen because youths start fires Crane Pond WMA: 	□ Yes □ No □ Yes, with modification:

increased stress to forests durin periodic multi-year <u>droughts;</u> Local Impacts – Increased risk for erratic fire behavior; decreased window of opportunity for prescribed fire conditions; flashier, drier fuels; decreased water storage in soils	 In what ways do the increased droughty conditions factor into a prescribed burn (or lack of one)? Will the timing of prescribed burns need to be adjusted given climate trends (arrival of migratory species, bud break, etc.)? 	 Controlled burn is a goal, but has not been done yet Not a priority because there are so many people around Have a burn prescription. Have been waiting 10 years do the burn May mow instead Yes. Can't burn in the spring b/c of Blanding's turtle, which are moving around earlier by 2 weeks – coming out in mid-May. Turtles are coming out more as a trickle which makes it harder to assess their status. Burning only in the fall 	
Aquatic and Wildlife Trends – Loss of seed and other germpla sources as a result of population extirpation events; increased water temperatures in rivers an streams and lower water levels late summer; reduced snowpact longer, drier summers, decrease water quality as a result of increased watershed erosion; general shifts in temperature ranges; chance of fire; increased	Aquatic • Are the plant/wildlife species currently present viable in the future given changes in temperatures and precipitation? d	 For some yes, others possibly not. Gypsy moth destroying life zone around vernal pools (450') Blanding's turtle – vernal pools more dry than usual. All pools dry up at some point in the year but the drying is happening earlier and earlier. Drying in June. Affecting life cycle also of American toad, tree frog, spring peeper Trends benefit fairy shrimp b/c 	with ation:

1 1 1		4 4 1	
insect and disease		tney require the pool to	
		completely dry up.	
Local Impacts –			
Historical <u>availability</u> of food and	1	William Forward and Crane Pond	
water sources may be <u>altered</u>		WMA:	
geographically and temporally;		• large portion predicted to be	
suitable range of habitat may alte	r	underwater due to future sea level	
with changing forest stand		rise	
structure (wildfire, species	• What is the future range	• Have seen intermittent to dry.	
extirpation)	of flow? Will the	more changes are predicted to	
	hydrologic system	occur	
	change from a perennial	Beaver dams present and	
	to an intermittent	considered a benefit	
	system?		
	• Given increase in	• Snowmalt isn't a real concern in	
	• Orven increase in	• Showhert isn't a real concern in the District Most water is	
	bow will the hydrologie	the District. Most water is	
	now will the hydrologic	groundwater.	
	regime change? will it	• Water temperature effects for	
	go from a snowment	trout – water getting too hot in	
	system to a rain on snow	summer	
	regime?	• May soon not stock trout b/c of	
		water levels and temperature rises	
		Timing of stocking will change	
	• Is the restoration area	• Watershed is developed so it is	
	vulnerable to increased	inherently more vulnerable due to	
	extreme events and	level of impervious surfaces	
	erosion?	• Increased potential for pollutants	
		to run into pond	
		r	
		Crane Pond WMA:	
		• Crane pond is in a large wetland	
		area so water has room to go	
		under large flow events	
		under large now events.	

		 Terrestrial Are the plant/wildlife species viable in the future given changes in food and water availability, as well as the range of future habitat? 	 Mammals aren't high risk to extirpation – mast is a big predictor of presence. Oaks affected by gypsy moth. Amphibians will be affected. Blanding's turtle will probably disappear. 	
		• What is the future range of habitat for the target species?	 Uncertain, some species are behaving differently than previously observed Blanding's can just move somewhere else but then meet cars and other threats Crane Pond WMA: Surrounded by people and development so hard for species 	
		• How will breeding, young, and forage seasons be altered with the changing habitat and climate?	 to go anywhere. More habitat care and modification will be needed. Crane Pond WMA: Goal is to create Blanding's turtle habitat where they already are to encourage them to not move and run into people and other terrestrial threats. 	
Nesting Structures – Development and	Trends – Reduced <u>snowpack</u> ; earlier green- up; longer, drier summers, general shifts in <u>temperature</u>	• Are the plant/wildlife species viable in the future given changes in food and water	 <u>Wood ducks</u> will persist as long as water/beaver are present. Thinking of changing projects away from duck boxes to 	□ Yes □ No □ Yes, with modification:

Maintenance	ranges; increased insect and disease		availability, as well as the range of future habitat?	•	something else (to be done in the winter) Going to change projects to	
	Local Impacts –				something else in response to	
	water sources may be altered				climate change	
	geographically and temporally:			•	boxes	
	suitable range of habitat may alter	•	Are target species	•	Uncertain, ask state wildlife	
	with changing forest stand		arriving earlier?		biologist H. Heusmann	
	structure and temperature and	•	Are target species using	•	Inventory is needed to assess but	
	precipitation regimes		different habitats?		lacking time for such projects	
		٠	Will the future habitat of	•	Yes, though plans to change to a	
			the focus species still		new species that utilizes/benefits	
			location?		Irom nest boxes.	
			location:		boxes in winter.	
				•	Wood ducks not utilizing boxes	
					much	
Maintenance	Trends –	•	Given that hydrologic	•	Lots of parking lots – keeping	□ Yes
and	Increased interannual variability		regimes are changing, are		them open. Possible re-grading.	□ No
Construction:	in <u>precipitation</u> ; more extreme		your crossings designed	٠	Lots develop ruts/mud	\Box Yes, with
Roads and	flood and other weather events;		and engineered to	•	Hopes of having some roads	modification:
Trails, Dams,	decreased water quality as result		withstand the predicted		closed as they flood frequently	
Bridges,	of increased watershed erosion		changes?	~		
Parking Lots,	and sediment flow; increased			C	rane Pond WMA:	
Binnus,	increased right of fine			•	One road, with culvert, is	
Siglis, Boundary	increased risk of fife				maintained because it leads to	
Markers	Local Impacts _				control burn site. No concern	
Gates/Access	Changed hydrologic regimes: soil				regarding erosion or damage	
Management	disturbance due to increased			•	Culvert under the road, future	
management	runoff and movement of				plans to add boulders to control	
					entry. Gate installation	

waterways; likelihood of road		
washouts and closures increase;		William Forward WMA:
storm events exacerbate		• Not currently but want to replace
sedimentation and erosion from		the bridge
burned areas		• Bridge stops up water that feeds
		into 47-acre salt marsh and
		causes waterlogging.
		• The salt marsh is not keeping
		pace with sea level rise.
		District secured money for
		restoration and for replacement
		the bridge.
		• Project to help salt marsh and
		water flux to keep track with
		climate change sea level rise
	• Is the project located at	William Forward WMA:
	the right location to	• Yes, the current bridge has 2
	reduce watershed erosion	current scour pools which are not
	and sediment flow or	working and causing erosion of
	other impacts?	the salt marsh.
		• The project will eliminate this
		issue.
		• Predicted that the pools will fill
		after bridge is replaced
	• Will current road	Crane Pond WMA:
	structures/surface	• J.B. Little Road: town owned
	treatments be able to	land but blocked off. High
	withstand the more	Blanding's turtle habitat. Will be
	severe flood events (and	further affected by climate change
	possible erosion)	by being under water frequently.
	predicted in the future?	• Goes right through the wetland
		and disrupts the habitat anyway
		Maintenance needed but not

		 exacerbated by climate change; elevation even William Forward WMA: No, current bridge will not How is the surrounding topography and vegetation being considered regarding future climate trends? Crane Pond WMA: Surrounding land owned and managed WMA already William Forward WMA: Yes, planning to refill scour pools which will reduce erosion of the salt marsh and allow it to absorb the larger and less predictable influxes of water Will act as a buffer 	
Public Access Management	Trends – Increased interannual <u>variability</u> in precipitation; more extreme flood and other weather events; decreased water quality as result of increased watershed erosion and sediment flow and warmer waters; increased likelihood of severe flood; increased risk of fire Local Impacts – Changed <u>hydrologic regimes</u> ; soil disturbance due to increased runoff and movement of waterways; likelihood of road washouts and closures increase; storm events exacerbate	 Is current infrastructure resilient given increased extreme events (floods and potentially hurricanes)? Will flooding, drought, and other extreme weather events make it more difficult to manage public access? Will more personnel hours be needed to manage public access given future climate trends? Yes, from what is known currently Crane Pond WMA: Except for culvert off of Bear Hill Road, no other structures. No, makes access easier to control. More issues with trail creation and use. Drier weather = more trails; generally more use if land is drier Yes 	□ Yes □ No □ Yes, with modification:

forest stand structure (wildfire, species extirpation)phenology (timing of reproduction, migration)• Large-scale decisions of hunting dates decided by others	sedimentation and erosion from burned areas; suitable range of habitat may alter with changing <u>temperatures</u> , <u>precipitation</u> , and forest stand structure (wildfire, species extirpation)	• For hunting, have shifts in target species distribution, vulnerability, and phenology (timing of reproduction, migration) been considered?	 Pheasants stocked; <u>deer</u> move from upland to dense forest and food mast. See changes in deer presence and location. Large-scale decisions of hunting dates decided by others
--	---	--	---

Results

Overview

The facilitator team met at the Northeast District office in Belchertown, MA, with 3 Northeast District staff from Mass Wildlife: District Manager Pat Huckery, Land Agent Anne Gagnon, and Stewardship Specialist Jennifer Jones. The structure of the meeting centered around identified management activities that were considered at a given WMA. The purpose of this design was to encourage the discussion of multiple WMAs when thinking about a specific management activity as well as to ensure that each type of management activity occurring within the District was discussed at least once.

Conversation flowed from specific questions in the CPST to a broader discussion of issues related to climate change to other issues faced by the District, and then back to the tool questions in a cyclical pattern until all questions in the management activity section were asked. An interesting secondary result of this meeting was that other management issues on WMAs were identified. This secondary result was an unintended but beneficial outcome of considering climate change impacts on Agency lands. Those concerns are discussed in this report as relevant, in addition to climate-specific issues.

The CPST allows Districts to document that they are thinking about climate change when making management decisions, whether they then choose to modify current activities or not. Deciding that continuing with the current activities, or lack of activities, for now is sometimes the appropriate choice at the end of the process. The critical step is to take time to consider climate change - within daily activities and larger-scale plans.

Interesting Findings

- District is taking a proactive approach to many aspects of their work, from prioritization of invasive species eradication to attainment of chemical applicator's licenses
- District recognizes the need for public education and buy-in for many of their projects to succeed
- District taking a proactive approach to identify what projects are most crucial to climate adaptation so that time and efforts are utilized effectively and efficiently

Climate Change Adaptation Techniques Already in Use

- District staff are in the process of or have already received their Pesticide Applicator's License so that they can take an active role in controlling invasives
- Working on creating more ideal habitat for Blanding's turtle so that they stay in their current habitats as more droughty conditions occur, rather than moving out of the area and into areas with more anthropogenic threats
- Considering the dates of trout stocking and possibly ceasing to stock trout altogether because of temperature rises in streams, as determined with headquarters staff
- Noticing that wood duck boxes aren't being used so switching efforts to nest boxes of other species, especially those threatened by climate change, as determined with headquarters staff
- Considering climate change and resulting stressors when applying for grants and project proposals

Using the Climate Action Tool

When faced with challenges to effective management as a result of climate change, the Massachusetts Wildlife Climate Action Tool (CAT, <u>climateactiontool.org</u>) can be particularly useful to District Managers. The CAT was developed in partnership by MassWildlife, the University of Massachusetts-Amherst, the Department of Interior's Northeast Climate Science Center, and the U.S. Geological Survey's Massachusetts Cooperative Fish and Wildlife Research Unit, so the information within is specifically geared towards the Commonwealth. The CAT includes information on climate impacts, vulnerability of species and habitats, and adaptation actions that can be taken. It was developed using a literature review of the most recent scientific findings as well as new expert input.

District staff can use the CAT to find species or habitat-specific information that can be relevant to management goals. For example, the Northeast District has a goal to protect the Parker River watershed and manage for wetland species at the William Forward WMA by restoring hydrology and controlling invasive vegetation. If a manager was interested in knowing how to achieve these goals while being mindful of climate change effects, they could utilize the CAT to learn about habitat-specific adaptation strategies.

A number of potential adaptation strategies and actions are included in the CAT that managers could refer to when considering forest management, coastal habitat restoration, or how to promote connectivity among WMAs. Please see Appendix 2: Additional Resources for examples. The CAT points out that invasive plant and animal species are a particular threat to wetland habitat so the work that the Northeast District is doing to control invasives is relevant. Since the CAT is a place to showcase existing expertise and practices, it could be modified to include some of the actions being undertaken by District staff as examples.

For the WMAs that were not discussed, the CPST can be used by District staff without facilitation for future projects and plans. A manager can complete it by themselves or with others on a team; we found great value in having multiple members of the staff present to share their input and often to spark and deepen the dialogue. This also creates buy-in for the implementation of actions. The versatility and simplicity of the CPST allows it to be useful in more than just a few select scenarios and times. A complete copy of the CPST developed for MassWildlife is available with this report.

Lastly, as its name indicates, the purpose of the CPST as a screening tool became apparent when the need for additional time to develop coherent climate change adaptation for some management activities and WMAs was identified. For projects such as these, the Climate Adaptation Workbook (see Appendix 2) was mentioned, and the Workbook passed around. The in-depth nature of the Workbook appealed to attendees and there is interest in planning a training day at the Headquarters office to learn how to use and implement it. The CPST could be considered a first step and its completion can facilitate and enhance the use of the Adaptation Workbook for more detailed planning. In particular, projects that would benefit from more indepth discussion and planning related to the incorporation of climate science can be identified through the CPST process.

Conclusions

Using the CPST to facilitate a discussion of climate change impacts on current and planned management activities highlighted multiple results. In many cases, management professionals did not initially identify any ways in which they were modifying their work because of climate change and, in some cases, they did not readily identify ways climate change was affecting their work. However, upon further discussion, it became clear that observations of climate change and modification of activities were occurring, just not explicitly labeled as such. Through the course of the discussion, it also became clear that agency-wide policies on climate change would be helpful or, if already in existence, these could be communicated to Districts in a more comprehensive way. As such, it would be particularly important to have both District and Division headquarters staff present at the meeting.

Overall, the CPST meetings provided a block of time for on-the-ground managers to pause in an otherwise busy schedule and directly consider climate change as it relates to their daily projects. The goal of these meetings was to facilitate this examination and encourage thoughtful planning for current and future management activities. In this way, work hours and physical resources can be used most effectively to protect and manage Massachusetts' lands and wildlife resources in a changing climate.

Works Cited

- Climate Change Resource Center. 2017. United States Department of Agriculture United States Forest Service. *Climate Change and Carbon Tools*. <u>https://www.fs.usda.gov/ccrc/tools</u>.
- Melillo, J.M., T.C. Richmond, & G.W. Yohe, Eds. 2014. Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, 841 pp. doi:10.7930/J0Z31WJ2.
- Morelli, T.L., S. Yeh, N.M. Smith, M.B. Hennessy, & C.I. Millar. 2012. *Climate Project Screening Tool: An Aid for Climate Change Adaptation*. United States Department of Agriculture, Forest Service. Research Paper PSW-RP-263. 40p.

Appendices

-	-
Great Marsh North	Salisbury Salt Marsh
WMA	WMA
Great Marsh South	Scripture Hill WMA
WMA	
Hauk Swamp WMA	Squannacook River
	WMA
Hunting Hills WMA	Townsend Hill WMA
Martin H. Burns	Trapfall Brook WMA
WMA	
Mulpus Brook WMA	Unkety Brook WMA
Nissitissit River	Upper Parker River
WMA	WMA
Pantry Brook WMA	
	Great Marsh North WMA Great Marsh South WMA Hauk Swamp WMA Hunting Hills WMA Martin H. Burns WMA Mulpus Brook WMA Nissitissit River WMA Pantry Brook WMA

Appendix 1: WMAs Not Discussed

Appendix 2: Additional Resources

- Massachusetts Wildlife Climate Action Tool <u>http://climateactiontool.org</u> For specific information on species and habitat vulnerability, climate trends in Massachusetts, and adaptation strategies and actions. Example pages below.
 - o Species
 - Brook trout <u>https://climateactiontool.org/species/brook-trout</u>
 - Moose <u>https://climateactiontool.org/species/moose</u>
 - American Black duck <u>https://climateactiontool.org/species/american-black-duck</u>
 - Habitats
 - Vernal pools <u>https://climateactiontool.org/ecogroup/freshwater-wetlands-vernal-pools</u>
 - Spruce Fir forest <u>https://climateactiontool.org/ecogroup/forest-spruce-fir</u>
 - Coldwater fisheries streams <u>https://climateactiontool.org/ecogroup/rivers-and-streams-coldwater-fisheries-resources-streams</u>
 - Adaptation Actions
 - Culvert upgrades <u>https://climateactiontool.org/content/maintain-habitat-connectivity-retrofit-or-replace-culverts</u>
 - Riparian restoration for coldwater streams <u>https://climateactiontool.org/content/ensure-cool-water-temperatures-protect-and-restore-riparian-areas</u>

- Promote species in the northern and middle edge of their range <u>https://climateactiontool.org/content/promote-drought-and-heat-tolerant-speciesencourage-species-northern-and-middle-edge-range</u>
- Living shorelines <u>https://climateactiontool.org/content/restore-and-protect-natural-shorelines-use-living-shoreline-techniques</u>
- Adaptation Workbook <u>https://adaptationworkbook.org</u> A process to consider climate change impacts and design adaptation actions. Similar to this CPST, but for a deeper dive into climate change planning for a WMA.
- Vulnerability Assessment of MA Species of Greatest Conservation Need (2017) <u>https://necsc.umass.edu/projects/vulnerability-northeastern-wildlife-climate-change-using-decision-science-inform-manageme-0</u>
- North Atlantic Aquatic Connectivity Collaborative (NAACC) <u>streamcontinuity.org</u> <u>Database</u> and background information on culvert assessment and prioritization.
- The Deerfield Stream Crossings Explorer <u>SCE.ecosheds.org</u> Tool to locate and prioritize road-stream crossings. Include ecological data (aquatic connectivity from the NAACC, coldwater streams) and transportation vulnerability data (risk of failure and EMS delays) for Deerfield Watershed. Some of the data will be expanded to the entire state in the next few months.
- <u>Climate Change Resource Center</u> Website run by the United States Forest Service containing general information about climate change. The website also has a section with specific tools that can be utilized when trying to make decisions in response to or monitor impacts of climate change. There is even a section which allows users to search for specific tools based on needs and geographic location.
- Northeast <u>Regional Invasive Species and Climate Change (RISCC) Management network</u> <u>http://people.umass.edu/riscc</u> - Northeast Climate Science Center initiative to address the question "How can we manage for upcoming biological invasions in the light of climate change?"
- <u>Integrating Climate Change into Northeast and Midwest State Wildlife Action Plans</u> <u>https://necsc.umass.edu/projects/integrating-climate-change-state-wildlife-action-plans</u>
- Climate Change Tree Atlas and Bird Atlas <u>http://www.fs.fed.us/nrs/atlas/</u> Includes current and possible future distributions for over 100 tree and bird species in the Eastern US.