Identifying Toxigenic Algae Using RNA-Based Molecular Technologies

Dr. Dianne I. Greenfield

Environmental Sciences Initiative, CUNY Advanced Science Research Center School of Earth and Environmental Sciences, Queens College

Advantages of Quantitative Molecular Technologies

- Microscopy is time-consuming and many species look alike
- Molecular approaches often faster, enable species or genespecific ID and quantification, 'early warnings'
- Examples: DNA polymerase chain reaction (PCR), rRNA sandwich hybridization assay (SHA) for species, protein-based (ELISAs and others) for toxin

Why rRNA?

- High numbers in cell
- Species-specific sequences
- Characterizes live organisms
- Transcribed as single operon

(Winnebeck et al. 2010)

Sandwich Hybridization Assay (SHA)

>1 Species together (PN, Alex, etc.)

Advantages

Rapid (~1 hr); multiplex (up to 12 rxns); species or groupspecific IDs; cost-effective

Examples of Target Organisms

Marine Microbes Harmful Algae Invertebrate Larvae

Roseobacter
Cytophaga
SAR86
Pelagibacter
Picophytoplankton
Marine Group I/II Archaea
Marine Delta
OM60/KTC1119
S-oxidizing symbionts

Ideal for Detecting Multiple HABs

- Example: Coastal SC
- 1,300+ events since 2001
 - ~430 FKs, 1 in 4 HABrelated
 - Raphidophytes & cyanobacteria are most HABs
- Primarily urban regions

Multiple Causative HABs

- Most common bloom and fish kill species = *Chattonella subsalsa* (~30%)
- Raphidophytes ~41% combined bloom + FK
- Next = cyanobacteria (~55% blooms)
- Remainder = *Pseudo-nitzschia*, dinoflagellates, euglenas, others

SHA applications developed for many of those species

New SHA for Microcystis spp.

Cyanobacteria: largest #HABs worldwide; *Microcystis* is the most common genus. Enhances early warnings for blooms to safeguard public health, prediction, and management

Capture Probe Design

Anabaenopsis Synechococcus

Microcystis

Outgroups

- 16s DNA GenBank® sequences, ≥1,000 bp length
- Within 250 bp of signal probe
- GC content at least 40%

No cross-reactivity with non-target species

Field Sampling

- Southeast among the most rapidly growing regions
- >21,000 stormwater ponds
- Shallow, high residence times, stagnate, accumulate nutrients

Numerous HABs and fish kills, high likelihood of public contact. 55% of these HABs are cyanos!

Field Sampling

Upscaling Temporal Resolution: Environmental Sample Processor (ESP)

Adaptable for non-HAB taxa

Sciaenid Spawning in SC Rivers and Estuaries

Month

	J	F	M	A	M	J	J	A	S	О	N	D
Red drum												
Atlantic Croaker												
Spot croaker												
Black drum												
Silver perch												
Banded drum												
Weakfish												
Southern kingfish												
Spotted sea trout												
Star drum												
Silver sea trout												
Gulf kingfish												

SHA and qPCR

Similarities:

- Concentrating a sample
- Lysing cell membranes
- Using DNA probes to identify sequences
- Quantification of genetic material

Differences:

	SHA	qPCR			
NA Extraction?	No	Yes			
Detection mode	Direct	Amplified product			
Genetic target	Large subunit rRNA	DNA			
Quantification	Absorbance	Fluorescence emission			

MERHAB: Methods 'Bake Off'

- Globally-distributed euryhaline HAB: causes fish kills and declining water quality
- Validated SHA and qPCR methods
- Low global diversity in non-chloroplast genome

- Sedgewick rafter as "gold standard" (Godhe et al. 2007)
- 9 counts per sample collection

- Multiple filters with specified cell number
- Flash-frozen (N₂)

- Add lysis buffer
- Heat, combine lysate, filter

homogenate: qPCR and SHA (96-well plate)

Calibration and Preservation

Calibration

- Geographically distinct *H. akashiwo* strains exhibited variability, but it was minor
- SHA and qPCR were nearly identical; SHA had higher prebloom sensitivity, qPCR had wider range (pre-dilution)

Preservation

• T and assay type influenced quantification

Bloom Assessment and Prediction

Main et al. 2018, J. Applied Phycology

Bloom Assessment and Prediction

Great agreement at bloom concentrations – but…below and unlike lab findings – qPCR *overestimated H. akashiwo*. **WHY?**

Nutrients and co-occurring phytoplankton

H. akashiwo abundances had no real pattern associated with N-form but positively and significantly (p < 0.01-0.001) correlated with Si and P

qPCR:SHA elevated at high *Karlodinium veneficum* (red) lower at high *Prorocentrum minimum* (orange); overall concentrations did not correlate with *H. akashiwo*.

T and phytoplankton biomass

- Strong agreement between methods <25 °C
- Most *H. akashiwo* blooms occur in this T-range, suggesting thermal stress
- Greater agreement >30 µg/L Chl a, consistent with Handy et al. (2005) showing greater qPCR accuracy with mixed communities
- Outliers >30 μg/L were during late blooms *cell* senescence?

Regional Applications

- Multiple regional HAB species and shellfish toxins
- Recent *Pseudo-nitzschia* blooms
- Active toxin surveillance New England and NY areas
- Several SHA protocols (Alexandrium, Margalefidinium [Cochlodinium], etc

Acknowledgments

SC and NY Labs: Lara Brock, Nicole Dearth, Cameron Doll, Jessica Espinosa, Suzanne Kacenas, Chuck Keppler, Krystyn Kibbler, Dominique Maldonado, Bec Mortensen, Reima Ramsamooj, Michelle Reed, Kimberly Sitta, Shawn Stormer,

Funding: SC Sea Grant Consortium, CDC, USC and CUNY Research Foundations, State-appropriated funds, NOAA, EPA, Gordon and Betty Moore Foundation, Private contracts

ASRC link: http://environment.asrc.cuny.edu/people/dianne-greenfield/

