

State of Maine Offshore Wind Research Array

Massachusetts Habitat Working Group Maine Update October 10, 2024

Casey Yanos Marine Resource Scientist Maine Department of Marine Resources

Research Lease Location

MAINE GOVERNOR'S Energy Office

Research Underway

- Baseline surveys, monitoring, research (DMR)
- Baseline data collection and coexistence research (Maine Offshore Wind Research Consortium)
- Other baseline and research activities

State Research Array Survey Plans

- Trying to set up a framework for understanding impacts to the whole ecosystem
 - Setting up surveys to measure causal links
- Align with developer survey plans where possible
- Work with industry vessels where possible
- Work with partner organizations where possible

State Research Array Survey Plans

- Additive to permitting requirements, based on recommendations of Offshore Wind Roadmap Fisheries Working Group
- Similar work to other surveys being conducted in the Gulf of Maine already, with higher intensity
- Subject to same permitting and consultation requirements that any similar survey work would be

Before-After-Gradient Design

Maine DMR Research at the Array

Survey	Layout	Frequency
Visual Wildlife	Transect	Monthly
Mapping and Benthic Habitat Sampling	Before-After Gradient (BAG)	Undetermined
Passive Acoustic Monitoring	Grid	Continuous
Highly Migratory Species Monitoring	Grid	Continuous
Active Acoustic Survey	Transect	Every Six Weeks
Lobster Trap Survey	BAG	Seasonally
Oceanographic Monitoring	Undetermined	Monthly
Plankton and Larval Lobster Survey	Modified BAG	Monthly
Bottom Trawl Survey	BAG	Seasonally

Other Research at Array

- Regional oceanographic modeling
- Oceanographic monitoring
- PAM
- Zooplankton changes in Western GoM
- EDNA
- Avian species distribution and modeling
- HFR currents
- Soundscapes
- Metocean data
- Expansion of buoy network
- Real-time data sharing infrastructure Offshore Wind Metocean Data Pipeline (NERACOOS)
- Historic fishing use and Traditional Ecological Knowledge

Maine Offshore Wind Research Consortium

4 Research Areas:

- Reduce Co-Use Conflicts
- Reduce Impacts on Ecosystems
- Understand Socioeconomic Impacts and Community Benefits
- Advance Technology Development to Reduce Costs

Under each research area, there is a specific set of research topics and questions prioritized by the Advisory Board. These questions get refined through an iterative process with the Advisory Board, Collaborators, and other discussions – to ensure Maine is adding to the collective understanding of floating offshore wind in the Gulf of Maine.

Current Research Strategy is here: https://www.maine.gov/energy/sites/maine.gov.energy/files/inlinefiles/MEOSWRC_DRAFT_Research%20Strategy.pdf

Consortium Funded Projects

1. Socioeconomic Baseline Inventory

 Inventory data and metrics related to Maine's fishing communities through stakeholder engagement and research to inform a future socioeconomic impact assessment

2. Fisheries Coexistence

 Engage fishermen to explore definitions and considerations for coexistence and researching compatibility of FOW technologies with fishing gear used in the Gulf of Maine

3. Seafloor Mapping

 Map ~840 sq nm around the Research Array lease and potential cable corridors to fill habitat and seafloor classification data gaps

Consortium Next Steps

- Fund research projects and raise additional funds for:
 - Baseline data for bats in the Gulf of Maine
 - Baseline data on economics of fishing communities with goal to improve economic impact assessments
 - Risk assessments for secondary entanglement
 - Other topics identified in the Research Strategy
 - Information from these projects will be shared widely with federal regulatory agencies, states, other governments, offshore wind developers, all stakeholders to inform responsible floating offshore wind development

Prioritized Research Needs

- Floating wind technology and manufacturing developed in state
- Inter-array cables and other unique floating wind components
- Offshore transmission planning and technology improvements
- Advancing supply chain and workforce to support FOW
- Baseline bird surveys
- Technologies and approaches to reduce spatial footprint
- Technologies to monitor and minimize impacts to wildlife
- Socioeconomic impact assessment framework with longitudinal studies
- ~Wind Forecast Improvement Project in GoM
- Long-term research plan/strategy for the GoM (ex 10-year monitoring plan)

RWSC Regional Wildlife Science Collaborative for Offshore Wind

Massachusetts Offshore Wind Habitat Working Group

Emily Shumchenia, RWSC Director

Implementing the Science Plan

Marine Mammals

Birds & Bats

Sea Turtles

Protected Fish Species

Habitat & Ecosystem (includes seafloor and oceanography

Technology

Data Governance

- Establishing the POWERON program with BOEM and NOAA Fisheries
- Annual Funding Strategy Meeting, Sept 10-11, 2024
- Characterizing the offshore wind and wildlife data landscape – Research Planning Map

rwsc.org/science-plan

Establishing POWERON

RWSC Regional Wildlife Science Collaborative for Offshore Wind

- Partnership for an Offshore Wind Energy Regional Observation Network (POWERON)
- BOEM IRA funds to support marine mammal monitoring
- Contributions from offshore wind developers who opt-in to allow BOEM to conduct their required long-term PAM monitoring on their lease
- GOAL coordinate a regional approach to deploying PAM, processing data, and long-term data management to support understanding of baleen whale movement and presence in U.S. Atlantic waters with respect to offshore wind

Establishing POWERON

- Funds to NOAA Fisheries to deploy/process/manage omnidirectional PAM sensors in Southern New England
- 36 months of funding (\$4M) to RWSC to:
 - Maintain maps of who is funding/deploying PAM
 - Coordinate with PAM funders/interests including NOAA Fisheries, U.S. Navy, states, developers
 - Develop a PAM Field Plan each year, to be discussed and reviewed by the Marine Mammal Subcommittee
 - Implement the Field Plan (purchase and deploy hydrophones, QA/QC data, firstorder detection data products, rolling uploads of raw data and data products to NCEI and NOAA PACM every 6 months
- Marine Mammal Subcommittee reviews Field Plan, Data Management Plan, and data submission reports

https://rwsc.org/pam

All Subregions together – 102 active projects; 31 total funders

Ongoing Projects by Species Group

Ongoing Project Methods

Pending additional projects/funding:

- BOEM POWERON
- Projects to be selected by MassCEC
- Voluntary and/or required research funding associated with Tri-State RFP
- New Jersey RMI \$4.75M, proposals due Oct 9 22 2024
- Empire Wind 1 (\$4.05M) and Sunrise Wind regional monitoring (NY requirement)
- NOAA/NFWF Vessel Strike Avoidance Fund
- Maine Offshore Wind Research Consortium (Fall 2024)
- DOE Research & Development Fund- \$48.6 million, selection in Spring 2025
- NOWRDC Solicitation 4.0: Innovations in Floating Offshore Wind - \$10.6 million, selection Feb 2024

RWSC Annual Funding Strategy Meeting

- Invitees are members from all four sectors, representing most funders/requierers of offshore wind data collection
- Funding Strategy Action Plan:
 - Implement the data standardization, data management, and coordination recommendations from RWSC and its Subcommittees (<u>https://rwsc.org/research-data</u>)
 - 2. Coordinate funding goals and pool funding to achieve bigger results
 - 3. Collaborate with other Caucuses within RWSC

Offshore Wind & Wildlife Data Landscape

Who is funding what, and what is that funding producing?

Repository Review Summary

- 32 data places reviewed from all taxa/habitat chapters of the Science Plan
- ~10 were data repositories
- Many data places did not fully meet our <u>criteria</u> for true data 'repositories.' Under that definition, data repositories have to:
 - Accept data submissions and provide access for data reuse
 - Provide long-term data storage and preservation
 - And for connection to an Offshore Wind & Wildlife Data Catalog
 - Must share minimum metadata with the catalog

REGIONAL WILLIE SCIENCE Collaborative for Offshore Wind

- Shows the locations of where data are being collected/research conducted
- Includes POC for each effort and where available, includes links to:
 - Entry for project in RWSC Database
 - Where data are stored
- Funded by BOEM
 - Represents one year of data aggregations and app development (leverages Northeast Ocean Data Portal)
 - Another year remaining to refine data layers, build additional app functions, and determine long-term funding plan

RWSC Research Planning Map Process

Research Planning Map https://rwsc.org/map

Research Planning Map https://rwsc.org/map

How to receive updates

Regional Wildlife Science Collaborative for Offshore Wind (RWSC)

Collaboratively supporting research and monitoring on wildlife and offshore wind Non-profit Organizations · 328 followers · 4 employees

All RWSC Subcommittee meetings are open to the public: visit https://rwsc.org/events

Monthly e-newsletter: meeting invites and other news

Contact information

Emily Shumchenia, PhD, RWSC Director emily.shumchenia@rwsc.org

Avalon Bristow, MARCO Executive Director abristow@midatlanticocean.org

Nick Napoli, NROC Executive Director, MARCO Senior Advisor nnapoli@northeastoceancouncil.org

Boulder Relocation: Developing Management

Hollie Emery

Massachusetts Office of Coastal Zone Management

Geological Context

South Fork Wind DEIS Figure 3.4.2-1

Boulder relocation

Boulder plow

Grab lift

Figures from SouthCoast Wind COP and Sunrise Wind COP

Concerns raised by MA Fisheries Working Group

Safety

Creating new hangs

Fishing industry impacts

Gear damage Loss of access

Habitat and stock impacts

Direct physical damage Habitat conversion Ecological changes

CZM developed a guidance document in response

Key Questions

For fishermen:

- What size boulder is a problem for what gear in what situations?
- How can impacts be minimized/mitigated?

For Offshore Wind developers:

- How/when/where are boulder moved?
- What options exist for beneficial reuse?

For fisheries managers and scientists:

What studies have been done to understand impacts?

For regulators:

• What regulatory tools exist to address the above and are they working?

Potential boulder relocation impacts

Potential boulder relocation impacts

Impacts to habitat and species (not limited to fisheries):

- Direct harm (e.g., crushing)
- Habitat conversion (sandy $\leftarrow \rightarrow$ complex)
- Changes in predator/prey due to creation/loss of structure
- Invasive species spread (direct or indirect)
- Changes in habitat impacts from fisheries (e.g., if fishing is displaced)
- General impacts from seabed disturbance (not unique to boulders):
 - Sediment resuspension
 - Construction noise
 - Vessel strikes

Potential boulder relocation impacts

Location of impacts:

- Clearance area around foundations/scour protection (lease)
- Receiving areas distant from foundations (lease)
- Cleared/plowed cable corridors (easement)

Related impact producing factors:

- Scour protection
- Cable protection (e.g., concrete mattresses)
- Seabed disturbance (anchoring, jack-up, etc.)

Potential AMM

Avoid boulder relocation:

- Route cables away from boulder fields (sufficient surveys in the planning phase)
- Microsite cables around boulders

Minimize impacts when relocation is unavoidable:

- Minimize distance moved (habitat)
- Place boulders in groups or in existing boulder fields (safety and access)
- Individual relocation with grab vs plowing

Mitigate impacts when relocation is unavoidable:

- Beneficial reuse (scour protection, artificial reefs, etc.)
- Communication of final locations
- Consider boulder impacts when negotiating financial compensation agreements
- Note: Restoration not typically an option

Monitoring

Before, during and after

The right sampling modalities (photo/video/grab/DNA)

Able to detect the key questions (e.g., presence of commercially important species, invasive species, etc.)

MA CZM has guidance on best practices for monitoring, research, and mitigation: https://www.mass.gov/info-details/czm-offshore-wind-publications

Regulatory framework

Safety | Habitat

BOEM COP approval Terms and Conditions

NMFS Essential Fish Habitat consultation

USACE

State (e.g., MassDEP)

COP Terms & Conditions for Boulders and Berms

Avoid the relocation

- Anchors, jack-ups, etc (must map boulders and try to avoid them)
- Cables, monopiles, etc (must try to microsite around boulders)

Minimize the impact if there is relocation

- Boulders required to stay inside lease/cable corridor
- Distance limits or "as close as practicable"
- Guidance on bottom type receiving the boulder
 - "in areas of soft bottom immediately adjacent to similar habitat"

Mitigate the impact that remains

- Berms remediated if they do not resolve
- Communicate new locations to agencies

	Vineyard Wind 1 7/15/2021	South Fork Wind 1/18/2022	Ocean Wind 1 9/21/2023	Revolution Wind 11/17/2023	Empire Wind 2/22/2024	Sunrise Wind 6/21/2024	N. England Wind 1&2 7/1/2024		
	Anchoring, scour and cable protection plans								
Plans	Micrositing plan								
		Separate Boulder ID & relocation plan							
		Boulder relocation reporting							
Specific	Boulder relocation placement guidance								
measures		Berm survey and remediation							
		T	multiboom boo	Sloped edges	on concrete ma	attresses			
Placement Guidance	To low-return multipeam backscaller areas								
	To areas of soft bottom immediately adjacent to similar habitat								
							Near origin		

Boulder Reporting Requirements

Boulder relocation report must be made to BOEM and BSEE at conclusion of boulder relocation: includes coordinates and dimensions of boulders as a shapefile

Coordinates (not dimensions) of largest boulders (> 2m) are to be reported to other federal and state agencies (and usually to the public) within 30 days of moving them

Boulder coordinates from Notices to Mariners

GIS layer available:

- RWSC Research Planning Map
- Northeast Ocean
 Data Portal

Quintham – provides plotter files

Boulder relocation

Black: original boulders Green: relocated boulders

Image courtesy Annie Murphy

Boulder relocation

Image courtesy Annie Murphy

Black: original boulders Green: relocated boulders

Future Directions

Actual impacts to habitat from boulder relocation are uncertain

Studies are underway

Actual impacts to fishing from offshore wind are uncertain

• Study is needed

Can communication of boulder locations be improved? How?

Options for beneficial reuse should be explored

Figure 2: Location of boulder reefs in Anholt Offshore Windfarm

Feedback?

https://www.mass.gov/infodetails/czms-role-inoffshore-wind hollie.e.emery@mass.gov

South Fork Wind Boulder Relocation Benthic Monitoring

Annie Murphy

October 10 and 18, 2024

Boulder Monitoring

Relocation of existing natural hard bottom habitats (boulders) will <u>alter physical habitat characteristics</u> (rugosity, complexity, density) with <u>potential for rapid colonization</u> of relocated boulders

<u>Objectives –</u>

- Measure changes over time in the nature and extent of macrobiotic cover (% cover, relative abundances) of relocated boulders in comparison to undisturbed boulders
- Characterize larger-scale changes to the physical attributes of the benthic habitats

Do communities on relocated boulders differ from control boulders?

Do communities on relocated boulders differ from control boulders?

Two paired survey areas –

- Relocated boulders
- Control boulders

Boulders were relocated between October 2022-June 2023

This first survey was conducted October 2023

Marine Imaging Technologies Evan Kovacs & David Ullman

Investigator 90 Observation Class ROV

Motion camera system ZCam E2-S6 Continuous, RAW, 6K

Machine vision stereo camera Lucid, 3D 3D, 4K, redundancy

MARINE

2023 (YO) Native Boulder Habitat

- 1. Relocated boulder communities resemble control boulders
 - Invertebrate turf dominates all surfaces
 - Hydrozoa, bryozoa, amphipods, and barnacles
 - Taxa presence and abundance similar on controls and relocated boulders, in most cases
 - Black sea bass, anemones, sea stars
- 2. Encrusting pink/orange taxa cover a small percentage of boulder surfaces
 - Possibly non-native tunicate
 - Higher cover on relocated boulders
- 3. Physical shift in boulder distributions
 - Reduced complexity in some areas
 - Increased complexity and boulder density in discrete areas

Landscape Level

- Boulder relocation focused near WTG foundations
- Boulders were not moved far (relatively)
- Boulders placed generally in similar habitat as their original location

Landscape Level

- Divots visible at original locations
- Boulders placed in centricshaped arcs around the WTG foundation locations
- Potentially predictable, intuitive positioning using foundation as a landmark
- Distance between boulder arc and foundation is ~200-300 m

Macrofaunal Community

Leptothecata Thecate Hydroids Asterias spp. Forbes/Northern Sea Star —

> Metridium senile Frilled Anemone

Invertebrate Turf Hydrozoans, Barnacles, Amphipods

Balanus spp. Rock Barnacle

Henricia sanguinolenta N. blood star

$SFW_{23B2}_{NWCtrl}_{Bld}_{11-B}$

Undisturbed Boulder

Invertebrate Turf

Cancer spp. Jonah/Rock Crab

SFW_23B2_NWCtrl_Bld_06-A

Undisturbed Boulder

Balanus spp. Rock Barnacle Leucoraja sp. Little/Winter Skate

Invertebrate Turf

SFW_23B2_NWCtrl_Bld_10-C

Undisturbed Boulder

Pseudopleuronectes americanus _____ Winter Flounder

Centropristis striata Black Sea Bass

> Modiolus modiolus Northern Horse Mussel

Encrusting Pink/Orange Taxa

Didemnum vexillum [Non-Native Tunicate] Didemnum albidum [Native Tunicate] Cryptosula spp. or Schizoporella spp. [Bryozoan] Halichondria panicea [Sponge]

SFW_23B2_SEDstbd_Bld_03-D

Relocated Boulder

Invertebrate Turf

Encrusting Pink/Orange Taxa

SFW_23B2_SEDstbd_Bld_02-A

Relocated Boulder

Invertebrate Turf

Asterias spp. > Forbes/Northern Sea Star

Balanus spp. Rock Barnacle

SFW_23B2_SEDstbd_Bld_09-A

Relocated Boulder

Results

Leucoraja sp. Little/Winter Skate

Pseudopleuronectes americanus Winter Flounder

Results

Territories To Document Name: SFW_2382_Hardbottom_Report

Encrusting Pink/Orange Taxa

Encrusting Pink/Orange Taxa

21

Results

Encrusting pink invertebrates Disturbed Control 1.5 Dercent Cover 0.5 0.0 n = 16 n = 12 n = 14 n = 14 ŚΕ NŴ

Results

- Relocated boulder communities resemble control boulders
 - Invertebrate turf dominates all surfaces
 - Taxa presence and abundance similar on controls and relocated boulders, in most cases
- Encrusting pink/orange taxa cover a small percentage of boulder surfaces
 - Possibly non-native tunicate
 - Higher cover on relocated boulders
- Next surveys (2024, 2025...)
 - Confirm that relocated boulder communities continue to resemble control boulders
 - Track the distribution of encrusting pink invertebrate cover
- Research project
 - Paired visual survey (w/ AI) and physical samples (w/ eDNA)
 - Molecular samples to identify encrusting taxa GMGI develop qPCR assay, additional amplicon sequencing (12S, COI)

