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1 Introduction 

Transit agencies in the United States are required to provided door-to-door paratransit service 
for customers with disabilities under the Americans with Disabilities Act (ADA) of 1990.  The 
purpose of ADA paratransit is to provide service that complements conventional fixed-route 
transit for people who are unable to use buses, subways, or trolleys. Rising ridership with ADA 
paratransit services around the country poses a challenge due to the high costs of operations.  
In response, transit agencies are seeking ways to reorganize operations and form partnerships 
with alternative providers in order to contain costs while meeting rising needs. 

This report presents modeling and analysis of the On-Demand Paratransit Pilot Program 
initiated by the Massachusetts Bay Transportation Authority (MBTA).  The MBTA’s ADA 
paratransit service is called “The RIDE,” and Pilot Program allows eligible riders to make 
subsidized trips with ridesharing companies Uber, Lyft, and Curb.  The purpose of this study 
is to understand  

1. the effect that a cooperative arrangement with these ridesharing companies will have 
on demand for ADA paratransit, 

2. the operations of the remaining van service, and 

3. the overall cost to the MBTA of providing transportation service to eligible customers. 

1.1 The RIDE: ADA Paratransit Service in Greater Boston 

The MBTA operates public transit services throughout Greater Boston, Massachusetts, 
including buses, light rail, heavy rail, commuter rail, electric trolleybuses, and ferries.  The 
RIDE is the MBTA’s ADA paratransit service and it is generally available to customers with 
eligible disabilities in Greater Boston and between the hours of 5 AM and 1 AM daily.   

In order to be eligible for federal funding, the ADA requires transit agencies to provide 
complementary paratransit service that meets the following conditions (Transportation 
Services for Individuals with Disabilities, 1991): 

1. Eligibility – Customers who have a disability that prevents them from being able to 
navigate or access the conventional fixed route transit service are eligible for ADA 
paratransit service.  This includes physical disabilities, such as the need for a 
wheelchair or mobility device, as well as other sensory or mental disabilities that 
require curb-to-curb transportation service. 

2. Geographic Coverage – Service must be provided to origins and destinations within ¾ 
of a mile of conventional local fixed route transit.  Commuter rail stations are not 
included for the required service area. 
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3. Days and Hours of Coverage – Service must be provided during the same days and 
hours of the day as the operation of the conventional transit service. 

4. Fare – The ADA paratransit fare cannot exceed double the fare cost for conventional 
fixed route transit for the same origin-destination pair. 

5. Response Time – All customer requests must be matched with a ride within an hour 
before or after the requested time of travel. 

6. Constraints – Customers cannot be denied service for any of the following reasons: trip 
purpose, number of trips requested, length of trips requested, excessive telephone hold 
times for reservations, any other capacity constraint on the system. 

The requirements are intended to ensure that customers with disabilities have equal access to 
public transportation service as the general public.  Since the public is not limited in their 
freedom to take as many trips and for any purpose as they are willing to pay for, the same 
standard is held for ADA paratransit.  Altogether, these requirement place a burden on transit 
agencies to ensure that an adequately sized fleet of paratransit vehicles and drivers are available 
to meet demands.  As demographics change, increasing numbers of eligible customers with 
disabilities require agencies to dedicate increasing resources to comply with ADA 
requirements.  The operating funds for paratransit services come out of the same budget as 
general transit operations, so increasing financial obligations for ADA paratransit service limits 
the available funding for all other transit operations.  As a result, transit agencies need to find 
ways to cost-effectively provide service for eligible ADA customers in order to sustain transit 
service for all users. 

The RIDE is typical of many ADA paratransit services across the United States in that 
operation of vehicles is provided by private operators under contract to the MBTA.  In order 
for customers to use The RIDE, they must apply for eligibility through The RIDE Eligibility 
Center.  Upon approval, customers are able to reserve trips by calling in from 1 to 7 days in 
advance of travel.  Customers are offered a trip that is scheduled to provide service within one 
hour of the requested pick-up time. 

Although the ADA only requires that paratransit service be made available within ¾ of a mile 
of MBTA bus and subway stops, the MBTA makes The RIDE available to customers 
throughout 58 towns and cities in Greater Boston as shown in Figure 1.1.  This is common for 
many agencies, because the ¾ of a mile boundary can exclude many important origins and 
destinations in a region, limiting access for customers who may not have other options for 
travel.  A distinction is made in the fares charged: 

1. Local ADA one-way fare for trips with origin and destination within ¾ mile of an 
MBTA bus or subway stop is $3.15. 

2. Premium non-ADA one-way fare for trips with an origin and/or destination further than 
¾ mile from an MBTA bus or subway stop is $5.25. 
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Figure 1.1 Service Area for the MBTA’s ADA Paratransit, The RIDE (Source: MBTA) 
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Like many large public transportation systems, The RIDE’s service area is divided into 
smaller operating regions, each served under contract by a separate provider.  There are 3 
regions for The RIDE: North, West, and South (see Figure 1.1).  Each region also includes 
the shared center region shown in yellow. Trips within a single region are served by a single 
vehicle.  Trips crossing from one region to another may require a transfer between two 
paratransit vehicles.   
According to annual reporting in the National Transit Database from 2013 through 2017, 
annual ridership on The RIDE showed a gradually increasing trend (see Figure 1.2).  During 
this time period the average operating cost per unlinked trip has fluctuated, but recently has 
risen to exceed $50 per trip served (see Figure 1.3).  This equates to annual operating costs for 
The RIDE exceeding $100 million per year.  This average cost is high, but within the typical 
range for paratransit services throughout the United States (Rodman and High, 2018). 

 
Figure 1.2 Annual Unlinked Trips on the MBTA’s ADA Paratransit Service (Source: 
NTD, 2013-2017) 
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Figure 1.3 Average Operating Cost per Unlinked Paratransit Trip for MBTA (Source: 
NTD, 2013-2017) 

1.2 The On-Demand Paratransit Pilot Program 

In an effort reduce the costs of providing transportation service to eligible ADA paratransit 
customers, the MBTA has initiated an On-Demand Paratransit Pilot Program (referred to 
hereafter as the Pilot) to allow customers to use ridesharing services or Transportation Network 
Companies (TNCs), including Uber, Lyft, and Curb, for subsidized travel.  The motivation for 
establishing this pilot program is two-fold: 

1. Reduce Operating Costs: With the average cost exceeding $50 to serve each trip using 
The RIDE’s conventional ADA van service, there appears to be an opportunity to 
reduce costs by paying the fare of a ridesharing or TNC service instead.  Partnering 
with TNCs could therefore lead to cost savings if customers choose to make trips at 
lower cost than using the conventional ADA paratransit service. 

2. Improve Mobility for Customers: A secondary benefit of partnering with TNCs, is that 
eligible ADA customers would have access to same-day on-demand service.  Unlike 
The RIDE, which requires that customers book trips at least one day in advance and 
wait for the van to arrive within a pick-up window spanning 20 minutes, customers can 
hail TNCs using a smartphone app, and typically get picked up within a few minutes 
of their request. 

Currently, TNCs are unable to comply with ADA paratransit requirements, because they 
provide a platform that links customer trip requests with a market of independent drivers. 
Therefore, the TNCs cannot guarantee that a vehicle will always be available to pick-up a 
customer request, that a vehicle will be accessible for customers needing a lift or space for 
wheelchair, or that drivers are trained to serve customers with special needs.  As a result, The 
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RIDE has structured the Pilot as an optional service that participating The RIDE customers can 
use on their own in addition to guaranteed access to conventional paratransit service. 

The Pilot was initiated with limited participation in October 2016 and has been expanded to 
currently allow any eligible ADA paratransit customer to join and participate until July 1, 2019.  
The general structure of the Pilot is as follows: 

1. Participants register for the Pilot in connection with one of three available TNCs: Uber, 
Lyft, or Curb.  Uber and Lyft provide service throughout The RIDE’s service area.  
Curb provides taxi service only within Boston, Brookline, Cambridge, and Somerville 
(The RIDE’s shared area). 

2. Participants are assigned a monthly allocation of one-way Pilot trips based on 
utilization of The RIDE over the previous 6 months.  Allocation tiers are 2, 10, 20, 30, 
or 40 trips/month, which are eligible for the subsidy described below.  For additional 
trips, customers would have to pay the full TNC fare. 

3. For each trip, participants choose whether to make a reservation with The RIDE or to 
use a TNC through the Pilot.  Trips with The RIDE are unlimited, local/premium fares 
are charged the same as for other ADA paratransit riders.  For Pilot-based trips (using 
one of the TNCs), customers pay the first $2 of TNC fare ($1 for UberPOOL) and the 
MBTA pays the remaining fare up to a subsidy of $40.  For example: a TNC trip with 
$20 fare would cost the customer $2 and the MBTA $18; a TNC trip with $45 fare 
would cost the customer $5 and the MBTA $40. 

The specific structure of the Pilot has evolved over time since its inception.  The timeline of 
changes is summarized in Table 1.1.  As of March 2018, there were 1,718 Pilot participants out 
of approximately 40,000 total registered ADA customers.  Although the Pilot program 
represents only a small number of all ADA customers and eligible trips, utilization provides 
useful insights about the potential impacts of expanding the Pilot to all users. 

Table 1.1 Timeline of The RIDE On-Demand Paratransit Pilot Program 
Date Change to Pilot Program 
October 2016 Initial participants allocated 20 trips/month 

Customer pays $2; MBTA pays the next $13 
January 2017 Trip allocation assigned based on previous usage: 

2, 20, 25 trips/month 
March 2017 Opened to all The RIDE customers, but participants must register 

Customer pays $1 on UberPool 
June 2017 Allocation tiers adjusted to 2, 10, 20, 30, 40 trips/month 
October 2017 MBTA subsidy increased to $40 limit per trip 
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1.3 Study Objectives 

The challenge of managing a system of demand-responsive transportation services for 
customers with disabilities is to accommodate the demand-side considerations related to 
traveler behavior with the supply-side considerations related to the system structure and costs.  
The research study culminating in this report has three objectives related to the operation of 
ADA paratransit and coordination with TNCs. 

1. Supply (Operations and Cost) – Identify the structure of operations for the The RIDE’s 
conventional ADA paratransit service.  This includes estimating the effect of increasing 
paratransit demand on the MBTA resources required to provide the service (e.g., fleet 
size, vehicle-hours of operation, and vehicle miles of operation).  This also includes 
analysis of sources of variability and the causes of delay in serving paratransit 
customers.  The models that are developed for operations and costs are used to quantify 
the effect of the Pilot on the remaining operations and costs of the service. 

2. Demand – Identify the effect of new TNC service options on ADA demand patterns in 
terms of choice of service (i.e., The RIDE versus TNCs).  Specifically, the goal is to 
understand the extent to which Pilot participants are adopting TNCs and/or continuing 
to use The RIDE.  A model based on observations of Pilot participants is applied to 
estimate the effect of expanding the program to automatically include all eligible ADA 
customers. 

3. Optimal Service Provision – Identify efficient service strategies accounting for the 
effects of new service options on demand and supply.  The operations models are used 
to identify which trips would be most cost-effectively served The RIDE versus one of 
the TNCs.  This leads to development of a tool that could eventually be used to identify 
which specific trips the MBTA should either allocate or incentivize switching from The 
RIDE to a TNC. 

The goal of this study is to provide insights about how the operation and use of the conventional 
system, operated as The RIDE, is changing under the Pilot and to provide insights about how 
a multimodal ADA program is likely to perform.  Although the scope is tied closely to analysis 
of the MBTA system, the insights are likely to have implications for the ADA paratransit 
systems elsewhere in Massachusetts and around the United States. 
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2 Research Methodology 

The research approach for this study consisted of three main parts: review of existing data and 
technologies, collection of data, and analysis to estimate the occurrence and number of left-
behind passengers due to overcrowded trains. 

Section 2.1 presents a review of the literature related to crowding in transit systems and the 
indicators that are used across transit agencies and by the MBTA to measure the passenger 
experience.  The relevant available data that MBTA currently collects is also summarized in 
this section.  A review of technologies that are used for counting pedestrians is then presented 
in Section 2.2. 

Sections 2.3 through 2.6 describe the methods for collecting data.  This starts with analyzing 
existing data sources to identify the locations and times of day that passengers are most likely 
to experience being left behind.  Then, the details for the manual data collection, automated 
video counts, and device detection are described. 

Finally, Section 2.7 presents the modeling methods that are used to make the most accurate 
estimates of the occurrence of trains leaving behind passengers and the number of passengers 
that are left behind. 

2.1 Literature Review 

There has been extensive research over the years on demand responsive transit systems.  The 
review of the existing literature is divided into two main parts.  First, the body of research on 
the operation of demand-responsive transit and ADA paratransit is presented.  This includes 
efforts to organize operations efficiently and model the demand and operations for systems of 
various sizes or with multiple service zones.  Second, a more recent area of research is shedding 
light on the opportunities to coordinate ADA paratransit service with alternative transportation 
services.  Although there is an established history of ADA paratransit providers coordinating 
with taxi companies, the relatively recent emergence of TNCs, presents new opportunities for 
collaboration and coordination. 

2.1.1 Demand Responsive Transit Systems 

Simulation Models 

Many models have been developed to optimize the routing and zoning structures for paratransit 
services.  The approaches used to model and study demand responsive services can be broadly 
classified as detailed simulation models and approximate mathematical models. Simulation 
has been employed to assess the effects of zoning strategies as well as time window variations 
on productivity measures of demand responsive transit service (Fu, 2002). Applications 
include evaluations of trip miles, deadhead miles, and fleet size for Los Angeles County, 
California (Dessouky et al., 2008). Studies of paratransit in Harris County, Texas, include 
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comparison of centralized and decentralized operating strategies (Quadrifoglio and Shen, 
2013) and the effect of zoning with transfers (Shen and Quadrifoglio, 2011; 2012). Variations 
in travel time and scheduling reliability can also be modeled with detailed methods (Fu, 1999; 
Fu and Teply, 1999). However, developing an accurate simulation is expensive because it 
requires detailed data inputs and a significant amount of time for model construction and 
calibration.  

Approximate Mathematical Models 

In contrast, approximate mathematical models are simpler to construct and require readily 
available data inputs. These types of models show the connection between data inputs and cost 
estimates using analytical models. A number of aggregate analytical models based on 
continuous approximations geometric probability have been developed to represent various 
operation strategies for demand responsive transit, and to predict the total distance, operating 
time, and fleet size required to serve a given demand.  These studies date back to Daganzo 
(1978), which presents an aggregate analytic model to predict the average total time spent in 
the system including waiting and ride times using three different vehicle routing algorithms 
(Daganzo, 1978).  The model relates total passengers’ waiting times to system attributes like 
fleet size and vehicle capacity, but it does not allow for a provider to predict who will be 
experiencing delay, when they will be experiencing it, and what causes one rider to experience 
delay while another rider does not. 

More recent studies have focused more on the operations side and have focused on improving 
efficiency by understanding characteristics relating to the service provider such as revenue 
hours and vehicle miles traveled (VMT).  Rahimi et al. (2018) presents a continuum 
approximation model showing how agency cost is affected by demand and other service 
characteristics including VMT, vehicle hours traveled (VHT), and fleet size.  The paper 
presents models for VHT, VMT, and fleet size and the agency cost as a linear function of these 
three variables. This model can then be calibrated—in the paper for paratransit operations in 
New Jersey—to reflect the operating characteristics of any specific operator and can be used 
to predict the likely effect of system changes.  

Gonzales & Amirgholy (2015) presents an analytical model to estimate the total agency cost 
as a function of the capacity of the system and number of passenger requests.  The capacity of 
the system depends on many characteristics of the system including the fleet of vehicles 
available to pick up passengers. The paper also presents a user cost model which can predict 
total system delay for passengers in terms of deviation from their desired pickup times.  If the 
system is undersaturated, the rate at which requests for new rides are coming in is less than the 
rate at which the fleet can serve the rides meaning that the capacity is enough to handle requests 
as they come in.  If the demand rate is higher than the capacity, a queueing problem arises, and 
the total delay to user schedules can be predicted based on the distribution of request times and 
the corresponding capacity of the service.  The paper, however, does not go beyond assigning 
a pick-up time to a passenger meaning that additional delay can be experienced when the van 
deviates from the decided upon schedule.  
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Rahimi & Gonzales (2017) presents a study of how zoning effects user’s travel time and travel 
behavior.  A gravity model is used to predict travel demand between different zones and a travel 
time model is developed from continuous approximation models presented in Rahimi et al. 
(2018).  The results of this paper show that trip distribution and the effect of zoning on travel 
demand is greatly dependent on the characteristics of the zones and their structures.  The 
analysis showed that it is always more efficient to operate one larger zone when the two zones 
are small or have low demand.  Additionally, when an area is split into two zones with transfers, 
having some overlap is optimal.  

All the research mentioned up until this point have been based on aggregate models relating 
systemwide totals and averages, but do not provide detailed information about individual 
passengers or vehicles within the system.  There are other means and methods that researchers 
have used to study paratransit operations.  Demand responsive paratransit operations and 
specifically vehicle routing can also be considered as a Pick-up and Delivery Problem (PDP).  
In this type of problem, the goal is to optimize vehicle routes to handle as many requests as 
possible based on constraints that result in travel time or cost being minimized (Savelsbergh 
and Sol, 1995; Desaulniers et al., 2001; Cordeau and Laporte, 2003; Laporte, 2010). 

Empirical Models 

Additionally, research has been done on paratransit operations using analytic and quantitative 
empirical models.  Daganzo (1984) and Figliozzi (2008)  have used analytical models to 
optimize tours for a set number of vehicles to service different points.  Probabilistic constraints 
on the number and duration of tours, the number of users, and time windows improved these 
models (Figliozzi, 2009).  Using a quality of service constraint, Fu (2003) optimized total time 
and fleet size, but this was not realistic because demand is always changing.  Diana (2006) and 
Diana et al. (2006) further developed a stochastic model to optimize fleet size based on 
distribution of demand. 

Research has also been done on the effect of various system characteristics using real world 
paratransit systems.  Several experiments were performed using the paratransit systems in 
Edmonton, Alberta to better understand how the stochasticity of travel time impacts system 
performance and reliability (Fu, 1999).  Baily and Clark (1987), Feuerstein and Stougie (2001), 
and Fu and Ishkhanov (2004) investigated the effect of the number of vehicles on system 
performance.  Other research has investigated how traffic conditions (Hauptmeier et al., 2000; 
Lipmann et  al., 2002) and time window size (Dessouky et al., 2005) affect DRT performance. 

2.1.2 Alternative Service Providers 

A second relevant body of research evaluates policies to reduce the cost of ADA paratransit 
operations by coordinating with other service providers. Transit agencies have made 
agreements to partner with taxi companies to provide to provide transit services for decades.  
Many studies have considered the role that taxis can play to complement or supplement other 
public transportation services for passengers with disabilities (Chia, 2006; Burkhardt, 2010; 
Tuttle and Eaton, 2012; Ellis, 2016). The potential to reduce the costs of operating paratransit 
services by partnering with taxis has led to successful taxi voucher programs in many cities, 
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including San Francisco Municipal Transportation Authority in San Francisco, California; Pace 
Transit in suburban Chicago, Illinois; Metropolitan Transit Authority of Harris County in 
Houston, Texas; and Washington Metropolitan Area Transportation Authority in greater 
Washington, D.C. (Burkhardt et al., 2010).  TCRP Report 121 presents a spreadsheet toolkit 
for comparing the effectiveness of non-dedicated fleets (primarily taxis) for augmenting peak 
demand, handling long trips, or providing service in low-demand periods (Nelson/Nygaard, 
2007).  The toolkit provides estimates of cost savings resulting from integrating service with 
non-dedicated vehicles, but the tool does not explicitly consider the geographic distribution of 
origins and destinations within the service region.  A more recent report compares contracting 
and service models across the United States (Rodman and High, 2018). 

TNCs are rapidly changing urban mobility by using digital platforms to allow customers to 
request on-demand service from suppliers.  A number of different business models have been 
developed. Some TNC services essentially mimic exclusive-ride point-to-point taxicab service, 
distinguished primarily by the fact the customers use a smartphone to hail or request service. 
Other TNC services, which are sometimes called “microtransit” seek to group riders into 
demand-responsive shared rides using sedans or vans that can resemble jitneys or even dial-a-
ride shuttles.  The aim is to achieve economical operations by simultaneously serving many 
passengers, although microtransit operators have struggled to stay in business as the economics 
of mass transit are rarely profitable.  These TNC services are being added to the mix of long-
existing modes which include public transportation services in the form of fixed routes, 
paratransit for people with disabilities (as required by the Americans with Disabilities Act of 
1990, ADA), and dial-a-ride, as well as taxicabs and for-hire vehicles. Together these long-
standing and emerging services provide vital urban transportation options (see Figure 2.1). 
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Figure 2.1 Examples of New and Existing Mobility Services 

With the rapid expansion of TNCs and their adoption by the general public, there have been a 
number of studies evaluating their relationship to public transit and extent to which TNCs 
operate in competition with transit or a supplement to existing services (Taylor et al., 2015; 
Feigon and Murphy, 2016; Shin-Pei et al., 2016).  While the potential of TNCs to substitute 
conventional transit trips and reduce transit efficiency is a cause for concern (Martin et al., 
2010; Henao, 2017; Schaller, 2016; 2017), ADA paratransit services are so costly to provide 
that substitution may have the desirable effect of lowering total operating costs. 

Overall, Feigon and Murphy (2016) present TNCs in a positive light, highlighting the potential 
for beneficial relationships with public transportation services. Other recent studies have 
acknowledged similar potential for TNCs to work with public transportation to improve public 
mobility.  A study by TransitCenter also investigated the potential for public transportation and 
TNCs to work together, and identified similar opportunities for benefits but urged public 
transportation agencies to enter into agreements with a view to reinforce transit strengths and 
leverage agency-controlled assets such as curb space on streets (Shin-Pei, et al., 2016).  

Not all research related to TNCs has been so positive.  A recent study of the rapid growth of 
TNCs in New York City shows that they are quickly increasing vehicle-miles travelled (VMT) 
on the streets of the city, contributing traffic congestion and competing head to head with the 
tightly regulated taxicab industry (Schaller, 2017).  Another recent study of TNC riders in 
Denver found that 22% would have taken conventional fixed route transit instead, and many 
others would have walked or cycled; only 19% had substituted driving alone (Henao, 2017).  
The Denver study also found that when accounting for the extra VMT associated with TNC 
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trip , as compared to the modal trip replaced, the TNC increased VMT by 84%.  These studies 
provide an indication of some of the risks associated with TNCs in terms of potential to 
compete directly against public transportation and exacerbate traffic congestion.  The 
experience of taxis also provides insights related to the regulatory and policy implications of 
dealing with private operators. Schaller (2016) makes the case for thinking carefully about the 
regulatory environment for TNCs like Uber and Lyft.  The current situation is that taxis are a 
highly regulated industry with controls on entry to the market (e.g., through medallions in New 
York City), fares, driver credentials and oversight, and vehicle specifications. By comparison 
TNCs are operating under much looser rules, and this creates some complications for cities 
and agencies in trying to make formal partnership agreements.  This challenge is particularly 
pertinent to ADA paratransit services, which must be able to make contractual guarantees for 
service to eligible customers in order to comply with the ADA.  Clearly, there are benefits and 
risks that must be weighed and carefully considered before establishing collaborations or 
partnerships between public transit operators and TNCs. 

Many transit agencies have been encouraged to consider partnering with TNCs to reduce the 
cost of operations by study results, such as Brookings Institution report (Kane, Tomer, and 
Puentes, 2016), which point to the dramatically lower cost of TNC fares compared to the costs 
of conventional paratransit operations.  Some customers have voiced strong vocal support for 
programs like the MBTA Pilot, because TNCs allow for trips to be scheduled minutes before 
they are needed, rather than requiring a reservation a day in advance.  However, proposals to 
coordinate paratransit service with TNCs are not without critics.  For example, a report by the 
Amalgamated Transit Union (2016) came out with sharp criticism of the Brookings Institution 
report, pointing out that Uber and Lyft provide low cost service with fleets of ADA inaccessible 
vehicles and untrained drivers.  Although Uber has a platform for wheelchair accessible 
vehicles (WAVs), the number of available vehicles is outside of Uber’s control, which relies 
on a platform of independent drivers who may choose to operate accessible vehicles. 

With increasing interest among transit agencies throughout the United States to consider 
cooperative arrangements with taxis or TNCs for paratransit services, there is a pressing need 
for quantitative methods to assess the potential value of these cooperative arrangements. To 
date, the quantitative modeling of demand responsive systems has focused almost exclusively 
on paratransit operations as a stand-alone system.  Recent studies of paratransit operations 
provide modeling capabilities to quantify the effect of changes in demand, such as may result 
for diverting some trips to taxis or TNCs, and the provide a quantitative basis for decision 
making (Rahimi and Gonzales, 2015; Amirgholy and Gonzales, 2016).  A study of the Pioneer 
Valley Transit Authority (PVTA) ADA paratransit service provided an initial analysis of the 
potential cost savings from coordinating with taxis or TNCs in the Springfield, Massachusetts, 
region (Turmo et al., 2018). 

It is clear from the existing literature and public debates that partnerships between transit 
agencies and TNCs have the potential to provide large cost savings, but there are several critical 
challenges that must be considered and addressed.  This research study seeks to investigate the 
details how a partnership between the MBTA and TNCs in the Greater Boston region are likely 
to affect operations, demand patterns, and costs.  There are several questions related to the 
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legality and equity of partnerships with TNCs that are important but lie outside the scope of 
this research. 

2.2 Available Data 

There are three main types of data on which the models and analyses in this study are based.  
First, customer records from the MBTA provide demographic information about each eligible 
paratransit customer which can be used to associate travel patterns with personal characteristics 
such as age and type of disability.  Second, detailed records from each ADA paratransit trip 
served include the locations and times of each passenger pick-up and drop-off as well as 
identification of the vehicle or route that served each trip.  This data not only shows the 
temporal and spatial distribution of ADA paratransit trips, it can also be used to reconstruct the 
vehicle routes, which reveals the operations associated with serving the demand.  Finally, some 
limited data about the monthly number of TNC trips made by Pilot participants shows 
utilization of the Pilot changes over time and how enthusiastically different customers make 
use of the service. 

2.2.1 ADA Paratransit Customer Data 

The database of eligible customers for The RIDE contains records for 40,721 individuals.  
Personal identifying information is not necessary for any of the analysis of this study, but the 
following data fields are used for the analysis: 

1. Customer ID – A unique number is assigned to each eligible ADA customer.  This ID 
allows us to track the trips that each individual makes and relate those trips to other 
customer characteristics. 

2. Date of Birth – The customer’s date of birth allows us to calculate age, which has the 
potential to be an explanatory factor for travel behavior. 

3. Home ZIP Code – The zip code for each customer’s registered home address provides 
an indication of where customers reside and where many of their trips are likely to start 
or end, 

4. Disability – The qualifying disability or disabilities associated with customer are 
recorded, and these have the potential to be explanatory factors for travel behavior. 

5. Equipment – In addition to customer disabilities, the type or types of equipment that 
the customer uses is listed.  This includes mobility devices such as wheelchair, power 
chair, scooter, walker, cane, etc.  This is also the field where specific vehicle 
requirements are listed, such as requirement of a lift or service only with a van.  This 
field is particularly important for identifying which customers are ambulatory and 
which customers require a WAV. 
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2.2.2 The RIDE Trip Records 

In addition to records about each customer, the MBTA maintains a database of all The RIDE 
trips.  These records include a detailed accounting of where and when each customer travelled, 
and which vehicle or route was used to serve them.  For this study, the MBTA provided the 
research team with all 4,012,592 trip records from January 2016 (prior to the Pilot’s start in 
October 2016) through March 2018.  Each trip record includes the following data that is used 
in the analysis: 

1. Trip ID – Each trip is uniquely identified by an ID. 

2. Customer ID – The ID for the customer requesting the trip allows each trip to be linked 
to the specific customer characteristics in the customer data table. 

3. Trip Date – The calendar date of each requested, scheduled, and served trip. 

4. Subscription – Customers that make regular trips (e.g., to and from work) are able to 
request their trip as a subscription rather than having to call in the same request over 
and over again.  This data field indicates the ID of the associated subscription, if 
applicable. 

5. Provider – Each trip is served by a private operator that works under contract with the 
MBTA.  This field indicates which provider serves the trip.  This provides an indication 
of the region in which the trip is assigned, because each of the three regions is initially 
served by a different provider.  Some reorganization during the time period of 
observation has resulted in changing geographic coverage for each provider. 

6. Pick-up Location – The address and latitude/longitude coordinates of the requested 
pick-up location are recorded.  This is used (along with the drop-off location) to 
determine if the trip is within the required ADA service area or in the broader 
“premium” service region in which the ADA does not require service. 

7. Drop-off Location – The address and latitude/longitude coordinates of the requested 
drop-off location.  This is used along with the pick-up location to categorize trips. 

8. Origin-Destination Network Distance – The estimated driving distance from the pick-
up location to the drop-off location is recorded, assuming the trip can be served as a 
direct ride without intermediate stops.  Ultimately most trips are served directly in this 
manner, but some vehicles are routed to share multiple rides, so the actual distance 
travelled by a customer may be somewhat greater. 

9. Estimated Trip Time – Based on the location and time of day of the pick-up and drop-
off, a travel time estimate is generated by the scheduling software for a direct trip 
following the network distance above.  This is a travel time estimate that may be greater 
or less than the actual travel time for the passenger. 
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10. Requested Pick-up Time – This is the time that the customer initially requested to be 
picked up by The RIDE. 

11. Promised Pick-up Time – This is the time that The RIDE offered to the customer during 
the booking process.  Customers are expected to be prepared to board the vehicle from 
5 minutes before to 15 minutes after the promised time. 

12. Arrival Time at Pick-up – This is the time that the vehicle arrived at the pick-up address.  
As described above, the vehicle is intended to arrive between 5 minutes before to 15 
minutes after the promised pick-up time.  Any arrival after this time window is 
considered to be late. 

13. Departure Time from Pick-up – This is the time that the vehicle departs the pick-up 
location.  The difference between the departure time and the arrival time at pick-up is 
the time that the driver waits for the customer to get ready and to get into the vehicle. 

14. Arrival Time at Drop-off – This is the time that the customer actually arrives at his or 
her destination.  The difference between the arrival time at drop-off and the departure 
time from pick-up is the time that the customer spends traveling in the vehicle, 
including any intermediate stops.  For trips that are served without intermediate stops, 
this elapsed time can be used with the origin-destination network distance to calculate 
the average speed of the vehicle in the network. 

15. Vehicle ID or Route ID – Depending on the month, the data set includes a field for the 
vehicle ID or route ID.  Within a day, all trips with a common vehicle/route ID can be 
grouped to identify the actual vehicle routing.  By linking together trips in this way, the 
actual operations of all The RIDE vehicles can be deduced in terms of the total number 
of vehicles operating, VHT, and VMT. 

The monthly demand varies slightly over the course of the year, as shown in Figure 2.2.  Over 
the time period observed (January 2016 through March 2018) the general level of demand 
appears to have held steady.  In fact a comparison of total trips for the first quarter of 2016 and 
2018 shows a 12.5% drop over this time. 

Within a day, the rate that trips are requested and served is constrained by the hours of operation 
of MBTA buses and subways.  Generally ADA service is provided between 5 AM and 11 PM, 
and Figure 2.3 shows that the majority of trips are served between 6 AM and 9 PM.  Although 
the mid-day demand is relatively flat, there are distinct peaks in the late morning and early 
afternoon.  These peaks in demand determine the maximum number of vehicles and drivers 
that are needed to fulfil the required ADA service. 



18 

 

 

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

Ja
n-

16

Fe
b-

16

M
ar

-1
6

Ap
r-1

6

M
ay

-1
6

Ju
n-

16

Ju
l-1

6

Au
g-

16

Se
p-

16

O
ct

-1
6

N
ov

-1
6

D
ec

-1
6

Ja
n-

17

Fe
b-

17

M
ar

-1
7

Ap
r-1

7

M
ay

-1
7

Ju
n-

17

Ju
l-1

7

Au
g-

17

Se
p-

17

O
ct

-1
7

N
ov

-1
7

D
ec

-1
7

Ja
n-

18

Fe
b-

18

M
ar

-1
8

AD
A 

Pa
ra

tr
an

si
t T

rip
s 

pe
r M

on
th

Month and Year

Figure 2.2 Monthly Trips on The RIDE, January 2016 – March 2018 
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Figure 2.3 Hourly Trips Requested on The RIDE, Average of January – March 2018 

2.2.3 Pilot Program Data 

Data for the Pilot is the most limited, because service is provided by TNCs (specifically Uber, 
Lyft, and Curb) which tightly control which data are released and to whom.  Although records 
exist of each of the trips completed by Pilot participants, only the following data for each Pilot 
participant was available to the research team for the analysis in this study. 

1. Customer ID – The customer ID for each Pilot participant links to the table of eligible 
ADA customers.  This allows participation in the Pilot to be linked with customer 
characteristics and ongoing travel booked through The RIDE. 
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2. Date Joined – The date that the customer joined the Pilot is recorded.  Figure 2.4 shows 
that the program initially kicked off with a limited number of participants on October 
1, 2016.  Once all ADA eligible customer were able to join the program on March 1, 
2017, customers have steadily joined the Pilot.  This date is important for identifying 
how long Pilot participants have been included in the program. 
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Figure 2.4 Cumulative Number of Pilot Participants 

3. L6M-Pre Pilot – The average monthly number of trips completed on The RIDE in the 
six months prior to joining the program is recorded.  The trip history is used to 
determine the trip allocation for subsidized TNC trips. 

4. TripCap – The maximum number of monthly subsidized trips that each customers has 
been allocated through the Pilot program is listed.  Although the tiers of trip allocations 
have been adjusted over time, the most recent tiers (as of June 2017) are reported.  
These are: 2, 10, 20, 30, or 40 TNC trips per month.  For most customers, the L6M-Pre 
Pilot count is rounded up to the nearest tier level to determine the assigned tier for TNC 
trip allocation. 

5. Monthly TNC Trips – For each month, the total number of subsidized TNC trips 
completed through the Pilot is reported for each customer.  No additional details are 
provided about the day, time, distance, or cost of these trips.  However, the monthly 
totals allow for analysis of general changes in travel behaviour over time. 
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2.3 Modeling Paratransit Operations 

For the purpose of this study, there are two types of operation modeling that are utilized.  The 
first is an aggregate operations model that relates characteristics of the service regions 
(including area, demand, and network traffic speeds) to estimate the number of vehicles needed 
for the vehicle fleet, the VHT, and the VMT required for operations.  These parameters of 
operations are all linked to the costs of operating the paratransit service.  Although the actual 
cost to a transit agency, like the MBTA, depends on the details of the operation, such as the 
number and size of garages, age and types of vehicles, salaries and benefits for workers. 

The aggregate model is analytical, and it is useful for estimating the effect of changes to the 
system on total operating costs.  Second are empirical models that are fitted to observations 
about operations in the data.  The empirical models are useful for characterizing variability in 
performance that is not explicitly represented by the aggregate operations model. 

2.3.1 Processing of Operations Data 

Before proceeding with the analysis of the dataset, trip records were filtered to remove entries 
that were incomplete or did not make sense. The filters used for this procedure have been 
removing the following categories of data: 

1. Records without a Vehicle ID were eliminated, because there is no way to associate 
these trips with operations. 

2. Trips with negative or zero values for the actual trip time (difference between departure 
from pick-up and arrival at drop-off) are physically impossible.  The trip record is 
assumed to have an error, and is eliminated. 

3. Trips for which the estimated trip time is or more than 3 times larger than the actual 
trip time are eliminated.  Since the estimated trip time is for a direct ride from the pick-
up to drop-off, the actual routing cannot be more direct than this.  Although it is possible 
for traffic conditions to be lighter than expected, a factor of 3 is used to flag trip records 
for which an error is suspected. 

4. Trip records with loading time greater than one hour and data with negative loading 
times are eliminated.  Although it possible for a passenger to take a long time to board 
a vehicle, it is assumed that reported times in excess of one hour indicate that something 
else was going on.  Obviously, any negative values are physically impossible and 
indicate and error in the data. 

The implementation of the aforementioned filters on each of the 12 months of 2017 led to 
removing the data as summarized in Table 2.1.  Most the filtering criteria result in elimination 
of a very small number of trips.  The biggest source of errors is the first filter, which eliminates 
records that lack a vehicle ID.  This is particularly problematic in June 2017, which coincides 
with a reorganization of which operators serve each of The RIDE’s service regions. 
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Table 2.1 Filtering of Raw Trip Records for Operations Analysis, 2017 
Month Raw Trips Filter 1 Filter 2 Filter 3 Filter 4 Filtered Trips 
January 148,154 18 245 206 425 147,260 
February 129,337 224 304 206 463 128,140 
March 158,499 13 393 245 508 157,340 
April 149,121 2,963 395 222 455 145,086 
May 157,985 22 442 244 550 156,727 
June 151,343 31,425 703 169 457 118,589 
July 139,131 9,219 2,179 218 483 127,032 
August 150,389 0 991 285 519 148,594 
September 141,821 0 1,086 242 502 139,991 
October 151,446 0 1,083 201 540 149,622 
November 145,571 0 811 222 542 143,996 
December 137,465 0 1,484 231 567 135,183 
Total 
% 

1,760,262 
 

43,884 
2.49% 

10,116 
0.57% 

2,691 
0.15% 

6,011 
0.34% 

1,697,560 
96.44% 

 

Initially, each of the three service regions (as shown in Figure 1.1) were served by different 
operators: GLSS (Greater Lynn Senior Services, Inc.) in the North; VTS (Veterans 
Transportation, LLC) in the West; and JV (a joint venture between Thompson Transit, Inc. and 
YCN Transportation, Inc.) in the South.  In February 2017, TRAC was introduced to replace 
GLSS and JV, leaving only a handful trips served by JV in March, April, and May.  As of June 
2017, TRAC completely replaced GLSS and JV in the North and South regions.  This shift is 
apparent in the change in operators associated with trip pick-up locations shown in Figure 2.5. 

2.3.2 Relevant Explanatory Variables 

In order to calibrate the models, observed values for parameters related to the operation of the 
system must be measured or estimated form the available data.  As some conditions change 
over the course of the day, the trip records broken up by operator, weekday versus weekend, 
and time period of the day. 

For the purpose of this analysis, we consider time periods of length 𝑡𝑡𝑝𝑝 = 3 hours, which results 
in 5 time periods per day: 6 AM – 9 AM; 9 AM – 12 PM; 12 PM – 3 PM; 3 PM – 6 PM; and 6 
PM – 9 PM.  Very few trips are completed outside of these hours, and they are not considered 
for the calibration of the aggregate operations modeling.  The following subsections describe 
how values are estimated from the available data.  Values from the analysis for each operator, 
day of week, time of day, and month of year are included in the Appendix.  Average values by 
operator, day of week, and time of day are used for loading/unloading time, vehicle occupancy, 
and vehicle speed.  The VMT, VHT, and required fleet are calculated for every day and time 
based on the corresponding demand and these average values.   
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Figure 2.5 Distribution of trip origins by The RIDE operator in January 2017 (left) and 
June 2017 (right) 

Service Region Area, 𝑨𝑨 

The size of each service region is assumed to be constant throughout the day and is determined 
by summing the zip codes associated with each service region (see Table 2.2).  These service 
areas represent the combined premium and local fare areas, because ADA paratransit service 
is provided throughout the full extent of the region. 

Table 2.2 The RIDE Service Region Areas 
Region Area (sq. miles) 
North (not including shared) 211.8 
West (not including shared) 216.6 
South (not including shared) 330.1 
Shared 64.0 

 

Average Loading/Unloading Time, 𝒃𝒃 

The time for each customer to board and alight the vehicle is denoted by 𝑏𝑏, and the average is 
assumed to be constant over time.  The trip records include the arrival time of the vehicle at 
the pick-up location and the departure time from the pick-up location; the difference between 
these values is the loading time.  The unloading time is not observed, because only records of 
vehicle arrival time at the drop-off location are available.  A working assumption is that the 
unloading time is one third as long as loading, because drivers do not have to wait for customers 
to get ready and come out to the vehicle.  The average value for 𝑏𝑏 is simply the average of all 

GLSS 

VTS JV 

TRAC 

VTS 
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observed times in the trip records for the day and time period of interest.  The average value 
of 𝑏𝑏 by operator, day of week, and time of day is summarized in Table 2.3. 

Table 2.3 Average Loading/Unloading Times, 𝒃𝒃 (min/passenger) 
Time Period GLSS (North) VTS (West) TRAC (North/South) 
 Weekday Weekend Weekday Weekend Weekday Weekend 
6 AM – 9 AM 5.03 5.25 7.48 8.82 6.33 7.40 
9 AM – 12 PM 5.37 5.65 8.13 8.91 6.95 7.22 
12 PM – 3 PM 6.19 6.27 9.26 8.55 8.28 7.70 
3 PM – 6 PM 6.59 6.62 9.30 9.62 8.10 8.41 
6 PM – 9 PM 6.76 6.93 9.38 10.13 9.00 9.13 

 

Average Vehicle Occupancy,𝒏𝒏 

The vehicle occupancy is estimated as the number of passengers onboard after a passenger 
boards. In order to make this estimation, the times of trip pick-ups and trip drop-offs for each 
vehicle are sorted in order to construct the actual route sequence.  A cumulative count of the 
number of passengers onboard is tracked by increasing the count with each pick-up and 
decreasing the count with each drop-off.  A summary of the percentage of total time by number 
of passengers onboard is shown in Figure 2.6.  The three operators are similar, and vehicles in 
all regions spend most of their time without any passengers onboard at all.  Although the vans 
are observed to carry as many as 8 passengers, the vehicles are rarely loaded with more than 
two passengers at a time. 

 
Figure 2.6 Distribution of Vehicle Occupancy by Vehicle Hours Traveled 

All vehicle occupancies associated with passenger pick-ups are averaged for the days and time 
periods of the interest to obtain the average value for 𝑛𝑛.  This represents the average number 
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of passengers onboard after a passenger enters the vehicle, which represents the number of 
potential destinations for the next drop-off.  If each passenger were carried individually from 
pick-up to drop off, then 𝑛𝑛 = 1.  The average value of 𝑛𝑛 by operator, day of week, and time of 
day is summarized in Table 2.4. 

Table 2.4 Average Vehicle Occupancy, 𝒏𝒏 (passengers/vehicle) 
Time Period GLSS (North) VTS (West) TRAC (North/South) 
 Weekday Weekend Weekday Weekend Weekday Weekend 
6 AM – 9 AM 1.46 1.24 1.41 1.20 1.47 1.26 
9 AM – 12 PM 1.35 1.33 1.27 1.22 1.31 1.28 
12 PM – 3 PM 1.38 1.29 1.35 1.23 1.40 1.29 
3 PM – 6 PM 1.49 1.31 1.41 1.22 1.50 1.30 
6 PM – 9 PM 1.28 1.26 1.25 1.18 1.28 1.27 

 

Average Network Speed, 𝒗𝒗 

Using the reconstructed vehicle routes that were created to estimate 𝑛𝑛, the trip segments during 
which a vehicle carries a passenger directly from their pick-up to their destination are identified 
(i.e., exactly one passenger on board preceded and followed by the vehicle being empty).  For 
these trips, the reported network distance is the actual distance traveled, whereas trips with 
intermediate stops are associated with additional travel distance and time.  The average 
network traffic speed is given by dividing the network distance by the time from departure 
from pick-up to arrival to drop-off.  The average value of 𝑣𝑣 by operator, day of week, and time 
of day is summarized in Table 2.5. 

Table 2.5 Average Network Speed, 𝒗𝒗 (miles/hour) 
Time Period GLSS (North) VTS (West) TRAC (North/South) 
 Weekday Weekend Weekday Weekend Weekday Weekend 
6 AM – 9 AM 15.56 22.06 15.13 20.21 16.03 21.85 
9 AM – 12 PM 17.83 18.69 15.57 16.50 17.60 18.48 
12 PM – 3 PM 17.29 17.70 15.56 15.96 16.74 17.41 
3 PM – 6 PM 14.69 18.19 13.05 16.67 14.01 17.86 
6 PM – 9 PM 19.36 20.80 16.54 19.42 18.83 20.91 

 

Demand, 𝝀𝝀 

The demand rate within a day and time period is a simple count of the number of trip records 
observed for the day and time of interest.  This rate is expressed as a number of requested pick-
ups per time.  To fit the parameters of operations models for VMT and VHT, the specific 
demand and operational outcome from every day and time period in the data set are used.  A 
summary of the average demand by operator, day of week, and time of day is summarized in 
Table 2.6. 
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Table 2.6 Average Demand, 𝝀𝝀 (trips/hour) 
Time Period GLSS (North) VTS (West) TRAC (North/South) 
 Weekday Weekend Weekday Weekend Weekday Weekend 
6 AM – 9 AM 128 43 146 41 191 71 
9 AM – 12 PM 183 92 165 72 256 131 
12 PM – 3 PM 181 82 188 70 262 119 
3 PM – 6 PM 118 56 126 50 173 81 
6 PM – 9 PM 35 27 35 23 52 41 

Time Window, 𝑻𝑻 

The window of time within which a customer pick-up is considered to be on-time is a policy 
variable.  For The RIDE, the policy is to pick-up customers within a 20 minute window from 
5 minutes before the scheduled pick-up time to 15 minutes after. 

2.3.3 Observed Operational Outcomes 

Network Distance Between Points 

The constructed routes that were used to calculate the vehicle occupancy provide a sequential 
list of stops that vehicles make over the course of the day.  A vehicle’s travel between 
consecutive stops will be described as a segment.  The straight-line distance associated with 
each segment is calculated based on the difference of latitude and longitude of the coordinates.  
Trip segments that correspond to a single customer’s travel directly from pick-up to drop-off 
have a corresponding network distance reported in the data set.  By comparing the straight-line 
distance and the network distance for these segments, a network circuity factor can be 
estimated.  This when multiplied by the straight-line distance, this factor provides an estimate 
of the actual network distance traveled.  Figure 2.7, Figure 2.8, and Figure 2.9 show the 
relationship between straight-line distance and network distance for route segments by GLSS, 
VTS, and TRAC, respectively. 

Observed Vehicle Miles Traveled, 𝑽𝑽𝑽𝑽𝑻𝑻 

Although the actual VMT are not reported in the data, the constructed routes based on 
Vehicle/Route ID are the actual vehicle routings were operated each day.  The best estimate of 
the actual vehicle miles traveled is to sum the network distance associated with each of the 
identified route segments (some of which are traveled with passengers onboard and others are 
traveled empty).  For route segments that correspond to a direct customer pick-up to drop-off, 
the network distance reported in the trip data is used.  The network distance for all other 
segments is estimated by calculating the straight-line distance between points and multiplying 
by the network distance factor derived above.  A summary of the average VMT per three-hour 
time period by operator, day of week, and time of day is summarized in Table 2.7. 
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Table 2.7 Average Vehicle Miles Traveled per Time Period, 𝑽𝑽𝑽𝑽𝑻𝑻 (vehicle-miles) 
Time Period GLSS (North) VTS (West) TRAC (North/South) 
 Weekday Weekend Weekday Weekend Weekday Weekend 
6 AM – 9 AM 2399 857 2267 644 3713 1455 
9 AM – 12 PM 3093 1581 2299 1008 4378 2262 
12 PM – 3 PM 3118 1478 2814 1051 4757 2205 
3 PM – 6 PM 2091 1072 1976 817 3324 1641 
6 PM – 9 PM 705 618 572 442 1125 975 

 

 
Figure 2.7 Network versus Straight-Line Distance for GLSS (North), 2017 

 
Figure 2.8 Network versus Straight-Line Distance for VTS (West), 2017 



27 

 

 
Figure 2.9 Network versus Straight-Line Distance for TRAC (North/South), 2017 

Observed Vehicle Hours Traveled, 𝑽𝑽𝑽𝑽𝑻𝑻 

The observed revenue hours of operations, or VHT, are easier to tabulate than the VMT.  Each 
of the constructed route has a first and last stop.  The difference between these times are the 
VHT associated with each route.  When broken up across the time periods of a day, each route 
segment and its corresponding VHT is associated with the time period at the start of the 
segment.  A summary of the average VHT per three-hour time period by operator, day of week, 
and time of day is summarized in Table 2.8. 

Table 2.8 Average Vehicle Hours Traveled per Time Period, 𝑽𝑽𝑽𝑽𝑻𝑻 (vehicle-hours) 
Time Period GLSS (North) VTS (West) TRAC (North/South) 
 Weekday Weekend Weekday Weekend Weekday Weekend 
6 AM – 9 AM 419.6 165.9 460.4 167.8 617.1 277.1 
9 AM – 12 PM 538.6 268.8 481.2 209.4 799.7 394.6 
12 PM – 3 PM 529.4 270.1 541.9 232.7 880.8 444.0 
3 PM – 6 PM 405.1 201.3 469.1 194.9 646.2 324.3 
6 PM – 9 PM 151.2 101.3 148.1 96.1 269.6 181.9 

 

Observed Fleet Size, 𝑽𝑽 

The observed size of the fleet is simply the number of vehicle/route IDs observed during a day 
or time period. 

2.3.4 Aggregate Operations Model 

Models of aggregated VMT, VHT, and fleet size are based on geometric probability and the 
resources needed to serve a density of demand over each operator’s service area.  The models 
are of the form introduced in Daganzo (1978) and Rahimi et al. (2018).  These models are 
based on simplifying assumptions about the distribution of demand in each service regions and 
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the operating algorithm for serving requested trips.  What the model lacks in detail and realism, 
it makes up for in providing an analytical formula that physically relates explanatory factors 
to operational outcomes.  This approach is valuable, because only two parameters (one for the 
VMT model and another for the VHT and fleet model) must be calibrated to fit the data.  All 
of the other variables are measurable quantities. 

The aggregate model builds on the basic operating assumptions for a dial-a-ride system 
presented in Daganzo (1978).  Demand is uniformly distributed within a roughly circular 
region with area 𝐴𝐴, and conditions do not change significantly within an analysis time period.  
For this study, we break each day into time periods of length 𝑡𝑡𝑝𝑝, within which the demand rate, 
𝜆𝜆, and network traffic speed, 𝑣𝑣, are assumed to be constant.  At any time, all of the demand 
within a pick-up window of duration 𝑇𝑇 are potential customers to pick-up.  Each vehicle is 
assumed to operate by first picking up the nearest waiting customers until the target vehicle 
occupancy, 𝑛𝑛, is reached.  Then, the vehicle alternates between dropping off the on-board 
customer with the nearest destination and picking up the next nearest waiting customer.  In this 
way, each the number of passengers onboard the vehicle is maintained at a near constant level, 
and the vehicle is approximately minimizing distance and time traveled by always proceeding 
to the next nearest stop. 

Vehicle Miles Traveled, 𝑽𝑽𝑽𝑽𝑻𝑻 

The total VMT operated within a time period is the sum of the distances traveled to pick-up 
each requested trip and then to drop-off each requested trip.  From geometric probability, the 
average distance to the nearest of 𝑛𝑛 uniformly distributed points within an area of size 𝐴𝐴 is: 

 𝐸𝐸(𝑑𝑑|𝑛𝑛,𝐴𝐴) = 𝑟𝑟
2
�𝐴𝐴
𝑛𝑛
 (1) 

where 𝑟𝑟 is a unitless adjustment factor for the network that can be thought of as the ratio 
between the actual network distance and the straight-line distance.  The value of 𝑟𝑟 can also be 
affected by the distribution of the points within the area.  If the points are not uniformly 
distributed, 𝑟𝑟 may be bigger if they are clustered together (e.g., many points near the center of 
area), or 𝑟𝑟 may be smaller if they are overdispersed (e.g., many points are spread around the 
edge of the area). 

The distance traveled to pick-up a customer is associated with the nearest among 𝜆𝜆𝑇𝑇 potential 
customers.  The drop-off is associated with the nearest among 𝑛𝑛 customers on-board.  
Therefore, the total VMT within an analysis period of duration 𝑡𝑡𝑝𝑝 is given by 

 𝑉𝑉𝑉𝑉𝑇𝑇 = 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉
1
2
� 1
√𝜆𝜆𝑉𝑉

+ 1
𝑛𝑛
� 𝜆𝜆𝑡𝑡𝑝𝑝√𝐴𝐴 (2) 

where 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 is the factor that is calibrated to fit the observed data for the region.  This model 
forms a linear relationship between the right-hand side expression and the VMT, so the value 
of 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 can be estimated using linear regression. 
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Vehicle Hours Traveled, 𝑽𝑽𝑽𝑽𝑻𝑻 

The model for VHT is based on the VMT model in equation (2) with three important changes.  
First, the distance traveled is converted to travel time by dividing by the average network 
speed, 𝑣𝑣.  Second, the time required for loading and unloading each passenger, 𝑏𝑏, is added.  
Finally, the calibration factor is replaced by a new parameter 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉, which allows for the 
relationship between travel time variables to differ from the relationship between travel 
distance variables. 

 𝑉𝑉𝑉𝑉𝑇𝑇 = 𝜆𝜆𝑡𝑡𝑝𝑝 �𝑏𝑏 + 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉
1
2𝑣𝑣
� 1
√𝜆𝜆𝑉𝑉

+ 1
𝑛𝑛
�√𝐴𝐴� (3) 

In theory, 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 if there is no wasted time or slack in the system schedule.  That is to 
say, the minimum possible VHT would correspond to a system in which vehicles are always 
in one of two states: moving toward the next pick-up or drop-off location, or in process of 
loading or unloading a customer.  In reality, such efficiency is impossible to achieve, because 
there are inevitably gaps in the schedule during which some vehicles must wait until the next 
customer is ready to be picked up.  Therefore, in practice we always expect 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 > 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉, and 
the degree to which they differ provides some indication of how efficiently the system is 
operating compared to an unachievable baseline. 

The model for VHT in equation (3) is also linear.  For estimation of 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉, it can be useful to 
rearrange the terms as follows: 

 𝑉𝑉𝑉𝑉𝑉𝑉
𝑡𝑡𝑝𝑝

− 𝜆𝜆𝑏𝑏 = 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉
1
2𝑣𝑣
� 1
√𝜆𝜆𝑉𝑉

+ 1
𝑛𝑛
� 𝜆𝜆√𝐴𝐴 (4) 

where the slope relating the right-hand side expression to the left-hand side expression is the 
calibrated value for 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉. 

Fleet Size, 𝑽𝑽 

The number of vehicles in operation is closely related to the VHT.  Within a time period, 
operations are assumed to be in roughly steady state conditions, meaning that there are no 
peaks within each interval of length 𝑡𝑡𝑝𝑝 = 3 hours.  In this case the fleet required during each 
time period is 

  𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉
𝑡𝑡𝑝𝑝

 (5) 

because each vehicle is assumed to be fully occupied for the entire time period.  For example, 
if 30 vehicle-hours are operated during a 3-hour time period, this would equate to 10 vehicles 
in operation.  The required fleet size for a region is the maximum fleet size required over the 
course of a day, so the busiest time period determines the necessary resources. 
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Operating Cost 

The total costs of operating a paratransit service are based on the magnitude of the operational 
components that are modeled.  The annual operating cost of the paratransit system is based on 
the estimates of annual VHT, VMT, and the fleet size.  These operations parameters are 
associated with dollar costs, which can be estimated from agency operations and cost data.  
The total cost model takes the following form: 

 𝑇𝑇𝑇𝑇 = 𝛼𝛼0 + 𝛼𝛼1𝑉𝑉𝑉𝑉𝑇𝑇 + 𝛼𝛼2𝑉𝑉𝑉𝑉𝑇𝑇 + 𝛼𝛼3𝑉𝑉 (6) 

where 𝛼𝛼0 are the fixed costs associated with setting up a paratransit operation in a region, and 
𝛼𝛼1, 𝛼𝛼2, and 𝛼𝛼3 are the incremental cost of each vehicle-hour, vehicle-mile, and vehicle in the 
fleet. 

The actual costs to an agency depend on the details of the operating contracts.  For example, 
an agency may enter agreements with subcontractors to pay a rate vehicle-hour of revenue 
service, which would equate to associating all costs with 𝛼𝛼2.  On some level, however, the 
underlying costs of operating a demand responsive transportation service following a pattern 
as shown in equation (6).  In the long run, these costs are likely to be reflected in the rates that 
subcontractors bid to operate services.  Therefore, organizing paratransit operations to 
minimize the total operating costs will lead to the lowest long run costs for agencies. 

2.3.5 Analysis of On-Time Performance 

The aggregate operations model provides estimates of the resources required to serve demand 
under typical conditions.  By calibrating the model to data from a specific agency, such as the 
MBTA, it provides unbiased estimates of total operating parameters over long periods of time.  
This is useful for estimating monthly or annual fleet requirements and costs, for example.  On 
a day-to-day basis, demand patterns, network conditions, and operating outcomes can vary 
greatly. 

One aspect of system operations and performance that the aggregate model does not quantify 
of account for is on-time performance.  From the extensive set of available trip records, data 
on on-time performance can be extracted and monitored.  Each customer is offered a scheduled 
pick-up time, and vehicles are supposed to arrive for the pick-up in a 20 minute time window 
from 5 minutes before to 15 minutes after.  Any vehicle arriving after this time is considered 
to be late.  It useful to understand if there are systematic causes of lateness that can related to 
the operations model, because this would allow us to incorporate an important aspect of the 
user’s experience into the model of costs associated with paratransit operations. 

There are two hypotheses that are analyzed as part of this study: 

1. Do network traffic speeds affect on-time performance?  The hypothesis is that slower 
traffic speeds are an indication of traffic congestion, which could delay vehicles and 
make them more likely to arrive late to serve a customer. 
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2. Does the intensity of vehicle utilization affect on-time performance?  The hypothesis 
is that vehicles are more likely to be late when there is less empty time between trips 
served.  When vehicles are very busy, there may be little slack in the routing schedule.  
Although this would likely lead to better efficiency in terms of VHT per trip, it also 
means that there is less down time for vehicles to recover from an disturbance and get 
back on schedule. 

In order to conduct these analyses three values are calculated from the trip records.  These are 
then compared in order to identify whether or not any systematic relationship exists.  For the 
analysis of on-time performance, trip records are aggregated by day to identify if daily 
characteristics of traffic or demand provide an indication of on-time performance. 

Percent of Trips that are Late 

Each trip record includes the promised pick-up time and the actual arrival time of the vehicle 
at the pick-up location.  Any time the vehicle arrives more than 15 minutes after the promised 
time the trip is considered to be late.  On a daily basis, the percentage of trips that are late are 
tracked as a measure of on-time performance. 

Average Network Speed 

Although an aggregated average network speed is used for modeling the VHT associated with 
service, once a day has passed trip records can be used to calculate the actual average speed 
for that day.  Specifically, each of the trip segments for which network distance and actual 
travel time are observed (as described in Section 2.3.2) are used to calculate the average 
network speed for the time period of interest. 

Percent of Revenue Hours that are Occupied 

The constructed routes used to calculate parameters for the operations model also reveal which 
route segments have at least one passengers onboard each vehicle.  While an efficient system 
will seek to keep vehicles occupied with passengers and productively moving customers to 
their destinations, there are inevitably some times in the day when the vehicle is empty, either 
while moving from a drop-off location to the next pick-up or when waiting for the next 
scheduled customer pick-up.  Figure 2.6 shows that vehicles are empty more than 50% of the 
time, on average, but the utilization does vary by day and time.  The ratio of occupied revenue 
hours to total revenue hours provides a metric for how busy a system.  This measure has the 
benefit of being unitless, so a very large region or a very small region can be similarly busy 
depending on how well the supply of vehicles matches the demand. 

2.4 Demand for Paratransit and TNCs in the Pilot 

The analysis of demand for TNCs through the Pilot is based on comparing the trip-making 
behaviors of Pilot participants before and during the Pilot with the general group of non-
participants.  Limited by access only to monthly trip totals on the Pilot program by each 
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participant, there is insufficient data to develop a trip-level choice model to identify which 
service a customer is likely to choose in response to time of day, location, length of trip, or 
fare.  Instead, the analysis focuses on estimating the aggregated effects of the program on 
monthly trip demand and the costs for the MBTA. 

The first method of analysis is simply to compare aggregated patterns of the numbers of trips 
made before and after on The RIDE and by TNCs.  The second method of analysis is to develop 
a modeling process in which clustering is used to identify groups of similarly-behaving 
customers, and logistic regression is used to identify which cluster a customer is likely to be in 
based on their observable characteristics.  This model is used to forecast participation among 
customer who are eligible, but not currently registered as participants. 

2.4.1 Ridership Changes Among Pilot Participants 

A detailed look at Pilot participants requires that we account for a couple of key characteristics 
that affect their trip making behavior: the date that they joined the Pilot; and the monthly 
allocation of subsidized TNC trips.  The process for analyzing the data is as follows: 

1. The rate of monthly trip making by TNCs is plotted over time from the date that 
participants join the Pilot in order to identify how long it typically takes for customers 
to settle on a level of use.  Typically, when a new transportation choice becomes 
available to people, it can take some time for people to try it out and decide how often 
they want to use the service. 

2. Trip totals will be compared for the same months of the year.  Since the last three 
available months of Pilot ridership data are January, February, and March 2018, travel 
patterns of participants will be compared with the same three months in 2016, before 
the Pilot program started.  The values that are compared are the monthly trips on The 
RIDE in 2016, the monthly trips on The RIDE in 2018, and the monthly trips on TNCs 
in 2018. 

3. Trip totals for customers that are not participating in the Pilot are compared for the 
same time periods (i.e., monthly trips in The RIDE in 2016 and 2018) as a control 
group.  Any changes in the control group need to be corrected in the Pilot participant 
data set in order to determine how much demand is substituted from paratransit to TNCs 
and how much new demand is induced by the TNCs. 

2.4.2 Modeling Ridership Behavior 

As of March 2018, only a small number of the total eligible ADA customers were registered 
for the Pilot.  In order to estimate the effect of expanding the Pilot to all eligible customers, it 
is necessary to predict how the current non-participating customers would behave.  It is 
expected that the initial Pilot participants are likely to be enthusiastic early adopters, who may 
utilize the TNCs more than the average paratransit customer.  In order to estimate the potential 
behaviors of all eligible customers, a model is needed to relate observable customer 
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characteristics to utilization patterns among the Pilot participants.  The following subsections 
describe the modeling steps to estimate likely customer behaviors. 

Clustering Analysis of Pilot Participants 

For each Pilot participant, three relevant observations of travel behavior are calculated as 
described in Section 2.4.1: monthly The RIDE trips in 2016 (before the Pilot); monthly The 
RIDE trips in 2018 (during the Pilot); and monthly TNC trips in 2018 (during the Pilot).  A 
clustering analysis using K-means clustering forms clusters of participants that minimize the 
difference between each of these three numbers within the groups.  The goal of the clustering 
analysis is to systematically identify types of users with common travel behaviors in terms of 
the numbers of trips they make and their propensity to use TNCs instead of conventional 
paratransit.  Determining the correct number of clusters is subjective, but the decision is based 
on a balance between minimizing the differences within clusters and maximizing the 
differences between clusters (Hartigan and Wong, 1979). 

For each cluster, the average of the three values is calculated and compared. Two important 
values are calculated for each cluster 𝑘𝑘: the percentage of initial ADA trips that remain on The 
RIDE, 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝑘𝑘; and the number of TNC trips expressed as a percentage of the initial ADA trips, 
𝑃𝑃𝑉𝑉𝑇𝑇𝑇𝑇,𝑘𝑘.  Typically, clusters can be used to characterize various general demand profiles.  These 
clusters will also be used for the next modeling step. 

Logistic Regression to Determine Cluster Assignment 

Each Pilot participant is a registered ADA paratransit customer with personal characteristics 
recorded in the customer database.  Once clusters have been defined based on a common 
demand patterns, a logistic regression will be used to identify which personal characteristics 
have the strongest power to predict which cluster a person will be assigned.  A logistic 
regression differs from other types of regression in that the model provides estimated 
probabilities associated with discrete possible outcomes.  Mathematically this is the same as 
the multinomial logit model commonly used to model transportation mode choice decisions. 

The structure of the logistic regression is based on fitting the parameters of a log-odds function 
for each of the possible outcomes.  In this case, we seek to estimate the probability that 
customer will assigned to a cluster 𝑘𝑘 out of 𝐾𝐾 total clusters.  For each cluster 𝑘𝑘, a linear log-
odds function is specified as follows for customer 𝑐𝑐 

 𝑉𝑉𝑐𝑐,𝑘𝑘 = 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑐𝑐,𝑖𝑖
𝐼𝐼
𝑖𝑖=1  (7) 

where 𝑥𝑥𝑐𝑐,𝑖𝑖 is one of 𝐼𝐼 independent variables for customer 𝑐𝑐, 𝛽𝛽𝑖𝑖 is the model parameter 
associated with 𝑥𝑥𝑖𝑖, and 𝛽𝛽0 is an alternative specific constant.  The types of independent 
variables that would be appropriate to consider for this model would be any values for which 
we have observations for the general group of customers that are not participating in the Pilot.  
These variables include: the initial monthly number of trips on The RIDE, customer age, 
customer gender, and type of equipment or vehicle requirement. 
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For each customer, the predicted probability of being assigned to cluster 𝑘𝑘 is given by the 
following expression: 

 𝑝𝑝𝑐𝑐,𝑘𝑘 = 𝑒𝑒𝑉𝑉𝑐𝑐,𝑘𝑘

∑ 𝑒𝑒𝑉𝑉𝑐𝑐,𝑘𝑘𝐾𝐾
𝑘𝑘=1

 (8) 

The model parameters are estimated using maximum likelihood estimation.  This is an 
optimization to maximize the log-likelihood of the model given by the sum of the natural log 
of the estimated probabilities associated with each customer’s actual assigned cluster in the 
data sample for estimation. 

 𝐿𝐿𝐿𝐿 = ∑ 𝑙𝑙𝑛𝑛�𝑝𝑝𝑐𝑐,𝑘𝑘=assigned cluster�𝑇𝑇
𝑐𝑐=1  (9) 

In the context of the Pilot program, 𝑇𝑇 is the number of Pilot participants composing the data 
sample used to estimate the parameters of the logistic regression model.  The 𝛽𝛽 parameters are 
selected to maximize the estimated probabilities associated with the clusters to which each 
participant was actually assigned in the K-means clustering step. 

Estimation of Demand Impacts of Pilot on All Customers 

On its own, the logistic regression is of limited value, because it provides estimated 
probabilities associating each customer with a cluster that is that has been defined only within 
this analysis.  The value of this estimate, however, is that each cluster is characterized by a 
different behavioral response to the introduction of TNCs as an alternative to paratransit.  
Specifically, the data summary following the clustering task provides an estimate of the 
percentage of initial ADA paratransit trips that will remain on The RIDE and the number of 
TNC trips that will be made (also expressed as a percentage of the initial demand).  The 
estimated probabilities associated with each cluster are used to calculated the expected value 
of the number of ADA paratransit trips, 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴, and the number of TNC trips, 𝑁𝑁𝑉𝑉𝑇𝑇𝑇𝑇, that will be 
made upon inclusion in the Pilot.  These values are given by 

 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ ∑ 𝑝𝑝𝑗𝑗,𝑘𝑘𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝑘𝑘𝑁𝑁𝑗𝑗𝑘𝑘𝑗𝑗  (10) 

 𝑁𝑁𝑉𝑉𝑇𝑇𝑇𝑇 = ∑ ∑ 𝑝𝑝𝑗𝑗,𝑘𝑘𝑃𝑃𝑉𝑉𝑇𝑇𝑇𝑇,𝑘𝑘𝑁𝑁𝑗𝑗𝑘𝑘𝑗𝑗  (11) 

where 𝑁𝑁𝑗𝑗 is the number of initial monthly paratransit trips completed by customer 𝑗𝑗, and the 
individual estimates are summed across all customers to obtain an aggregated systemwide 
estimate of demand impacts. 

2.5 Optimizing Allocation of Trips to Paratransit and TNCs 

The aggregate operations model described in Section 2.3.4 provides unbiased estimates of the 
total operating parameters associated with serving a level of demand in a service area.  These 
totals are useful for estimating the total monthly or annual costs of operations, but the model 
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is not sensitive to specific variations in the timing and location of requested trips.  By its very 
nature, the aggregate model treats all trips as equivalent components of the total demand 𝜆𝜆. 

A previous study of the PVTA utilized the aggregate model to identify the number of trips that 
should be shifted to taxis or TNCs to minimize the combined cost of the system (Turmo et al., 
2018).  However, that model is lacking because not all paratransit trips have the same impact 
on operations and operating costs.  For example, a trip that happens to fall along the path of an 
otherwise empty vehicle can be served at very little cost to the agency.  On the other extreme, 
a requested trip at the edge of the service area during early, late, or peak hours might all require 
an additional vehicle to be put into service to drive out to serve the requested trip at great cost. 

Although the regulatory landscape does not yet allow transit agencies to assign ADA 
paratransit trip requests to TNCs, it is conceivable that this may be possible in the future.1  In 
order to decide which trips to allocate to TNCs versus keep on the ADA van service, it is 
necessary to estimate the marginal cost of each ADA paratransit trip and the corresponding 
cost of service by TNC.  In order to do this, the specific routing of vehicle must be known so 
that the incremental effect on cost of unilaterally eliminating each requested trip can be 
calculated.  The trip records provide information about the actual vehicle routes that are 
operated each day, but the task of allocating all trips requires the routes can be incrementally 
re-optimized each time a requested trip is shifted to a TNC. 

The following subsection present a proposed approach to quickly create a routing plan for 
vehicles based on a set of actual trip requests in the region.  Then the marginal cost of each trip 
is estimated for each trip as a result of this routing and compared against the estimated TNC 
fare of the same trip.  The trip with the greatest cost benefit for switching is removed from the 
pool of ADA trips, and the routes are re-optimized.  In this manner, trips are incrementally 
shifted to TNCs until no cost savings can be achieved.  It is possible that all trips should 
ultimately be shifted to TNCs or that some subset of the total ADA demand should shift.  This 
approach is designed in such a way that the algorithm could be run daily as part of the vehicle 
routing solution. 

2.5.1 Algorithm to Construct Representative Routes 

A fast algorithm is needed to construct the hypothetical vehicle routes, because the procedure 
will be run iteratively each time a trip is allocated to TNCs.  The problem with using the 
observed routes is that these observations are retrospective of operations that have already 
occurred, and we need an algorithm to predict operations and costs for a set of demanded trips 
that has not yet been served.  A fast algorithm for constructing routes is a Greedy Algorithm, 

                                                 

1  One way that this option could be structured is to allow customers to self-select into program that allows the 
MBTA to assign trips to either conventional ADA service or a TNC.  The details of how this might be 
accomplished are beyond the scope of this study. 
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which is a heuristic in which each vehicle route is constructed in sequence by choosing among 
available trips that result in the most efficient route.  The works as follows: 

1. Daily trip data within a region is sorted chronologically by requested time. 

2. The first vehicle route starts from the first requested trip of the morning.  Assuming the 
first pick-up is on-time, the arrival time at the drop-off location is estimated based on 
the straight-line distance factored up by the network circuity factor and divided by the 
average network speed.  Upon drop-off, the vehicle becomes available to serve the next 
customer. 

3. The time each other unserved pick-up request is calculated by adding together the 
estimated travel time (straight-line distance factored up for network circuity and 
divided by average speed) and then additional waiting time until the requested pick-up 
time.  Any trips that could only be served with negative waiting time are eliminated as 
infeasible next pick-ups.  The trip with the shortest time from drop-off to pick-up is 
selected as the next trip in the route. 

4. Steps 2 and 3 are repeated until one of two constraints are reached: the duration of the 
route has reached the maximum length of a shift (if such a constraint is desired), there 
are no more trips at the end of the day left to serve. 

5. Steps 2, 3, and 4 are repeated to construct each route until there are no unserved trip 
requests left. 

6. The daily totals for VMT, VHT, and the required fleet size are calculated from these 
constructed trips in the same manner used for the actual vehicle routing plan.  Although 
the Greedy Algorithm does not exactly match the observed operations, the model 
produces estimates that are proportional (see Figure 2.9). 

 
Figure 2.10 Comparison between Greedy Algorithm and Observed Operations, GLSS 
(North) January 23, 2017 
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2.5.2 Estimation of Marginal Cost of Each Trip 

Marginal Cost of Each Paratransit Trip 

The marginal cost of each trip is estimated by considering the effect of unilaterally removing 
the trip on the remaining costs of operations.  Each trip falls into one of three cases, each having 
different degrees of impact on operations and cost. 

1. Type 1 – Trips are in a route that contains only that trip are the costliest. Eliminating 
the trip reduces the required fleet size by 1 vehicle; eliminates the VMT associated with 
going to pick-up, drop-off, and loaded travel in-between; and eliminates the VHT 
associated with the route.  These trips have a very high marginal cost, because reducing 
the number vehicle in the fleet saves a lot of money. Type 1 trips are associated with 
the peak demand times during which all other vehicles are occupied and an additional 
vehicle must be brought into service to serve a single requested trip. 

2. Type 2 – Trips that are at the beginning or end of a route have a moderate cost.  
Eliminating a Type 2 trip does not affect the fleet size, but it does eliminate the VMT 
associated with serving the trip and reduces the VHT by allowing the vehicle to start 
operating later or stop operating sooner.  Once all of the Type 1 trips have been 
eliminated, Type 2 trips are the most likely to have high marginal cost. 

3. Type 3 – Trips that are served in the middle of a route typically have the lowest cost, 
because eliminating the trip only affects VMT.  The fleet size and VHT is unchanged 
because the vehicle must still be out in operation to serve the preceding and following 
trip.  The effect of removing a Type 3 trip is only the change in VMT associated with 
deviating the vehicle’s route for the pick-up, to carry the passenger, and after drop-off.  
This saving is offset by the distance that would have traveled anyway from the previous 
drop-off to the next pick-up. 

Cost of TNC Trip 

The cost of serving a trip by TNC varies depending on the specific service provider, time of 
day, and length of trip.  It is not possible to know exactly what the trip will cost, because prices 
can fluctuate in real-time in response to the relative supply and demand.  The basic TNC fare 
is relatively consistent.  For example, Uber publishes that standard fares for various Uber 
services in Boston.  For UberX, the basic Uber service, the estimated cost of a trip is 

 𝐹𝐹 = max{6.85, 3.95 + 0.36𝑡𝑡 + 0.88𝑑𝑑} (12) 

where 𝑡𝑡 is the trip duration in minutes and 𝑑𝑑 is the network trip distance in miles.  Uber’s fares 
are structured so that a minimum of $6.85 is charged no matter how short or fast the trip is. 

The estimated fare translates directly to an estimated cost to the MBTA, because the fare policy 
is to charge the first $2 to the Pilot participant and pay the next $40 of fare.  For the majority 
of trips, this amounts to 𝐹𝐹 − 2.  Since the travel time and network distance have been calculated 
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for every requested trip and reported in the trip database, estimation of the subsidy for each 
trip is a straightforward calculation using equation (12) and subtracting $2 for each trip. 

For a sample of trips from GLSS (North) on January 23, 2017, the average Uber fare was 
$18.02, which translated to an average cost to MBTA of $16.02 if all trips were shifted to 
TNCs.  This is well below the average cost of the ADA paratransit operation 

2.5.3 Procedure to Allocate Trips to Paratransit or TNC 

Equipped with a method to estimate the marginal cost of each trip on the ADA paratransit 
service and the cost of the subsidy to serve it with a TNC, the trips with the greatest benefit of 
shifting to TNCs can be identified.  The procedure for optimally allocating trips is as follows. 

1. Group all of the requested ADA paratransit trips in a region into routes using the 
algorithm described in Section 2.5.1. 

2.5.2. 
2. Identify the trip with the greatest estimated cost saving associated with a switch to 

service with a TNC using the cost calculations presented in Section 

3. Eliminate the trip from the pool of requested ADA paratransit trips and repeat steps 1 
and 2.  Each time updating the total cost estimate for the ADA paratransit operations 
and adding the cumulative cost of all of the trips shifted to TNCs.  This process can be 
repeated until there are no trips remaining on the ADA paratransit service. 

In practice, the total cost to the agency is minimized when it is no longer possible to save 
money by transferring trips from ADA paratransit to the TNC.  Although it may appear at the 
first iteration that there are many ADA trips with very low marginal cost, this incremental 
approach shows how this cost increases other trips are removed.  As Type 2 trips are removed 
from a route, formerly Type 3 trips become new Type 2 trips.  Eventually, when one trip is left 
in the route, it becomes a costly Type 1 trip.  This means that the marginal cost of each trip 
depends on all of the other demand that is served.  Trips that appear to be very cost efficient 
with one set of demand may become very costly as the trips around are shifted to TNCs. 

The final challenge is that it may not be possible to shift all trips to TNCs either because the 
vehicles are not accessible to some customers or because some customers are reluctant to use 
an alternative service provider.  In this case, the same procedure is implemented with the only 
difference being that only feasible trips are actually eliminated from the pool of requested ADA 
paratransit trips and shifted to TNCs.  The process of shifting trips must then stop when no 
feasible trips remain. 
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3 Results 

3.1 Operations 

The models for The RIDE’s paratransit operations were developed as described in Section 2.3.  
Using the data available from the trip records, aggregate operations models were estimated for 
each of the operators during 2017.  An additional analysis of on-time performance revealed a 
relationship between the level of utilization of the vehicles in the system and the percent of 
trips that were served on-time. 

3.1.1 Aggregate Model of The RIDE Paratransit Operations 

Modeled Vehicle Miles Traveled 

The VMT model expressed in equation (2) was estimated by calculating the right-hand side 
expression for each time period in each day using the average parameter values listed in the 
Appendix.  This right-hand side expression is denoted 𝑥𝑥𝑉𝑉𝑉𝑉𝑉𝑉, so the regression is used to 
estimate 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 by regression of the following form 

 𝑉𝑉𝑉𝑉𝑇𝑇 = 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉𝑥𝑥𝑉𝑉𝑉𝑉𝑉𝑉 (13) 

where the VMT for each data point is estimated from the specific vehicle routes operated. 

The aggregated results across all months of 2017 are plotted for each operator in Figure 3.1, 
Figure 3.2, and Figure 3.3.  These results show an overall good fit of the model with VMT 
being well approximated by a linear relationship with 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉.  Some scatter, especially for VTS 
(West) in Figure 3.2, raises some questions about whether or not there may be systematic 
variation in 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 by time of day or day or day of the week.  A systematic comparison of model 
fit by month of year (Table 3.1) shows little variation in the value of 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 by month. 

Table 3.1 Modeled Value of 𝒓𝒓𝑽𝑽𝑽𝑽𝑻𝑻 by Month, 2017 
Month GLSS (North) VTS (West) TRAC (North/South) 
 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 
January 1.11 0.99 0.92 0.97   
February 1.10 0.99 0.92 0.98 0.94 0.97 
March 1.11 0.99 0.91 0.97 0.93 0.97 
April 1.11 0.99 0.92 0.97 0.99 0.94 
May 1.13 0.98 0.92 0.97 0.97 0.98 
June   0.92 0.97 0.98 0.98 
July   0.92 0.97 0.98 0.98 
August   0.93 0.96 0.98 0.98 
September   0.93 0.96 0.98 0.98 
October   0.94 0.97 0.97 0.98 
November   0.94 0.97 0.97 0.98 
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Month GLSS (North) VTS (West) TRAC (North/South) 
December   0.91 0.97 0.96 0.98 
All Months 1.11 0.99 0.92 0.97 0.97 0.98 

 
Figure 3.1 VMT Model for GLSS (North), 2017 

 
Figure 3.2 VMT Model for VTS (West), 2017 
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Figure 3.3 VMT Model for TRAC (North/South), 2017 

Table 3.2 shows that there is not very much difference between weekdays and weekends.  
When comparing the value of 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 by time of day, there is more variability, with relatively 
greater values in the afternoon and evening hours.  Table 3.3 shows that this pattern is 
consistent across all operators and most pronounced for VTS. 

Table 3.2 Modeled Value of 𝒓𝒓𝑽𝑽𝑽𝑽𝑻𝑻 by Day of the Week, 2017 
Day GLSS (North) VTS (West) TRAC (North/South) 
 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 
Weekdays 1.11 0.98 0.93 0.95 0.97 0.98 
Weekends 1.10 0.96 0.90 0.92 0.97 0.96 
All Days 1.11 0.99 0.92 0.97 0.97 0.98 

Table 3.3 Modeled Value of 𝒓𝒓𝑽𝑽𝑽𝑽𝑻𝑻 by Time of Day, 2017 
Month GLSS (North) VTS (West) TRAC (North/South) 
 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 
6 AM – 9 AM 1.08 0.98 0.88 0.99 0.96 0.99 
9 AM – 12 PM 1.14 0.98 0.94 0.98 0.97 0.99 
12 PM – 3 PM 1.09 0.98 0.87 0.99 0.93 0.99 
3 PM – 6 PM 1.11 0.97 1.06 0.98 1.05 0.98 
6 PM – 9 PM 1.24 0.88 0.98 0.87 1.12 0.95 
All Times 1.11 0.99 0.92 0.97 0.97 0.98 

 

Although the model fits the data generally quite well, it is possible to improve the model’s fit 
and predictive power by estimating distinct values of 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 for different time periods of the day.  
Fitting five different models is excessive for most applications, but separating the 
afternoon/evening time periods after 3 PM from the rest of the day results in a better looking 
fit for the model with less estimation error.   
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Figure 3.4 VMT Model Separated by Time Period for VTS (West), 2017 

Modeled Vehicle Hours Traveled 

The VHT model expressed in equation (4) was estimated by calculating the right-hand side 
and left-hand side expressions for each time period in each day using the average parameter 
values listed in the Appendix.  This right-hand side expression is denoted 𝑥𝑥𝑉𝑉𝑉𝑉𝑉𝑉 and the lefthand 
side expression is denoted 𝑦𝑦𝑉𝑉𝑉𝑉𝑉𝑉.  The regression is used to estimate 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 by regression of the 
following form 

 𝑦𝑦𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉𝑥𝑥𝑉𝑉𝑉𝑉𝑉𝑉 (14) 

Just as for the VMT model, the aggregated results for VHT across all months of 2017 are 
plotted for each operator in Figure 3.5, Figure 3.6, and Figure 3.7.  These results show an 
overall good fit of the model with VHT being approximated by a linear relationship with 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 
with fits that are similar to the VMT model.  Compared to 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉, which is depends on the spatial 
distribution of demand and the circuity of the road network, there is more variation in the 
estimated values of 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉.  Some of this variability is a reflection of extra slack time in the route 
schedules when demand is lower.  Although the value varies little by month (see Table 3.4), 
the value of 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 is noticeably greater on weekends (Table 3.5) and evening hours (Table 3.6) 
when demand rates are lower and vehicles are not as busy. 

Table 3.4 Modeled Value of 𝒓𝒓𝑽𝑽𝑽𝑽𝑻𝑻 by Month, 2017 
Month GLSS (North) VTS (West) TRAC (North/South) 
 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 
January 1.96 0.95 1.60 0.96   
February 1.93 0.94 1.60 0.93 1.80 0.91 
March 1.93 0.96 1.61 0.96 1.78 0.92 
April 1.87 0.96 1.57 0.95 1.80 0.92 
May 1.85 0.96 1.55 0.95 1.70 0.96 
June   1.57 0.95 1.64 0.95 
July   1.59 0.94 1.74 0.95 
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Month GLSS (North) VTS (West) TRAC (North/South) 
August   1.61 0.94 1.73 0.95 
September   1.59 0.95 1.66 0.94 
October   1.60 0.95 1.63 0.93 
November   1.62 0.95 1.70 0.94 
December   1.65 0.94 1.72 0.93 
All Months 1.91 0.95 1.59 0.95 1.69 0.95 

Table 3.5 Modeled Value of 𝒓𝒓𝑽𝑽𝑽𝑽𝑻𝑻 by Day of the Week, 2017 
Day GLSS (North) VTS (West) TRAC (North/South) 
 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 
Weekdays 1.90 0.94 1.59 0.93 1.68 0.95 
Weekends 2.03 0.81 1.72 0.47 1.85 0.83 
All Days 1.91 0.95 1.59 0.95 1.69 0.95 

 

 
Figure 3.5 VHT Model for GLSS (North), 2017 
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Figure 3.6 VHT Model for VTS (West), 2017 

 
Figure 3.7 VHT Model for TRAC (North/South), 2017 

Table 3.6 Modeled Value of 𝒓𝒓𝑽𝑽𝑽𝑽𝑻𝑻 by Time of Day, 2017 
Month GLSS (North) VTS (West) TRAC (North/South) 
 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 R2 
6 AM – 9 AM 1.95 0.92 1.71 0.94 1.67 0.94 
9 AM – 12 PM 1.92 0.93 1.50 0.96 1.65 0.97 
12 PM – 3 PM 1.85 0.94 1.52 0.96 1.72 0.96 
3 PM – 6 PM 1.89 0.94 1.69 0.95 1.66 0.96 
6 PM – 9 PM 2.60 0.85 2.11 0.87 2.60 0.92 
All Times 1.91 0.95 1.59 0.95 1.69 0.95 

 

Note that in all cases the value of 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 > 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉, and the difference is greater during time periods 
when demand is lower.  This is especially true at the end of the day when there may be many 
vehicles operating from the busier peak in afternoon demand.  In the later hours many of these 
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vehicles are not fully utilized, and the wasted time is reflected in a greater VHT factor.  Also 
of note is that the model fit as represented by the R2 values is lower for 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉 than for 𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉, 
especially at times with lower demand.  This is an indication of greater variability in the data, 
which leads to greater uncertainty in model estimates. 

The fleet size is directly related to the VHT, so the same model outcomes are used to estimate 
the number of vehicles using equation (5).  Weekday afternoons between 12 PM and 3 PM 
consistently have the greatest levels of demand, so the required fleet size is determined by the 
VHT during that time period. 

3.1.2 Aggregate Model of The RIDE Paratransit Costs 

Without detailed cost information from the MBTA’s operators, it is necessary to make cost 
estimates based on data from other operators.  To estimate costs, we know that the total annual 
operating cost for the MBTA’s demand responsive services in 2017 was reported to be 
$103,493,764 (NTD, 2017).  For the purpose of illustration, we use cost factors estimated from 
the PVTA in Springfield, Massachusetts (Turmo et al., 2018): 

• Cost per Vehicle Mile of Operation, 𝛼𝛼1 = 0.518 $/veh-mile; 

• Cost per Vehicle Hour of Operation, 𝛼𝛼2 = 19.89 $/veh-hour; 

• Cost per Vehicle, 𝛼𝛼3 = 150.81 $/veh-day or $55,046 $/veh-year (fleet size cost) 

During 2017, there were 1,465,092 trips records per month in the dataset.2  Applying the 
operations model by operator, time of day, and day of week (as presented above), the modeled 
operations requirements for 2017 were: 

• 15,120,876 vehicle-miles traveled (VMT) in 2017 

• 1,832,642 vehicle-hours traveled (VHT) in 2017 

• 530 vehicles, minimum required fleet size 

Based on these operations values for 2017 and the cost coefficients from PVTA, listed above, 
the total operating cost associated with these physical components, the remaining costs are the 
fixed operating cost that is independent of vehicle operations. 

• Fixed Annual Cost, 𝛼𝛼0 = 30,017,847 $/year 

If anything, unit cost parameters for the MBTA are likely to be higher because Greater Boston 
is a more costly place to employ labor and maintain a fleet of vehicles than Springfield.  
                                                 

2 The National Transit Database reports 1,985,115 unlinked trips, but the operations model for The RIDE accounts 
for linked trips, not including the TNC Pilot. 
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Therefore, any marginal cost estimates based on these values are likely to be lower bounds, 
and the cost savings of shifting trips to TNCs could be higher. 

3.1.3 On-Time Performance 

The analysis of on-time performance data revealed a lot of variation in the percent of trips that 
are late from day to day.  The first hypothesis is that network traffic speeds affect on-time 
performance, because traffic congestion may cause paratransit vehicles to fall behind schedule.  
Figure 3.8 shows that there is wide variation in the daily on-time performance from around 2% 
late trips to more than 20% with no discernable relationship to network speeds. 
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Figure 3.8 On-Time Performance and Network Speeds for TRAC (North/South), 2017 

Figure 3.9 shows the relationship between the percent of revenue hours in which vehicles are 
occupied with customers and the on-time performance.  The range of explanatory values 
(between 0.4 and 0.6) is not very wide, which make it difficult to fit a model to the data.  
Nevertheless, there does appear to be an increasing relationship between the variables, albeit a 
noisy one.  The slight curvature of the data appears to suggest that 0.5 occupancy is a sweet 
spot, below which performance hovers around 5% late trips, and above which delays quickly 
increase.  There is too much variation in the sample data make a statistically significant model 
to estimate delays.  Observed patterns were similar for the other providers. 
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Figure 3.9 On-Time Performance and Ratio of Occupied Revenue Hours for TRAC 
(North/West), 2017 

3.2 Effect of the Pilot on Demand 

Overall, Pilot participants made up a relatively small percentage of the total eligible ADA 
customers registered with the MBTA.  As of March 2018, there were 1,975 Pilot participants 
out of 40,721 total registered customers, which amounts to a participation rate of about 4.85%.  
Over time some customers stop using the paratransit system, and by the very fact that they 
have elected to participate in the program, Pilot participants are likely to be more active users.  
Figure 3.10 shows that even with stead growth since the start of the Pilot in October 2016, 
TNCs made up 7.44% of total travel supported by the MBTA in March 2018.  This is well 
above the percentage of customers participating in the Pilot, so these participants are traveling 
more than the average registered ADA customer. 

3.2.1 Pilot Participants 

First, the rate of Pilot trips is compared over time from the date each customer joined the 
program.  The purpose of this comparison is to determine how long it takes for Pilot 
participants to settle on a steady number of trips per month using TNCs.  This is important, 
because the comparison of travel demand before and after participation in the study should 
avoid including transition months during which customers’ behaviors are still evolving. 



48 

 

 

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000

Ja
n

Fe
b

M
ar Ap
r

M
ay Ju
n

Ju
l

Au
g

Se
p

O
ct

N
ov

D
ec Ja
n

Fe
b

M
ar Ap
r

M
ay Ju
n

Ju
l

Au
g

Se
p

O
ct

N
ov

D
ec Ja
n

Fe
b

M
ar

2016 2017 2018

To
ta

l T
rip

s

Month

Sum of Totals Pilot

Sum of Totals ADA

Figure 3.10 Monthly Trips on The RIDE and the TNC Pilot 

Figure 3.11 shows the monthly trip counts as a percentage of the maximum TNC trip allocation 
for customers grouped by their starting month.  Although there is a lot of variability in the data, 
it generally appears to take about two months for the trip count to rise to a more-or-less stable 
average.  Therefore, in order to compare travel patterns among Pilot participants before and 
during the Pilot program, we consider only participants that have joined at least two months 
prior to the months of compared. 

 
Figure 3.11 Monthly Trips on the TNC Pilot as a Percentage of Allocation for Customer 
Grouped by Starting Month 

Although some of the early participants tend to use more of their trip allocation (as shown by 
the light blue line across the top), most Pilot participants use well under their maximum 
allocation.  In fact, the average customer uses about 40% of their allocated TNC trips each 
month.  The first cohort of Pilot program participants utilize approximately 60% of their 
allocation, confirming that the first Pilot participants are more enthusiastic users than average. 
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Comparing the travel patterns among from January through March 2016 with January through 
March 2018, it is possible to quantify the effect of the Pilot program on aggregate travel 
behavior.  In order to make a meaningful comparison, trips are only included for customers 
who are active users in both time periods.  Any customers without any trip records in 2016 are 
assumed to have joined later and any customers without any trip records in 2018 are assumed 
to have discontinued use of ADA paratransit services altogether.  Furthermore, among Pilot 
participants, only customers that joined the Pilot more than 2 months before January 2018 are 
included. 

A comparison of the total number of trips completed by each group of customers in January 
through March of 2016 and 2018 is shown in Table 3.7.  Among the control group of non-Pilot 
customers, demand dropped 11.3% over the 2-year time period.  It is not clear what the reason 
for this change is, although it is possible that some customers are already utilizing TNCs for 
some of their travel outside of the Pilot program.  The Pilot customers demonstrated continued 
utilization of the ADA service, but with fewer trip per month.  Meanwhile, the Pilot participants 
took more monthly trips by TNCs than they did on ADA paratransit and their total monthly 
number of trips across both services increased. 

Table 3.7 Comparison of Monthly (Jan–Mar) Trips by ADA Paratransit and TNCs 
Group ADA Trips 

2016 
ADA Trips 

2018 
TNC Trips 

2018 
Total Trips 

2018 
Non-Pilot Customers (Control) 
% of Initial 

137,290 
 

121,734 
88.7%  121,734 

88.7% 
Pilot Participants 
% of Initial 
% Adjusted for Control 

12,723 
 
 

8,229 
64.7% 
72.9% 

9,080 
71.4% 
80.5% 

17,309 
136.0% 
153.4% 

 

In order to characterize the extent to which the availability of TNCs through the Pilot resulted 
in substitution of trips away from ADA paratransit or induction of new trips that were not 
served before, it is necessary to account for the 11.3% decrease in the control group.  The 
number of trips made by each mode in 2018 is expressed as a percentage of the initial 2016 
ADA trip demand adjusted down by 11.3% to an effective 11,281 trips that would have been 
made in the absence of the Pilot.  Compared to this number, the effects on demand were the 
following: 

• 72.9% of ADA paratransit trips remained on The RIDE’s ADA paratransit service. 

• 27.1% of ADA paratransit trips were substituted by TNCs. 

• 53.4% additional demand was induced by the availability of the TNCs. 

In general, more trips represent increased mobility, so the MBTA is supporting more travel for 
customers with disabilities.  An important question is what the effect on demand would look 
like if the Pilot program were expanded to include all customers that are registered with The 
RIDE. 
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3.2.2 Modeled Effect on All Customers  

Cluster Analysis 

Using the K-means clustering approach described in Section 2.4.2, the travel demand of each 
individual included in the tabulation of Pilot participants in Table 3.7 is used to identify clusters 
of similar travel behaviors.  Selection of the number of clusters to use is based on comparing 
the sum of squares differences within the clusters.  Increasing the number of clusters allows 
this value to be reduced.  The goal is to identify the smallest number of clusters for which the 
change in sum of squares is not too big; i.e., pick a point nearest to the “elbow” of the curve.  
This relationship for the Pilot program clusters is shown in Figure 3.12.  Although there is not 
a distinct “elbow” point, four clusters appear to be a good compromise between the number of 
clusters and the error within clusters. 
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Figure 3.12 Sum of Squares within Clusters for K-Means Cluster Analysis 

A three dimensional plot in Figure 3.13 shows each pilot participants travel behavior as a point 
representing monthly trips by ADA paratransit before the pilot, by ADA paratransit after the 
pilot, and by TNC after the pilot.  The two-dimensional plots are presented to show the three 
orthogonal views.  The assigned clusters are indicated by color.  The broad scatter of points 
indicates that there are a wide range of travel behaviors represented among the pilot 
participants.  The clustering shows how these participants are grouped.  Most participants are 
in Cluster 2, which are the users that made the fewest ADA paratransit trips and have the 
smallest monthly allocation.  

The characteristics of the four clusters are quantified in Table 3.8 in terms of the average 
number of trips per month.  Some characteristics stand out.  For example, Cluster 3 represents 
users that drastically reduce travel on ADA paratransit and more compensate through increased 
travel on TNCs.  In contrast, Cluster 4 represents customers that appear reluctant to make the 
switch by maintaining similar numbers of trips on ADA paratransit, taking relatively few trips 
by TNCs. Induced demand is shown by the increase in total trips in 2018. This is most notable 
for Clusters 2 and 3, which are the customers that enthusiastically adopt TNCs. 
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Figure 3.13 Plot of Clusters Based on Monthly Trips by ADA and TNC Pilot from 2016 
(Before) and 2018 (After).  

Table 3.8 Average Monthly Trips of Pilot Participants by Cluster 
Group Number of 

Customers 
ADA Trips 

2016 
Adjusted 

2016 Trips 
ADA Trips 

2018 
TNC Trips 

2018 
Total Trips 

2018 
Cluster 1 168 67 

 
59 43 

71.9% 
13 

21.8% 
56 

93.7% 
Cluster 2 643 15 

 
13 8 

57.7% 
13 

97.0% 
21 

154.7% 
Cluster 3 137 81 

 
72 19 

26.7% 
85 

117.7% 
104 

144.5% 
Cluster 4 47 130 

 
115 106 

92.5% 
26 

22.5% 
132 

115.0% 
 

Logistic Regression 

A logistic regression is conducted to identify the customer characteristics that have the 
strongest ability to determine which cluster a customer is assigned to.  The structure of the 
model is as described in Section 2.4.2.  The parameters of the logistic regression are presented 
in Table 3.9.  Cluster 1 is treated as the base case, so all parameters express the effect of a 
characteristic in assigning a customer to one of the other clusters relative to Cluster 1.  Positive 
parameter values indicate increased likelihood and negative parameter values indicate 
decreased likelihood. 
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Table 3.9 Logistic Regression Model for Clusters 
Parameter (Cluster) 𝜷𝜷 Value t-statistic p-value 
Alternative Specific Constant (2) 5.09 9.88 0.00 
Alternative Specific Constant (4) -6.94 -8.32 0.00 
Monthly ADA Trips in 2016 (2) -0.124 -12.98 0.00 
Monthly ADA Trips in 2016 (3) 0.0139 4.32 0.00 
Monthly ADA Trips in 2016 (4) 0.0574 7.67 0.00 
Customer Age (2) 0.00924 1.24 0.22 
Customer Age (3) -0.0215 -4.47 0.00 
Customer uses Wheelchair or Lift (3) -2.00 -3.17 0.00 
Customer uses Wheelchair or Lift (4) 1.17 2.21 0.03 
Model Log-Likelihood -470   
Null Log-Likelihood -1379   
𝝆𝝆𝟐𝟐 0.659   

 

The omitted parameters in Table 3.9 are associated with values that lack statistical significance.  
One exception is left in the model: customer age for Cluster 2, because value improves the 
model fit despite its lack of statistical significance (as indicated by the p-value exceeding 0.05).  

A few parameter values are worth drawing attention.  Note from Table 3.8 that Cluster 3 
represents a group of eager TNC adopters who largely leave behind the ADA service and make 
an increased number of trips by TNC.  The negative parameter for wheelchair or lift use 
indicates that these customers are much less likely than average to use such a device.  On the 
flip side, Cluster 4 is associated with customers that make many ADA paratransit trips (which 
would grant them high allocations for TNC trips in the Pilot) but continue to use ADA 
paratransit for most of their travel.  The positive parameter on wheelchair or lift use for Cluster 
4 indicates that these customers are much more likely to use such a device.  Together, this 
suggests that ambulatory customers are more likely to adopt TNCs, but there appear to be 
barriers for customer using wheelchairs, power chairs, scooters, or other devices that require a 
WAV with a lift.  As of early 2018, it appears that the TNCs are not providing a service that is 
equally appropriate or appealing to all eligible ADA paratransit customers. 

Estimating the Effect of Expanding the Pilot 

Since most of The RIDE’s eligible customers are not registered with the Pilot program, it is 
expected that expanding the program to all customers would cause a more widespread change 
in travel totals.  The results of the logistic regression are used to estimate the number of ADA 
paratransit trips and TNC trips that would be made through an extension of the program to all 
users.  Using data from 2017 travel, without the Pilot program, an estimated 118,613 trips per 
month would be served by The RIDE. 

Figure 3.14 shows that the number of trips served by ADA paratransit (The RIDE) would likely 
drop by 42% if the Pilot were expanded to all customers.  These rides would be more than 
made up for by TNC travel.  In fact, it is expected that induced demand would result in a 33% 
increase in total trips served per month.  Despite this increase, the effect on operating costs is 
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expected to be a net reduction of approximately 26% (see Figure 3.15), because the cost of 
TNC trips is only $16.02 on average.  
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Figure 3.14 Comparison of Monthly Travel Without and With an Expanded TNC Pilot 

 
Figure 3.15 Comparison of Monthly Cost Without and With an Expanded TNC Pilot 

If the estimated unit costs of VMT, VHT, and fleet size are greater than the values from the 
PVTA, the effect on costs may be an even greater reduction.  High operating costs associated 
with ADA paratransit are easy to beat with the average cost a trip at $16.02 (based on Uber’s 
reported fare structure).  This is especially true for any trip reduction that allows that paratransit 
operator to reduce the size of the fleet. 

3.3 Optimized Allocation of Trips to Paratransit and TNCs 

In order to implement that algorithm proposed in Section 2.5, cost estimates are needed for 
each of the ADA paratransit operating parameters.  Without access to detailed cost records of 
the operators, these coefficients can be difficult to estimate.  The MBTA contract is structured 
to pay a rate per VHT with other requirements on the conditions of service.  Although VHT-
based costs may be applicable in the short-run, it is more meaningful to estimate the various 
types of costs that are related to fleet size, VHT, and VMT, because these distinguish the 
different types of impacts that eliminating trip can have on the cost of operating the system. 
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3.3.1 Marginal Cost of Paratransit Trips 

The proposed algorithm is first implemented on the entire set of requested ADA trips for 
January 23, 2017, in the North region operated by GLSS.  By sequentially creating hypothetical 
vehicle routes, the marginal cost of each trip is estimated and compared with the fare that would 
be charged if the trip were served by a TNC (based on Uber’s fare structure).  Figure 3.16 
shows the distribution of the net marginal cost of each trip based on the estimated cost savings 
from shifting the trip away from The RIDE, offset by the estimated cost of the TNC fare. 
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Figure 3.16 Distribution of Estimated Marginal Costs for All Trips, GLSS (North) 
January 23, 2017 

A positive value in Figure 3.16 indicates that the marginal cost of paratransit operations 
exceeds the expected TNC fare, and shifting the trip would save money.  A negative value 
indicates that the expected TNC fare would exceed the marginal operating cost.  The greatest 
values are for the small number of Type 1 trips (for which an extra vehicle is needed to serve 
a single trip.  Many trips with negative net marginal costs are the Type 3 trips within a route, 
which can be served at relatively low cost by the ADA fleet, because the vehicles are already 
out on the road. 

By the proposed algorithm, the costliest trip should be shifted to a TNC, and then the routing 
process must be recalculated to estimate the new marginal costs.  Therefore, trips with low (or 
negative) net marginal cost at the first iteration may become more beneficial contenders for 
shifting to TNCs as the routes change. 

3.3.2 Effect of Incrementally Shifting Trips to TNCs 

As the costliest trips are shifted from The RIDE to TNCs, the effect on total agency cost is 
calculated.  The sequence of cost changes is shown in Figure 3.17 (blue curve), where the 
horizontal access indicates the cumulative number of trips shifted to TNCs and the vertical 
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access is the total agency cost, including subsidies paid for TNC trips.  The costs drop most 
dramatically for the first few trips as inefficient routes serving peak demand are eliminated. 
For the particular date selected, and the cost parameters used, the agency costs continue to 
decline until all demand has been shifted to TNCs.  In this case, the lowest cost is achieved by 
shifting all trips from ADA paratransit to TNCs. 

It is not always possible (or desirable) to shift all trips to TNCs.  For example, the analysis of 
Pilot participants in Section 3.2 shows that some customers are reluctant to choose TNCs even 
when the option is available to them.  Part of this is may be due to general attitudes or 
preferences regarding the modes, but the evidence suggests that customers with wheelchairs, 
power chairs, scooters, or other devices requiring a WAV with a lift are unable or 
uncomfortable using a TNC.  Applying the same procedure for optimally allocating trips to 
TNCs while leaving all wheelchair and lift customers on ADA paratransit, the red curve in 
Figure 3.17 shows the sequence of changing costs.  Overall the pattern is similar, with a steep 
initial decline in agency costs associated with eliminating the most inefficient routes during 
peak demand.  Then the cost savings accrue more slowly and the effect of shifting trips levels 
off before all of the feasible trips have been shifted.  The prevailing pattern is still that costs 
are minimized when as many trips as possible are shifted to TNCs (although this may not 
necessarily happen in all regions with all demand patterns).  In this case, because the are some 
customers that must always be served by the ADA paratransit van fleet, there are a small 
number of general trips that can be more efficiently served by the vans in combination with 
the other trips than shifting to TNCs. 

 
Figure 3.17 Change in Cost by Incrementally Shifting Trips with Greatest Net Marginal 
Cost to TNC, GLSS (North), January 23, 2017 

0

10000

20000

30000

40000

50000

60000

70000

80000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

To
ta

l D
ai

ly
 O

pe
ra

tin
g 

C
os

t (
do

lla
rs

)

Number of trips assigned to TNC

Not Accounting
for Equipment

Accounting 
for Equipment 



56 

 

Based on the cost parameters used for this example, it appears that agency costs could be 
reduced by approximately 48% if all trips could be shifted to TNCs.  If equipment limits the 
shift, the potential cost savings are lower; 40% reduction for the example day shown.  Overall, 
this is a large reduction in operating cost.  The challenge moving forward is understanding how 
demand patterns may change in response to fundamentally changing the character of ADA 
paratransit service. 

The effect of shifting trips strategically to TNCs (i.e., by incrementally shifting the trips with 
the greatest net marginal cost) can be compared with alternative patterns.  Figure 3.18 shows 
the same blue curve for the total costs associated with the optimized reallocation of trips to 
TNCs.  The orange curve shows the resulting cost if the trip with the lowest net marginal cost 
were shifted at each iterations (i.e., the opposite of the optimized strategy).  In addition, the 
effect on total cost of randomly shifting trips was calculated for 10 realizations.  The mean and 
95% confidence interval based on these realizations is shown in gray.  A few points regarding 
the change in total cost are noteworthy: 

1. All cases have a general downward trend in cost (even the series corresponding to 
shifting the least costly trips).  Therefore, total costs are expected to decline with 
increasing utilization of TNCs, at least with the estimated cost parameters. 

2. The trajectory of total operating costs for the “worst” case, in which the least costly trip 
is always shifted, is comparable to randomly shifting trips for all but the last trips.  
Another way to view this is that allowing customers to self-select to TNCs (which 
would effectively be random selection of trips) is as bad for total costs as selecting the 
least costly trip to shift away from The RIDE at each iteration.  This “worst” case only 
performs demonstrably worse for the very first trips and at the end, when there are few 
trips remaining on The RIDE. 
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Figure 3.18 Comparison of Costs by Incrementally Shifting Trips to TNC in Random 
Order, GLSS (North), January 23, 2017 

The plots of total cost in Figure 3.17 and Figure 3.18 show that impact on total costs of 
selectively shifting trips to TNCs.  It is also useful to look at the characteristics of the trips that 
are shifted.  For example, the distribution of shifted trips by requested pick-up time is shown 
in Figure 3.19.  Each curve in the figure shows the distribution of trip start times after a number 
of trips have been shifted to TNCs in the optimized order.  The curve for all trips represents 
that existing case that all demand is served by The RIDE, and this curve exhibits two distinct 
peaks: a late morning peak at 11 AM and an afternoon peak at 3 PM. 
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Figure 3.19 Distribution of Remaining ADA Paratransit Trips by Time of Day, GLSS 
(North), January 23, 2017 

The first 250 trips to be shifted from The RIDE to TNCs are mostly Type 1 trips from the peak 
of the peak and Type 2 trips from the end of the day.  The effect of removing these trips is to 
flatten the peaks and drop demand faster at the end of the day (as shown by the curve labeled 
“250 Removed”).  As trips are sequentially removed, the resulting demand pattern for The 
RIDE is a more uniform distribution, which allows vehicles to be used more consistently 
throughout the day. 

A second analysis of the distribution of the shifted trips is to look at the geographic locations 
of shifted trips within the region.  Figure 3.20 shows a series of maps of the North and Shared 
regions that were served by GLSS in January 2017.  Each map shows the locations of requested 
trip pickups, and the colored points indicate the trips that are selected to shift to TNCs.  The 
color indicates the time period of the day when the trip was requested, so the busy middle 
periods of the day are represented by orange, yellow, and green, while early morning and 
evening trips are represented by red and blue, respectively.  Black points are trips that remain 
on The Ride (ADA paratransit) and gray points are the trips that have already been removed in 
earlier iterations. 

There is not an obvious geographic pattern to the trips being removed, because trips in the 
suburbs and in the city center are selected for removal at each stage.  In general, there seems 
to be a trend to eliminate suburban trips sooner than city center trips, because the remaining 
points appear to be increasingly clustered near Boston’s city center at higher iterations.  This 
is expected, because the requested trips in the suburbs tend to be longer in distance and more 
spread apart, which makes them costlier to serve with the ADA vans. 
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All Trips 

 

Trips 1 – 250 Removed 

 

Trips 251 – 500 Removed 

 
Trips 501 – 750 Removed 

 

Trips 751 – 1000 Removed 

 

Trips 1001 – 1250 Removed 

 
Trips 1251 – 1500 Removed 

 

 Legend 

• Trip Origin Remaining on ADA 
• Trip Origin Previously Removed 
• Removed Trip from 6 AM – 9 AM 
• Removed Trip from 9 AM – 12 PM 
• Removed Trip from 12 PM – 3 PM 
• Removed Trip from 3 PM – 6 PM 
• Removed Trip from 6PM – 9 PM 
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Figure 3.20 Distribution of Removed ADA Paratransit Trips by Location, GLSS (North), 
January 23, 2017 
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4 Conclusions 

The MBTA’s Pilot program to allow eligible ADA customer to make subsidized trips using 
Uber, Lyft, or Curb is intended to provide customers with a more flexible range of mobility 
choices while reducing costs for the agency.  The Pilot program is structured to enable 
participants to make limited number of subsidized TNCs rides per month based on their 
previous ADA paratransit travel history. 

Although participation in the Pilot is still relatively small compared to the total number of 
registered ADA paratransit customers, the data show that the program is popular among most 
users.  In addition to substituting TNCs for many existing ADA trips, the improved flexibility 
of the TNCs induces customers to travel more.  This is a double-edges sword.  On the one 
hand, more trips being served to customers with qualifying disabilities represents an 
improvement in mobility for a population that is often disadvantages in this regard.  On the 
other hand, increasing travel represents increased costs for the MBTA, which is seeking to the 
contain growing costs associated with ADA paratransit operations. 

The modeling developed in this study culminates in two important lines of analysis.  On the 
demand side, the travel behavior of Pilot participants was analyzed in order to identify the 
relationships between customer characteristics and response to the TNC Pilot.  Applying these 
models to the general population of ADA customers, it appears that opening up the Pilot to all 
customers could lead to a drop in conventional ADA trip requests by 42%.  This reduction in 
conventional ADA trips is more than made up for in new TNC trips, and it is expected that 
under the existing trip allocation structure approximately 33% additional trips would be 
completed in total.  This would result in more trips being served by TNCs than the conventional 
van service.  Despite the increase in travel, the low cost of TNCs relative to ADA paratransit 
would result in an estimated 26% reduction in net expenditures by the MBTA. 

An important insight from the demand analysis is that not all customers are equally enthusiastic 
about engaging TNC services.  Although younger, ambulatory customer are generally 
enthusiastic about the TNCs and are induced to make roughly 50% more trips, customers with 
wheelchairs, power chairs, scooters, or otherwise in need of a lift are more likely to continue 
using the conventional ADA paratransit service.  Until the TNCs can provide enough WAVs 
and trained drivers to offer a comparable level of accessible service, this difference is likely to 
remain a challenge. 

A second line of analysis was on the operations side, developing an algorithm to optimally 
allocate trips between conventional ADA paratransit service and TNCs.  Although The RIDE 
is not currently structured in a way to assign riders to TNCs, this could be a potential future 
operating strategy.  An algorithm is developed to estimate the marginal cost of each paratransit 
trip in the context of the vehicle routings so trips can be incrementally reassigned to TNCs 
when the costs make it advantageous to do so.  For the example day shown, the result was 
reallocation of all trips to TNCs with an expected cost savings of approximately 48%.  If some 
trips cannot be assigned to TNCs, because customers are unwilling or unable to use Uber, Lyft, 
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or Curb, the potential cost savings are lower.  When limited to ambulatory customers, the 
example case resulted in cost savings of approximately 40%. 

Overall, this study shows that there are great opportunities for the MBTA to continue 
coordinating with TNCs to provide service.  The key challenge moving forward is determining 
how limits, if any, should be placed on utilization of the TNCs for subsidized trips.  Since the 
ADA does not allow constraints to be placed on customers for travel, the current Pilot is strictly 
elective and all customers continue to be guaranteed service on conventional vans.  To 
understand how changing the specific details of the Pilot would affect travel demand would 
require analysis of disaggregated customer choices. 
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6 Appendix: Operations Parameters 

Table 6.1 Average Boarding/Alighting Time, 𝒃𝒃 (min/pass.) for GLSS(North), 2017 
Month 6 AM – 9 AM 9 AM – 12 PM 12 PM – 3 PM 3 PM – 6 PM 6 PM – 9 PM 
 w’day w’end w’day w’end w’day w’end w’day w’end w’day w’end 
January 5.07 5.33 5.49 5.75 6.48 6.21 6.71 6.72 6.63 7.96 
February 5.24 5.19 5.49 5.61 6.29 6.20 6.76 6.17 6.96 6.88 
March 5.07 5.23 5.48 5.81 6.33 6.32 6.69 6.77 6.84 6.67 
April 4.84 5.20 5.11 5.57 5.92 6.27 6.41 6.35 6.72 6.41 
May 4.96 5.31 5.25 5.48 5.93 6.37 6.40 7.11 6.67 6.73 
Average 5.03 5.35 5.37 5.65 6.19 6.27 6.59 6.62 6.67 6.93 

Table 6.2 Average Boarding/Alighting Time, 𝒃𝒃 (min/pass.) for VTS(West), 2017 
Month 6 AM – 9 AM 9 AM – 12 PM 12 PM – 3 PM 3 PM – 6 PM 6 PM – 9 PM 
 w’day w’end w’day w’end w’day w’end w’day w’end w’day w’end 
January 7.63 9.44 8.35 9.63 9.55 9.21 9.41 9.80 9.55 10.13 
February 7.68 9.19 8.39 9.20 9.36 8.64 9.52 9.96 9.71 10.83 
March 7.53 9.12 8.15 9.39 9.13 9.25 9.43 9.83 9.03 10.61 
April 7.48 9.37 7.79 8.63 9.11 8.32 9.15 9.31 8.91 10.57 
May 7.44 8.71 7.99 8.60 9.04 8.25 8.87 9.37 9.31 9.64 
June 7.48 9.03 7.92 9.11 8.89 8.39 8.97 9.64 8.97 10.19 
July 7.31 8.57 8.19 8.55 9.24 8.05 9.28 9.20 9.64 10.77 
August 7.75 8.72 8.31 8.89 9.33 8.37 9.15 8.92 9.85 9.36 
September 7.25 8.29 7.77 8.37 9.07 7.84 9.05 9.36 8.77 8.88 
October 7.25 8.48 7.91 8.57 9.27 8.65 9.53 9.88 8.97 9.33 
November 7.41 8.31 8.27 8.85 9.49 8.71 9.64 9.81 9.72 10.55 
December 7.51 8.63 8.51 9.11 9.60 8.88 9.64 10.35 10.16 10.64 
Average 7.48 8.82 8.13 8.91 9.26 8.55 9.30 9.62 9.38 10.13 

Table 6.3 Avg. Boarding/Alighting Time, 𝒃𝒃 (min/pass.) for TRAC(North/South), 2017 
Month 6 AM – 9 AM 9 AM – 12 PM 12 PM – 3 PM 3 PM – 6 PM 6 PM – 9 PM 
 w’day w’end w’day w’end w’day w’end w’day w’end w’day w’end 
February 6.68 7.59 7.67 7.15 9.31 8.69 9.04 8.84 9.35 10.19 
March 6.77 8.80 7.89 8.12 9.13 8.52 8.77 8.80 9.85 10.28 
April 6.81 8.97 7.64 8.27 8.92 8.71 8.68 9.13 9.56 10.49 
May 6.40 7.39 6.91 7.31 8.17 7.53 7.77 8.37 9.08 9.39 
June 6.05 6.93 6.47 6.44 7.77 7.12 7.67 7.85 7.75 8.03 
July 6.39 6.92 6.64 6.81 7.85 6.93 7.71 7.79 9.04 8.08 
August 6.44 6.77 6.75 6.69 7.83 7.12 7.79 7.96 8.59 8.59 
September 5.87 6.69 6.23 6.65 7.83 7.37 7.56 8.13 8.47 7.85 
October 5.85 7.29 6.28 6.77 7.63 7.11 7.60 8.45 8.95 8.61 
November 6.12 6.89 6.89 7.41 8.27 7.63 8.16 8.20 8.92 9.43 
December 6.29 7.09 7.12 7.75 8.43 7.93 8.31 8.99 9.43 9.49 
Average 6.33 7.40 6.95 7.22 8.28 7.70 8.10 8.41 9.00 9.13 

 



70 

 

Table 6.4 Average Vehicle Occupancy, 𝒏𝒏 (pass./vehicle) for GLSS(North), 2017 
Month 6 AM – 9 AM 9 AM – 12 PM 12 PM – 3 PM 3 PM – 6 PM 6 PM – 9 PM 
 w’day w’end w’day w’end w’day w’end w’day w’end w’day w’end 
January 1.47 1.23 1.34 1.31 1.38 1.29 1.48 1.31 1.26 1.24 
February 1.45 1.22 1.34 1.33 1.36 1.26 1.47 1.30 1.31 1.23 
March 1.46 1.23 1.35 1.35 1.40 1.27 1.49 1.30 1.30 1.27 
April 1.47 1.24 1.37 1.33 1.39 1.33 1.51 1.33 1.27 1.32 
May 1.47 1.26 1.34 1.35 1.37 1.3 1.49 1.32 1.26 1.25 
Average 1.46 1.24 1.35 1.33 1.38 1.29 1.49 1.31 1.28 1.26 

Table 6.5 Average Vehicle Occupancy, 𝒏𝒏 (pass./vehicle) for VTS(West), 2017 
Month 6 AM – 9 AM 9 AM – 12 PM 12 PM – 3 PM 3 PM – 6 PM 6 PM – 9 PM 
 w’day w’end w’day w’end w’day w’end w’day w’end w’day w’end 
January 1.39 1.19 1.26 1.21 1.34 1.22 1.41 1.22 1.22 1.16 
February 1.38 1.21 1.27 1.21 1.33 1.23 1.40 1.21 1.24 1.15 
March 1.40 1.21 1.27 1.22 1.35 1.23 1.39 1.23 1.25 1.16 
April 1.41 1.22 1.28 1.24 1.34 1.24 1.42 1.23 1.25 1.18 
May 1.42 1.20 1.28 1.23 1.35 1.26 1.41 1.21 1.25 1.15 
June 1.40 1.19 1.28 1.22 1.35 1.24 1.40 1.23 1.23 1.20 
July 1.41 1.19 1.27 1.21 1.35 1.22 1.40 1.22 1.20 1.16 
August 1.40 1.20 1.26 1.24 1.35 1.23 1.39 1.22 1.22 1.22 
September 1.43 1.21 1.27 1.23 1.35 1.25 1.39 1.21 1.26 1.18 
October 1.42 1.21 1.26 1.21 1.36 1.24 1.41 1.21 1.28 1.20 
November 1.42 1.21 1.27 1.23 1.36 1.22 1.42 1.23 1.30 1.16 
December 1.42 1.21 1.26 1.20 1.36 1.21 1.42 1.21 1.26 1.19 
Average 1.41 1.20 1.27 1.22 1.35 1.23 1.41 1.22 1.25 1.18 

Table 6.6 Average Vehicle Occupancy, 𝒏𝒏 (pass./vehicle) for TRAC(North/South), 2017 
Month 6 AM – 9 AM 9 AM – 12 PM 12 PM – 3 PM 3 PM – 6 PM 6 PM – 9 PM 
 w’day w’end w’day w’end w’day w’end w’day w’end w’day w’end 
February 1.54 1.26 1.35 1.32 1.41 1.30 1.50 1.29 1.29 1.32 
March 1.57 1.22 1.35 1.27 1.42 1.31 1.55 1.29 1.27 1.24 
April 1.53 1.26 1.34 1.28 1.41 1.29 1.53 1.27 1.28 1.22 
May 1.45 1.24 1.30 1.26 1.38 1.25 1.46 1.29 1.28 1.29 
June 1.46 1.29 1.30 1.29 1.40 1.29 1.49 1.31 1.32 1.31 
July 1.44 1.25 1.30 1.28 1.40 1.26 1.48 1.27 1.25 1.27 
August 1.46 1.27 1.31 1.28 1.39 1.29 1.50 1.31 1.27 1.29 
September 1.46 1.28 1.31 1.31 1.41 1.29 1.51 1.33 1.29 1.26 
October 1.48 1.29 1.32 1.27 1.40 1.30 1.52 1.34 1.28 1.26 
November 1.44 1.25 1.29 1.25 1.38 1.28 1.49 1.33 1.29 1.24 
December 1.39 1.23 1.29 1.24 1.37 1.28 1.47 1.30 1.25 1.24 
Average 1.47 1.26 1.31 1.28 1.40 1.29 1.50 1.30 1.28 1.27 
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Table 6.7 Average Network Speed, 𝒗𝒗 (miles/hour) for GLSS(North), 2017 
Month 6 AM – 9 AM 9 AM – 12 PM 12 PM – 3 PM 3 PM – 6 PM 6 PM – 9 PM 
 w’day w’end w’day w’end w’day w’end w’day w’end w’day w’end 
January 16.02 22.27 18.75 18.92 17.85 17.94 15.17 18.32 19.73 21.75 
February 15.88 21.76 17.62 18.34 17.09 17.08 14.94 17.79 19.53 19.51 
March 15.56 21.80 18.00 19.15 17.66 18.10 15.05 18.18 19.12 20.72 
April 15.29 22.96 17.39 18.58 17.36 17.59 14.43 19.09 19.01 21.31 
May 15.06 21.49 17.40 18.44 16.50 17.78 13.86 17.55 19.39 20.69 
Average 15.56 22.06 17.83 18.69 17.29 17.70 14.69 18.19 19.36 20.80 

Table 6.8 Average Network Speed, 𝒗𝒗 (miles/hour) for VTS(West), 2017 
Month 6 AM – 9 AM 9 AM – 12 PM 12 PM – 3 PM 3 PM – 6 PM 6 PM – 9 PM 
 w’day w’end w’day w’end w’day w’end w’day w’end w’day w’end 
January 15.15 20.10 16.35 17.06 16.53 15.98 13.80 16.84 16.99 19.32 
February 15.29 20.49 15.58 16.37 15.95 15.51 13.70 16.29 16.30 18.77 
March 15.19 20.60 15.82 16.92 16.17 16.45 13.52 17.15 16.59 19.49 
April 14.92 19.99 15.64 16.54 15.74 16.11 13.00 16.95 16.55 19.90 
May 15.00 20.31 15.57 16.15 15.23 15.52 12.33 16.90 16.22 19.79 
June 15.03 20.22 15.09 15.72 14.92 16.01 12.23 16.73 16.50 20.10 
July 15.62 19.89 15.34 17.08 15.20 16.57 13.19 16.81 16.97 19.57 
August 15.85 20.67 15.55 16.52 15.24 16.35 13.33 17.25 16.83 19.85 
September 14.44 20.39 15.23 16.13 15.33 15.98 12.92 16.77 16.17 19.16 
October 14.47 19.71 15.40 16.98 15.20 15.80 12.84 15.90 16.29 19.18 
November 14.75 20.09 15.74 16.26 15.71 15.24 12.78 16.13 16.54 19.63 
December 15.81 20.06 15.47 16.29 15.45 15.95 12.97 16.35 16.54 18.25 
Average 15.13 20.21 15.57 16.50 15.56 15.96 13.05 16.67 16.54 19.42 

Table 6.9 Average Network Speed, 𝒗𝒗 (miles/hour) for TRAC(North/South), 2017 
Month 6 AM – 9 AM 9 AM – 12 PM 12 PM – 3 PM 3 PM – 6 PM 6 PM – 9 PM 
 w’day w’end w’day w’end w’day w’end w’day w’end w’day w’end 
February 16.83 20.92 18.16 18.43 17.96 17.68 14.77 17.82 18.88 21.08 
March 16.80 22.97 18.29 19.57 17.67 18.46 14.90 18.89 19.40 22.65 
April 16.54 22.63 18.02 18.65 17.40 18.00 14.28 18.93 19.27 22.40 
May 15.75 22.30 17.49 18.51 16.36 17.24 13.82 17.96 19.43 21.76 
June 15.45 21.86 17.06 18.37 15.91 17.21 13.09 17.84 18.58 20.60 
July 16.64 21.72 17.39 18.38 16.62 17.43 14.24 17.50 19.03 20.24 
August 16.75 21.35 17.58 18.67 16.61 17.65 14.25 18.23 18.74 20.64 
September 14.92 21.65 17.20 17.93 16.38 17.34 13.74 18.01 18.50 20.24 
October 14.71 20.87 16.95 17.75 16.44 16.22 13.52 17.14 18.17 19.88 
November 15.48 22.37 17.69 18.81 16.42 16.96 13.69 17.00 18.33 20.68 
December 16.43 21.72 17.82 18.19 16.36 17.37 13.84 17.09 18.85 19.83 
Average 16.03 21.85 17.60 18.48 16.74 17.41 14.01 17.86 18.83 20.91 
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