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Glossary 
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CARB California Air Resources Board 

CEC California Energy Commission 

CED California Energy Demand (Forecast) 
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CPUC California Public Utilities Commission 

D. Decision 

DCFC Direct Current Fast Charger 

DER Distributed Energy Resource 

DDOR Distribution Deferral Opportunity Report 

DGEM Distribution Grid Electrification Model 

DIDF Distribution Investment Deferral Framework 

DMV Department of Motor Vehicles 

EE Energy Efficiency 

EIS Electrification Impacts Study 

EPA Environmental Protection Agency 

EV Electric Vehicle 

EVSE Electric Vehicle Supply Equipment 

FIP Freight Infrastructure Planning 

GHG Greenhouse Gas 

GNA Grid Needs Assessment 

GVWR Gross Vehicle Weight Rating 

GWh Gigawatt Hour 

HD Heavy Duty 

ICA Integration Capacity Analysis 

IOU Investor-Owned Utility 
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IEPR Integrated Energy Policy Report 

IRP Integrated Resource Plan 

kV Kilovolt 

kW Kilowatt 

kWh Kilowatt Hour 

LD Light Duty 

MD Medium Duty 

MPGe Miles per Gallon Equivalent 

MW Megawatt 

MWh Megawatt Hour 

NEM Net Energy Metering 

NREL National Renewable Energy Laboratory 

O&M Operations and Maintenance 

OEHHA Office of Environmental Health Hazard Assessment 

OIR Order Instituting Rulemaking 

PG&E Pacific Gas and Electric Company 

PHEV Plug-in Hybrid Electric Vehicle 

PV Photovoltaics 

R. Rulemaking 

RE Renewable Energy 

SB Senate Bill 

SCADA Supervisory Control and Data Acquisition 

SCE Southern California Energy Company 

SDG&E San Diego Gas & Electric Company 

SUV Sport Utility Vehicle 

TAC Transmission Access Charge 

TOU Time-of-Use (Rate) 

VMT Vehicle Miles Travelled 

Definitions 

Battery Electric Vehicle (BEV): A vehicle powered only by an electric motor and battery.  

PHEVs are not considered BEVs in this report.  BEVs are one of the two types of EVs. 

Behind-the-Meter (BTM): Refers to resources located behind a service meter, such that a 

customer’s load and generation from BTM resources are combined with the customer’s total 

load.  Typically, rooftop solar and home EV chargers are BTM.  Large-scale generators are 

located in front of the meter (i.e., they are separately metered and not BTM). 

Distribution Grid Electrification Model (DGEM): DGEM is our model of the distribution 

grid.  In this document, DGEM refers to not just the model but the study and this report. 
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Distributed Energy Resource (DER): A DER is an object connected to the distribution system 

that can serve as a resource for grid operators and planners.  DERs include generators such as 

rooftop PV, shiftable loads such as heat pumps and electric vehicle chargers, home batteries, and 

energy efficiency. 

Feeder: A feeder is an entire distribution circuit, including all branching conductors between a 

distribution substation and all service transformers. 

Category: We use the term “category” to differentiate between personal vehicles and fleet 

vehicles.  Personal vehicles are light-duty vehicles classified as personally owned in the DMV’s 

database.  Fleet vehicles include all others, including all MD and HD vehicles, all government 

vehicles, rental vehicles, and commercial vehicles. 

Class: Light Duty, Medium Duty, or Heavy Duty.  See Gross Vehicle Weight Rating. 

Gross Vehicle Weight Rating (GVWR): Defines the safe, fully loaded weight of a vehicle 

(including passengers, freight, and the weight of the vehicle itself).  This classification is used to 

categorize vehicles into light duty, medium duty, and heavy duty.  We use the CEC’s 

definitions:1 

• Light duty: GVWR ≤ 10,000 lbs. 

• Medium duty: 10,000 lbs < GVWR ≤ 26,000 lbs 

• Heavy duty: GVWR > 26,000 lbs 

Investor-Owned Utilities (IOUs): Monopolies that provide utility services and are regulated by 

a government body.  For this study, an IOU includes Pacific Gas and Electric Company, San 

Diego Gas & Electric Company, and Southern California Edison Company. 

Mitigation: In this report, mitigations refer to strategies that can solve equipment overloads 

before they occur.  Such strategies include increasing the capacity of physical grid assets, 

changes to TOU rates to reduce load, and DERs that can reduce net load.  Beyond the effects of 

TOU rates already in place, the mitigations applied by the DGEM include only increasing the 

capacity of physical grid assets. 

Plug-In Hybrid Electric Vehicle (PHEV): Plug-in hybrid electric vehicles are vehicles with a 

combustion engine and a battery plus electric motor system.  Unlike traditional hybrid vehicles, 

PHEVs can be plugged in.  PHEVs are one of the two types of EV. 

 
1 California Energy Commission, Medium- and Heavy-Duty Zero-Emission Vehicles in California, n.d. (CEC, 

Medium- and Heavy-Duty Zero-Emission Vehicles in California).  Available at: https://www.energy.ca.gov/data-

reports/energy-almanac/zero-emission-vehicle-and-infrastructure-statistics/medium-and-heavy.  See section 

“Understanding Vehicle Weight Class” on the webpage.  

https://www.energy.ca.gov/data-reports/energy-almanac/zero-emission-vehicle-and-infrastructure-statistics/medium-and-heavy
https://www.energy.ca.gov/data-reports/energy-almanac/zero-emission-vehicle-and-infrastructure-statistics/medium-and-heavy
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Primary Distribution: Consists of feeders and distribution substations.  Primary distribution 

systems typically include three symmetrical power phases and operate between 4 kV and 33 kV 

in California.2 

Ratepayer: A customer of a public utility.  In this study, a ratepayer refers to the customers who 

pay electric bills to Pacific Gas and Electric Company, San Diego Gas & Electric Company, or 

Southern California Edison Company. 

Secondary Distribution: Secondary distribution assets include any equipment needed between 

primary distribution systems and the customer, including, but not limited to, distribution 

transformers, service drops, and secondary lines.  Secondary distribution equipment typically 

operates between 120 and 480 volts.3  

Section: A portion of a feeder separated by sectionalization devices, which can connect the 

section to adjacent sections or break those connections as operational and safety considerations 

warrant. 

Subclass: Vehicle chassis information for LD vehicles, which are split into body types and sizes.  

Examples include subcompact cars, heavy vans, and compact pickups. 

Substation: Substations are large electromechanical infrastructure that use transformers to raise 

or lower the voltage of electricity.  Substations include protection equipment such as circuit 

breakers.  For the purposes of this study, substations refer to distribution substations unless 

otherwise specified.  Distribution substations typically lower voltage from transmission level 

voltages such as 115 kV or 60 kV to primary distribution voltage, which is most commonly 12 

kV. 

Transportation Electrification (TE): In the context of this report, TE refers specifically to 

electric cars and trucks unless otherwise noted.  However, TE generally includes conversions of 

all types of transportation to electric sources of power, including cars and trucks, boats, 

airplanes, trains, etc.

 
2 Richard E. Brown, Electric Power Distribution Reliability, 2017 (Brown) at 4.  Available at: 

https://books.google.com/books?id=CVNW8qW3ggwC.  
3 Brown at 4.  

https://books.google.com/books?id=CVNW8qW3ggwC
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Executive Summary 

The Public Advocates Office at the California Public Utilities Commission has undertaken a 

study of the costs of upgrading the distribution grids of the three largest investor-owned electric 

utilities (IOUs) to meet California’s transportation electrification goals.  Our results indicate that 

the total cost of upgrading the IOUs’ distribution grids by 2035 will be approximately $26 

billion.4  This is about half of the cost identified by a similar recent study, the Electrification 

Impacts Study Part 1 (EIS),5 conducted by Kevala, a consultant engaged by the California Public 

Utilities Commission (CPUC).   

California’s goal that all new light-duty (LD) vehicles sold be electric by 2035 drives the need to 

plan for distribution system upgrades and their attendant costs in a manner that is thoughtful, 

careful, and comprehensive.  Building electrification and medium-duty (MD) and heavy-duty 

(HD) fleet electrification amplify this need.  The need for careful distribution system planning is 

the basis for our Distribution Grid Electrification Model (DGEM).  In addition to providing 

climate and other environmental benefits, electrification could put downward pressure on electric 

rates by increasing electricity sales.  As the cost of providing electric service – including the 

costs to upgrade the system – are recovered across more units of electricity sold, electrification 

may cause downward pressure on electricity rates across California.  However, this scenario is 

contingent upon myriad factors, including planning and forecasting to avoid overbuilding grid 

infrastructure and whether ratepayers pay for costs beyond their traditional responsibilities. 

We look forward to the continuing public discourse on how to best plan for and implement the 

state’s transportation electrification goal.  In particular, we view all feedback on the DGEM as a 

crucial part in ensuring that our study helps to advance the state’s goals. 

Background  

As purchases of electric vehicles (EV) in California increase, electricity distribution grids will 

need to be upgraded to support additional EV charging infrastructure.  Forecasting the costs of 

these upgrades is critical to understanding the drivers of potential future cost impacts to electric 

ratepayers and the magnitude of these costs.  Infrastructure needs and cost forecasts should also 

inform grid planning and help to assess the necessary timing of building new distribution grid 

assets.  Finally, quantifying the total cost of upgrades allows us to better understand the potential 

 
4 This figure and all other cost figures in this report are in constant, present-day dollars. 
5 The EIS was issued as an attachment to Administrative Law Judges’ Ruling Setting a Workshop, Admitting Into the 

Record Part 1 of the Electrification Impacts Study and Research Plan, and Seeking Comments, May 9, 2023; issued 

in Rulemaking (R). 21-06-017.  Available at: 

https://docs.cpuc.ca.gov/SearchRes.aspx?DocFormat=ALL&DocID=508423139. 

https://docs.cpuc.ca.gov/SearchRes.aspx?DocFormat=ALL&DocID=508423139
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benefits of incentives designed to encourage EV owners to charge at off-peak times when 

electricity prices should reflect lower system costs.   

Our study 

The focus of our study is to estimate the cost of upgrading California’s three large electric IOUs’ 

distribution grids to meet California’s electrification goals.  Our methodology involves using the 

registered address of every vehicle in California to estimate where EV uptake is likely to occur 

through 2035.  We used these locations to model where additional charging load on the three 

IOUs’ distribution grids is likely to appear.  We then used this additional load data, combined 

with forecasted non-EV load growth, as the basis for determining where grid capacity will be 

exceeded and the cost to upgrade the distribution systems to provide sufficient capacity.  We 

used the estimated cost to upgrade the IOUs’ distribution grids to determine the rate impacts on 

ratepayers. 

Based on our analysis and modeling, we estimate that through 2035, the costs to upgrade electric 

distribution grids will be approximately $26 billion.  Using this cost estimate, we find that 

electrification applies an overall downward pressure on rates across all three of the large electric 

utilities, as shown in Figure ES-1.  This is because, all other costs being equal, upward pressure 

on rates due to increased infrastructure costs due to electrification is more than offset by 

downward pressure on rates due to the increased consumption of electricity resulting from 

electrification.  All ratepayers, even those who cannot (or choose not to) electrify, could 

financially benefit from electrification. 

 

Figure ES-1.  Projected rate impacts of electrification.  (kWh = kilowatt-hour.) 

Our estimate of the costs to upgrade the electric distribution grids has increased since our 

preliminary results in May 2023, which showed a range of $15 to $20 billion.  Our preliminary 

results were based on the EIS’s assumption that two miles of feeder, on average, would have to 

be upgraded for each feeder overload.  Since then, we have analyzed additional data from the 

three utilities that led us to conclude that, on average, six miles of feeder will have to be 
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upgraded to overcome each overload.  This change has a significant impact on the total estimated 

cost. 

Differences between the DGEM and the EIS 

The EIS preliminarily estimates the total upgrade costs to be incurred through 2035 by the three 

utilities is $51 billion.  There are two main reasons for the difference between our estimate ($26 

billion) and the EIS’s estimate.  First, as described above, our estimate of average feeder length 

that is upgraded per overload is three times the EIS’s estimate.  If we were to use an average 

length of two miles of feeder to align with the EIS, our cost estimate would decrease, to $16 

billion. 

Second, the EIS assumes a larger growth in peak load.  Our peak load forecast is drawn from and 

aligns with the California Energy Commission’s Integrated Energy Policy Report (IEPR), 

whereas the EIS’s peak load is the result of its unique model and assumptions.  Figure ES-2 

compares the 2021 and 2022 IEPR forecasts to the DGEM’s forecast and the EIS’s forecast of 

peak load growth. 

 
Figure ES-2.  Comparison of peak load growth between two IEPRs, the EIS and the DGEM. 

The EIS’s higher estimated growth in peak load appears to be caused by the times at which the 

EIS predicts EVs will be charged relative to our load forecast source, the 2022 IEPR.  Figure ES-

3 shows that the EIS predicts a significant peak in EV charging at 9 p.m., driven by non-EV 

time-of-use rates which decrease at 9 p.m.  Figure ES-3 also shows that the IEPR, which we use, 

forecasts that EV charging will occur much more evenly throughout the day.  As peak load is a 

key driver of the need to upgrade distribution grids, the EIS’s higher peak load growth forecast 

drives the EIS’s higher estimated costs. 
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Figure ES-3.  Hourly peak-day charging demand in 2035 from the 2021 and 2022 IEPRs and the 

EIS. 

Our conclusions 

We estimate that electrification will cost $26 billion in required upgrades to the utilities’ 

distribution grids through 2035.  However, this number has significant uncertainty, and the total 

cost could be as much as $18 billion lower or $31 billion higher.  The main factors driving this 

range are the unit costs of new feeders and substations, particularly the former.  In addition, we 

have found that the increase in electricity sales from electrification may outweigh the costs of 

distribution investments, causing a downward pressure6 on residential electricity rates compared 

to present rates. 

However, achieving this downward pressure on residential electricity rates is contingent upon 

five key model assumptions.  Downward pressure on residential rates might not be achieved if: 

1. EVs mostly charge in the evening, near peak hours (i.e., 6 p.m. to 10 p.m.), which would 

drive a higher peak load and, therefore, higher upgrade costs. 

2. Electric rates rise to cover additional electrification programs, such as deploying EV 

chargers.7 

3. New feeders and substations are more expensive than the DGEM estimates. 

4. Expected load growth due to electrification does not occur. 

5. Utilities build more infrastructure than is needed or build infrastructure in the wrong 

locations because upgrade costs will be higher. 

 
6 Downward pressure on residential rates means that forecasted rates with electrification are lower than present rates, 

all other things being equal.  Rates may still increase overall due to other factors such as wildfire mitigation or clean 

energy procurement. 
7 Ratepayers do not typically fund BTM infrastructure such as EVSE because “the primary role of ratepayers [is] to 

fund utility-side infrastructure upgrades.”  See Decision (D.) 22-11-040, Decision on Transportation Electrification 

Policy and Investment, November 17, 2022 at 89-90, issued in R.18-12-006.  Available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M499/K005/499005805.PDF. 

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M499/K005/499005805.PDF
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Good forecasting and planning are key parts of achieving this downward pressure on rates.  

Utility forecasts must be accurate and not lead to overbuilding of infrastructure.  If overbuilding 

occurs, electrification could cause upward pressure on rates.  Utility distribution planning 

processes, therefore, should be based upon realistic forecasts.  Planning processes should be 

flexible and adaptable to provide for incremental infrastructure build and include offramps so 

that investment plans can be reshaped if it becomes clear that load will not appear when or where 

it was expected. 

Even if electrification leads to downward pressure on rates, we cannot conclude that electric 

rates will fall.  Other utility costs, such as wildfire mitigation or other climate change 

mitigations, could cause rates to rise in total.  Moreover, effective policies, particularly around 

rate design, are needed to ensure that potential rate decreases are realized.  For example, if EV 

owners are allowed to select a rate that does not recover the marginal cost to provide electricity, 

electricity rates for other customers could still rise. 

The peak load on the distribution grid is a key driver of the upgrades needed, and the time at 

which EV owners charge is a key contributor to peak load.  Approximately 70 percent of the 

costs identified in the EIS – $35 billion – vanish if EV charging is shifted away from hours of 

peak demand.  Further work should be undertaken to understand in more detail the benefits and 

costs of mitigations, such as how to effectively incent EV owners to charge at times that could 

reduce the impact on the IOUs’ distribution grids. 

We have found that the present planned pace of primary distribution upgrades to the IOUs’ 

distribution grids is approximately equal to what will be needed to meet the state’s electrification 

goal.  Prior research found that the pace of primary distribution upgrades needed in the future 

may far outpace historic upgrade rates for PG&E, and thus, upgrades may pose a bottleneck to 

electrification.8  Our study does not corroborate this result. 

Finally, our study was a data-intensive exercise, with much of the data coming from the three 

IOUs.  While some datasets were excellent, some, particularly the cost data, lacked robustness.  

Additional types of data, such as the locations of vehicle fleets, were not available.  Improvement 

in datasets would help achieve convergence in study results toward a consensus on the future 

cost of grid upgrades to meet electrification needs. 

Further work and next steps 

We welcome broad input and will engage with a wide range of stakeholders on the results of our 

study.  Our results will also be available to Kevala as Kevala refines its analysis for the 

 
8 Salma Elmallah et al., Can Distribution Grid Infrastructure Accommodate Residential Electrification and Electric 

Vehicle Adoption in Northern California?, Environmental Research: Infrastructure and Sustainability, November 9, 

2022 at 1.  Available at: https://doi.org/10.1088/2634-4505/ac949c. 

https://doi.org/10.1088/2634-4505/ac949c
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Electrification Impacts Study Part 2.  No single study or pair of studies, particularly at this point 

in the electrification process, can definitively answer such a complex question as what the 2035 

costs of distribution grid upgrades will be.  This study aids the continuous discourse on 

electrification planning and the identification of associated costs and benefits rather than 

establishing a final cost projection. 

Further work should deepen analysis of the impacts of electrification on the grid.  Future studies 

should focus on improving estimates of EV charging profiles and charging locations, the cost of 

upgrades to overcome each grid overload, MD and HD deployment, and the potential impacts of 

managed charging.  In addition, we did not analyze the impacts of electrification on total home 

energy costs, including reduced purchases of natural gas and gasoline.  Total home energy cost 

would provide a fuller picture of how electric consumers’ energy costs will change as 

electrification impacts transportation and other sectors. 
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1 Introduction  

California faces unprecedented challenges due to climate change, including increased wildfire 

risk, more intense droughts and floods, and more extreme weather events such as sweltering heat 

waves.9  California has become a national leader in addressing climate change, passing policies 

aimed at reducing the emissions contributions of the state’s economy.  In 2006, the California 

State Legislature passed Assembly Bill (AB) 32, which mandated that California sharply reduce 

its greenhouse gas (GHG) emissions and identified the California Air Resources Board (CARB) 

as the state agency responsible for generating GHG reduction implementation strategies and a 

roadmap.10  CARB has set forth plans to reduce emissions to at least 40 percent below 1990 

emissions levels by 2030 and achieve carbon neutrality by 2045.11  Various state agencies, 

depending on their jurisdictions, have outlined regulations to achieve these targets.  The 

regulations principally focus on the high-polluting sectors of the economy, including industry, 

energy consumption, buildings, transportation, and agriculture.12  The state is promoting 

electrification as a large-scale strategy for reducing emissions within several of those sectors. 

1.1 Decarbonization through electrification and DERs 

Electric vehicles will contribute the most to rising electricity consumption.13  Electrification of 

building space and water heating will also play a significant role.  In aggregate, the projected 

electrification to decarbonize California will necessitate some degree of infrastructure upgrades.  

Key questions facing electric utilities and decision-makers, including the California Energy 

Commission (CEC) and the California Public Utilities Commission (CPUC), include where new 

electrification load from electric vehicles and other sources will appear on the grid, when the 

load will appear, how much load to expect, and how costly the resulting infrastructure upgrades 

will be. 

 
9 See Louise Bedsworth et al., California’s Fourth Climate Change Assessment, 2018.  Available at: 

https://www.energy.ca.gov/sites/default/files/2019-11/Statewide_Reports-SUM-CCCA4-2018-

013_Statewide_Summary_Report_ADA.pdf. 
10 California Air Resources Board (CARB), AB 32 Global Warming Solutions Act of 2006, September 18, 2018.  

Available at: https://ww2.arb.ca.gov/resources/fact-sheets/ab-32-global-warming-solutions-act-2006. 
11 CARB, 2022 Scoping Plan for Achieving Carbon Neutrality, November 16, 2022 (CARB Scoping Plan).  

Available at: https://ww2.arb.ca.gov/resources/documents/2022-scoping-plan-documents. 
12 CARB Scoping Plan at 1-3.  
13 Salma Elmallah et al., Can Distribution Grid Infrastructure Accommodate Residential Electrification and Electric 

Vehicle Adoption in Northern California?, Environmental Research: Infrastructure and Sustainability, November 9, 

2022 (Elmallah et al.) at 18.  Available at: https://doi.org/10.1088/2634-4505/ac949c; and Kevala, Electrification 

Impacts Study Part 1: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, May 

9, 2023 (EIS) at ES-5 to ES-7.  Available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M508/K423/508423247.PDF. 

https://www.energy.ca.gov/sites/default/files/2019-11/Statewide_Reports-SUM-CCCA4-2018-013_Statewide_Summary_Report_ADA.pdf
https://www.energy.ca.gov/sites/default/files/2019-11/Statewide_Reports-SUM-CCCA4-2018-013_Statewide_Summary_Report_ADA.pdf
https://ww2.arb.ca.gov/resources/fact-sheets/ab-32-global-warming-solutions-act-2006
https://ww2.arb.ca.gov/resources/documents/2022-scoping-plan-documents
https://doi.org/10.1088/2634-4505/ac949c
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M508/K423/508423247.PDF


The Public Advocates Office 2 

1.1.1 Transportation 

The California State Legislature has targeted the transportation sector for decarbonization on the 

basis that the sector accounts for more than 40 percent of the state’s total GHG emissions.14  

Specifically, regulations require that most types of currently fossil fuel-powered vehicles become 

zero-emission within the next two decades.15   

State policies are targeting the electrification of vehicles because of the sector’s environmental 

and public health impacts.  Combustion engine vehicles emit pollutants such as particulate matter 

and ozone, which cause major public health problems, including respiratory diseases, fatigue, 

and, in extreme cases, premature mortality.16  In light of these pressing problems, CARB in 2022 

issued the Advanced Clean Cars II Regulations in support of Executive Order N-79-20.17  The 

regulations require that all light-duty (LD) vehicle sales are zero-emission by 2035.18  

The medium- and heavy-duty (MD and HD) vehicle sector, despite amounting to only six 

percent of all vehicles in California, has an outsized contribution to the state’s emissions and air 

quality issues.19  The MD and HD vehicle sector produces 25 percent of the state’s on-road GHG 

emissions and much higher percentages of toxic particulates, such as nitrous oxide and volatile 

organic compounds.20  The emissions from the transportation sector cause morbidity and 

mortality, especially for communities located in industrial regions, truck depots, and highly 

trafficked transit corridors.21  In order to tackle these acute public health concerns and achieve 

the state’s climate goals, the California State Legislature and state agencies have passed 

regulations mandating the decarbonization of most components of the MD and HD sector.  

CARB, in April 2023, promulgated the Advanced Clean Fleets regulations, which include 

 
14 California State Transportation Agency, Climate Action Plan for Transportation Infrastructure, July 2021 at 6.  

Available at: https://calsta.ca.gov/-/media/calsta-media/documents/capti-july-2021-a11y.pdf. 
15 CARB, California Moves to Accelerate to 100% New Zero-Emission Vehicle Sales by 2035, Release Number 22-

30, August 25, 2022.  Available at: https://ww2.arb.ca.gov/news/california-moves-accelerate-100-new-zero-

emission-vehicle-sales-2035; and CARB, California Approves Groundbreaking Regulation That Accelerates the 

Deployment of Heavy-Duty ZEVs to Protect Public Health, Release Number 23-13, April 28, 2023 (CARB April 28, 

2023 Press Release).  Available at: https://ww2.arb.ca.gov/news/california-approves-groundbreaking-regulation-

accelerates-deployment-heavy-duty-zevs-protect. 
16 Richard E. Brown, Electric Power Distribution Reliability, 2017 (Brown) at 104-111.  Available at: 

https://books.google.com/books?id=CVNW8qW3ggwC. 
17 CARB, Advanced Clean Cars II, n.d. (CARB, Advanced Clean Cars II).  Available at: 

https://ww2.arb.ca.gov/our-work/programs/advanced-clean-cars-program/advanced-clean-cars-ii. 
18 CARB, Advanced Clean Cars II.   
19 CARB April 28, 2023 Press Release. 
20 CARB April 28, 2023 Press Release; and Brown at 106. 
21 See Austin L. Brown et al., Driving California’s Transportation Emissions to Zero, The University of California 

Institute of Transportation Studies, April 1, 2021 at 104-111.  Available at: https://doi.org/10.7922/G2MC8X9X; 

also see Laura August et al., CalEnviroScreen 4.0, California Office of Environmental Health Hazard Assessment 

(OEHHA), October 2021.  Available at: 

https://oehha.ca.gov/media/downloads/calenviroscreen/report/calenviroscreen40reportf2021.pdf. 

https://calsta.ca.gov/-/media/calsta-media/documents/capti-july-2021-a11y.pdf
https://ww2.arb.ca.gov/news/california-moves-accelerate-100-new-zero-emission-vehicle-sales-2035
https://ww2.arb.ca.gov/news/california-moves-accelerate-100-new-zero-emission-vehicle-sales-2035
https://ww2.arb.ca.gov/news/california-approves-groundbreaking-regulation-accelerates-deployment-heavy-duty-zevs-protect
https://ww2.arb.ca.gov/news/california-approves-groundbreaking-regulation-accelerates-deployment-heavy-duty-zevs-protect
https://books.google.com/books?id=CVNW8qW3ggwC
https://doi.org/10.7922/G2MC8X9X
https://oehha.ca.gov/media/downloads/calenviroscreen/report/calenviroscreen40reportf2021.pdf
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requirements that all state and local government vehicle fleet purchases must be zero-emission 

by 2027, all drayage trucks, and last-mile delivery and yard trucks in California must be zero-

emission by 2035, all manufacturers must sell only zero-emission MD and HD vehicles by 2036, 

and all refuse trucks and local buses must be replaced with clean vehicles by 2040.22 

Figure 1-1 shows the expected on-road population of electric vehicles (EVs), split into battery-

electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs).  Replacing LD, MD, and 

HD vehicles with EVs will require the transmittal of more energy across California’s 

transmission and distribution grids. 

 

Figure 1-1.  Vehicle deployment forecast from the 2022 Integrated Energy Policy Report (IEPR).23 

1.1.2 Other sources of load growth 

Our analysis focuses on the impacts of EV charging on the distribution grid because EVs will be 

the largest contributor to load growth in the state.24  However, the electrification of other sectors, 

as well as economic and demographic growth, will also impact distribution grids.  The increasing 

deployment of customer-sited solar photovoltaics (PV) will also impact load.  These additional 

impacts are included in our analysis.   

Residential and commercial buildings are responsible for roughly 25 percent of statewide 

emissions due to onsite fossil fuel consumption and electricity usage.25  Meanwhile, the 

industrial sector generated about 20 percent of statewide GHG emissions in 2020.26  California 

building code requires most new homes to be equipped with solar PV (rooftop solar) or to be 

 
22 CARB, Advanced Clean Fleets Regulation Summary, May 17, 2023 (CARB, Advanced Clean Fleets Regulation 

Summary).  Available at: https://ww2.arb.ca.gov/resources/fact-sheets/advanced-clean-fleets-regulation-summary. 
23 From data provided in an email correspondence by the CEC’s Advanced Electrification Analysis Branch on April 

20, 2023 (data provided by CEC on April 20, 2023). 
24 Elmallah et al. at 18; and EIS at ES-5 to ES-7. 
25 CARB, Building Decarbonization, n.d.  Available at: https://ww2.arb.ca.gov/our-work/programs/building-

decarbonization. 
26 CARB, California Greenhouse Gas Emissions for 2000 to 2020: Trends of Emissions and Other Indicators, 

October 26, 2022 at 20.  Available at: https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/2000-

2020_ghg_inventory_trends.pdf. 

https://ww2.arb.ca.gov/resources/fact-sheets/advanced-clean-fleets-regulation-summary
https://ww2.arb.ca.gov/our-work/programs/building-decarbonization
https://ww2.arb.ca.gov/our-work/programs/building-decarbonization
https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/2000-2020_ghg_inventory_trends.pdf
https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/2000-2020_ghg_inventory_trends.pdf


The Public Advocates Office 4 

powered by a nearby solar array.27  Beginning in 2023, the CEC commenced requiring that 

several new commercial buildings have both solar generation and battery storage to capture 

excess solar production.28  Commercial, industrial, and residential rooftop solar supplied about 

seven percent of the state’s total electricity generation in 2021.29  Furthermore, CARB has set 

targets that all new residential buildings constructed after 2026 and all new commercial buildings 

after 2029 contain all-electric appliances.30  The CARB 2022 Scoping Plan also articulates an 

action to increase the number of electric appliance sales to be installed in existing residential and 

commercial buildings incrementally to 100 percent by 2035 and 2045, respectively.  The state’s 

electrification policies will increase the load on the grid over the next several decades and may 

contribute to the need to invest in distribution system upgrades. 

Figure 1-2 shows projected growth in building electrification demand, which accelerates in the 

latter half of the decade, reaching 75,000 gigawatt hours (GWh) in 2035.  Meanwhile, rooftop 

solar demand is projected to grow from 27,000 GWh to 56,000 GWh from 2023 to 2035.31 

 

Figure 1-2.  Forecasted demand from building electrification sectors.32 

 
27 CEC, 2019 Building Energy Efficiency Standards for Residential and Nonresidential Buildings for the 2019 

Building Efficiency Standards, December 12, 2018 at Section 110.10.  Available at:  

https://www.energy.ca.gov/sites/default/files/2021-06/CEC-400-2018-020-CMF_0.pdf.; also see CEC, 2019 Energy 

Code – Solar Ready Requirements, October 2020.  Available at: https://www.energy.ca.gov/sites/default/files/2021-

04/2019_Energy_Code_Solar_Ready_Requirements_ADA.pdf. 
28 California Building Standards Commission, Section 140.10 Prescriptive Requirements for Photovoltaic and 

Battery Storage Systems, January 2023.  Available at:  https://codes.iccsafe.org/content/CAEC2022P2/subchapter-5-

nonresidential-and-hotel-motel-occupancies-performance-and-prescriptive-compliance-approaches-for-achieving-

energy-efficiency#CAEC2022P2_Ch05_Sec140.10. 
29 CEC, CEDU 2022 Baseline Forecast – State, 2022 (CEC, CEDU 2022 Baseline Forecast – State).  Available at: 

https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-

report-update-2. 
30 CARB Scoping Plan at 75.  
31 CEC, CEDU 2022 Baseline Forecast – State. 
32 CARB, Draft 2022 Scoping Plan AB 32 GHG Inventory Sectors Modeling Data Spreadsheet, May 2, 2022 

(CARB, AB 32 GHG Inventory Sectors Modeling Data Spreadsheet).  Available at: 

https://ww2.arb.ca.gov/sites/default/files/2022-05/2022-draft-sp-PATHWAYS-data-E3.xlsx. 

https://www.energy.ca.gov/sites/default/files/2021-06/CEC-400-2018-020-CMF_0.pdf
https://www.energy.ca.gov/sites/default/files/2021-04/2019_Energy_Code_Solar_Ready_Requirements_ADA.pdf
https://www.energy.ca.gov/sites/default/files/2021-04/2019_Energy_Code_Solar_Ready_Requirements_ADA.pdf
https://codes.iccsafe.org/content/CAEC2022P2/subchapter-5-nonresidential-and-hotel-motel-occupancies-performance-and-prescriptive-compliance-approaches-for-achieving-energy-efficiency#CAEC2022P2_Ch05_Sec140.10
https://codes.iccsafe.org/content/CAEC2022P2/subchapter-5-nonresidential-and-hotel-motel-occupancies-performance-and-prescriptive-compliance-approaches-for-achieving-energy-efficiency#CAEC2022P2_Ch05_Sec140.10
https://codes.iccsafe.org/content/CAEC2022P2/subchapter-5-nonresidential-and-hotel-motel-occupancies-performance-and-prescriptive-compliance-approaches-for-achieving-energy-efficiency#CAEC2022P2_Ch05_Sec140.10
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update-2
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update-2
https://ww2.arb.ca.gov/sites/default/files/2022-05/2022-draft-sp-PATHWAYS-data-E3.xlsx
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1.2 DER policy at the CPUC 

In July 2021, the CPUC commenced Rulemaking (R.) 21-06-017, Order Instituting Rulemaking 

(OIR) to Modernize the Electric Grid for a High Distributed Energy Resources Future.  R.21-06-

017 focuses on preparing the electric grid for a high penetration of distributed energy resources 

(DERs),33 including electric vehicles and related infrastructure.34  Furthermore, R.21-06-017 

considers the planning and forecasting strategies that are necessary to determine the timing and 

scope of system investments needed to facilitate the integration of DERs into the grid.35  If 

planners do not properly forecast where and when load growth, especially from EVs, will appear 

on the grid, electric investor-owned utilities (IOUs) could build billions of dollars of under-

utilized assets, or be unable to satisfy increasing energy demand.36  Studies using the most up-to-

date methods and data are integral to effectively planning for load growth and informing future 

grid investments. 

1.3 The Electrification Impacts Study 

In May 2023, the CPUC published the Electrification Impacts Study Part 1: Bottom-Up Load 

Forecasting and System-Level Electrification Impacts Cost Estimates (EIS), a CPUC-initiated 

study completed by the data analytics company Kevala.  The EIS is a preliminary study that 

analyzed the cost of distribution infrastructure upgrades resulting from load growth, including 

transportation electrification (TE), in the service territories of Pacific Gas and Electric Company 

(PG&E), San Diego Gas & Electric Company (SDG&E) and Southern California Edison 

Company (SCE).  Kevala plans to conduct a Part 2 of the EIS, which will update the load 

forecast from Part 1 and assess how the integration of grid technologies (e.g., flexible load 

management) and programmatic strategies (e.g., rate designs targeted at load management) affect 

load growth under a variety of electrification scenarios.37  The EIS forecasts load growth for 

more than 12 million premises across California, including from building electrification (BE), 

energy efficiency (EE), and from forecasted DER adoption such as EVs, rooftop solar, and 

battery energy storage systems (BESS).38  The EIS specifically varied the levels of EV adoption 

 
33 A DER is an object connected to the distribution system that can serve as a resource for grid operators and 

planners.  DERs include generators such as rooftop PV, shiftable loads such as heat pumps and electric vehicle 

chargers, home batteries, and energy efficiency. 
34 Order Instituting Rulemaking to Modernize the Electric Grid for a High Distributed Energy Resources Future, 

July 2, 2021 at 2, and 8; issued in R.21-06-017.  Available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M390/K664/390664433.PDF.  
35 Assigned Commissioner’s Scoping Memo and Ruling, November 15, 2021 at 2; issued in R.21-06-017. Available 

at: https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M422/K949/422949772.PDF.  
36 EIS at 120.  
37 EIS at E-3.  
38 EIS at E-1, and 1.  

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M390/K664/390664433.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M422/K949/422949772.PDF
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and net energy metering (NEM)39 behind-the-meter (BTM) tariffs in order to assess the likely 

grid impacts of these two dynamic DER types that are undergoing policy-driven expansion.40  

The EIS scrutinized the effects of load growth at the primary and secondary distribution levels 

and preliminarily estimated that up to $51 billion in distribution grid upgrades could be needed 

by 2035.41  This $51 billion is composed of $27.6 billion in investment by PG&E, $21.1 billion 

by SCE, and $3.1 billion by SDG&E.42  The EIS also finds that the rising demand of a high 

electrification future could necessitate longer-term distribution planning by the IOUs.43 

1.4 Grid impacts studies in general 

The EIS is not the only study of its kind.  Several studies have examined the impacts of load 

growth due to increased EV adoption and electrification and the concomitant grid infrastructure 

upgrades at a large-scale within California.  The studies used a variety of methods, considered 

varying geographical areas, and scrutinized different types of DERs.44  Table 1-1 juxtaposes our 

Distribution Grid Electrification Model (DGEM) study and several of these studies. 

Table 1-1.  Comparison of large-scale EV grid impacts studies.45 

Study 
Distribution 

Assets Modeled 
Cost 

Inputs 

Baseline Load 
/ Overload 
Calculation 

Objective and 
DERs Modeled 

Central Costs 
Estimate 

DGEM 
Substations, banks, 

feeders 
IOU unit 

costs 
SCADA 

Electrification: 
Baseline, 

electrification,46 EV 

$26 billion by 
2035 (3-IOUs) 

EIS Part 1 
Substations, banks, 

feeders, service 
transformers 

IOU unit 
costs 

AMI 
Electrification: 

Baseline plus PV, 
BESS, EV, EE, BE 

$51 billion by 
2035 (3-IOUs) 

Elmallah 
et al. 

Substations, feeders 
DIDF 

($/kW) 
ICA 

Electrification: Heat 
pumps, LD EV 

$5 billion by 
2050 (PG&E) 

 
39 The NEM program is the state’s main financial incentive program designed to support the installation of rooftop 

solar at customers’ residences and other sites by allowing customers to significantly reduce their energy bills based 

on the solar energy their systems generate.  See CPUC, Net Energy Metering, n.d.  Available at: 

https://www.cpuc.ca.gov/NEM/. 
40 EIS at 7.  
41 EIS at ES-4 to ES-5. 
42 EIS at 27.  
43 EIS at ES-6.  
44 The EIS Part 1 is the most comparable to this study; it applies to the same geographic area. 
45 We used modified data from the CPUC and Kevala, Electrification Impacts Study (EIS) Part 1, May 17, 2023 at 

slide 26.  Available at:  https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-

division/documents/infrastructure/distribution-planning/2023-0517-eis-part-1-workshop_combined-slides.pdf.  3-

IOU means the combined service territories of PG&E, SCE, and SDG&E.  NREL is the National Renewable Energy 

Laboratory; LA is Los Angeles; DIDF is the distribution investment deferral framework; kW is kilowatt; SCADA is 

supervisory control and data acquisition; AMI is advanced metering infrastructure; ICA is integration capacity 

analysis; LADWP is the LA Department of Water and Power. 
46 Derived from IEPR growth rates of non-TE loads. 

https://www.cpuc.ca.gov/NEM/
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/infrastructure/distribution-planning/2023-0517-eis-part-1-workshop_combined-slides.pdf
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/infrastructure/distribution-planning/2023-0517-eis-part-1-workshop_combined-slides.pdf
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Study 
Distribution 

Assets Modeled 
Cost 

Inputs 

Baseline Load 
/ Overload 
Calculation 

Objective and 
DERs Modeled 

Central Costs 
Estimate 

NREL LA 
10047 

Banks, feeders, 
service transformers 

IOU unit 
costs 

SCADA 
100% RE: Baseline 
plus PV, BESS, EV, 

EE, BE 

$1.5 billion by 
2045 (LADWP) 

Elmallah et al. evaluated the distribution system upgrade needs in PG&E’s service territory and 

found that vehicle electrification will contribute the most to load growth.48  This load growth will 

require PG&E to annually upgrade 95 to 260 feeders and two to five substations through 2030, 

depending on the EV charging scenario.49  These annual figures equate to between 1,267 and 

1,679 feeders and between 12 and 17 substations requiring upgrades through 2030.50  Elmallah et 

al. concluded that between 2021 and 2050, PG&E may need to invest $1 billion to potentially 

over $10 billion (with a central estimate of around $5 billion) to upgrade the feeders and 

substations in its service territory to accommodate electrification.51 

1.5 DGEM scope and objective 

The DGEM study offers an independent estimate of the cost and impacts of integrating EV and 

non-EV load growth into the distribution grid.  Our research entails: 

A. Predicting the location of EV adoption through 2035. 

B. Calculating the load placed on primary distribution infrastructure due to EV uptake and 

other load growth. 

C. Estimating the primary and secondary distribution grid upgrades necessary to meet the 

rise in electricity demand and their costs. 

D. Forecasting the electric rate impacts of increased load and grid investment.  For electric 

grid impacts only, we considered generation, transmission, and distribution grid 

investments. 

We have four main objectives: 

 
47 National Renewable Energy Laboratory, LA100: The Los Angeles 100% Renewable Energy Study and Equity 

Strategies, March 2021.  Available at:  https://maps.nrel.gov/la100/la100-study/report. 
48 Elmallah et al. at 18.  
49 Elmallah et al. at 13-14.  
50 Elmallah et al. at 16; Elmallah et al., Supplementary Information - Can distribution grid infrastructure 

accommodate residential electrification and electric vehicle adoption in Northern California?, November 9, 2022 

(Elmallah et al., Supplementary Information) at 25-28.  Available at: https://cfn-live-content-bucket-iop-

org.s3.amazonaws.com/journals/2634-

4505/2/4/045005/revision2/ERISac949csupp1.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=16

89975309&Signature=ueZ7b%2Fn35zPbsq%2B0Bctni1dRGNY%3D.  For the feeder and substation upgrade needs, 

we referenced the EV scenario and the combined EV and residential electrification scenarios.   
51 Elmallah et al. at 1. 

https://maps.nrel.gov/la100/la100-study/report
https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/2634-4505/2/4/045005/revision2/ERISac949csupp1.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1689975309&Signature=ueZ7b%2Fn35zPbsq%2B0Bctni1dRGNY%3D
https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/2634-4505/2/4/045005/revision2/ERISac949csupp1.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1689975309&Signature=ueZ7b%2Fn35zPbsq%2B0Bctni1dRGNY%3D
https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/2634-4505/2/4/045005/revision2/ERISac949csupp1.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1689975309&Signature=ueZ7b%2Fn35zPbsq%2B0Bctni1dRGNY%3D
https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/2634-4505/2/4/045005/revision2/ERISac949csupp1.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1689975309&Signature=ueZ7b%2Fn35zPbsq%2B0Bctni1dRGNY%3D
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1. Determine the potential upcoming costs to customers and concomitant rate impacts.52  

Will electrification drive customer rates up or down? 

2. Establish the urgency of necessary expenditures on grid assets.  Do we need to plan 

further ahead to meet the state’s electrification goals? 

3. Describe how sensitive the outcomes are to changing inputs.  What are the drivers of the 

costs to ratepayers? 

4. Begin to understand how mitigation strategies, such as managed EV charging through 

rate design, can reduce infrastructure costs.  How much investment can managed 

charging avoid? 

Through this publication we aim to continue the discourses on distribution planning, the future of 

the distribution grid, and electrification.  We center our work on the best available data, a sound 

and transparent methodology, and clear, implementable recommendations.  With these foci, we 

aim to help decision makers understand the impacts of electrification, make sound policy 

choices, and determine where future research is needed.  Moreover, understanding the degree of 

uncertainty in this and other studies can help decision makers to develop planning methods 

appropriate for an unpredictable future. 

2 Methods 

This section provides an overview of the methods and key datasets used in the DGEM.  Figure 

2-1 depicts the methodological flow.  Appendix A provides additional details.53 

 

Figure 2-1.  Study process schematic.  Blue cells represent input data from the IEPR (Planning 

Scenario), orange cells represent IOU datasets, and green represents data from other sources.  The 

purple cells show the primary study results.  *= by infrastructure (i.e., for each feeder and 

substation). 

 
52 To our knowledge, this is the first large-scale distribution grid study to evaluate rate impact. 
53 Due to confidentiality of data used in several steps of this study, underlying data and code will not be made 

publicly available. 
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As Figure 2-1 shows, we relied on the IEPR Planning Scenario for much of the DGEM data.  

Table 2-1 details the nature of the relationship between parameters within the IEPR and the 

DGEM. 

Table 2-1.  Relationship between the DGEM assumptions and the 2022 IEPR Planning Scenario. 

Parameter DGEM Relationship to 2022 IEPR Planning 
Scenario 

Peak load Unconstrained but aligned with the IEPR54 

State EV population Constrained to the IEPR 

EV population within each IOU’s service 
territory 

Not constrained to the IEPR55 

Granular EV locations Not considered in the IEPR 

Annual EV charging energy Constrained to the IEPR per vehicle 

Hourly EV charging power Constrained to the IEPR per vehicle 

Growth in non-EV demand Constrained to the IEPR at the IOU level 

The DGEM analysis consisted of four primary phases: 

1) We developed propensity models and forecasted EV adoption through 2035. 

2) We calculated the peak demand placed on distribution grid infrastructure due to EV 

uptake combined with projected non-EV load growth and existing loads. 

3) We estimated where distribution grid upgrades would be needed across most of 

California (the combined territories of the three large IOUs) and the cost of these 

upgrades. 

4) We calculated the impact of generation, transmission, and distribution costs on rates. 

The DGEM studies the combined service territories of PG&E, SCE, and SDG&E, as depicted in 

Figure 2-2.56  The DGEM Study Area (S), as described below, is a subset of the portion of the 

IOU service territories for which distribution grid asset data for the three IOUs were available. 

 
54 See Section 3.3 for an analysis of how closely peak load aligns between the DGEM and the IEPR. 
55 See Appendix B for an analysis of how closely EV demand (a good but imperfect indicator of population) aligns 

between the DGEM and the IEPR. 
56 CEC, Electric Load Serving Entities (IOU & POU), December 16, 2021 (CEC, Electric Load Serving Entities).  

Available at: https://cecgis-caenergy.opendata.arcgis.com/datasets/b662fc6de88c415fb232ed3dcf9d5d4e/explore.  

The IOUs’ service territories came from publicly available CEC data.   

https://cecgis-caenergy.opendata.arcgis.com/datasets/b662fc6de88c415fb232ed3dcf9d5d4e/explore
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Figure 2-2.  IOU service territory areas considered by the DGEM. 

2.1 Predicting EV adoption through 2035 

The California Department of Motor Vehicles (DMV) provided us and the CEC with a dataset 

containing all registered motor vehicles in California (excluding motorcycles), current to the end 

of 2021.  The data included registration addresses, vehicle makes and models, and fuel types 
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(e.g., electric, diesel, gasoline).  The CEC processed the data, adding vehicle class from the make 

and model of the registered vehicles.  We geocoded57 the dataset using the registration address to 

derive the latitude and longitude for each vehicle registration.  We then eliminated records that 

were unable to be geocoded or that fell outside of the IOUs’ service areas58 and spatially joined 

each record to the nearest utility feeder.59  Finally, we eliminated records associated with feeders 

with incomplete data, resulting in a subset of the IOUs’ service territory that we call the Study 

Area (S).  Table 2-2 shows the number of registration records retained at each stage of the 

process. 

Table 2-2.  Number of vehicle records retained from DMV data into the DGEM Study Area. 

Class IOU Total (T) Matched (M) 3-IOU (I) Study Area (S) S/I S/M M/T 

LD All 30,013,130 29,185,643 22,498,935 21,906,860 - 75.1% - 

MD All 661,923 611,871 460,185 450,353 - 73.6% - 

HD All 360,546 323,050 243,557 238,574 - 73.9% - 
         

All PG&E - - 9,896,459 9,765,311 98.7% - - 

All SCE - - 10,469,094 10,208,696 97.5% - - 

All SDG&E - - 2,837,124 2,621,780 92.4% - - 
         

All All 31,035,599 30,120,564 23,202,677 22,040,146 97.4% 75.0% 97.1% 

Table 2-2 also displays three calculated parameters that were used later in the analysis: 

1. S/I indicates the share of vehicles in the combined service territories of the three IOUs (3-

IOU) (i.e., 97.4 percent) considered in the DGEM. 

2. S/M approximates the share of vehicle sales in California that occur within the DGEM’s 

Study Area (e.g., 75.1 percent for LD vehicles). 

3. M/T is the share of present vehicles that are accounted for in the DGEM (i.e., 97.1 

percent of records matched with an address.  We expect this trend to hold within the 

Study Area, which would lead to 2.9 percent of present EVs not being located). 

Next, we scored conventional-fueled vehicles (i.e., neither BEV nor PHEV) using several 

propensity models.  We used one set of models for personal LD vehicles (herein referred to as 

 
57 Geocoding is the process of transforming a description of a location, such as an address, to geographic coordinates 

that can be mapped to a location on the Earth’s surface.  See Environmental Systems Research Institute, What Is 

Geocoding?, n.d.  Available at: https://desktop.arcgis.com/en/arcmap/latest/manage-data/geocoding/what-is-

geocoding.htm. 
58 CEC, Electric Load Serving Entities.   
59 The primary distribution feeder data came from the confidential versions of the Wildfire Mitigation Plans of 

PG&E, SCE, and SDG&E.  We only included feeders for which we also had load and rating data.  The publicly 

available versions are available: PG&E, 2022 Quarterly Reports.  Available at: 

https://www.pge.com/en_US/safety/emergency-preparedness/natural-disaster/wildfires/wildfire-mitigation-

plan.page; SCE, Wildfire Mitigation Plan Update & Related Documents.  Available at:  

https://www.sce.com/safety/wild-fire-mitigation; and SDG&E, 2022 Wildfire Mitigation Plan, February 11, 2022.  

Available at: https://www.sdge.com/2022-wildfire-mitigation-plan.  

https://desktop.arcgis.com/en/arcmap/latest/manage-data/geocoding/what-is-geocoding.htm
https://desktop.arcgis.com/en/arcmap/latest/manage-data/geocoding/what-is-geocoding.htm
https://www.pge.com/en_US/safety/emergency-preparedness/natural-disaster/wildfires/wildfire-mitigation-plan.page
https://www.pge.com/en_US/safety/emergency-preparedness/natural-disaster/wildfires/wildfire-mitigation-plan.page
https://www.sce.com/safety/wild-fire-mitigation
https://www.sdge.com/2022-wildfire-mitigation-plan
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personal vehicles) and another set for all MD and HD vehicles, as well as non-personal (e.g., 

government, commercial) vehicles (herein referred to as fleet vehicles).60  Each model result was 

used in parallel with the others to create a set of scenarios that captured the range of possibilities 

for needed distribution system upgrades and total infrastructure upgrade costs. 

For personal vehicles, we applied the following two models: 

1. Each vehicle received a random score. 

2. Each vehicle’s score was calculated from a logistic regression on the current DMV 

dataset.  We used income, education, building information, commute length, and family 

size as independent variables and whether a vehicle was an EV as the dependent variable.  

All these factors are supported by the literature61 and were significant, with varying effect 

sizes;62 higher education had the largest effect size.63 

For fleet vehicles,64 we used the following four models: 

1. Each vehicle was assigned a random score. 

2. Each feeder was assigned a random score.  All the vehicles on that feeder then received 

the same random score. 

3. Each vehicle received a score equal to the ratio of EV (PHEV + BEV) to total vehicles on 

its feeder in its class (LD/MD/HD).  All vehicles with a score of zero received a random 

score between zero and negative one (so that they were randomly selected after vehicles 

on feeders with some EV adoption in their class). 

4. Each vehicle received a score equal to the ratio of EV to total vehicles with the same 

body type in its class (LD/MD/HD).  All vehicles with a score of zero received a random 

score between zero and negative one (so that the vehicles with no EV adoption in their 

body class were randomly selected after those with some EV adoption in their class and 

body type). 

The parallel models helped to compensate for the uncertainty in the future spatial dispersion of 

vehicles.  Some of the uncertainty derives from the fact that current trends in EV adoption may 

not hold as EVs become cheaper.  The uncertainty in future EV adoption trends makes 

 
60 We elected not to consider personal MD and HD vehicles within the personal model for the following reasons: 1) 

it is likely that many of these vehicles are personally owned but used for commercial purposes, and 2) the share of 

these vehicles registered as non-personal, and the relative impact of MD and HD compared to LD are both small. 
61 See Appendix A.3.3.1 for elaboration.  
62 Effect size measures the strength of the relationship between two variables. 
63 See Appendix A.3.3.1 for further details. 
64 MD, HD, and non-personal LD vehicles. 
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forecasting EV deployment a challenge.  This is particularly true for the nascent MD and HD 

sector, which has virtually no trends from which to extrapolate.65 

Finally, we ranked vehicles based upon their propensity score (keeping each propensity score set 

as a separate scenario) and assigned non-EVs to become EVs in each year until the population 

established by the IEPR Planning Scenario66 was reached.67  The IEPR Planning Scenario 

includes the impacts of policy, including the Advanced Clean Cars II and Advanced Clean Fleets 

regulations established by CARB.68  To reassign vehicles, we first reduced the populations in the 

IEPR to correspond to the DGEM Study Area, by vehicle class (S/M in Table 2-2) and split the 

LD forecast into personal and non-personal vehicles, based upon the share in the 2021 DMV 

vehicle registration dataset.69  For each class, we first converted the highest-ranked conventional 

vehicles to EVs, and the next highest-ranked set to PHEV.70 

These methods generated one table per propensity model, showing EVs based on their year of 

adoption, subclass, drivetrain, and associated feeder.  The tables also included all current EVs.  

See Appendix A.3 for more information. 

2.2 Calculating peak demand 

We separated peak demand into two components: 1) EV demand growth, and 2) historic demand 

plus non-EV demand growth. 

2.2.1 EV demand growth 

For each vehicle subclass, we calculated annual energy consumption by multiplying the expected 

miles of travel per year by the vehicle efficiency (kilowatt hours [kWh] of charging energy 

 
65 See Dana Lowell et al., Medium- & Heavy-Duty Vehicles: Market Structure, Environmental Impact, and EV 

Readiness, M.J. Bradley & Associates (MJB&A), July 2021 (MJB&A).  Available at: 

https://www.erm.com/globalassets/documents/mjba-archive/reports/2021/edfmhdvevfeasibilityreport22jul21.pdf.; 

also see National Grid and Hitachi Energy, The Road to Transportation Decarbonization: Understanding Grid 

Impacts of Electric Fleets, September 2021 (National Grid & Hitachi Energy).  Available at: 

https://www.nationalgridus.com/media/pdfs/microsites/ev-fleet-

program/understandinggridimpactsofelectricfleets.pdf.  
66 Data provided by CEC on April 20, 2023.  These are internal model data that are not published.  The DGEM uses 

only the IEPR’s Planning Scenario. 
67 An important assumption of this analysis is that vehicle owners want to maintain their current vehicle type and, 

when it is their turn, they swap their current conventional vehicle to an equivalent EV.  The data provided by the 

IEPR were broken down into forecasts by sub-category (e.g., car-subcompact), but we did not enforce that our 

population changes matched the IEPR’s at this level of granularity. 
68 CEC, 2022 Integrated Energy Policy Report Update, May 10, 2023 (CEC, 2022 IEPR) at 46, and 49.  Available 

at: https://efiling.energy.ca.gov/GetDocument.aspx?tn=250084. 
69 92.7 percent of LDs are personally registered.  See Table A-4 in Appendix A.2. 
70 For example, in the LD-personal model, if the IEPR populations indicate that 200,000 more EVs and 50,000 

PHEVs should be deployed, the 200,000 highest-scored conventional vehicles would be converted to EVs, and the 

following 50,000 highest-ranked conventional vehicles would be converted to PHEVs. 

https://www.erm.com/globalassets/documents/mjba-archive/reports/2021/edfmhdvevfeasibilityreport22jul21.pdf
https://www.nationalgridus.com/media/pdfs/microsites/ev-fleet-program/understandinggridimpactsofelectricfleets.pdf
https://www.nationalgridus.com/media/pdfs/microsites/ev-fleet-program/understandinggridimpactsofelectricfleets.pdf
https://efiling.energy.ca.gov/GetDocument.aspx?tn=250084
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needed to drive one mile).71  The CEC provided the vehicle efficiency and expected vehicle 

miles traveled (VMT) that it calculated for the models used in the 2022 IEPR.72  The vehicle 

efficiency varied across time (i.e., EVs generally become more efficient and drive further in the 

future).  The annual energy consumption results are depicted in Figure 2-3. 

 

Figure 2-3.  Annual consumption from IEPR data for BEVs.  PHEVs consume 60 percent of the 

electricity of an equivalent EV in our model.  The outlier at the top is class 8 trucks. 

We then applied the annual consumption to each EV and tallied up the results across each feeder, 

keeping LD separate from MD and HD because these classes have different charging load 

shapes.  This achieved the annual energy consumption on each feeder by each vehicle class (LD 

or MD and HD). 

We derived charging load shapes from IEPR data, as described fully in Appendix A.5.  In short, 

variation in EV charging across hours of the day is significant, and the load shapes are projected 

to evolve over time.  However, the day-to-day variations were not significant.73  The lack of day-

to-day variation allowed us to use a single daily load shape for each vehicle class for each year.  

Figure 2-4 sets out two examples.  

 
71 According to our April 21, 2023 email correspondence with the CEC’s Advanced Electrification Analysis Branch, 

efficiency includes drivetrain efficiency, battery and charging losses.  See Department of Energy Office of Energy 

Efficiency & Renewable Energy, Where the Energy Goes: Electric Cars, n.d.  Available at: 

https://www.fueleconomy.gov/feg/atv-ev.shtml. 
72 Data provided by CEC on April 20, 2023.  See Appendix A.4 (especially Table A-8) for additional details. 
73 Except that weekday charging is significantly greater than weekend charging in many hours.  For that reason, we 

used weekday charging shapes. 

https://www.fueleconomy.gov/feg/atv-ev.shtml
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Figure 2-4.  Selected load shapes for two example years – 2025 and 2035.  The hourly consumption 

rate is the energy consumption in a given hour divided by the total annual consumption in that 

year. 

The DGEM multiplied the hourly consumption rate by the annual energy consumption by 

vehicle class to yield the hourly energy consumption on each feeder.  The DGEM carried out 

these calculations for each year of the study and each propensity scenario.  Then, for each 

substation, we summed up the hourly load on each of the feeders connected to that substation to 

calculate the total hourly load per substation. 

2.2.2 Historic demand and non-EV growth 

Historic demand was used to establish the capacity available on distribution equipment and the 

baseline load to which future non-EV increases were applied.  To establish the historic demand, 

we used a set of feeder loading data provided by the three IOUs for 2021 or 2022 (depending 

upon utility).  These data provided 576 observations per year (24 hours per day times 12 months 

per year times two day-types: weekend and weekday) or more (depending upon the IOU).  

Because we used 24-hour charging load profiles, we captured 24-hour profiles of historical load 

composed of the highest loading in each hour of the year (e.g., the maximum loading from 1-2 

p.m. on any day of the year). 

Then, we subtracted our calculated 2021 charging demand to estimate a base-year non-EV 

demand.  We turned this base-year estimate into a forecast by multiplying each observed peak by 

the cumulative intra-hour non-EV growth rate74 between the base year and the forecast year, as 

 
74 For example, if demand at 5 p.m. were 10 megawatts (MW) and peak demand at 5 p.m. grew 2 percent from 2021 

to 2022 and 3 percent from 2022 to 2023, our forecasted 2023 peak demand would be: 10 MW ∙ (1.00+0.02) ∙ 

(1.00+0.03) = 10.506 MW. 
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established in the 2021 and 2022 IEPRs.75  In effect, this copied the growth rate of all non-EV 

loads and resources, which include rooftop solar, home battery storage, energy efficiency, and 

fuel switching (e.g., from natural gas to electricity), effects of population growth, cultivation, and 

other factors. 

Penultimately, we summed non-EV load at each substation.  Finally, we summed EV and non-

EV load and extracted the maximum value for each year.  This value represents the peak load on 

each piece of infrastructure, in each year, for each set of propensity scenarios. 

2.3 Estimating upgrades and upgrade cost 

The next methodological steps consisted of forecasting upgrades and their associated costs.  We 

directly analyzed feeders and substations in the primary distribution system and estimated 

secondary distribution infrastructure costs as a percentage of primary distribution system costs.76  

We did not assess non-wires mitigations, which include changes to TOU rates that might obviate 

the need for upgrades, infrastructure such as DERs that may provide mitigations at a lower cost, 

and load transfers between feeders or substations. 

Each IOU provided a set of infrastructure ratings for feeders and transformer banks.  For PG&E 

and SDG&E, these ratings account only for thermal limits – they do not consider voltage 

stability, resiliency, operational flexibility, or other constraints.  For SCE, the limits entailed 

planned loading limits, which include operational flexibility considerations.  We combined the 

transformer bank ratings within each substation to calculate a total substation rating.77 

To calculate overloads, we subtracted the power rating of each substation or feeder from its 

calculated peak load.  Then, we calculated the number of units necessary to cure each overload.  

Each mitigation – a new feeder or a new substation bank – has a fixed capacity which was 

generally but not always sufficient to cure an overload.  Multiple feeders or transformer banks 

were applied to cure overloads if a single unit was insufficient. 

Finally, we calculated the cost of addressing overloads in each year.  As with the propensity 

model, we used scenario analysis where there was uncertainty.  For feeders, we modeled low-, 

 
75 We used the 2021 IEPR for 2021 and 2022 data and the 2022 IEPR for data from 2023 forward.  2021 CED 

hourly mid-baseline scenario forecast for each IOU is available at: https://www.energy.ca.gov/data-

reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-report/2021-1.  (2021 CED).  See also 

2022 Hourly Forecast Planning Scenario forecast for each IOU (i.e., PG&E, SCE, and SDG&E).  Available at: 

https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-

report-update-2.  (2022 CED). 
76 See Table A-12 in Appendix A.8.  Our analysis does not account for the impacts of EVs and other load growth in 

BTM infrastructure. 
77 This is an optimistic simplification since load cannot necessarily be trivially transferred from one bank to another 

or split up across multiple banks as can be implied by this method.  However, the opposite approach would be 

overly conservative since load can sometimes be cheaply transferred.  The EIS took the same approach (see EIS at 

118). 

https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-report/2021-1
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-report/2021-1
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update-2
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update-2
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medium-, and high-cost scenarios based on three different feeder length and unit cost 

assumptions.  For substations, we also modeled low-, medium- and high-cost scenarios with 

different transformer bank and substation costs and substation upgrade frequencies.  For both 

feeders and substations, we included an additional Replicate scenario that used the cost estimates 

and assumptions from the EIS.78  Furthermore, we used the contribution of secondary 

infrastructure costs to total costs in the Replicate scenario to forecast secondary costs in each 

scenario.79  The highest and lowest costs used in the DGEM are shown in Table 2-3.  Some 

factors were varied by IOU, which is not reflected in Table 2-3.  For a more detailed breakdown 

of the cost estimate methods and scenarios, see Appendix A.8. 

Table 2-3.  Highest and lowest upgrade cost estimates.  All costs in millions of dollars. 

Scenario 
Feeder 

length (miles) 
Feeder 

cost  
Transformer 

bank cost 
Substation 

marginal cost 
New substation 

frequency 

Lowest cost 1.35 $2.9  $2.0 $15 6.4% 

Highest cost 10.9 $32  $12 $38 42% 

2.4 Rate Impact 

For each IOU in each year of the analysis, we calculated the average residential rates with the 

increased load and costs associated with electrification and compared them to 2023 average 

residential rates.  We accounted for the calculated increase in revenue requirements for the IOUs 

associated with distribution capital and maintenance expenses, plus forecasted transmission and 

generation costs, and weighed them against the forecasted increase in electricity volume.  Then, 

we compared rates with this additional electrification to rates without it to determine the 

potential rate impact of electrification. 

We assumed a marginal operations and maintenance (O&M) cost of 3.5 percent per year on the 

un-depreciated value of new capital.  This was informed by data from the most recent general 

rate case applications of PG&E, SCE, and SDG&E.80  Transmission costs are accounted for 

through the transmission access charge (TAC), which we projected rising to $20 per megawatt 

hour (MWh) in 2029 and exceeding $25/MWh in 2035.81  Generation costs were derived from 

 
78 EIS at 117. 
79 45 percent, 40 percent, and 47 percent of the primary distribution costs in the Replicate scenario were used as 

secondary infrastructure costs for all scenarios for PG&E, SCE, and SDG&E, respectively.  We used 2035 data and 

excluded the Baseline scenario.  See EIS at 26-29. 
80 See Appendix A.9 for details and data sources. 
81 See The Public Advocates Office, Comments on Draft Transmission Plan of the California Independent System 

Operator, April 25, 2023 at Section 9, Table 1.  Available at:  

https://stakeholdercenter.caiso.com/Comments/AllComments/3b5eb926-9bce-4c7f-806c-9ae156a4f9f3#org-

b4bc96db-9bb3-478b-a339-41f5d6e8413c. 

https://stakeholdercenter.caiso.com/Comments/AllComments/3b5eb926-9bce-4c7f-806c-9ae156a4f9f3#org-b4bc96db-9bb3-478b-a339-41f5d6e8413c
https://stakeholdercenter.caiso.com/Comments/AllComments/3b5eb926-9bce-4c7f-806c-9ae156a4f9f3#org-b4bc96db-9bb3-478b-a339-41f5d6e8413c


The Public Advocates Office 18 

the 2022 avoided cost calculator (ACC),82 including costs associated with generation energy, 

generation capacity, ancillary services, greenhouse gases, and high global warming potential 

gases. 

Appendix A.9 elaborates on the methods for the rate impact study. 

3 Results and Discussion 

We estimated the costs to upgrade the distribution grids of the three largest electric IOUs in 

California to meet the state’s forecasted EV deployment and other load growth through 2035 to 

be $26 billion.83  Based upon the uncertainties quantified (see Section 4.2) we believe that the 

cost estimate could be as much as $18 billion lower or $31 billion higher.  Sections 3.1 through 

3.6 explore these results.  We calculated this cost estimate based on forecasted EV deployment 

(Section 3.1) to growing energy demand (Section 3.2) and peak load growth (Section 3.3).  

Sections 3.4 and 3.5 describe the increasing utilization of utility assets and the quantity and rates 

of upgrades, respectively.  Section 3.6 evaluates the total cost of upgrades. 

The EIS preliminarily forecasted that $51 billion will be required to upgrade the IOUs’ 

distribution grids through 2035.84  The EIS and the DGEM differ in part because of disparate 

load shape assumptions, unit costs, and other inputs.  Section 3.7 compares the two studies in 

detail. 

Section 3.8 explores the rate impact of electrification, considering both the infrastructure 

investment and the increased volume of energy sales. 

The number of upgrades and associated costs identified in the DGEM do not include non-wires 

mitigations.  Non-wires mitigations include programmatic mitigations, such as changes to 

current time-of-use (TOU) rates that might obviate the need for upgrades entirely, and 

infrastructure such as DERs that may be able to provide mitigations at a lower cost than wires 

solutions.  The inclusion of these types of mitigations may substantially reduce the cost of grid 

upgrades compared to what our model predicts. 

 
82 See CPUC, 2022 Distributed Energy Resources Avoided Cost Calculator Documentation, June 22, 2022 (2022 

Distributed Energy Resources Avoided Cost Calculator Documentation).  Available at: https://www.cpuc.ca.gov/-

/media/cpuc-website/divisions/energy-division/documents/demand-side-management/acc-models-latest-

version/2022-acc-documentation-v1a.pdf. 
83 This figure and all other cost figures in this report are in constant, present-day dollars. 
84 EIS at ES-26 to EIS-27.  This value is the average total grid upgrade costs in Table 2 excluding Scenario 1. 

https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/demand-side-management/acc-models-latest-version/2022-acc-documentation-v1a.pdf
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/demand-side-management/acc-models-latest-version/2022-acc-documentation-v1a.pdf
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/demand-side-management/acc-models-latest-version/2022-acc-documentation-v1a.pdf
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3.1 Spatial distribution of EV adoption 

We used a series of propensity models to predict the conversion of conventional vehicles to EVs 

up to the total annual EV population predicted by the 2022 IEPR.85  For personal vehicles, our 

propensity regression model considers commonly used EV adoption predictors such as education 

level and income (see Appendix A.3.3.1).  Figure 3-1 shows the predicted density of EV 

adoption. 

 
85 See 2022 CED, Hourly Demand Forecast Files, Planning Scenario. 
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Figure 3-1.  Predicted county-level density of personal EV adoption through 2035.  
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The propensity regression model for personal vehicles, as shown in Figure 3-1, results in a 

clustered distribution of EV uptake.  At the county level, the share of EVs is heterogenous in all 

time periods.  The highest levels of EV uptake are in San Francisco and the surrounding Bay 

Area, counties near El Dorado and Sacramento, and most of Southern California’s coastal 

regions, notably Orange County.  This is due to the higher education and income (the factors 

most predictive of EV adoption, see Appendix A.3.3.1) in these areas. 

We note that some counties are largely served by other utilities, which can lead to inaccurate 

concentrations.  For example, our model only considers 56 vehicles in Alpine County (north-east 

elbow in Figure 3-1, 80-100 percent EV adoption by 2035) and 606 in Lassen County (north-east 

corner in Figure 3-1, 60-80 percent EV adoption by 2035), so the high levels of EV adoption in 

these counties have little significance.86 

The spatial distribution of EV adoption is important for several reasons.  The rising EV sales 

increases the electric load on the local grid; therefore, counties with a high EV uptake are more 

likely to require grid upgrades.  This is even more prevalent in higher density areas where EVs 

may be more common and infrastructure upgrades are more costly (e.g., San Francisco and the 

surrounding Bay Area). 

In urban areas like San Francisco, our propensity regression model for personal vehicles predicts 

a high concentration of EVs in 2035.  Figure 3-2 shows the concentration of EVs through 2035 

in San Francisco census tracts.  Across the county (which has the same border as the city), 80-

100 percent of vehicles are expected to be electric by 2035. 

 
86 Lassen County is largely served by Lassen Municipal Utility District and Alpine County is largely served by 

Liberty Utilities. 
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Figure 3-2.  Predicted density of personal EV uptake within San Francisco County census tracts.  

Empty areas were omitted due to incomplete utility asset data. 

The DGEM predicts that San Francisco will experience heterogeneous adoption in the early 

years – with the highest levels of heterogeneity in 2025 and tapering but continuing 

heterogeneity in 2030.  By 2035, nearly all census tracts within SF are forecasted to experience 

high levels of EV adoption.  According to PG&E, San Francisco is the highest cost area for grid 
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infrastructure development.87  Therefore, San Francisco could be responsible for a significant 

portion of the total cost of upgrades despite its famously small footprint (seven miles by seven 

miles).  

We do not provide graphs of EV concentrations from other vehicle adoption models for two 

reasons.  First, fleet vehicles are much fewer in number than LD vehicles and have a 

significantly lower impact on distribution grids than LD EVs.  Second, the second propensity 

model for personal vehicles concentrates personal vehicles evenly across the DGEM Study Area, 

so this model’s map would be uniform. 

3.2 Annual energy demand due to EV adoption  

Figure 3-3 depicts the demand on the electric grid due to LD (left) and MD and HD (right) 

charging, as predicted by the DGEM and the 2022 IEPR Planning Scenario.  Since the DGEM 

draws from the IEPR Planning Scenario, the two demand forecasts closely align.  Alignment 

with the IEPR is important because the IEPR is the basis for the State of California’s energy 

planning.88  All state government agencies and IOUs are required to consider the IEPR in their 

future asset and climate change response planning. 

 

Figure 3-3.  Comparison of demand forecasts between the DGEM and the IEPR. 

 
87 See Pacific Gas and Electric Company 2023 General Rate Case Exhibit (PG&E-4) Electric Distribution 

Workpapers Supporting Prepared Testimony Chapters 14-23 Volume 2 of 2 (PG&E TY 2023 GRC Exhibit PG&E-

4), June 30, 2021 at 165; issued in Application (A.) 21-06-021. 
88 It is California policy to use the IEPR as a “single forecast set” for all electric resource planning.  See Pub. Res. 

Code § 25301(e).  Specifically, the Integrated Resource Plan (IRP) uses hourly load profiles for demand-side 

modifiers, which include electric vehicle demand.  See CPUC, Draft Inputs & Assumptions – 2022-2023 Integrated 

Resource Planning (IRP), June 6, 2023 at 13.  Accessed at: https://www.cpuc.ca.gov/-/media/cpuc-

website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-

ltpp/2023-irp-cycle-events-and-materials/draft_2023_i_and_a.pdf. 

https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/2023-irp-cycle-events-and-materials/draft_2023_i_and_a.pdf
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/2023-irp-cycle-events-and-materials/draft_2023_i_and_a.pdf
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/2023-irp-cycle-events-and-materials/draft_2023_i_and_a.pdf
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The difference in consumption between the DGEM and the IEPR Planning Scenario may come 

from the percentage of statewide sales allocated to the three IOUs.  Additional differences likely 

come from different quantities of vehicles in particular subclasses (e.g., the DGEM may deploy 

more LD sport utility vehicles [SUVs] and fewer LD sedans than the IEPR, or vice versa) and 

different average MD and HD EV energy consumption.  The IEPR assesses energy demand by 

vehicle make and model, which is a more granular level than the DGEM.  The DGEM assesses 

energy demand by vehicle subclass. 

3.3 Peak demand growth 

Our data show a nearly identical growth in combined peak demand to the IEPR.  Table 3-1 

shows that the rate of peak load growth across the IOUs’ territories remains within three percent 

between the IEPR and the DGEM.  The DGEM predicts two percent slower growth for PG&E, 

three percent faster growth for SCE, and two percent faster growth for SDG&E.  The growth rate 

differences are caused by the modestly higher deployments of EVs in SCE’s and SDG&E’s 

territories in the average case and correspondingly lower deployments in PG&E’s service 

territory (see Appendix B). 

Table 3-1.  2021 to 2035 peak demand growth rate comparison. 

Model PG&E SCE SDG&E Total 

DGEM 17% 14% 23% 16% 

IEPR89 19% 11% 21% 15% 

3.4 Increased infrastructure utilization and overloads 

Systemwide increases in peak load will lead to increasing peak loads on individual infrastructure, 

such as feeders and substations.  Distribution grid infrastructure as it exists today may require 

upgrades due to the increasing electrification of transportation and buildings and growth in other 

sectors of the economy. 

The peak utilization factor, which is the ratio of the peak loading of a piece of infrastructure to 

its capacity, describes how close a piece of infrastructure (i.e., a feeder or a substation) is to 

overload.  For example, a feeder with a rating of 10 MW and a peak load of 8.7 MW would have 

an 87 percent peak utilization factor.  We expand this concept to the entire set of assets within 

 
89 Demand for 2021 was drawn from the CEC, California Energy Demand Forecast, 2021-2035, high-baseline 

scenario files for the three IOUs under the Hourly Demand Forecast Files.  Available at: 

https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-

report/2021-1.  The demand for 2035 was drawn from the CEC, California Energy Demand Update, 2022-2035, the 

Planning Scenario files for each of the three IOUs under the Hourly Demand Forecast Files.  Available at: 

https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-

report-update-2. 

https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-report/2021-1
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-report/2021-1
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update-2
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update-2
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each IOUs’ service territory.  To do so, we sum up non-coincident peak loads and divide by the 

sum of ratings: 

𝑃𝑒𝑎𝑘 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑃𝑒𝑎𝑘 𝐿𝑜𝑎𝑑1 + 𝑃𝑒𝑎𝑘 𝐿𝑜𝑎𝑑2 + 𝑃𝑒𝑎𝑘 𝐿𝑜𝑎𝑑3 + . . . + 𝑃𝑒𝑎𝑘 𝐿𝑜𝑎𝑑𝑛

𝑅𝑎𝑡𝑖𝑛𝑔1 + 𝑅𝑎𝑡𝑖𝑛𝑔2 + 𝑅𝑎𝑡𝑖𝑛𝑔3 + . . . + 𝑅𝑎𝑡𝑖𝑛𝑔𝑛
 

Figure 3-4 shows the resulting forecasted peak utilization factors for the IOUs, without any 

further upgrades or mitigations. 

 

Figure 3-4.  The peak utilization factor increases at nearly the same rate for three IOUs.  Lines 

show median, maximum, and minimum peak utilization factors across scenarios. 

Peak utilization factors grow at approximately the same rate across the three IOUs.  SCE has an 

approximately ten percent lower utilization than PG&E across the study period for both feeders 

and substations.  SDG&E has a similar feeder utilization factor to SCE and a similar substation 

utilization factor to PG&E. 

Increasing peak utilization drives infrastructure exceedances.  While the average piece of 

infrastructure in each IOU’s service territory does not require an upgrade, differences in 

utilization lead to the overutilization of some assets.  Overutilization necessitates infrastructure 

upgrades (in our model, but other mitigations can be applied in practice).  Figure 3-5 projects the 

share of infrastructure that will experience overutilization, without upgrades or other mitigations, 

in each IOU’s service territory in future years. 
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Figure 3-5.  Share of overloaded feeders and substations as a percentage of the total number of 

feeders and substations in each IOU’s service territory.  Lines show median, maximum, and 

minimum share of overloaded infrastructure across scenarios. 

PG&E has the largest share of overloads across the study period for both feeders and substations.  

SDG&E and SCE have significantly lower shares of overloaded feeders, about seven percent 

lower in 2021 and 15 – 20 percent lower in 2035.  SDG&E and SCE both have low rates of 

substation overloads in 2021, but SDG&E’s overload rate climbs the fastest.  SDG&E’s overload 

rate approaches PG&E’s overload rate toward the end of the study period.  SCE’s rate of 

substation overloads remains small, one-half to one-third of the other IOUs in 2035. 

Our result for PG&E indicates that there were many capacity exceedances in its service territory 

in 2021.  The relatively high share of exceedances is partially due to real infrastructure 

insufficiencies and partially due to data issues (see Appendix A.1.4).  Nevertheless, PG&E’s 

infrastructure is more affected by TE and other types of electrification and shows more overloads 

than the other IOUs. 

3.5 The pace of primary distribution upgrades 

As shown in Table 3-2, the forecasted pace of primary distribution upgrades is significant.  The 

pace accelerates toward the latter third of the study period (i.e., the average upgrade rate between 

2030 and 2035 is always above the average for the entire period).  The upgrade rate for PG&E is 

approximately twice that for SCE, and the rate for SCE is approximately twice that for SDG&E.  

Since the service territories of PG&E and SCE are approximately four-and-a-half times the size 
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of the service territory of SDG&E,90 the share of infrastructure requiring upgrades each year will 

be similar for PG&E and SDG&E while SCE’s rate is about half. 

Table 3-2.  Median forecasted annual rate of upgrades for each IOU and facility type.  Ranges for 

planned investments show only new distribution feeders at the low end and include reconductoring 

and other potentially smaller feeder projects at the high end. 

Facility 
Type IOU 

Forecasted Annual 
Upgrades Historic Pace91 

2023 - 2035 2030 - 2035 2020 2021 2022 

Feeders PG&E 46 58 18 - 68 21 - 49 40 - 90 

Feeders SCE 19 32 22 - 49 15 - 36 15 - 56 

Feeders SDG&E 7 12 2 - 7 4 - 15 1 - 10 

Substations PG&E 10 13 1 4 13 

Substations SCE 5 7 9 6 8 

Substations SDG&E 2 2 1 0 0 

Table 3-2 also provides historical data for comparison based upon planned investments in the 

IOUs’ 2022 distribution deferral opportunity reports (DDORs).  With this context, the results are 

not alarming: future rates tend to be close to present rates.  If only new feeders are included in 

historic data (the lower numbers in Table 3-2), the average number of forecasted future annual 

feeder upgrades is higher than the peak of the historic pace for PG&E and SDG&E: 15 percent 

and 75 percent, respectively; however, if all DDOR projects are included, the forecasted annual 

feeder upgrades are lower than the maximum historic pace for all IOUs.  For substations, the 

future pace is similar to the historic pace for PG&E and SCE, and higher (twice the recent 

historic peak) for SDG&E. 

These data come with several caveats.  First, we compared forecasts of needed infrastructure 

upgrades to planned investments.  Planned investments receive much more scrutiny than our 

forecasted upgrades.  Second, we did not explicitly consider the scope of upgrades.  It is possible 

that future feeder or substation upgrades will tend to be larger in size than past upgrades, such 

that while the number of projects remains similar, the labor force required to implement them 

could substantially grow.92  

3.5.1 In comparison to Elmallah et al. 

We found that PG&E will require 46 new feeders annually and ten new substations annually 

between 2022 to 2035 (see Table 3-2).  Elmallah et al. found that, with vehicle electrification, 

PG&E would need to annually upgrade 95 to 260 feeders and two to five substations through 

 
90 Based upon 2019 retail electricity sales data, available in map metadata: CEC, Electric Load Serving Entities. 
91 See Appendix C for data sources. 
92 Elmallah et al. at 19.  
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2030.93  Our annual feeder upgrade estimates are about one-fifth to one-half the upgrade 

estimates that Elmallah et al. anticipated, while our substation upgrade estimates are two to five 

times higher.  The former difference may partially or fully be because Elmallah et al. analyzed 

various sections of each feeder while the DGEM assessed only the feeder head.  That is to say 

that we compared load to the maximum feeder capacity while Elmallah et al. compared load to 

the capacity of each feeder section.  Elmallah et al. suggest that their methods lead to 

underestimation of substation upgrades because they “sum bank capacity to evaluate total 

substation capacity”94; however, this does not explain the difference between our two studies 

because we apply the same simplifying assumption.  Rather, the difference may come from the 

way that Elmallah et al. aggregate load from feeders to substations, or other factors. 

3.6 Cost of infrastructure upgrades 

This section delineates the feeder, substation, and secondary infrastructure upgrades that may be 

needed to cure the modeled deficiencies in grid capacity.  Feeder and substation upgrades may 

not be the only solution to meeting the load growth due to increased electrification (a high 

electrification future).  Rate structures that favor off-peak energy consumption and the 

integration of DERs into the grid could delay or obviate the need for infrastructure investments 

and reduce the costs of necessary upgrades.95  Other infrastructure solutions like load transfers 

and DERs could also mitigate some of the infrastructure needs.  These alternative approaches are 

not considered in the DGEM. 

One of the primary points of uncertainty in the DGEM is the cost of the upgrades that could be 

expected to be undertaken whenever grid capacity is deficient (see Section 4).  The cost of 

upgrades will depend on many factors, including which IOU is responsible for the upgrade, what 

length of feeder needs replacement, whether the feeder will be new or reconductored, and 

whether a transformer bank or substation will need to be added or upgraded.  Determining how 

to solve each forecasted asset overload requires an engineering evaluation, which is impractical 

for a forecast over an entire IOU service territory.  To attempt to cover the uncertainty in the 

costs of upgrades, we used several cost scenarios for substation and feeder replacements to 

generate an array of possible outcomes.  Appendix A.8 elaborates on the cost scenarios. 

Because of uncertainty in cost estimates (see Table 2-3 for a brief review and Appendix A.8 for 

more thorough discussion), especially for feeders, our maximum and minimum cost estimates are 

quite far from our central estimate (200 percent and 40 percent, respectively).  These upper and 

 
93 Elmallah et al. at 13-14. 
94 Elmallah et al. at 14. 
95 See Elmallah et al.; M. Kintner-Meyer et al., Electric Vehicles at Scale - Phase II - Distribution Systems Analysis, 

Pacific Northwest National Laboratory (PNNL), September 21, 2022 at 25.  Available at: 

https://www.pnnl.gov/publications/electric-vehicles-scale-phase-ii-distribution-systems-analysis.  

https://www.pnnl.gov/publications/electric-vehicles-scale-phase-ii-distribution-systems-analysis
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lower bounds should not be viewed as projections themselves but as bounding the uncertainty in 

the central estimate. 

The range of unit cost scenarios allowed us to see the array of possible total costs of grid 

infrastructure upgrades needed to meet increased load from vehicle electrification and non-EV 

load sources.  This strategy also reinforces the uncertainty of these cost estimates, which 

underscores the fact that no single forecast can account for all possibilities and nuances in future 

load growth.  Figure 3-6 shows the average cumulative upgrade costs forecasted and a range of 

one standard deviation.  We include primary and secondary costs.  The figure also includes a 

black line, which represents the Replicate scenario.96  As with total upgrade needs, PG&E is 

predicted to require the most infrastructure investments. 

 

Figure 3-6.  Total cost including primary and secondary distribution upgrades forecasted for each 

utility.  Bands show the maximum and minimum values across scenarios and the black lines depict 

the Replicate scenario.  

Table 3-3 shows the DGEM’s central cost estimates for each IOU along with the uncertainty 

range.  Maximum cost estimates are drawn from the scenario with the maximum cost and include 

costs of upgrades identified by the DGEM as being needed in 2021, while minimum estimates 

are drawn from the scenario with the minimum cost and exclude costs of upgrades identified by 

the DGEM in 2021.  

 
96 The Replicate scenario used the same unit costs and substation upgrade frequency as the EIS.  This scenario 

evaluated how factors other than unit cost led to differences between the DGEM and the EIS (see Section 3.7). 
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Table 3-3.  Central cost estimates for 2035 in billions with upper and lower uncertainty (i.e., our 

lowest estimate for PG&E is $6.3 billion – which is the result of $18.2 minus $11.9 billion).  The 

central scenario is the mean of all cost estimates and includes half of possible 2021 costs.  These 

costs include both primary and secondary distribution costs. 

Cost Estimate PG&E SCE SDG&E Total 

Central estimate $18.2 $5.7 $2.3 $26.3 

Upper uncertainty $19.7 $8.1 $2.7 $30.5 

Lower uncertainty -$11.9 -$4.2 -$1.5 -$17.7 

It is unclear whether 2021 modeled costs are due to real causes (versus data issues), and whether 

they are due to electrification in particular (see Appendix A.1.4).  Therefore, the central estimate 

($26.3 billion total) depicts the mean 2035 costs less half of the 2021 costs.  We included half of 

the 2021 modeled costs in our central estimate because this gives the best central representation 

of the uncertain result.  

3.6.1 Comparison to the preliminary results 

We published two documents with preliminary results in June 2023.97  In these reports, we 

estimated the cost of distribution grid upgrades to be $15 to $20 billion, including the cost of 

secondary distribution infrastructure.  Our cost estimates are now higher, with a total central 

estimate of $26.3 billion. 

These differences from the preliminary results are primarily due to the inclusion of higher unit 

costs for feeders based on research conducted during the intervening months; the preliminary 

results used unit costs for feeders from the EIS based in most cases on two miles of feeder 

having to be upgraded for each instance of an overload.  We now use four estimates: 1.35 miles, 

9.5 miles, and 10.9 miles based upon various empirical data provided by the IOUs and two miles 

based on the EIS’s assumptions (see Appendix A.8 for additional data and discussion).  This 

results in an average length estimate of 5.9 miles.  The variation of these cost estimates is 

significant and a major driver in uncertainty in our result as discussed in Sections 4.2 and 4.5. 

Secondary differences stem from updated assumptions of the frequency that new substations are 

needed, based on data from the EIS, and the per-foot cost of feeders.  We previously assumed 

that new substations would be needed zero percent to 25 percent of the time; now, following the 

EIS, we assume new substations are needed up to 42 percent of the time for PG&E.  We 

 
97 The Public Advocates Office, Cal Advocates’ Distribution Grid Electrification Model (DGEM) – Preliminary 

Results, June 2, 2023.  Available at: https://www.publicadvocates.cpuc.ca.gov/press-room/reports-and-

analyses/distribution-grid-electrification-model-preliminary-results.  The Public Advocates Office, Public Advocates 

Office Study on the Costs of Upgrading the Distribution Grid for Electrification, June 14, 2023.  Available at: 

https://www.publicadvocates.cpuc.ca.gov/-/media/cal-advocates-website/files/reports/230614-cal-advocates-

distribution-grid-impacts-study-fact-sheet.pdf. 

https://www.publicadvocates.cpuc.ca.gov/press-room/reports-and-analyses/distribution-grid-electrification-model-preliminary-results
https://www.publicadvocates.cpuc.ca.gov/press-room/reports-and-analyses/distribution-grid-electrification-model-preliminary-results
https://www.publicadvocates.cpuc.ca.gov/-/media/cal-advocates-website/files/reports/230614-cal-advocates-distribution-grid-impacts-study-fact-sheet.pdf
https://www.publicadvocates.cpuc.ca.gov/-/media/cal-advocates-website/files/reports/230614-cal-advocates-distribution-grid-impacts-study-fact-sheet.pdf
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previously used the EIS’s estimate for the per-foot cost of feeders; we now explore a variety of 

scenarios) as described in Appendix A.8). 

The Replicate scenario, which retains cost data from the EIS, remains closer in its cost estimate 

to our preliminary results (see Section 3.7).  The differences in this scenario from the preliminary 

results are due to substation upgrade frequency and other minor updates to the DGEM.  

3.7 The DGEM vis-à-vis the EIS 

This section provides a comparison between the DGEM and the EIS.  We begin with a 

comparison of the bottom-line costs before diving into the source of the differences between the 

studies, which we attribute to charging load shape.  As an initial point, the EIS is intended to 

evaluate “unmitigated” scenarios,98 which are not necessarily the same as what our charging load 

shapes (from the IEPR) evaluate.99  To the best of our understanding, the EIS assumes lower 

participation in EV-TOU rates than the IEPR does.  EV-TOU rates have low-price periods later 

in the day with the intent of encouraging different charging behavior.  This is discussed in more 

detail below. 

Since the DGEM has a wide variation in unit cost assumptions, we included a cost scenario 

(Replicate) that exclusively uses the unit cost data from the EIS to make a more straightforward 

comparison possible.100  The total predicted cost for 2035 – including primary and secondary 

upgrades for all IOUs using the EIS’s cost data – is $15.7 billion,101 which is just over 30 percent 

of the EIS’s preliminary estimate of $51 billion. 

Table 3-4.  Cost estimates for the Replicate scenario.  Costs shown are less half 2021 costs. 

IOU 
Total Cost (Billions) 

2025 2030 2035 

PG&E $3.1 $6.6 $11.4 

SCE $0.5 $1.2 $3.1 

SDG&E $0.1 $0.5 $1.3 

Total $3.8 $8.4 $15.7 

 
98 See EIS ES-1 to ES-2:  

Part 1 analysis was conducted under unmitigated planning scenarios, which assume only traditional utility 

distribution infrastructure investments.  The Part 1 analysis assumed existing time-of-use (TOU) rates and BTM 

tariffs would be in place throughout the study timeframe.  It did not consider alternatives or future potential 

mitigation strategies such as alternative time-variant rates or dynamic rates and flexible load management strategies. 
99 Though the EIS does not provide a totally clear definition of “unmitigated.” 
100 EIS at 117.  
101 As with our central estimate, this cost includes half of 2021 costs. 
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Figure 3-7 provides a visual representation of the 2035 costs in Table 3-4 split into primary and 

secondary infrastructure.  Distribution system upgrade cost estimates in the EIS are higher in all 

regions.  The most drastic difference is in SCE’s service territory. 

 

Figure 3-7.  Cost comparison between the DGEM (using the Replicate scenario) and EIS in 2035.  

Infrastructure costs are split between primary and secondary.  Costs shown are less half 2021 costs. 

Because the total costs for the DGEM (Replicate scenario) and the EIS, as shown in Figure 3-7, 

use identical unit costs, differences are due to other factors.  We found that the key cause of 

differing total costs (excluding unit costs) is differing rates of peak load growth between the two 

studies.  The DGEM draws its peak load growth from the IEPR (in some cases indirectly102).  By 

comparison, the EIS’s peak load growth, which is largely due to EV charging,103 is the result of 

its assumptions around when EVs are charged, which do not align with the IEPR (this is 

discussed below).  Figure 3-8 depicts the difference in peak load growth rate.   

 
102 For example, we did not copy the peak load contribution of EVs from the IEPR, but since we use the same 

number of vehicles, energy consumption assumptions, and charging assumptions, our peak load contribution is 

nearly identical.  (See Section 3.3.) 
103 EIS at ES-7. 
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Figure 3-8.  Comparison of peak load growth.  I-bars show variation across scenarios (we removed 

the EIS’s baseline scenario from this comparison).  The DGEM closely aligns with the IEPR, as 

intended. 

The peak load increase in the EIS study appears to be largely or entirely driven by a significant 

amount of charging starting at 9 p.m.  In the EIS, this charging assumption was enough to shift 

the peak load hour of all IOUs to 9 p.m. in 2035.104  In addition to the shape of the profile, 

another important factor in the differences between peak load for the IEPR and the EIS is that the 

total energy consumed during the peak day is 43 percent higher in the EIS than in the 2022 

IEPR.  This could be caused by differing assumptions around energy consumption per mile 

driven, miles driven per year, or day-to-day variance in charging patterns.  

 
104 EIS at 159. 
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Figure 3-9.  Hourly peak-day charging demand from the EIS and two IEPR vintages.  Sources: 

2021 and 2022 IEPR data, the EIS (digitized).105 

In summary, the differences in total cost estimates between the DGEM (in the Replicate 

scenario) and the EIS are primarily due to differences in assumptions regarding when EVs will 

charge.  This finding has several noteworthy implications.  First, the TOU rates already included 

in the IEPR can reduce the cost of grid upgrades by about two-thirds (i.e., from the EIS’s result 

to the DGEM’s Replicate result).  Second, despite significant differences in methods between the 

DGEM and the EIS, the two studies achieve similar results, which suggests that both models are 

reasonable representations of reality, at least within a factor of about two. 

The other significant difference between the DGEM in general (not the Replicate scenario) and 

the EIS is the unit cost assumptions.  The differences in total costs between our central estimate 

and the Replicate scenario summarize the aggregate unit cost differences between the EIS and 

the DGEM’s central estimate:  Our unit costs for PG&E are 44 percent higher, our unit costs for 

SCE are 56 percent higher, and our unit costs for SDG&E are 49 percent higher. 

3.8 Residential rate impacts 

Both the absolute magnitude of forecasted distribution upgrades and the uncertainty in upgrade 

costs are significant.  Without context, however, it is difficult to understand the burdens that 

these upgrades will place on ratepayers.  Calculating the electric rate impact for residential 

customers can put this into perspective: How much upward pressure on rates (in $/kWh) might 

infrastructure upgrades apply?106  How much downward pressure on rates might the increase in 

 
105 2021 IEPR data from 2021 CED, Hourly Demand Forecast Files, High Baseline Scenario; 2022 IEPR data from 

2022 CED, Hourly Demand Forecast Files, Planning Scenario; EIS data provided by Energy Division Staff and 

Kevala as an informal response to the June 12, 2023 email R2106017 EIS Ruling Data Request, Question 5.  See 

also Administrative Law Judge’s Ruling Setting Deadline to Receive Data Requests on Electrification Study, June 9, 

2023; issued in R.21-06-017. 
106 Distribution feeders and substations are paid for through electric rates at present; we assume this structure 

continues without endorsing it. 
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energy sales apply (because increasing load spreads infrastructure investment across more 

electricity units)?  Will the net effect of electrification be upward or downward pressure on 

rates?107 

Figure 3-10 shows forecasted impacts to the average residential consumer cost of electricity for 

the IOUs (in present-day dollars).  This rate impact is the difference between 2023 electricity 

rates and the rates that would be achieved with the electrification impacts modeled in this report 

with no other changes to utility costs and revenues.  The DGEM predicts downward pressure on 

electric rates for all IOUs in the central case.  The downward pressure is greatest for SDG&E, 

and less for SCE and PG&E.   

 

Figure 3-10.  Project rate impact of electrification using our central cost estimate. 

Rate impact helps to put the infrastructure costs in perspective.  In our central cost estimate, 

upward pressure on rates due to infrastructure costs is more than offset by downward pressure on 

rates due to the increased consumption of electricity resulting from electrification.  More 

importantly, a reduction in electricity rates means that customers who cannot (or choose not to) 

electrify need not be negatively impacted by electrification.  Ultimately, because Figure 3-10 

depicts impacts to the average residential electric rates, the specifics of rate design will 

determine the impact to non-electrifying customers.  For example, if EV owners are allowed to 

select a rate that does not recover the marginal cost to provide electricity, electricity rates for 

other customers could still rise. 

There is one important limitation that applies to SCE only: We did not assess sub-transmission 

costs.  This means that the rate impact for SCE is somewhat understated; however, since we 

expect SCE to make well under half of PG&E’s forecasted distribution investment needs, we 

expect SCE’s downward rate pressure to be at least equal to PG&E’s, even if sub-transmission 

costs equal distribution costs. 

 
107 This is a different question from ‘will rates go up or down?’  Other utility costs could drive rates up in net even if 

electrification applies downward pressure on rates. 
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Next, we explore the variation in rate impacts across our model scenarios.  Scenarios with lower 

unit costs of feeders and substations lead to larger rate decreases, as shown in Table 3-5.  PG&E 

experiences just over one cent per kWh in upward rate pressure in the highest cost scenario and 

nearly three cents per kWh of downward pressure in the lowest cost scenario.  SCE experiences 

almost zero downward pressure in the high-cost scenario and three cents per kWh of downward 

pressure in the low-cost scenario.  SDG&E experiences the most downward pressure, nearly 

three cents per kWh in the high-cost scenario and almost seven cents per kWh in the low-cost 

scenario. 

Table 3-5.  Rate impacts across cost scenarios.  Rate impacts are shown in $/kWh. 

IOU High cost Central Low cost 

PG&E $0.013 -$0.012 -$0.028 

SCE -$0.006 -$0.022 -$0.030 

SDG&E -$0.026 -$0.056 -$0.069 

Furthermore, these data show that even with the relatively high uncertainty in total grid upgrade 

costs based upon available data, there is an unambiguous forecast of downward pressure on rates 

provided by electrification for SDG&E and SCE—under the assumptions of the DGEM (see 

Section 4 for a discussion of key assumptions).  For PG&E, there is a small chance of upward 

rate pressure but only with the least optimistic infrastructure unit costs (i.e., if infrastructure turns 

out to be very expensive).  The unit costs we used are relatively high – higher than those used in 

the EIS – and relatively unlikely to underestimate cost.  Therefore, there will likely be a small 

downward pressure on residential rates for PG&E’s customers. 

These data are, therefore, consistent with a vision of affordable electrification.  Climate change 

mitigation need not raise costs for all consumers, and falling electricity rates may help to spur 

additional electrification.  However, one should not conclude that the analysis presented herein 

guarantees declining electricity rates, even for SDG&E.  Other factors, such as wildfire 

mitigation, can drive rates up in net.  Moreover, appropriate policies are needed to ensure that the 

possible rate decreases are realized in customers’ rates. 

We have not attempted to calculate the overall bill impact for typical customers that our results 

might represent.  In the context of electrification, estimating the electricity bill impact in 

isolation for a household can be misleading without understanding how total home energy costs 

might change.  To take a simple example, a household that converts from a gasoline vehicle to an 

EV would expect additional electricity costs due to adding the EV charging load, but 

correspondingly lower gas costs by not having to regularly fill the tank of a conventional car.  An 

estimate of the changes in total household energy costs is beyond the scope of this report. 
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4 Assumptions and Limitations 

California’s electric distribution grids include thousands of distribution feeders spanning 

hundreds of thousands of miles, thousands of distribution substations, over a million service 

transformers, and countless capacitors, sectionalization devices, fuses, and other pieces of 

distribution infrastructure.108  The DGEM accounts for the addition of eleven million electric 

vehicles, each of which may have a unique spatial and temporal charging profile over the course 

of the 8,760 hours in a year.  Modeling such a vast and complicated system – to say nothing of 

forecasting twelve years into the future – necessitates many simplifying assumptions to make the 

problem tractable—from the perspectives of computation and comprehension.  These 

simplifying assumptions lead to limitations.  We begin by describing the most important 

assumptions in Section 4.1.  Next, we provide in Section 4.2 a quantitative analysis of those 

factors for which we have been able to reasonably bound the range.  Finally, we qualitatively 

discuss further limitations on the scope and accuracy of the model in Sections 4.3 through 4.5.  

Future work, whether by The Public Advocates Office or others, could seek to provide greater 

certainty and reduce the need to use assumptions of the sorts described here.  Section 5.5 

discusses some of these further research needs. 

4.1 Major assumptions of the DGEM 

The four most important assumptions of the DGEM model are the time of vehicle charging, the 

number of vehicles deployed, the types of grid mitigations used, and assessment of overloads at 

the feeder level. 

4.1.1 EVs charge at midday and overnight 

The time at which EVs charge is critical to the resulting grid impacts.  As discussed in Section 

3.7, on-peak charging could double our cost estimates.  The DGEM’s charging load shape, 

illustrated in Figure 2-4 of Section 2.2.1, is drawn from the IEPR, which is based upon empirical 

charging data and existing rates and policies.  The IEPR’s charging load shape predicts 

significant amounts of midday and overnight charging. 

More managed charging provides opportunities for reducing infrastructure investments and 

electric rates.109  Unmanaged charging – i.e., charging taking place during peak load hours, as in 

 
108 See EIS at 115; PG&E, Company Profile, n.d.  Available at: https://www.pge.com/en_US/about-pge/company-

information/profile/profile.page; SCE, Powering Southern California for 130+ Years, n.d.  Available at: 

https://www.sce.com/about-us/who-we-are; and SDG&E, CPUC Rule 20 Programs: Overhead-to-Underground 

Conversion of Electric Power Lines, n.d.  Available at: https://www.sdge.com/major-

projects/Rule20Undergrounding. 
109 See: Zhuk et al., The Impact of Electric Vehicles on the Outlook of Future Energy System, IOP Conference 

Series: Materials Science and Engineering, February 2018.  Available at: https://doi.org/10.1088/1757-

899X/315/1/012032.  

https://www.pge.com/en_US/about-pge/company-information/profile/profile.page
https://www.pge.com/en_US/about-pge/company-information/profile/profile.page
https://www.sce.com/about-us/who-we-are
https://www.sdge.com/major-projects/Rule20Undergrounding
https://www.sdge.com/major-projects/Rule20Undergrounding
https://doi.org/10.1088/1757-899X/315/1/012032
https://doi.org/10.1088/1757-899X/315/1/012032
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the EIS – could drive investment and rates higher than forecasted by the DGEM.  We do not 

consider alternative charging profiles at this time. 

4.1.2 California will deploy 15.5 million EVs through 2035 

The DGEM relies on the EV deployment forecasts for the state of California underlying the 2022 

IEPR Planning Scenario (see Appendix A.3.1).  The 2022 IEPR Planning Scenario’s forecasts 

are based upon policy compliance, including compliance with the Advanced Clean Cars II and 

Advanced Clean Fleets regulations.110  The DGEM treats vehicle deployment as exogenous and 

does not consider what might happen if the forecasts go unmet or are exceeded. 

4.1.3 No alternative mitigations are used 

The DGEM always applied wires solutions—new feeders, transformer banks, and substations.  

The DGEM does not assess alternative mitigations such as DERs or load transfers that may 

provide mitigations at a lower cost in some cases. 

4.1.4 Overloads at the feeder are a good proxy for all overloads 

The DGEM only assesses loads at the feeder head (i.e., near the substation, where all load has 

developed).  This is similar to the methods of prior studies.111  It is possible that there are 

overloads at distant feeder segments with small conductors.  We assume that this situation is rare 

and relatively cheap to solve. 

4.2 Sources of uncertainty quantified in the DGEM 

Distribution upgrade costs are uncertain due to many factors.  We have attempted to quantify the 

impacts of four factors impacting uncertainty: personal EV adoption trends, fleet EV adoption 

trends, feeder costs, and substation costs.  We developed multiple EV adoption scenarios to 

bound the possibilities of spatial dispersion and the number of distribution assets that would 

exceed capacity.  We also developed a series of infrastructure cost scenarios to evaluate the 

impact of differing assumptions on the total upgrade cost estimates and rate impact estimates 

(see Appendix A.8). 

Figure 4-1 shows that the uncertainty in total cost (among quantified factors) is primarily a result 

of feeder cost uncertainty; better data on feeder costs are needed to improve future analysis on 

how these assets influence the total infrastructure upgrade costs.  Accurate modeling of feeder 

upgrades and upgrade costs is fundamental to pinpointing the total infrastructure costs relating to 

electrification.  Substation cost uncertainty is important but small relative to feeder cost 

 
110 CEC, 2022 Integrated Energy Policy Report Update, May 10, 2023 at 48-49.  Available at: 

https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-

report-update. 
111 For example, see EIS at 118: “Kevala calculated the coincident peak at each of the 8,256 feeders and compared it 

to the feeder rating to determine the overload.” 

https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update
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uncertainty.  Better fleet and personal vehicle modeling may not be a dominant factor in cost 

uncertainty. 

 

Figure 4-1.  Analysis of model variation over the study period. 

The DGEM scenarios for feeder upgrades included four different unit costs varying from 

$1,000,000 per mile to $2,800,000 per mile and four different lengths of feeder from 1.35 miles 

to 10.9 miles.  This wide variation in unit costs and feeder lengths – based upon empirical data 

provided by the IOUs – contributes to the large share of total model variation shown in Figure 

4-1.  However, without more data, the uncertainty of feeder unit costs cannot be reduced. 

4.3 Charging location 

Not all dimensions of charging location uncertainty were quantified in Section 4.2.  Additional 

dimensions of uncertainty are discussed below. 

The DGEM, at present, assumes that every vehicle in the state is always charged at its registered 

mailing address.  There are two main ways in which this differs from reality: First, it ignores the 

reality of public charging, which currently makes up a small but significant portion of all 

charging and may compose a smaller or larger portion of charging across California in the 

future.112  Second, our assumption ignores the fact that vehicles, particularly fleet vehicles, may 

operate out of a location other than the registered mailing address.  For example, a fleet may 

register its vehicles to an administrative office rather than an operations site.  These 

simplifications were made because data on public chargers and fleets are far sparser than the 

 
112 Gil Tal et al., Emerging Technology Zero Emission Vehicle Household Travel and Refueling Behavior (Carb 

Contract 16RD009), UC Davis Plug-In Hybrid & Electric Vehicle Research Center, April 19, 2021.  Available at: 

https://ww2.arb.ca.gov/sites/default/files/2023-

06/Emerging%20Technology%20Zero%20Emission%20Vehicle%20Household%20Travel%20and%20Refueling%

20Behavior%2816RD009%29.pdf. 

https://ww2.arb.ca.gov/sites/default/files/2023-06/Emerging%20Technology%20Zero%20Emission%20Vehicle%20Household%20Travel%20and%20Refueling%20Behavior%2816RD009%29.pdf
https://ww2.arb.ca.gov/sites/default/files/2023-06/Emerging%20Technology%20Zero%20Emission%20Vehicle%20Household%20Travel%20and%20Refueling%20Behavior%2816RD009%29.pdf
https://ww2.arb.ca.gov/sites/default/files/2023-06/Emerging%20Technology%20Zero%20Emission%20Vehicle%20Household%20Travel%20and%20Refueling%20Behavior%2816RD009%29.pdf
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registration dataset we used.  Furthermore, we assume that the load is placed on the 

geographically closest feeder, which may not always be the case. 

While these assumptions are not ideal, the impact they have on our result is likely small—

smaller than it might appear.  If we were attempting to plan specific feeder and substation 

upgrades, the precise location of charging is critical; however, for a total cost estimate, what 

matters is the quality of the aggregate.  As shown in Section 4.2, different models that place 

vehicles differently – including highly concentrated and highly dispersed – show that charging 

location makes up a relatively small portion of uncertainty in the total cost.  This does not bound 

the impact of these other effects, which are not measured in the DGEM, but the result suggests 

that the order of magnitude of spatial effects is small. 

4.4 Time of charge 

Our model assumes that each vehicle in California follows the same typical charging pattern.  In 

reality, individual vehicles will not always follow this charging pattern.  But as long as the 

charging aggregated to the feeder level approximates the statewide load shape, this departure 

from reality will not impact our cost estimates.  However, any remaining variance in this 

charging pattern on each feeder will not be captured, which will cause an underestimation of the 

variation in charging profiles.113  This effect is mitigated by the approach we took of using the 

worst-day non-EV load for each hour because EV load will tend to be near its average on the 

worst day. 

More generally, the DGEM assesses typical charging in terms of energy consumption rather than 

peak charger power.  For example, an HD truck would typically consume 80 kWh per day and be 

recharged at a peak load of 7.5 kW in our model.  In reality, it could be recharged using a much 

larger 350-kW EV supply equipment (EVSE) that could have significantly different impacts to 

primary and secondary distribution infrastructure.  The DGEM assumes that these effects 

average out at the feeder level because all 350-kW EVSEs will not tend to simultaneously 

operate. 

4.5 Infrastructure, limits, planning, and costs 

The DGEM directly assesses only primary distribution infrastructure needs, so the DGEM’s 

estimates of the costs of secondary distribution infrastructure are coarse, drawn directly from the 

EIS (by ratio).  Moreover, the DGEM only accounts for upgrades needed for distribution 

infrastructure, not sub-transmission, transmission, or generation infrastructure. 

 
113 In general, aggregating across the state will tend to remove variation in time of charge; therefore, in principle, 

adding variation when disaggregating will improve accuracy. 
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In addition to not directly assessing the cost of secondary distribution infrastructure, the DGEM 

does not assess the (potentially beneficial) impact that secondary distribution limits may have on 

electrification in practice.  These effects could limit the actual cost of distribution upgrades 

because secondary infrastructure can limit the peak power that needs to be delivered by primary 

distribution infrastructure.  For example, if the collective power ratings of service drops114 (or 

service panels) connected to a particular service transformer are not sufficient to overload it, one 

or more service drops would need to be upgraded before the service transformer would need to 

be replaced.  Similarly, if the load capacity of service transformers is collectively insufficient to 

overload a feeder or transformer bank, investments in primary distribution infrastructure could 

be delayed or obviated. 

How the limitations imposed by secondary infrastructure play out in practice is impossible to 

predict.  But because there are, at present, wait times to upgrade service and costs that the 

customer must bear, there is a potential that the customer opts for a different solution, such as a 

smart service panel115 that manages load to limit peak load to what the customer’s level of 

service allows.  A smart service panel could be cheaper and faster for customers and reduce IOU 

investments and could help provide customers with other benefits, such as supporting resiliency 

solutions. 

In contrast to the assumptions of the DGEM, the IOUs will perform an engineering study before 

upgrading a piece of distribution infrastructure.  An engineering study entails planning out the 

most cost-effective solution to resolve capacity exceedance on an asset, which could be 

significantly different from the DGEM’s solution of a typical infrastructure upgrade.  For 

example, the DGEM will trigger the installation of a new feeder if an existing feeder is 

overloaded.  In practice, an IOU might choose to switch load temporarily or permanently, 

particularly for small overloads.  Conversely, the DGEM will not trigger an upgrade unless the 

model calculates an overload, but in practice, an IOU might upgrade a feeder that is nearing 

capacity due to uncertainty in future loading conditions.  In general, if IOUs build more 

infrastructure than the DGEM deems necessary, total costs could be higher than modeled. 

Another limitation of the DGEM is its treatment of feeders operating at archaic distribution 

voltages, mainly 4-kilovolt (kV).  Because of the limitations of the available data, the DGEM 

assumes that any 4-kV overloaded feeder in PG&E’s service territory is upgraded to a 12-kV 

feeder, but does not assume so for SCE or SDG&E.  In practice, the infrastructure solution will 

be made on a case-by-case basis, considering, among other things, the voltages of nearby feeders 

such that load transfers remain possible.  Furthermore, we do not make any cost differentiation 

 
114 I.e., the wires connecting the service transformer to the service panel. 
115 For example, see the products of the home electrification technology company SPAN. 
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for these feeders, while in practice costs may be significantly different from the costs of more 

typical 12-kV primary distribution upgrades. 

Finally, the DGEM’s cost model is relatively coarse.  As discussed in Appendix A.8, we cannot 

directly assess the length of distribution feeder upgrades.  The length of upgrades is critical to 

cost and highly uncertain.  Moreover, we assume that the most common distribution voltage is 

used regardless of the number of units of infrastructure required.  For example, the DGEM 

would solve a 30 MW overload with three 12-MW (12-kV) feeders.  The IOU likely could 

instead install a single 34-MW (33-kV) feeder at a lower cost.  Substation costs, too, have a 

significant degree of cost uncertainty.  The cost of a substation can vary significantly with 

location.  Additionally, we assume that utility infrastructure design standards remain static over 

time, while typical unit sizes may increase under electrification (for better economies of scale) 

and unit costs may otherwise inflate.  We approach these limitations by applying high- and low-

cost scenarios, which lead to different total costs. 

One way to improve cost estimates is to develop a better database of historic costs for feeder and 

substation upgrades.  However, this is not a wholly satisfactory approach because experience is 

also not necessarily a reliable indicator of future upgrades.  This is because future upgrades may 

serve much more distributed loads than past upgrades (i.e., EVs at 100 houses versus one large 

industrial customer).  Therefore, in the future, a significantly greater length of each branching 

distribution feeder may need to be upgraded.  This could lead to future costs significantly 

departing from historical costs. 

Directly estimating the length of feeder upgrades can remove the need to assume a fixed length.  

A direct feeder length estimation can eliminate the most significant source of uncertainty in the 

unit cost but requires different and more resource-intensive methods than those applied in the 

DGEM.  Specifically, the model would need to assess load at a feeder segment or section level 

and calculate upgrade needs over the same unit length.  Such an assessment can, in principle, be 

accomplished in the EIS Part 2 by leveraging section-level infrastructure (i.e., ratings and 

hierarchy) data available through the IOUs’ Wildfire Mitigation Plans116 and the AMI data 

already used to model load. 

5 Key Findings 

We highlight the key findings of our work below. 

 
116 State of California Office of Energy Infrastructure Safety, Data Guidelines - Version 3.1, February 17, 2023 at 

37-38.  Available at: https://efiling.energysafety.ca.gov/eFiling/Getfile.aspx?fileid=53475&shareable=true. 

https://efiling.energysafety.ca.gov/eFiling/Getfile.aspx?fileid=53475&shareable=true
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5.1 Electrification will cost $26 billion through 2035 without additional mitigations 

The mass electrification of vehicles, buildings, and other sectors – which is crucial for meeting 

California’s decarbonization goals – will result in higher energy usage and necessitate 

distribution grid infrastructure upgrades.  Our study assessed the effects of projected load growth 

on the distribution systems of PG&E, SCE, and SDG&E from EV and non-EV sources through 

2035 and the associated costs of upgrades to the system to meet the projected load.  We found 

that load growth on the three IOUs’ distribution systems will necessitate upgrades on 1,100-

1,300 feeders and 310-340 substations.  We estimated the cost of upgrades to be $26 billion.  

This number has significant uncertainty and could be as much as $18 billion lower or $31 billion 

higher based mainly on the unit costs of upgrades.   

It is important to note, however, that no single study, particularly at this point in the 

electrification process, can definitively answer such a complex question as what the costs of 

distribution grid upgrades will be through 2035.  The DGEM provides a variety of forecasts in an 

attempt to bound some of the uncertainties involved.  These forecasts reasonably align with prior 

research, lending credence to both the DGEM and prior studies.  Nonetheless, our results cannot 

be seen as definitive.  Rather, our results support discourse on the costs and benefits of 

electrification in California  

5.2 Increased energy sales due to electrification may put downward pressure on 

residential rates 

The DGEM predicts that the increase in electricity sales from electrification may outweigh the 

costs of distribution investments, resulting in downward pressure on residential rates compared 

to 2023 rates.  Importantly, this decrease in rates is resilient to differing unit cost assumptions: 

We predict downward pressure on rates for SDG&E’s and SCE’s residential customers under all 

unit cost assumptions, and downward pressure on rates for PG&E’s residential customers under 

nearly all unit cost assumptions.  Decreasing rates are beneficial to California’s residential 

ratepayers, who experience the highest rates in the contiguous United States.117  Significantly, 

decreasing pressure on rates benefits all ratepayers, including those who choose not to (or cannot 

afford to) electrify by, for example, purchasing an EV.  Lower electric rates can also help to spur 

additional electrification as the upfront investment needed for customers to electrify becomes 

more cost-effective.   

Achieving this downward pressure on residential electricity rates is contingent upon five key 

model assumptions.  Downward pressure on residential rates might not be achieved if: 

 
117 Data reflect 2021 rates.  See U.S. Energy Information Administration, US Electricity Profile 2021, November 10, 

2022.  Available at: https://www.eia.gov/electricity/state/. 

https://www.eia.gov/electricity/state/
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6. EVs mostly charge in the evening, near peak hours (i.e., 6 p.m. to 10 p.m.), which would 

drive a higher peak load and, therefore, higher upgrade costs. 

7. Electric rates rise to cover additional electrification programs, such as deploying EV 

chargers.118 

8. New feeders and substations are more expensive than the DGEM estimates. 

9. Expected load growth due to electrification does not occur. 

10. Utilities build more infrastructure than is needed or build infrastructure in the wrong 

locations because upgrade costs will be higher. 

Good forecasting and planning are key parts of achieving this downward pressure on rates.  

Utility forecasts must be accurate and not lead to infrastructure over-building.  If overbuilding 

occurs, electrification could cause upward pressure on rates.  Utility distribution planning 

processes should, therefore, be based upon realistic forecasts.  Planning processes should be 

flexible and adaptable to provide for incremental infrastructure build and include offramps so 

that investment plans can be reshaped if it becomes clear that load will not appear as expected.  

This point is important for all IOUs but, based on our analysis, it is the most critical to PG&E’s 

customers who, as established, are the most vulnerable to rate increases under electrification. 

Even if electrification leads to downward pressure on rates, we cannot conclude that electric 

rates will fall.  Other utility costs, such as wildfire mitigation, clean energy procurement, or other 

climate change mitigations, could cause rates to rise in net.  Moreover, effective policies, 

particularly around rate design, are needed to ensure that potential rate decreases are realized.  

For example, if EV owners are allowed to select a rate that does not recover the marginal cost to 

provide electricity, electricity rates for other customers could still rise. 

5.3 Reducing the peak load could avoid $35 billion or more in distribution 

investments 

Our work on the DGEM has identified the key factors that drive distribution investments.  As 

discussed throughout our report, the time at which EV owners charge their vehicles is one of 

these key drivers.  If many EVs charge at the same time – or at the same time as significant non-

EV loads – the peak load on the system and the need for new distribution investments can be 

significantly higher. 

Although we only evaluated a single load profile for each vehicle class, we can provide a first-

order estimate of the investment that can be saved under current EV-TOU rates by comparing the 

DGEM’s result using the EIS’s cost with the EIS’s results.  This is because the EIS assumes 

 
118 Ratepayers do not typically fund BTM infrastructure such as EVSE because “the primary role of ratepayers [is] 

to fund utility-side infrastructure upgrades.”  See Decision (D.) 22-11-040, Decision on Transportation 

Electrification Policy and Investment, November 17, 2022 at 89-90, issued in R.18-12-006.  Available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M499/K005/499005805.PDF. 

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M499/K005/499005805.PDF
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much higher peak charging due to the assumption that EV-TOU rates are eschewed.  

Approximately 70 percent of the costs identified in the EIS – $35 billion – vanish under charging 

assumptions consistent with EV-TOU rates. 

Further work should be undertaken to understand in more detail the benefits and costs of 

mitigations such as encouraging EV owners to charge at times that could reduce the impact on 

the distribution grid.  This could be accomplished through the promulgation of EV-TOU rates. 

5.4 The present pace of primary distribution upgrades is nearly sufficient for 

future grid needs 

Prior research found that the pace of primary distribution upgrades needed in the future may far 

surpass the present upgrade pace for PG&E, which could cause future upgrades to bottleneck 

electrification efforts across California.119  Our study does not corroborate this result.  We predict 

that the pace of upgrades to meet future load growth will be approximately equal to the present 

planned pace of upgrades for each of the IOUs.  Furthermore, it is worth considering that new 

substations must already be planned well in advance because regulatory affairs and permitting 

can be lengthy.120 

5.5 Better data can improve study accuracy 

Reliable and readily accessible datasets make research possible.  The datasets required to 

forecast distribution upgrades and the associated costs generally lack depth and quality.  Our 

team had access to confidential datasets, such as utilities’ historic load data and vehicle 

registration data from the DMV, that made this study possible.  Nevertheless, there are several 

areas where data were notably absent.  For instance, data on medium- and heavy-duty fleets are 

sparse though the CPUC currently has a Freight Infrastructure Planning (FIP) process underway 

to improve data on that sector.121  Moreover, utility asset cost data were significantly lacking.  

Utilities do not use reference materials to establish the typical costs of upgrades.  They instead 

rely on engineering studies to forecast costs.  As such, the “typical” cost of a feeder upgrade has 

little meaning to the IOUs.  We relied on relatively small samples from historic feeder data to 

infer the length and cost of feeder upgrades.  Substations had similar – even more acute – issues 

since new substations are substantially rarer than new feeders.  Improvement in datasets, 

 
119 Salma Elmallah et al., Can Distribution Grid Infrastructure Accommodate Residential Electrification and 

Electric Vehicle Adoption in Northern California?, Environmental Research: Infrastructure and Sustainability, 

November 9, 2022 at 1.  Available at: https://doi.org/10.1088/2634-4505/ac949c. 
120 For example, SCE’s 2009 application to build the Alberhill substation, A.09-09-022, remains pending before the 

Commission. 
121 CPUC, Freight Infrastructure Planning, n.d.  Available at: https://www.cpuc.ca.gov/industries-and-

topics/electrical-energy/infrastructure/transportation-electrification/freight-infrastructure-planning. 

https://doi.org/10.1088/2634-4505/ac949c
https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/infrastructure/transportation-electrification/freight-infrastructure-planning
https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/infrastructure/transportation-electrification/freight-infrastructure-planning
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particularly cost datasets, would lead to a convergence in study results toward a consensus on the 

future cost of grid upgrades to meet electrification needs. 

6 Potential for Future Work 

This publication aims to continue the discourse on distribution planning, the future of 

California’s distribution grids, and electrification.  Research on load forecasting and 

infrastructure upgrade costs remains critically important for ratepayers, and further work is 

needed to deepen the shared understanding of these issues.  Below we outline the work that we 

intend to undertake, as well as possible contributions from other stakeholders. 

The Public Advocates Office plans to expand the DGEM to systematically evaluate the possible 

impacts of managed charging on infrastructure investments and electric rates across PG&E, SCE, 

and SDG&E.  Future studies, broadly, should also source more comprehensive cost data, 

evaluate alternatives to traditional wires investments, and improve data on MD and HD fleet 

locations. 

Cost data can be improved through collaboration with IOUs or through improved distribution 

grid modeling by third parties.  A more thorough collation of historic data, created with IOU 

support, could aid in the development of a statistically sound estimate of future upgrade costs.  

Alternatively, distribution grid models that are spatially explicit below the feeder level (i.e., to 

the line section or segment level) could be used to better estimate the length of feeder upgrades, 

which will significantly reduce cost uncertainty.  These models need to begin with load at the 

meter or service transformer level rather than the feeder level and assess feeder capacity on the 

section or segment level based upon granular geospatial data.  The IOUs could create such 

models; the model underlying the EIS appears to have this capability.122 

Future work should consider how alternative strategies can mitigate some of the upgrade costs.  

One such alternative is managed charging (e.g., through TOU rates or flexible 

interconnections123).  Another alternative is smart home panels that could mitigate the need for 

primary upgrades, secondary upgrades, and customer-side upgrades. 

Because the DGEM relies heavily on the IEPR for data and generally aligns with the IEPR in 

forecasting, as typified by growth in peak load, the DGEM can be loosely seen as an application 

of the IEPR to the IOUs’ distribution grids.  As such, the DGEM’s distribution cost forecasts are 

an appropriate source of distribution costs in whole-system models that consider generation, 

transmission, and distribution.  The DGEM’s results, data, or methods could be incorporated into 

the Pathways Model used in the CARB’s 2022 Scoping Plan. 

 
122 Most importantly, the EIS’s model is developed from meter-level data.  See EIS at 84. 
123 For a discussion of flexible interconnections, see Electric Power Research Institute, Understanding Flexible 

Interconnection, September 2018.  Available at: https://www.epri.com/research/products/000000003002014475. 

https://www.epri.com/research/products/000000003002014475
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We elected to calculate only the total cost of upgrades and the expected rate impact rather than 

customer bill impacts or total home energy cost.  We did not calculate customer bill impact 

because it has little meaning in the context of electrification; electric bills may go up but could 

be more than made up for by decreasing gasoline or natural gas bills.  Total home energy cost 

paints a fuller picture of the impacts of electrification on the finances of California’s IOU 

customers but would have required analysis that are beyond the scope of our model.  The CEC 

may be well-positioned to make this calculation. 

Better data on MD and HD fleet locations and charging behavior can improve the precision of 

grid models by more precisely placing the load from those EVs on the grid in space and time.  

The spatial dimension of MD and HD EV charging is less critical to the bottom-line result (i.e., 

the total cost identified) of the DGEM than unit cost and LD load shape assumptions.  

Nevertheless, more spatially accurate MD and HD adoption forecasts would improve accuracy 

and better align whole-distribution modeling with utility planning, which aims to identify the 

upgrade needs of specific assets. 

We have provided estimates of the cost of distribution grid upgrades, electric rate impacts, and 

the uncertainty as well as sources of uncertainty in those factors.  We have also identified 

important next steps for future grid assessments.  Understanding the degree of uncertainty in the 

DGEM and other studies can help decision makers and utilities to develop planning methods 

appropriate for a highly unpredictable future.  These contributions will help stakeholders to 

understand the impacts of electrification, make policy choices, and determine where future 

research is needed.
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Appendix A Detailed Methods 

A.1. Establishing the baseline total load forecasts, ratings, and topology 

The first methodological step entailed collating sets of data from California’s three major electric 

IOUs – PG&E, SCE, and SDG&E – and calculating hourly peak loads on each feeder within the 

three IOUs’ service territories.  The IOUs provided data in response to data requests.  The IOUs 

provided confidential planning data of differing origins and methodologies. 

PG&E supplied loading data for 2022 while SCE provided loading data for 2021, and SDG&E 

provided loading data covering the start of 2018 through September 2021.  Table A-1 

summarizes the key characteristics of the load data.  

Table A-1.  Utility loading data details. 

IOU Data range Observations per year 

PG&E 2022 576 (month, hour, weekday/weekend) 

SCE 2021  8,760 (hour interval) 

SDG&E 1/1/2018 – 9/31/2021 105,120 (5-minute interval) 

We first took the 99th percentile of the 5-minute interval data for each hour of each month from 

SDG&E’s data.124  This resulted in 288 observations per feeder for SDG&E,125 along with 8,760 

observations per feeder for SCE and 576 observations per feeder for PG&E. 

We then reduced each load dataset down to the maximum demand for each feeder in each hour 

(24 records per asset).  This was informed by the charging load shapes for LD EVs and for MD 

and HD EVs from the IEPR (see Section A.5).  The IEPR’s EV charging load shapes vary 

mostly by year and hour; we found day-to day variations in EV charging to be insignificant. 

We also received load ratings from the utilities in megawatts of real power capacity.  These 

limits were calculated from the ampacity ratings and voltage level and assume a power factor of 

1.0.  This tends to slightly overestimate the ability to transfer real power, which is, in reality, 

reduced by the flow of reactive power.  SCE provided planned loading limit data, whereas 

SDG&E and PG&E provided thermal limits.  PG&E applies higher thermal ratings to 

infrastructure in some areas during winter.  This is because the cooler air mitigates feeder and 

 
124 We initially tried using the 95th percentile value for each hour of the year (8,760 hours), but this produced many 

records with power exceeding infrastructure capacity.  It appears that this original method was not sufficient to 

remove erroneous records (or, perhaps, values representing real, unusual switching events). 
125 SDG&E provided 288-hour ICA data for 39 feeder with no available SCADA data.  We combined the 288-hour 

files provided by SDG&E with the other data at this stage. 
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transformer overheating.126  To account for this, for PG&E only, we used 48 loading records per 

feeder instead of 24 loading records.  This refers to 24 loading records for summer (April – 

October) and 24 loading records for winter (November – March).  We took the same approach 

with PG&E’s rating data – each infrastructure with a cold-weather rating received a summer 

value and a higher winter value. 

We reduced our dataset down to all feeders for which we had ratings and loading data.  We 

excluded all substations and feeders for which the max load was exactly zero.  We kept all 

substations that were loaded by any feeders and had ratings.  We used the same IOU data to 

create infrastructure topologies and to track infrastructure ratings.  It is worth noting that feeder 

attrition (either in this step or when aligning this set of data with the feeder data associated with 

vehicles) leads to an underestimation of the load on substations.  This became apparent in the 

modeling process when correcting some misaligned names increased substation utilization (e.g., 

Peoria Flat 1701 in one dataset might be Peroria 1701 in another). 

The dataset reduction process resulted in the number of pieces of infrastructure shown in Table 

A-2.  There was a substantial amount of attrition due to pieces of infrastructure appearing in one 

dataset and not in others.  The IOUs indicated that the Grid Needs Assessment (GNA)127 

generally provides the most up-to-date planning information.  Other datasets might include data 

from retired feeders, idle feeders, planned feeder installations or feeders with no load.  For 

example, of the 4,468 feeders that SCE provided, 4,252 are included in the GNA.  Of these, 

4,239 have loading data (i.e., 13 have not operated long enough to provide load data).  The 

DGEM captured 4,191 (or 99 percent) of the 4,239 feeders with loading data.  Additionally, for 

PG&E specifically, we eliminated all low voltage (≤ 4.16 kilovolt) substations.128 

Table A-2.  Initial and final infrastructure counts after cleaning IOU data and keeping only records 

with loads and ratings. 

 Initial Dataset Final Dataset 

IOU Substations Feeders Substations Feeders 

PG&E 714 3,417 633 3,128 

SCE 927 4,468 816 4,191 

SDG&E 109 835 109 818 

 
126 While this is true for infrastructure in general, it is relevant mostly for PG&E because its territory contains colder 

regions that are winter peaking. 
127 The GNA is a CPUC mandated process in which the major electric IOUs annually report which infrastructure 

across their transmission, generation, and distribution systems need to be upgraded and opportunities for upgrade 

deferrals.  For more information, see CPUC, Distribution Planning, n.d.,  Available at: 

https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/infrastructure/distribution-planning.  
128 We did this because the connectivity map available for PG&E allowed us to re-attribute this load to the upstream, 

higher voltage substations.  This approach is consistent with the PG&E’s trend of upgrading these systems to higher 

voltages when more capacity is needed. 

https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/infrastructure/distribution-planning
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More relevant than the lost feeders and substations is the lost EV load (i.e., from EVs which we 

identify to be in an IOU service territory but for which we cannot calculate a feeder or substation 

upgrade cost).  This is discussed further in Appendix A.2.1. 

The following subsections provide additional details specific to the datasets from each IOU. 

A.1.1. PG&E 

The DGEM used the following information provided by each IOU: substation and feeder ratings, 

historical loading data, and hierarchy information (i.e., how infrastructure is connected; also 

referred to as topology or connectivity).  Specifically, PG&E provided us with the following 

information: 

1. Load ratings at the levels of feeder, bank, and group bank for summer and winter.  These 

files included hierarchical information (i.e., parent infrastructure identification number). 

2. 95th percentile 576-hour (12 months times 24 hours times weekday/weekend) loading for 

feeders.  According to PG&E, these data are from 2022.  These profiles were created by 

PG&E by scaling historical meter data to the net peak load on the substation circuit 

breaker for each feeder. 

3. The length of each feeder. 

We calculated the total present substation capacity by summing bank capacities across each 

substation.  PG&E conveyed that this type of information is not useful for distribution planning 

because loading of each bank is important for reliability.  While we understand PG&E’s 

concerns with this approach, we use this information not for planning substation builds but to 

estimate future costs, as discussed in more depth in Appendix A.1.4. 

PG&E’s infrastructure in the San Francisco Bay Area has some notable hierarchical structures.  

For example, PG&E’s Potrero substation feeds 12-kV feeders and 12-kV tie-lines.  The 12-kV 

tie-lines feed 12-kV feeders connected to the SF E substation (which are, therefore, not fed by 

the transformer banks in the SF E Substation).  The SF E substation also feeds 4-kV feeders 

through 12-to-4-kV transformers.  Finally, one of the 12-kV feeders wired into the SF E 

Substation feeds a 12-to-4-kV transformer in the Castro substation which in turn feeds a 4-kV 

feeder. 

To use the Bay Area feeder data in the DGEM study, the hierarchical infrastructure necessitated 

either restructuring the entire topology analysis to allow arbitrary levels of hierarchical 

information or introducing simplifications to flatten into the typical distribution substation-to-

feeder hierarchy.  We opted for the latter approach, as depicted in the lower half of Figure A-1.  

While a significant amount of information is lost, this information is inconsequential since 

PG&E is unlikely to expand its 12-to-4-kV substations.  Instead, consistent with PG&E’s (and 

SCE’s) general approach of eliminating 4-kV feeders during upgrades, it is likely that PG&E 

would replace the 4-kV feeders with 12-kV feeders and eliminate the corresponding substations, 

if practical.  Our cost accounting approach is consistent with this interpretation though it does not 
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account for these costs being higher than typical, in the case they are.  This approach eliminated 

all of PG&E’s 4-kV substations from the DGEM study. 

 

Figure A-1.  Full hierarchy (top) and assumed hierarchy (bottom). 

One shortcoming of our approach is that substation hierarchies above 4 kV are not cleanly 

mapped.  For example, a 21-to-12 kV substation should be dealt with using the full hierarchy.  

Since the full hierarchy approach added too much complexity to the DGEM, we followed load 

from the feeder to the 12-kV substation but not back up to the 21-kV substation that feeds it.  In 

practice, there are very few transformers (i.e., 15 banks and two group banks) with both high-side 

and low-side voltages at distribution voltages above 4 kV (between 12 and 44 kV) in PG&E’s 

service territory. 

A.1.2. SCE 

SCE provided us with the following information: 

1. 8,760-hour distribution feeder net load profiles from 2021, with hierarchy information 

(i.e., feeder-substation connections). 

2. A list of feeder and substation ratings that also includes hierarchy. 

3. A report of feeder lengths. 

We used the hierarchical data embedded in the feeder and substation ratings (rather than 

hierarchical data in the load profiles) to determine the distribution system topology.  Using the 

hierarchy data embedded in the net load profiles was untenable because the naming conventions 

of the substations in load data did not match the naming conventions in the rating data.  For 

example, a high-side voltage (included in a substation name) might be 66 in the rating data and 

69 in the loading data. 

A.1.3. SDG&E 

SDG&E provided the following information:  
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1. Feeder net load at 5-minute interval at the approximate connection of the feeder to the 

substation.  Data spanned the period January 1, 2018 through the third quarter of 2021. 

2. Each feeder’s gross load capacity, in MW, the feeder length, and the substation name to 

which the feeder is connected, current as of August 15, 2022. 

3. Aggregate adjusted transformer ratings in MW for each substation, current as of August 

15, 2022. 

We mapped the hierarchy using both the provided GNA (gross load capacity) data and the 

SCADA data.  While there were some records that did not overlap, only one conflicted: Feeder 

138 connects to Vine in the GNA data and SCADA data show that it switched from Kettner to 

Vine in August 2018.  Therefore, we removed Kettner data to avoid overrepresenting load on 

Vine. 

A.1.4. Data Limitations 

The feeder loading data provided by all three IOUs, combined with the EV uptake modelling and 

geospatial data, serves as the basis for the rest of the analysis.  As mentioned above, these data 

were acquired through data requests.  Each IOU submitted data and written responses to each of 

the data requests.  In addition to providing contextual information for their data, the IOUs also 

provided several notes and limitations to their data.  The above sections describe the data we 

received for each of the IOUs, while this section focuses on caveats and limitations to the data 

we received and how this information may affect the DGEM. 

In relation to the feeder data, we requested the feeder identifiers and names, hourly load data for 

a year, feeder capacity, and feeder length.  For substations, we requested the substation 

identifiers and load capacity. 

SDG&E and PG&E both noted that their provided load capacity is the thermal rating of the 

feeder gateway converted from amperage to MW with a power factor of one.  This tends to 

overestimate the ability to transfer real power, which is reduced by the flow of reactive power. 

SDG&E noted that some overloads were erroneously recorded due to conversion from amps to 

MW.  Another overload was caused by SDG&E not providing all equipment at a substation 

which, therefore, made our substation capacity lower than the actual capacity available.  Like 

PG&E and SCE, there were some discrepancies between data sources due to certain feeders 

being energized after the data collection occurred.  These data were sometimes replaced by data 

modeled by the IOUs.  

PG&E noted that its net load peak data do not include generation by the largest DER on each 

feeder.  This results in an overestimate of the net peak load for PG&E, which results in an 

overestimate of utilization in the DGEM in turn. 

A key challenge of PG&E’s data is that many of its feeders and substation transformers exceed 

rated capacity in 2021 and 2022.  This is due to two reasons: 1) genuine overloads that are 
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recognized by PG&E and generally have planned solutions in flight, and 2) forecasting or data 

issues.  Since some but not all PG&E’s overloads are valid, we included the overloads as 

reported and consider costs with and without the impacts of those overloads in our final cost 

estimates. 

In addition to noting some of the reasons that its feeders may be at or above capacity, PG&E also 

noted that deficiencies inside a substation will be missed if all substation transformers are 

summed to obtain a “substation capability.”  If one transformer is loaded beyond normal 

capability and another is not fully loaded, work may be required to reconfigure feeders or add 

feeders to the more lightly loaded transformer to take load from the overloaded transformer.  

Therefore, the DGEM’s use of “substation capacity” may miss intricacies of loading within the 

substation (i.e., assume a substation is not at capacity when a transformer bank within the 

substation may be).  We acknowledge that we may miss some of the distribution upgrade costs 

by not factoring the individual capacity of all the equipment within a substation. 

SCE did not specify any limitations to its feeder and substation data, but there were some 

discrepancies in the feeder and bank data that SCE originally provided.  SCE noted that the data 

may vary from team to team depending on the planning needs, so it provided an updated 

document noting which feeders and banks should be excluded from the analysis.  Additionally, 

several of SCE’s feeders and substation banks were above their rated capacity in the provided 

data, not to the scale of PG&E’s, but still at a significant rate.  SCE noted that many of these 

exceedances were due to data quality issues that are not representative of true peak load 

conditions.  However, some of these exceedances occurred due to temporary or permanent 

transfer of load from adjacent feeders to alleviate loading.  Other feeders have legitimate 

overloads for which SCE has mitigations in flight. 

A.2. Calculating vehicle population by class in California  

The energy needs of electric vehicles differ most significantly by vehicle class.  For that reason, 

our analysis aggregates vehicles by class.  To determine the number of total vehicles in 

California, we acquired confidential vehicle registration data from the DMV with registrations 

dated through December 31, 2021.  The data include addresses of the registered vehicles, vehicle 

class, ownership (e.g., personal, commercial, government), and drivetrain (e.g., gasoline, 

electric).  Each of these vehicle characteristics informed our analysis.  The dataset contains a 

total of 31,035,599 registered vehicles.  We used the CEC’s vehicle classification system – 

which classifies vehicles by their gross vehicle weight rating (GVWR) – to categorize all the 

registered vehicles in the DMV data.129  For instance, LD vehicles have a GVWR up to 10,000 

pounds, MD vehicles have GVWR up to 26,000 pounds, and HD vehicles have a GVWR of 

 
129 CEC, Medium- and Heavy-Duty Zero-Emission Vehicles in California.  See the section “Understanding Vehicle 

Weight Class” on the webpage. 
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26,001 pounds. and above.  We use the resulting total number of vehicles in each class as one of 

the bases for estimating EV load in subsequent steps.  

A.2.1. Associating registered vehicles with proximal feeders  

In order to accurately estimate EV energy demand over time and space, we had to know the 

exact locations where EVs are expected to charge and the demand that EV charging will place on 

the distribution system.  We assumed that charging would take place at each vehicle’s 

registration address.  We employ this assumption for two reasons: 1) our study draws upon 

vehicle registration data, and 2) approximately 80 percent of charging occurs at the household.130  

As such, to the best of our knowledge, our study is the first to estimate energy demand due to 

increased EV adoption and the costs required to upgrade distribution infrastructure to meet EV 

charging demand using DMV data, which is more granular and geographically precise than other 

datasets.   

As a first step, we geocoded the DMV dataset by matching each address to geographic latitude 

and longitude coordinates using ESRI StreetMap Premium.  Geocoding is the process of 

transforming a description of a location, such as an address, to geographic coordinates that can 

be mapped to a location on the Earth’s surface.131  The positional accuracy of geocoding can 

vary greatly depending on many factors, including but not limited to: the vintage and quality of 

the reference data that the locator is built on, the quality of the input address data, and the 

geographic region.  Since the majority of the DMV registration addresses fell in relatively urban 

or suburban residential areas and the quality of the DMV address data was high, the geocoding 

process for the DMV dataset produced a high match rate from address to latitude and longitude.  

However, not all matches were utilized in our study’s resultant Study Area.  We eliminated 

records that were unable to be geocoded due to poor address quality (e.g., typos, misspellings, 

duplicates, P.O. boxes, and redactions), as well as records for which their positional accuracy 

was not considered granular enough for the nature of the DGEM analysis. 

Approximately 899,380 vehicles in the DMV dataset were registered at an address that could not 

be geocoded.  We removed the vehicles that could not be geocoded from the total registered 

vehicle count, which resulted in the functional number of vehicles that we could use in the study 

dropping from 31,035,599 to 30,120,564.  See Table A-3 for more information.  

Next, we associated the locations of EVs with feeders within the service territories of the three 

major IOUs, which cover the majority of California.  Feeders provide the electricity from the 

primary distribution system to the houses where electric vehicles are assumed to charge.  As 

 
130 Michael Blonsky et al., Incorporating Residential Smart Electric Vehicle Charging in Home Energy Management 

Systems, National Renewable Energy Laboratory, April 2021 (Blonsky et al.) at 1.  Available at: 

https://www.nrel.gov/docs/fy21osti/78540.pdf. 
131 Environmental Systems Research Institute, What’s Included in the Geocoded Results, n.d.  Available at: 

https://pro.arcgis.com/en/pro-app/latest/help/data/geocoding/what-is-included-in-the-geocoded-results-.htm. 

https://www.nrel.gov/docs/fy21osti/78540.pdf
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described above, all EVs are presumed to charge at the registered address found in the DMV 

vehicle registration dataset, and every address represents a building that is drawing electricity 

from the grid for household and related purposes.  We assume that the closest feeder to a 

building with a registered address supplies the electricity to that building.  This assumption is 

justified by the fact that there is typically only one feeder that supplies energy close to a 

residence.  Nevertheless, in some regions like compact urban environments, there could be 

multiple feeders within proximity to one or more buildings that could result in a misalignment 

between a registered address and the feeder that serves the building.  Due to the granular level of 

this analysis, the number of misalignments was observed to be a very small phenomenon that 

was far outweighed by the quantity of valid associations.  

We focused the DGEM analysis on EV adoption trends and the resulting impacts on energy 

demand within the service territories of PG&E, SCE, and SDG&E.  These three electric utilities 

in aggregate supply 82 to 83 percent of power in the state132, as shown in Figure A-2, and their 

service territories contained 77 percent of all registered vehicles in California in 2021.  In order 

to isolate the EVs within the service territories of PG&E, SCE, and SDG&E, we clipped the 

geocoded DMV data to the IOU service territory boundaries.  We used the CEC’s publicly 

available shapefiles for the three IOUs’ service territories.133 

 

Figure A-2.  Share of energy demand in the combined service territories of PG&E, SCE, and 

SDG&E (Three IOU). 

After geocoding the registered vehicles, we spatially joined the geocoded data with the primary 

distribution feeders provided by the IOUs’ Quarter 3 2022 Quarterly Data Reports.134  This 

 
132 2021 CED, Baseline Forecast files for the three IOUs and the state under the Baseline Demand Forecast Files.  

This is based upon analysis of the 2021 Baseline Demand Forecast files for State / PG&E + SDG&E + SCE.  
133 CEC, Electric Load Serving Entities.  
134 The primary distribution feeder data came from the confidential versions of the Wildfire Mitigation Plans of 

PG&E, SCE, and SDG&E.  We only included feeders for which we also had load and rating data.  The publicly 

available versions are available: PG&E, 2022 Quarterly Reports.  Available at: 

https://www.pge.com/en_US/safety/emergency-preparedness/natural-disaster/wildfires/wildfire-mitigation-

plan.page; SCE, Wildfire Mitigation Plan Update & Related Documents.  Available at:  

https://www.sce.com/safety/wild-fire-mitigation; SDG&E, 2022 Wildfire Mitigation Plan, February 11, 2022.  

Available at: https://www.sdge.com/2022-wildfire-mitigation-plan.  The asset data used in this research came from 

the Quarter 3, 2022 submittal. 

https://www.pge.com/en_US/safety/emergency-preparedness/natural-disaster/wildfires/wildfire-mitigation-plan.page
https://www.pge.com/en_US/safety/emergency-preparedness/natural-disaster/wildfires/wildfire-mitigation-plan.page
https://www.sce.com/safety/wild-fire-mitigation
https://www.sdge.com/2022-wildfire-mitigation-plan
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process associated each vehicle record to the closest distribution feeder as the crow flies.135  

Then, we further filtered the vehicle data based on the number of feeders with a known location, 

rating, connectivity to a substation, and existing load data, as described in Appendix A.1.  The 

result of these reductions from the total DMV dataset to the matched dataset, to the IOU area, to 

the Study Area are shown in Table A-3. 

Two types of duplicates were encountered in the DMV database.  For true duplicates, which 

were identical in every field, we retained one record.  For duplicates with different addresses but 

the same VIN, we counted each VIN once in the Total column but removed all of them at the 

Matched stage.  This aligns with our approach for tied geocoding matches, which are similar 

because each VIN would geocode to multiple addresses. 

Table A-3.  Funneling of DMV data into the DGEM’s Study Area.  Summary values are provided 

as used in the study and for the entire dataset. 

Class IOU Total (T) Matched (M) 3-IOU (I) Study Area (S) S/I S/M M/T 

LD All 30,013,130 29,185,643 22,498,935 21,906,860 - 75.1%  

MD All 661,923 611,871 460,185 450,353 - 73.6% - 

HD All 360,546 323,050 243,557 238,574 - 73.9% - 
         

All PG&E - - 9,896,459 9,765,311 98.7% - - 

All SCE - - 10,469,094 10,208,696 97.5% - - 

All SDG&E - - 2,837,124 2,621,780 92.4% - - 
         

All All 31,035,599 30,120,564 23,202,677 22,040,146 97.4% 75.0% 97.1% 

Table A-3 also shows three important ratios. 

1. S/I indicates the share of vehicles in the area comprising the three IOUs’ combined 

service territories (I) (e.g., 97.4 percent) that we consider in our model.136 

2. S/M approximates the share of vehicle sales in California that occur within the Study 

Area (S).137 

3. M/T reflects the share of vehicles from the 2021 DMV registration dataset with known 

addresses (i.e., 2.9 percent of records did not match with an address, a trend which we 

expect to hold within the Study Aea.  This trend leads to the assumption that 2.9 percent 

of vehicles in each of the IOU’s service territories have an unknown location).138 

 
135 "As the crow flies” refers to the straight line distance from one point to another.  In this case, one point is the 

geocoded registration address, and the other is the closest point on the nearest distribution feeder to the geocoded 

registration address. 

136 We divided the study’s total cost and energy forecast by S/I (for each IOU) to estimate the IOU total cost and 

energy impacts from our study result. 
137 We divided the statewide vehicle deployment forecasts by S/M (by class) to determine how many vehicles to 

allocate into the Study Area. 
138 We divided 2021 TE demand by M/T before subtracting TE demand from baseline load to calculate baseline load 

without TE. 
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We use these ratios later in the analysis as correction factors for the changes we made to the 

initial DMV vehicle registration dataset to harmonize with the constraints of other datasets.  

As noted above, a major assumption of the study is that all vehicles charge at their registration 

addresses.  For LD vehicles, this assumption reflects the charging behavior of most drivers: 

recent data indicate that 80 percent of early LD EV adopters charge at home.139  The MD and 

HD sector, however, has different charging characteristics, but there are limited literature and 

data on the sector’s charging behavior.  Research indicates that MD and HD vehicles are 

expected to predominantly charge at their home base.140  Based on those data, we assumed in our 

analysis that MD and HD electric vehicles also would charge at their operating center.141  We 

assume that the registration addresses of the MD and HD vehicles are the operation centers even 

though the addresses might actually be the administration offices.  The implications of this 

assumption are discussed in Section 4.3. 

These assumptions demonstrated odd outcomes in a few cases, which provide insight into 

possible improvements but does not significantly impact the modeling result.  For example, in 

the DGEM, one feeder in San Francisco (Hunters Point 1101) at times showed more forecasted 

2021 load from EV charging than total measured load.  Our methods allotted nearly 300 electric 

buses to the Hunters Point 1101 feeder, likely because it is the closest feeder to the registration 

address of SF’s electric bus fleet.  We also observe that since these buses run mostly on wires, 

their demand load shape will be quite different than the general MD and HD load shape that we 

employ in the DGEM, and the buses’ location of load will be based upon the interconnection 

point of the city’s overhead bus lines, not the buses’ registration address.  Nevertheless, while 

accurate spatial load forecasting is critical in a grid needs assessment, we do not attempt to fix 

them on an individual basis for the type of large-scale total-cost estimate we yield in the DGEM.  

Future studies may seek to improve spatial load forecasting.  See Section 4 and Appendix A.3.6 

for further discussion of MD and HD fleet data improvements. 

Though the limitations are important, the assumption that vehicles charge at their registration 

address may limited issues for the following reasons.  First, if a vehicle charges near its 

registration address – i.e., on the same distribution feeder – it makes no difference in the DGEM 

compared to charging at the registration address itself.  For example, if an apartment building 

resident charges an EV down the street, it is likely that the load impact from charging would be 

identical to the load impact that the DGEM predicts.  Second, the clustering of EVs on a feeder is 

 
139 Blonsky et al. at 1.  
140 MJB&A at 6, and 17.  
141 A terminal serves as a hub for fleet management activities, such as dispatching drivers, scheduling maintenance, 

and managing cargo.  Terminals may also provide facilities for drivers, including parking areas, restrooms, and 

break rooms.  Depending on the size and scope of the fleet, a terminal may be a large complex with multiple 

buildings and extensive infrastructure, or it may be a smaller, more basic facility. 



The Public Advocates Office 58 

more important than the precise location of EVs on a feeder.  On average, a large fleet load on 

feeder A would not look notably different cost-wise from a large fleet on feeder B.  Therefore, if 

some large fleets are at a different address than their registration address, the bottom-line 

upgrade costs may be the same.  Random feeder-to-feeder variability will tend to wash out over 

the large number of fleets in the DGEM.  Nevertheless, systematic differences – such as if 

industrial areas where fleets are located tend to have less capacity than business parks where 

vehicles are registered – in the DGEM could underestimate the total number of overloads and the 

resulting cost. 

A.2.2. Classifying registered vehicles by class and ownership 

In order to make data usable across datasets, we made a new dataset of vehicles matched to 

geocoded addresses and to feeders with load and rating data within the service territories of 

PG&E, SCE, and SDG&E (i.e., the Study Area, S).  The new dataset excluded registered 

vehicles that could not be geocoded, vehicles outside the IOUs’ service territories, and vehicles 

on feeders with incomplete data.  For more information, see Appendix A.2.  

We applied different propensity models to fleet vehicles and personal vehicles, so in addition to 

classifying vehicles by class, we also classified vehicles by ownership.  Table A-4 summarizes 

the results of classification by class and ownership. 

Table A-4. Share of vehicles by class and ownership category.   

Ownership LD MD HD MD + HD 

Personal 92.7% 16.9% 6.2% 13.2% 

Commercial 6.6% 76.2% 82.1% 78.2% 

Gov - transit 0.0% 0.6% 2.1% 1.1% 

Gov - other 0.7% 6.3% 9.5% 7.5% 

Note: This table illustrates the percentage breakdown of vehicles 
by class and ownership category within the Study Area (S). 

 

A.3. Predicting LD, MD, and HD vehicle adoption using propensity 

modeling 

To forecast load increases on feeders and substations due to EV charging, we designed a 

spatially explicit methodology for determining where EVs will appear on the grid every year 

between 2023 through 2035.  First, we estimated the number of EVs expected to be in 

California’s vehicle population in each year.  Second, we developed a series of propensity 
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models that predicted which conventional vehicles142 from each class across the Study Area 

would become EVs annually until the established EV population set forth in the IEPR was 

reached.  We used one set of models for non-fleet vehicles (i.e., personal LD vehicles) and 

another set for fleet vehicles (i.e., all medium- and heavy-duty vehicles, as well as non-personal 

vehicles.  Non-personal vehicles consisted of government and commercial vehicles).143  Each 

model result was calculated in parallel with the others to create a set of scenarios that captured 

the range of possibilities for needed distribution system upgrades and total infrastructure upgrade 

costs. 

A.3.1. Vehicle population through 2035  

To assess the amount of load that EV charging will place on the grid, we needed to know how 

many EVs will be added to the state’s vehicle population annually through 2035.  The CEC has 

estimated the number of BEVs and PHEVs per vehicle class144 that will be on the road in 

California between 2023 through 2035.145  We assume that the electric vehicles that the CEC 

predicts will be on the road annually are replacing the same number of conventional vehicles of 

the same subclass.  We assume that every electric vehicle (i.e., BEV and PHEV) entering the 

state’s annual vehicle population based on the IEPR’s projections take the place of a 

conventional vehicle of the same subclass registered in the DMV dataset.  Once a vehicle 

becomes an EV, it is assumed to remain an EV for the remainder of the study period.  Moreover, 

we assess only new vehicle purchases and ignore transfers of EVs (along with the corresponding 

replacements of EVs).   

To generate annual EV populations that are appropriate for the geographic area of our study, we 

multiplied the IEPR’s forecasted populations by the share of vehicles with known addresses that 

are in the Study Area by vehicle class (e.g., S/M for LD vehicles is 75.1 percent; see Table A-3).  

Next, we split the IEPR’s forecast of annual LD vehicle population into non-fleet and fleet 

vehicles based on the percentage of LD vehicles in the 2021 DMV dataset that are registered as 

categories other than personal (this step allocated 92.7 percent of LD vehicles to personal, or 

non-fleet; see Table A-4).  As described in Appendix A.3.3, these vehicles were fed into 

different propensity models.  

 
142 Conventional vehicles exclude only BEV and PHEV by our categorization.  This results in the inclusion of 

typically non-conventional vehicles like hydrogen, but the vehicles of this type in the 2021 DMV dataset are small 

in number. 
143 We elected not to consider personal MD and HD vehicles within the personal model for the following reasons: 1) 

it is likely that many of these vehicles are personally owned but used for commercial purposes, 2) the share of these 

vehicles registered as non-personal is minimal, and 3) the relative impact of MD and HD compared to LD is 

minimal. 
144 The IEPR forecasts population at subclass (e.g., compact car, heavy pickup truck, and shuttle bus), but we used 

these data at the class level (LD, MD, HD). 
145 Data provided by CEC on April 20, 2023.  These are internal model data that are not published. 
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A.3.2. Propensity models 

We developed six propensity models to capture a diversity of spatial distribution scenarios for 

EV adoption and to compensate for some of the uncertainty in the spatial deployment of EVs.  

Two of the models were applied to non-fleet vehicles (i.e., personal LD vehicles) and four were 

applied to fleet vehicles (non-personal LD vehicles plus all MD and HD vehicles).146  Below, we 

outline the justification and mechanics of each propensity model.  The propensity models 

generated a score for each conventional vehicle to determine the likelihood that the vehicle 

would be replaced by an EV of the same subclass in the future.  Second, we elaborate on how the 

propensity scores were applied to determine which conventional vehicles become EVs until the 

annual EV population per vehicle category (fleet or personal) was reached.  Third, we reveal the 

results of the propensity models and the spatial depiction of EV distribution in the Study Area. 

A.3.3. Personal propensity model variables 

We used two LD vehicle propensity models.  The first model reflects current conditions, which 

principally favor EV adoption in wealthier and more highly educated areas.  We applied a 

logistic regression on the 2021 DMV registration dataset to assess the influence of current 

factors147 that impact adoption and then utilized those variables to assign a propensity score to 

each conventional vehicle.  The second model produced a more even distribution of LD EVs 

across the Study Area, reflecting the potential longer-term results of state policies driving EV 

affordability and widespread adoption.  In this scenario, we assume that the current factors that 

determine EV adoption are not the driving factors of adoption between 2023 and 2035.  For that 

reason, we assigned each vehicle a random adoption propensity score for EV adoption.  These 

two forecasts are likely to bound what will happen in reality: the propensity scoring method 

based on current trends will supply a greater clustering of EV adoption while the random 

propensity scoring method will provide a more spatially dispersed LD EV adoption.  The 

regression model does not result in the densest possible clustering of EVs148 but is almost 

certainly denser than what will actually occur because historically important factors will lose 

significance as EV prices come down and EVs become more commonplace. 

A.3.3.1. Personal regression score 

Several factors have been correlated with personal LD EV adoption.  We selected factors that 

corresponded to higher rates of EV adoption and were available at a spatial scale that 

corresponded to the household scale of the DMV dataset (see Table A-5).  For these reasons, we 

considered the following factors in the LD propensity model: income, commute length, 

 
146 The EIS splits vehicles along the same lines.  See EIS at 109. 
147 We based one of the light-duty propensity models on available literature that demonstrates factors associated with 

light-duty EV adoption.  See Appendix A.3.3.1 for more relevant literature.   
148 The densest clustering of EVs would have resulted from converting conventional vehicles to electric vehicles 

substation-by-substation and feeder-by-feeder.   
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educational attainment, home ownership, building type, and household size.  We utilized the 

U.S. Census Bureau’s five-year American Community Survey (ACS) data for 2016-2020 and the 

DMV vehicle registration dataset.149  The ACS provides demographic and socioeconomic factors 

at the Census block group level, the most granular scale provided by the Census Bureau and the 

most reliable dataset at a scale closest to the household scale.  The Census Bureau defines a 

block group as a statistical division of census tracts that generally contain between 600 and 3,000 

people.150  Table A-5 summarizes the factors considered in the DGEM’s propensity regression 

model for personal vehicles, along with their justification, source, and the spatial scale at which 

data were available. 

Table A-5.  Factors included in the DGEM’s propensity regression model. 

Factor Justification Literature Citations Data Source 
Spatial 
Scale 

Household 
income 

Studies have correlated higher 
income with higher rates of EV 

adoption.  

Coffman et al., 2018; 
Gehrke et al., 2021; 

Langbroek et al., 2017; 
Westin et al., 2018.151 

ACS 5-year 
estimate 

(2016-2020) 

Census 
block 
group 

Educational 
attainment 

Studies have linked higher rates 
of education with an increase in 

EV ownership. 

Langbroek et al., 2017; 
Coffman et al., 2018; 
Westin et al., 2018.152 

ACS 5-year 
estimate 

(2016-2020) 

Census 
block 
group 

Home 
ownership 

Homeownership has been 
connected to EV adoption. 

Campbell et al., 2012; 
Tiwari et al., 2020.153 

ACS 5-year 
estimate 

(2016-2020) 

Census 
block 
group 

 
149 U.S. Census Bureau, 2016-2020 5-year ACS data.  Available at: https://data.census.gov/.  At the time of carrying 

out the DGEM methods, the 2016-2020 5-year ACS data were the most up-to-date dataset available.  
150 U.S. Census Bureau, Glossary, n.d.  Available at: https://www.census.gov/programs-

surveys/geography/about/glossary.html#par_textimage_4.  We used the definition for Block Group from the 

glossary.  
151 See Michael Coffman et al., Who Are Driving Electric Vehicles? An Analysis of Factors That Affect EV Adoption 

in Hawaii, The Economic Research Organization at the University of Hawaii, May 30, 2018 (Coffman et al.).  

Available at: http://www.ourenergypolicy.org/wp-content/uploads/2018/06/Hawaii-EVs.pdf; Steven R. Gehrke et 

al., Patterns and Predictors of Early Electric Vehicle Adoption in Massachusetts, International Journal of 

Sustainable Transportation, June 1, 2022 (Gerhke et al.).  Available at: 

https://www.tandfonline.com/doi/abs/10.1080/15568318.2021.1912223; Joram Langbroek et al., Electric Vehicle 

Users and Their Travel Patterns in Greater Stockholm, Transportation Research Part D: Transport and 

Environment, May 1, 2017 (Langbroek et al.).  Available at: https://doi.org/10.1016/j.trd.2017.02.015.; and Kerstin 

Westin et al., The Importance of Socio-Demographic Characteristics, Geographic Setting, and Attitudes for 

Adoption of Electric Vehicles in Sweden, Travel Behaviour and Society, October 1, 2018 (Westin et al.).  Available 

at: https://doi.org/10.1016/j.tbs.2018.07.004. 
152 Langbroek et al.; Coffman et al.; and Westin et al. 
153 Amy R. Campbell, Identifying the Early Adopters of Alternative Fuel Vehicles: A Case Study of Birmingham, 

United Kingdom, Transportation Research Part A: Policy and Practice, October 1, 2012.  Available at: 

https://doi.org/10.1016/j.tra.2012.05.004; and Vibhor Tiwari et al., Public Attitudes towards Electric Vehicle 

Adoption Using Structural Equation Modelling, Transportation Research Procedia, Recent Advances and Emerging 

Issues in Transport Research – An Editorial Note for the Selected Proceedings, January 1, 2020.  Available at: 

https://doi.org/10.1016/j.trpro.2020.08.203. 

https://data.census.gov/
https://www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_4
https://www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_4
http://www.ourenergypolicy.org/wp-content/uploads/2018/06/Hawaii-EVs.pdf
https://www.tandfonline.com/doi/abs/10.1080/15568318.2021.1912223
https://doi.org/10.1016/j.trd.2017.02.015
https://doi.org/10.1016/j.tbs.2018.07.004
https://doi.org/10.1016/j.tra.2012.05.004
https://doi.org/10.1016/j.trpro.2020.08.203
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Factor Justification Literature Citations Data Source 
Spatial 
Scale 

Commute 
time 

Studies have found that EVs are 
typically used for shorter and 
briefer commutes rather than 

longer commutes.  

Coffman et al., 2018; 
Jakobssen et al., 

2016.154 

ACS 5-year 
estimate 

(2016-2020) 

Census 
block 
group 

Building 
type (i.e., 

stand-alone 
household 

or multi-unit 
dwelling) 

Research has found that people 
who live in stand-alone 

households are more likely to 
own an EV than people who live 

in apartment buildings 

Langbroek et al., 2017; 
Gehrke et al., 2021; 

Westin et al., 2018.155 

2021 DMV 
vehicle 

registration 
dataset 

House
hold 

In order to match the socioeconomic data with the registered vehicles, our team joined vehicles 

to 2020 Census block groups.  The block group level is as close to the household scale that our 

study can achieve and is the most comprehensive, efficacious dataset on local socioeconomic 

characteristics available.  However, even at this level, our study assumes that all registered 

vehicles in a block group share the same characteristics.156   

The ACS does not provide data on building type.  Research indicates that owners of single-

family homes are more likely to adopt an LD EV, in part because stand-alone houses have more 

room for EV chargers and more accessible parking for private vehicles.  In order to represent 

building type in the non-fleet propensity model, we distinguished between address types – stand-

alone buildings and multi-unit buildings by the presence of a unit number with the address.  We 

selected this method because, to the best of our knowledge, there is no publicly available dataset 

showing building type (e.g., single family residential, multi-unit dwellings) available for all of 

California.  

We trained a logistic regression model on 95 percent of the DMV registration data within the 

Study Area, achieving the parameters shown in Table A-6. 

Table A-6.  Regression model parameters. 

Term Coefficient P Value 

Vehicle is in a standalone building* 0.46 0 

Share of households earning $150,000 or more annually 0.87 0 

 
154 See: Coffman et al.; Niklas Jakobsson et al., Are Multi-Car Households Better Suited for Battery Electric 

Vehicles? – Driving Patterns and Economics in Sweden and Germany, Transportation Research Part C: Emerging 

Technologies, April 1, 2016.  Available at: https://doi.org/10.1016/j.trc.2016.01.018.  Even though these papers find 

that early EV adopters tend to use their EVs for shorter commutes and trips that take less time, it is important to note 

that newer EVs have longer battery range, which makes newer EVs able to fill more of the same functions as a 

conventional vehicle.  
155 See: Langbroek et al.; Westin et al.; and Gehrke et al.  
156 The DGEM’s usage of U.S. Census Bureau data for local socioeconomic and demographic information reflects 

the industry standard.  Researchers studying the grid impacts of electric vehicle adoption have made similar 

assumptions, given the trustworthiness and availability of U.S. Census Bureau data.  For example, see Gehrke et al., 

and Coffman et al. 

https://doi.org/10.1016/j.trc.2016.01.018
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Share of households earning $200,000 or more annually 0.33 0 

Share of residents with bachelors as highest degree 2.43 3.04E-70 

Share of residents with a postgraduate degree 2.64 0 

Share of owner-occupied units -0.10 0 

Share of commutes 20-45 minutes 0.25 3.43E-46 

Share of commutes 45+ minutes 0.53 2.03E-123 

*If a sub-address (e.g., apartment A) was matched in geocoding, the building was 
assumed not to be standalone. 

After training the model, we visually evaluated the model using the remaining five percent of 

data.  This result is shown in Figure A-3.  In the training data set, PHEVs receive a higher score, 

in general, than non-electric vehicles, while BEVs receive the highest score.  This confirms that 

the model has some explanatory power. 

 

Figure A-3.  Depiction of the predictive power of our propensity model.  PHEV and BEV 

propensities are shifted significantly to the right (i.e. they have higher propensity scores).  BEVs are 

shifted furthest to the right.  This indicates success in the predictive model. 

A.3.3.2. Personal random score  

In this model, each LD vehicle was assigned a random score.  We used a random propensity 

score for one model because this will achieve an approximately even density of EVs and thus 

spread out the load as much as possible.  The historically informed model, on the other hand, will 

cluster EVs into higher-income, more educated neighborhoods.   

A.3.4. Fleet propensity model variables 

Because the MD and HD and commercial EV sectors are less mature than the LD sector and 

there is less research on the factors that influence uptake, we developed four propensity models 

that combined three categories – MD and HD vehicles and fleet LD vehicles (e.g., commercial, 

government) – to generate various fleet vehicle adoption models across the Study Area through 

2035.  Two of the propensity models rely on different empirical data gleaned from registration 
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data, while the other two models are entirely random.  We review the characteristics of the four 

propensity models below, including the advantages and limitations of each model.  These models 

principally represent vehicles, especially fleet vehicles, used for commercial, government, and 

industrial purposes.  

A.3.4.1. Feeder adoption score 

Each fleet vehicle received a propensity score equal to the ratio of PHEV + BEV to total vehicles 

on its feeder in its same class (LD, MD, or HD).  Vehicles on feeders without any EVs in their 

class (i.e., vehicles assigned a score of zero from the scoring process) received a random score 

between zero and negative one to ensure that such vehicles are randomly selected after vehicles 

with some EV adoption in their class and body type.  This method will tend to cluster EV 

adoption for fleet vehicles where EV adoption is already occurring.  

A.3.4.2. Fleet body-type score 

Each fleet vehicle received a score equal to the ratio of PHEV + BEV to total vehicles with the 

same body type in its class (LD, MD, or HD).  All vehicles with a score of zero received a 

random score between zero and negative one to ensure that such vehicles are randomly selected 

after vehicles with some EV adoption in their class and body type.  This method will tend to 

predict EV adoption in sectors with early adoption.  

A.3.4.3. Fleet random score 

The methodology is the same as the random personal propensity model. 

The strength of this random propensity score is that it will achieve an approximately even 

density of fleet EVs, spreading out their load as much as possible.  This model acknowledges 

that EV adoption across fleets remains nascent and the exact feeders on which load from these 

vehicles will concentrate is unknown.  However, a limitation of this model is that fleet vehicles 

will likely not convert to electric on a vehicle-by-vehicle basis, as this model implies, and instead 

will probably convert on a fleet-by-fleet basis.  Additionally, the current locations of fleet hubs 

are a strong indicator of the sites where electrified fleets will charge overnight, which detracts 

from the efficacy of a random propensity by vehicle model.  

A.3.4.4. Fleet random-by-feeder score 

This propensity model assigns a random score to each feeder rather than each vehicle.  The 

advantage of this propensity model is that it clusters fleet vehicles nearly as much as is possible.  

As such, it serves as an upper bound for fleet adoption density.  Furthermore, it may more 

accurately simulate whole-fleet transitions. 

A.3.5. Application of propensity score to generating the statewide distribution of 

EVs  

We assigned each vehicle in the Study Area a propensity score based on its likelihood to switch 

from a conventional vehicle to an electric vehicle.  As described in Appendix A.3.1, we used the 
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2022 IEPR projections for EV population per vehicle class in California as the estimation for the 

number of EVs that will annually replace conventional vehicles.157  The conventional vehicles 

with the highest scores became EVs until the projected population per vehicle class was met.   

We differentiated between conventional vehicles that were replaced by BEVs and PHEVs: the 

conventional vehicles with the highest scores became a BEV until the BEV population target was 

met, then the conventional vehicles with the next-highest propensity scores became PHEVs.  

This is consistent with the observation that PHEV buyers have lower propensity scores than BEV 

adopters but higher propensity scores than non-adopters, as shown in Figure A-3.  The 

conventional vehicles with the highest scores that did not convert to EVs in the previous year 

rollover to the next year and are replaced by EVs in that year.  Table A-7 illustrates an example: 

five BEVs and two PHEVs are added in year two, and three BEVs and one PHEV are added in 

year three.  We continued this analysis year over year from 2023 through 2035 because the IEPR 

data end in 2035.  

Table A-7.  Notional conversions from conventional vehicles to BEV or PHEV. 

Vehicle 
Propensity 

Score 
Rank 

Drivetrain - 
Year 1 

Drivetrain - 
Year 2 

Drivetrain - 
Year 3 

#1 0.9 1 Conventional BEV BEV 

#2 0.85 2 Conventional BEV BEV 

#3 0.84 3 Conventional BEV BEV 

#4 0.84 4 Conventional BEV BEV 

#5 0.82 5 Conventional BEV BEV 

#6 0.82 6 Conventional PHEV PHEV 

#7 0.8 7 Conventional PHEV PHEV 

#8 0.75 8 Conventional Conventional BEV 

#9 0.6 9 Conventional Conventional BEV 

#10 0.55 10 Conventional Conventional BEV 

#11 0.54 11 Conventional Conventional PHEV 

#12 0.31415 12 Conventional Conventional Conventional 

The results of this methodological step consisted of tables of adoptions of electric vehicles by 

feeder and year for each propensity scenario, grouped by subclass. 

With respect to the propensity models looking at the feeder level, when the population reaches its 

target a fraction of the way into converting conventional vehicles into EVs on one feeder in a 

given year (e.g., 2025), the model will stop converting the vehicle at the population target for 

that year.  Then, when the subsequent year (e.g., 2026) begins, the remaining conventional 

vehicles on that feeder will become EVs first and subtract from the population target for the 

 
157 Data provided by CEC on April 20, 2023.  These are internal model data that are not published.  
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subsequent year (e.g., 2026).  The standard method for applying the propensity score to the 

conversion of conventional to electric vehicles year over year resumes, as described in Appendix 

A.3.5.  

A.3.6. Methodological limitations  

A lack of published literature and lack of corroborating information in the DMV dataset 

regarding where fleet vehicles charge overnight meant we were not able to confirm whether the 

registered address of a MD or HD EV functioned as the home base for overnight parking or was 

an administrative office separate from the fleet hub.  Due to the lack of data on truck refueling 

behavior and overnight parking data, among other factors, we were not able to create a more 

spatially precise MD and HD adoption propensity model in this study.  An improved model for 

estimated MD and HD fleet electrification would require a dataset showing the locations of fleet 

operation centers and high-trafficked truck stops across California.  From correspondence with 

numerous TE experts, it appears that no database of fleet home bases yet exists.158  Datasets 

showing the locations of fleet operation centers and high-trafficked truck stops would provide a 

more precise picture of where fleet charging would occur and where load demand due to 

charging would take place.  However, company privacy concerns and competition might hinder 

the near-term completion of these types of datasets.  The FIP workstream being undertaken by 

CPUC’s Energy Division may produce more meaningful data in this regard. 

A.4. Calculating the annual energy demand of EVs 

To determine the total energy demand that EVs place on the grid, we first calculated the annual 

energy demand by vehicle subclass for each year from 2021 through 2035.  Next, we summed 

annual demand by vehicle class (i.e., LD or MD and HD) across each feeder.  LD vehicles were 

kept separate because we established different charging load shapes for LD vehicles, as 

discussed in Appendix A.5. 

One notable caveat of this step and the study overall is that we do not consider public charging; 

all charging is assumed to take place at a vehicle’s registration address, as discussed in Section 

4.3. 

We used VMT per year by vehicle subclass and powerplant-to-wheels efficiency from the 2022 

IEPR.159  These data vary by vehicle subclass and year (i.e., vehicles in 2035 have different 

VMT and efficiency assumptions modeled than vehicles in 2030).  These efficiency changes are 

on an average fleet basis, and we interpret them as such rather than applying different 

efficiencies to EVs based upon adoption year.  Thus, we assume that an EV adopted in 2030 will 

 
158 e.g., CALSTART staff, email correspondence, April 21, 2023.  
159 Data provided by CEC on April 20, 2023.  These are internal model data that are not published. 
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operate with different efficiency and VMT assumptions in 2031.  PHEVs are assumed to be 

driven 60 percent on electric-powered miles, consistent with the IEPR’s data. 

The CEC (through the IEPR) provided us with data on electric shuttle bus and school bus 

energy160 consumption, which could be used to make a more granular energy consumption 

calculation for these vehicle types compared to other MD and HD vehicles in the same class.  

However, since the DMV data were coded no more specifically than “bus,” we elected to leave 

them with other vehicles of the same gross vehicle weight rating. 

We converted the miles per gallon equivalent (MPGe) from the IEPR data to kWh/mile.  

California has a distinct MPGe to kWh conversion factor due to its unique fuel blend: 32.7 

kWh/gallon.  In order to determine the annual energy usage (AEU) for each EV subclass, we 

used the following calculations:  

• BEV AEU [
kWh

year
] =  32.7 [

𝑘𝑊ℎ

𝐺𝑎𝑙𝑙𝑜𝑛
] ∙  

1

𝑀𝑃𝐺𝑒
 [

𝐺𝑎𝑙𝑙𝑜𝑛𝑠

𝑀𝑖𝑙𝑒
] ∙  VMT [

𝑀𝑖𝑙𝑒𝑠

𝑌𝑒𝑎𝑟
] 

• PHEV AEU [
kWh

year
] =  32.7 [

𝑘𝑊ℎ

𝐺𝑎𝑙𝑙𝑜𝑛
] ∙  

1

𝑀𝑃𝐺𝑒
 [

𝐺𝑎𝑙𝑙𝑜𝑛𝑠

𝑀𝑖𝑙𝑒
] ∙  VMT [

𝑀𝑖𝑙𝑒𝑠

𝑌𝑒𝑎𝑟
] ∙  0.6 [

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑚𝑖𝑙𝑒𝑠

𝑚𝑖𝑙𝑒
] 

Table A-8 provides an excerpt of the results drawn from the IEPR for 2021 and 2035. 

Table A-8.  Vehicle consumption information.  Source: 2022 IEPR data with modifications.161 

 kWh/mile Miles/year kWh/year 

Subclass 2021 2035 2021 2035 2021 2035 

Car-Sport 0.35 0.31 6,790 6,666 2,400 2,059 

Car-Subcompact 0.28 0.28 8,762 10,144 2,473 2,856 

Car-Compact 0.29 0.30 9,043 10,317 2,616 3,087 

Car-Midsize 0.26 0.28 12,407 12,047 3,282 3,418 

Car-Large 0.29 0.27 7,458 9,599 2,134 2,618 

Pickup-Compact 0.41 0.41 8,234 13,009 3,396 5,365 

Pickup-Std 0.44 0.44 11,307 11,714 4,993 5,144 

Pickup-Heavy 0.58 0.53 6,742 11,159 3,943 5,882 

SUV-Subcompact 0.30 0.38 12,455 13,608 3,795 5,173 

SUV-Compact 0.29 0.30 10,240 10,780 2,985 3,264 

SUV-Midsize 0.42 0.42 9,009 11,704 3,750 4,947 

SUV-Large/Heavy 0.58 0.51 10,100 13,474 5,817 6,890 

Van-Minivan 0.44 0.43 8,841 14,194 3,870 6,158 

Van-Std 0.41 0.40 8,708 12,889 3,610 5,180 

Van-Heavy 0.47 0.43 8,838 13,879 4,163 5,994 

GVWR 3 0.62 0.59 16,409 15,887 10,156 9,312 

GVWR 4/5 1.16 1.05 19,661 17,290 22,803 18,104 

 
160 Data provided by CEC on April 20, 2023.  These are internal model data that are not published. 
161 Data provided by CEC on April 20, 2023.  Data for 2021 is copied from 2023 for all vehicles.  For pickup-

compact, we added 2023 data copying 2024 and 2025.  SUV Heavy is copied from SUV-Large because the IEPR 

does not predict any heavy SUVs.  We assumed other MD and HD vehicles, such as “demand response”, “shuttle 

bus”, and “school bus,” had equivalent values by GVWR. 
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 kWh/mile Miles/year kWh/year 

Subclass 2021 2035 2021 2035 2021 2035 

GVWR 6 1.10 1.03 13,782 15,973 15,163 16,489 

GVWR 7 1.08 1.03 17,397 26,068 18,842 26,894 

GVWR 8 1.85 1.77 38,825 34,881 71,856 61,773 

Both drivetrain efficiency and charging efficiency affect an EV’s energy demand from the grid 

and must be factored into a calculation of total EV energy usage.  Drivetrain efficiency refers to 

the amount of energy in the battery used to power the vehicle’s wheels.162  Charging efficiency 

describes the amount of energy drawn from the wall (in kWh) that is converted into usable 

energy for the EV battery (versus energy expended in route to the battery).  The same charging 

efficiency assumptions that the U.S. Environmental Protection Agency (EPA) uses are included 

in the CEC’s MPGe value.163  In fact, the number used by EPA and CEC overestimates the 

impact of EV charging on the distribution grid (for our purposes) because it includes 

transmission losses. 

Because we know the location of every electric vehicle on each feeder in the three IOUs’ service 

territories, we can calculate the annual load placed on each feeder due to EV charging.  To do so, 

we summed the annual energy demand of each registered vehicle, based on subclass, on each 

feeder for each year of the study.  We kept MD and HD separate from LD at this stage due to the 

differing charging load shapes. 

A.5. Calculating hourly EV load on each feeder and substation 

Our next step entailed developing typical EV load shapes by class for the purpose of identifying 

when the load serving capacity of the distribution system will be exceeded and when upgrades 

will be needed.164  EV charging typically follows a predictable schedule that varies based on time 

of the day (as shown in Figure A-5).  The 2022 IEPR provides hourly load profiles for LD as 

well as MD and HD vehicles in the 2022 IEPR Planning Scenarios.165  We considered only the 

 
162 Ossian Muscad, An Overview of the Electric Vehicle (EV) Drivetrain System, Datamyte, July 17, 2022.  Available 

at: https://www.datamyte.com/ev-drivetrain/. 
163 See D. Good, EPA Test Procedures for Electric Vehicles and Plug-In Hybrids, DRAFT Summary – Regulations 

take Precedence, November 14, 2017.  Available at: 

https://www.fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-PHEVs-11-14-2017.pdf. 
164 Jenn et al. used a similar methodology for determining when the aggregated load of EV adoption would exceed 

the carrying capacity of feeders throughout PG&E’s service territory.  See: Alan Jenn et al., Distribution Grid 

Impacts of Electric Vehicles: A California Case Study, IScience, January 21, 2022 (Jenn et al.).  Available at: 

https://doi.org/10.1016/j.isci.2021.103686. 
165 CEC, California Energy Demand Update, 2022-2035, the Planning Scenario under the Hourly Demand Forecast 

Files.  Available at https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-

energy-policy-report-update-2.  

https://www.datamyte.com/ev-drivetrain/
https://www.fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-PHEVs-11-14-2017.pdf
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update-2
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update-2
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load shapes for the IEPR Planning Scenarios, which includes additional achievable TE 

(AATE).166 

In order to reduce the computational complexity of calculating the hours of peak demand on the 

grid, we developed a load forecast that represented typical load charging behavior over time 

while retaining most of the variability in the IEPR model’s hourly charging consumption.  To do 

so, we divided the forecasts between weekends and weekdays and across the years of the study – 

2023167 through 2035.  Figure A-4 shows the result. 

 

Figure A-4.  The 2022 IEPR’s aggregate charging behavior.  Colored areas show the full variability 

within each group and the black line shows the median. 

The IEPR’s 24-hour energy consumption data show variation in charging patterns: on weekdays, 

peak charging occurs mid-morning (approximately 8 a.m. to noon) and late at night 

(approximately 10 p.m. to 2 a.m.) while weekend charging mostly occurs between 10 p.m. to 4 

a.m., with a small demand surge in the middle of the day.  Meanwhile, the peak charging of MD 

and HD EVs takes places between approximately 10 p.m. to 2 a.m., with another demand surge 

at about 2 p.m. that is equivalent to about half of the daily peak demand.  The magnitude of 

variation within each model is relatively small (shown by the size of the colored bands in Figure 

 
166 The baseline scenario’s load shape is similar to the load shape including AATE, but AATE has a slightly larger 

noon peak. 
167 2023 is the first year of hourly forecast data.  
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A-4).  Furthermore, the median corresponds with the maximum value or minimum value nearly 

all the time; thus, the median adequately represents the typical hourly charging behavior.  For 

this reason, we used the median hourly load profiles for LD as well as MD and HD models. 

Next, we scaled the 24-hour load profiles for EV charging to hourly consumption rates 

aggregated over the course of the year (Figure A-5).  The result provides a factor for converting 

annual consumption to hourly consumption.  It is important to note that we consider only typical 

charging behavior over the course of a given year.  This is consistent with our isolation of peak 

baseline load—it would be too conservative to assume that the peak charging day and the peak 

non-charging day coincide.  On the other hand, this assumption may be too liberal: for example, 

the 90th percentile charging day and 90th percentile base-load day may coincide and be worse 

than our forecast.  Nevertheless, we had to select a single assumption for the DGEM and we 

chose maximum baseline load combined with median EV charging load shape.  This limitation 

of the model is discussed in Section 4.4. 

 

Figure A-5.  Select typical charging behavior (median) across select years, vehicle classes, and 

weekday-vs-weekend.  The hourly consumption rate is the energy consumption of each hour 

divided by total energy consumption in that year. 
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The Hourly Consumption Rate is the hourly consumption (MWh) in hour i divided by the sum 

of consumption across all hours in the year.  We use the following equation to calculate the 

hourly consumption rate:  

𝐻𝑜𝑢𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑖 =
𝐻𝑜𝑢𝑟𝑙𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖

∑ 𝐻𝑜𝑢𝑟𝑙𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑘
8760
𝑘= 1

 

The hourly load profiles per year demonstrate two significant patterns that informed our 

selection of representative charging behavior:  

1. LD vehicles charge at different times than MD and HD vehicles.  The MD and HD sector 

typically charges overnight, whereas many LD vehicles charge during the day at 

workplaces or public locations, such as shopping centers. 

2. Weekday charging exceeds weekend charging (except in early morning hours when 

weekend charging is slightly greater).  Therefore, we see little benefit to considering 

weekend charging in our analysis.  

Given these results, we selected the representative EV charging load shapes as: 24-hour load 

profiles based on the median value of the AATE scenario for each year of hourly EV charging 

data provided by the IEPR (Figure A-6).  We used the load shapes from 2023 for 2021 (our 

analysis does not consider 2022). 

  

Figure A-6.  Selected load examples for two years.  Hourly consumption rate is the consumption in 

each hour divided by the annual consumption. 

Next, we determined the hourly load placed on all the feeders and substations in the Study Area 

using a three-step process:  

1. Calculate hourly annual consumption for each vehicle class (LD and MD and HD). 

2. Sum the annual hourly load for LD and MD and HD EVs on each feeder. 



The Public Advocates Office 72 

3. For each substation, sum up the hourly load on each of its feeders to calculate its total 

load. 

Because our analysis assumes that all LD vehicles are charged with a single load shape and all 

MD and HD vehicles are charged with another load shape, we did not distinguish between public 

and private chargers.  This method is consistent with the DGEM’s simplifying assumption that 

vehicle charging happens at the registered address.  Accordingly, we also assume that each 

household will have EV chargers sufficient to charge every EV at the registered address.  That 

said, the load shape does include the temporal impacts of public charging. 

Our methodology does not account for the differing impacts of charger types.  For example, 

providing 50 kWh to an electric vehicle will cause different grid impacts depending upon 

whether the energy is spread over one hour (50 kW) or over ten minutes (300 kW).  By using 

averaged hourly forecasts, we ignore the impacts that highly concentrated direct-current fast 

chargers (DCFCs) can place on the electric grid.  For example, a cluster of ten 350-kW DCFCs 

drawing on the same feeder and charging EVs simultaneously would generate a peak load of 3.5 

MW, but these DCFCs during typical, non-congruous charging events would have a significantly 

lower load.  Our estimates are consistent with a typical spread, not necessarily the highest peak 

events.  High peak events, which we do not account for, could necessitate grid upgrades beyond 

the upgrades that we identify.  See Section 4 for further discussion. 

A.6. Calculating non-EV load on each feeder and substation 

Next, we determined how EV load interacts with other load types and affects the three IOUs’ 

distribution systems.  These loads include baseline resources and loads on the grid today as well 

as additions of PV, EE, BE, and BESS.  Load changes also include population growth, 

cultivation, and other factors.  All these non-EV loads are captured, in aggregate, in the IEPR’s 

hourly load forecasts.168 

In order to understand how EV load combines with other loads in the distribution system, we 

calculated the hourly load profiles and expected load of non-EV electricity consumption and 

generation from 2021-2035.  This step is critical not only because several load types are expected 

to increase but also because the exact year that the combined demand of all the consumption 

exceeds the carrying capacity of distribution systems across utilities remains a moving target.  

Studies using more granular data could refine annual load projections and estimate the date by 

which a distribution system will require upgrades.    

To calculate non-EV load from 2021 through 2035 and associated distribution system impacts, 

we followed a four-step process: 

1. Calculate the baseline non-EV load. 

 
168 2022 CED, Hourly Demand Forecast Files, Planning Scenario. 
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2. Determine a growth rate for non-EV load. 

3. Forecast the non-EV load on feeders using the established growth rate. 

4. Sum up non-EV load on each substation.  

A.6.1. Calculating base-year non-EV load 

The first step was to calculate the base-year non-EV load for the three IOUs (2022 for PG&E, 

and 2021 for SCE and SDG&E).  To do this, we subtracted the calculated 2021 EV load from the 

baseline load provided by the IOUs.  This created our best estimate of base-year non-EV loading. 

To slightly improve our calculation, we divided EV load by the ratio M/T (see Table A-3).  This 

results in an adjusted EV load that slightly increases the amount of load that we attribute to EVs.  

This step accounts for the vehicles lost in the geocoding process because they lacked an address 

that could be geocoded.  See Appendix A.2.1 for a fuller description of this methodological step.  

As noted in Appendix A.2.1, this resulted in negative maximum loads on certain assets in certain 

hours.  This is neither a problem nor the only basis for negative maximum load estimates.  For 

example, PG&E’s Goose Lake 1103 feeder reports a maximum load less than zero from 10 a.m. 

to 3 p.m., peaking at –5.5 MW.  

A.6.2. Calculating the growth rate of non-EV load from the IEPR 

We needed non-EV growth rates to project SCE’s and SDG&E’s 2021 load data through 2035 as 

well as to establish the 2021 load from PG&E’s 2022 load.  We relied on hourly forecasts from 

the 2021169 and 2022170 IEPR vintages to determine annual load growth over the study 

timeframe.  The IEPR’s load forecasts tabulate energy consumption by hour, year, and sector.  

Since the 2022 IEPR only forecasts from 2023 onward, we used the 2021 IEPR as the source for 

the 2021 and 2022 hourly loads.171  We calculated hourly non-EV energy consumption in each 

IOU’s service territory over the period 2021 to 2035 from the total managed net load minus the 

load attributable to electric vehicles.172 

A.6.2.1. Calculating annual growth rates 

For each dataset, we calculated the annual growth rate in each year (n) and each hour (h) as 

follows: 

𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒𝑛,ℎ =
𝐷𝑒𝑚𝑎𝑛𝑑𝑛,ℎ −  𝐷𝑒𝑚𝑎𝑛𝑑𝑛−1,ℎ

𝐷𝑒𝑚𝑎𝑛𝑑𝑛−1,ℎ
 

 
169 2021 CED, Hourly Demand Forecast Files, Mid Baseline Scenario. 
170 2022 CED, Hourly Demand Forecast Files, Planning Scenario. 
171 2021 CED, Hourly Demand Forecast Files, Mid Baseline Scenario. 
172 Non-TE energy consumption = MANAGED_NET_LOAD – MEDIUM_HEAVY_EV – LIGHT_EV – 

AATE_LDV – AATE_MDHD. 
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For example, the Growth Rate2022,1 is the relative amount that 2021 demand in the 1 a.m. hour 

increased to become 2022 demand in the 1 a.m. hour.  This is an atypical method for defining the 

growth rate, but this method allowed us to apply the growth rate in year n to calculate the 

demand in year n from demand in year n-1: 

𝐷𝑒𝑚𝑎𝑛𝑑𝑛 =  (1 + 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒𝑛) ∙ 𝐷𝑒𝑚𝑎𝑛𝑑𝑛−1 

From there, we used the growth rates calculated for 2022-2035 as shown in Figure A-7 (2021 

cannot be calculated because there is no Demandn-1).  A change in the data sources for growth 

rates caused a jump in year 2023. 

 

Figure A-7.  Annual change in peak demand from non-EV sectors.  We averaged the data used in 

our analysis across small bins to make these figures easier to read. 

A.6.2.2. Calculating cumulative growth rates 

Next, we calculated the cumulative growth rates, forecasting future growth for SCE and SDG&E 

as well as backcasting from 2022 to 2021 for PG&E.  For each IOU, we set the cumulative 

growth rate to one in the year that the IOUs’ feeder load data represent (i.e., 2021 for SCE and 

SDG&E, and 2022 for PG&E).  Then we forecasted a cumulative growth rate (CGR) for future 

years n as: 

𝐶𝐺𝑅𝑛 = ∏ 1 +  𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒𝑘

𝑛

𝑘= 𝑏+1

   

Where b is the base year. 

Backcasting takes a similar form, wherein: 

𝐶𝐺𝑅𝑛 = ∏
1

1 +  𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒𝑘

𝑛−1

𝑘= 𝑏
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The resulting CGRs are shown in Figure A-8. 

 

Figure A-8.  CGR of hourly peak demand from non-EV sectors.  We averaged the data used in our 

analysis across small bins to make these figures easier to read.  Note that PG&E’s CGR is keyed 

(set to a value of 100 percent) to 2022, while the other IOUs’ CGRs are keyed to 2021.  

A.6.3. Forecasting non-EV load 

Once we determined the base year demand and the annual, hourly CGRs, we multiplied the base-

year demand by the calculated CGRs to forecast non-EV load on each feeder in future years.  

Finally, we returned the small amount, X, that was lost by dividing the 2021 EV load by M/T 

(see Table 2-2): 

𝑋 = 𝑇𝐸 𝑙𝑜𝑎𝑑 − 𝑇𝐸 𝑙𝑜𝑎𝑑 / (
𝑀

𝑇
) 

A.6.4. Summing non-EV load across substations 

At this final step, we summed hourly load across each of the feeders connected to each 

substation: 

𝑆𝐿𝑖,ℎ =  ∑ 𝑓𝑒𝑒𝑑𝑒𝑟𝑖,ℎ

𝑖

 

That is, the load for substation (SL) i in hour h is the sum of the load in hour h on all feeders 

connected to it (each feederi).  Because computational power limited us to assessing only 24 

hours rather than all hours in the year, this method tends to overestimate the load on substations 

to the extent that peak days for feeders fed by a particular substation differ.  This effect is likely 

small because weather, a key driver of peak load, will be similar over the small geographic area 

served by one distribution substation. 
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A.7. Calculating total peak loads and overloads 

We calculated 24 peak loads (one for each hour) for each distribution asset (i.e., feeder or 

substation) and selected the maximum value of peak hourly load. 

Overloads were also straightforward to calculate.  We subtracted the rating of each infrastructure 

asset (using the map created in Appendix A.1) from its peak load and applied a lower bound of 

zero (i.e., there are no negative overloads).  At this stage, we retained the existence of overloads 

and their magnitudes.  The magnitude of overloads impacts the cost, as discussed in Appendix 

A.8. 

A.8. Calculating total cost 

At a high level, in each year of the analysis, we identified the distribution system assets 

experiencing capacity overloads and calculated the cost of the minimum infrastructure necessary 

to cure these overloads.  The costs considered in the DGEM study include building new feeders, 

installing new transformer banks in substations, and building new substations.  Building new 

feeders can solve feeder overloads.173  Installing new transformer banks or constructing new 

substations can solve substation overloads.  In general, costs are highly variable and difficult to 

estimate.174 

Establishing when a new substation might be needed is a challenge.  From a cost perspective, it 

is best to avoid building new substations.  The utility will only build a new substation if 

additional transformers cannot be sited within the existing substation footprint.  However, 

establishing whether there is space in each substation requires a case-by-case study, data which 

were not available to us.  Because of this, we assumed a share (see Table A-11) of new 

transformers in substations would trigger building a new substation. 

Additionally, the length of feeder that needs to be replaced or supplemented with an additional 

feeder is highly uncertain and significantly affects infrastructure upgrade costs.  In fact, the 

length of feeder replacement is so integral to upgrade costs that costs are generally provided on a 

per-foot basis.175 

Generally, we do not know the location of overloads within feeders because the spatial scale of 

the DGEM is only as granular as the feeder, not the specific feeder section or segment at which 

 
173 Feeder overloads can also sometimes be solved by reconductoring or increasing the feeder voltage, referred to by 

the IOUs as a voltage cutover.  The cost of cutovers is difficult to assess because cutovers entail installing new 

service transformers, substation transformers, and potentially different poles.  The applicability of cutovers as a 

mitigation is constrained by the need to maintain operational flexibility. 
174 For example, 25th percentile and 75th percentile costs can differ by more than an order of magnitude.  See 

Elmallah et al., Supplementary Information at Tables 5 and 6. 
175 PG&E TY 2023 GRC Exhibit PG&E-4 at 165. 
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overloads occur.176  Data and computational limitations contributed to the spatial scale of the 

distribution system used in this study.  Establishing the length of feeder that may need to be 

upgraded is a particular challenge because feeders are highly branched, as shown in Figure A-9.  

No single overload would require reconductoring an entire feeder, but it is not possible to know 

precisely how much of the feeder must be reconductored based on available data.  At minimum, 

it is plausible that each overload would necessitate the replacement of the feeder’s mainline;177 

replacement length beyond the mainline is unknown. 

 

Figure A-9.  Example feeder (Acala, 12-kV) in SCE’s service territory.  

The EIS assumed that two miles of feeder would need to be replaced on every overloaded 

feeder.178  The EIS further assumed that transformers could be accommodated at substations with 

 
176 A section is separated by sectionalizing devices (devices which can open to stop power flow).  A segment is the 

length of feeder between two poles. 
177 The mainline is the highest amperage portion of the distribution feeder, the backbone, to which other feeder 

segments connect. 
178 EIS at 116.  This is the case for SDG&E and PG&E.  SCE did not explicitly state a length, but costs are 

consistent with two-mile runs for other utilities. 
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fewer transformer banks than a typical substation footprint would allow.179  This assumption 

could lead the EIS to underestimate costs associated with substations designed for a lower 

number of transformer banks and overestimate the costs of building a new substation if the 

original could have accommodated more banks.   

As with the DGEM’s propensity model, we approached uncertainty with scenario analysis.  We 

gathered three feeder length replacement estimates based on data provided by PG&E and SCE.  

We also used data from the EIS to create a fourth feeder length replacement estimate.  First, 

PG&E provided the average feeder upgrade length for the past five years (across 242 

projects180), which is 1.35 miles.  PG&E also provided the total length of both mainline and non-

mainline conductors within its service territory.  We calculated the ratio of mainline to total 

length and multiplied PG&E’s average feeder length by this ratio, resulting in a value of 9.5 

miles.  Additionally, SCE provided an average length for new feeder projects across ten projects 

over the past two years.  The average replacement length is 10.9 miles.  Our final scenario used 

the EIS’s assumption of two-mile feeder length replacements.  These data are summarized in 

Table A-9. 

Table A-9.  Four feeder upgrade length scenarios used in the DGEM’s cost analysis. 

Source Length (miles) Scenario 

SCE Average New Feeder Length 10.9 High 

PG&E Average Non-Mainline Length 9.50 Medium  

PG&E Average New or Reconductoring Feeder Length  1.35 Low 

EIS 2.00 Replicate 

Using a wide range of estimates to create our scenarios may provide more insight into the 

uncertainty around total upgrade cost projections.  Figure A-10 shows that the length of nearly 

all feeders is longer than two miles, and most feeders are longer than ten miles.  Thus, our range 

of scenarios may not necessarily bound the actual cost.  Nevertheless, the scenarios significantly 

improve the DGEM’s total upgrade cost projections relative to any single scenario. 

 
179 EIS at 118. 
180 The projects included reconductoring, installing a new overhead line, re-pulling underground lines, and installing 

new underground lines.  
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Figure A-10.  Histogram of feeder lengths.  Note the logarithmic x-axis. 

The IOUs’ data on feeder length replacement averages also may not reliably indicate the length 

of future upgrades.  This is because future upgrades may serve a greater amount of distributed 

load than past upgrades (i.e., EVs at 100 houses versus one large industrial customer).  

Therefore, future asset upgrades may need to cover a significantly longer percentage of 

branching distribution lines than past upgrades.  

To calculate the unit cost of each IOU’s grid assets, we used PG&E’s and SDG&E’s per-foot 

costs for both underground and overhead conductors.181  We averaged the per-foot costs for the 

medium cost scenario (see Table A-10) and used plus and minus one standard deviation for the 

high and low cost scenarios, respectively.  The per foot costs were then multiplied by the lengths 

show in Table A-9.  For the Replicate scenario, we used the unit costs directly from the EIS.182  

The resulting costs are shown in Table A-10.  

Table A-10.  Feeder costs across the four scenarios. 

IOU Size Low Cost Medium Cost High Cost Replicate 

PG&E 12 MW $2,855,879 $20,014,888 $32,399,013 $6,363,200 

SCE 12 MW $2,855,879 $20,014,888 $32,399,013 $5,473,094 

SDG&E 12 MW $2,855,879 $20,014,888 $32,399,013 $6,689,760 

We also created four scenarios for substation upgrades.  For the Replicate scenario, we used 

three different substation upgrade frequency values for the three IOUs based on data provided by 

the EIS team.  Table A-11 shows the upgrade frequencies for each scenario and IOU.  The 

Replicate scenario uses values calculated from the EIS for each IOU; the other scenarios (low, 

medium, and high) used the same three IOU substation frequency values sorted from low to 

 
181 SDG&E, San Diego Gas & Electric Unit Cost Guide, March 31, 2023.  Available at: 

https://www.sdge.com/sites/default/files/documents/SDGE%20Updated%20Rule21%20Unit%20Cost%20guide%20

-%202023_0.pdf; and PG&E TY 2023 GRC Exhibit PG&E-4 at 165.  
182 EIS at 117. 

https://www.sdge.com/sites/default/files/documents/SDGE%20Updated%20Rule21%20Unit%20Cost%20guide%20-%202023_0.pdf
https://www.sdge.com/sites/default/files/documents/SDGE%20Updated%20Rule21%20Unit%20Cost%20guide%20-%202023_0.pdf
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high, paired with the three different substation costs to attempt to bound uncertainty in upgrade 

cost estimates.    

Table A-11.  Substation upgrade frequencies. 

IOU Low Medium High Replicate 

PG&E 6.4% 20.4% 42.2% 42.2% 

SCE 6.4% 20.4% 42.2% 20.4% 

SDG&E 6.4% 20.4% 42.2% 6.4% 

Instead of rolling the substation cost into the bank cost, we kept the values separate and we 

limited the need for substations to one per upgrade even if multiple banks were needed.  We kept 

these costs separate because, according to PG&E, a typical substation can accommodate three 45 

MVA transformers and the DGEM estimates that, at maximum, two transformer banks will be 

needed to accommodate estimated overloads.  For the Replicate scenario, we reference the exact 

costs from the EIS for new substations and transformer banks. 

Since PG&E’s standard transformer size is larger than the other two IOUs, we used the cost 

estimate values provided by PG&E for three of its scenarios.  For the other two IOU banks and 

substations, we use the highest and lowest credible estimates.  This excluded EIS data on bank 

costs for SCE because we received an updated estimate and substation costs for SDG&E because 

the EIS’s estimate does not account for all aspects of building a substation.183  Table A-12 

summarizes the resulting costs. 

Table A-12.  Substation and transformer bank upgrade costs, in millions of dollars.  L/M/H = 

low/mid/high. 

  L/M/H Low Mid High Replicate cost 

IOU Size Bank Substation Bank Substation 

PG&E 45 MW $11.80 $15.20 $25.80 $36.40 $11.80 $15.20 

SCE 28 MW $3.40 $15.20 $25.80 $36.40 $2.00 $37.60 

SDG&E 28 MW $4.70 $15.20 $25.80 $36.40 $4.70 $16.20 

The precise data sources are as follows:  

• For all three IOUs, the mid scenario’s substation costs are an average of the high and low 

substation costs.   

• PG&E’s transformer bank unit cost for all four scenarios were drawn from data provided 

by PG&E184 (which matches the EIS).  The high substation cost is from SCE’s updated 

estimate and low and Replicate substation costs are from the EIS. 

 
183 E.g., land acquisition, site development, permitting, and some hardware.  See EIS at 116. 
184 PG&E TY 2023 GRC Exhibit PG&E-4 at 165. 
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• SCE’s transformer bank costs for the low, mid, and high scenario were drawn from the 

updated bank costs provided by SCE, while the Replicate cost is from the EIS.185  The 

substation cost for the low scenario uses PG&E’s substation cost from the EIS,186 the 

high scenario uses the updated substation cost provided by SCE, and the Replicate 

scenario uses SCE’s substation cost from the EIS.  

• SDG&E’s transformer bank costs use the EIS’s data for all four scenarios.187  For the 

substation costs, the low scenario uses the EIS’s PG&E estimate, the high scenario uses 

SCE’s updated cost estimate, and the Replicate scenario uses the EIS’s SDG&E cost 

estimate.188 

In addition to replacing feeders, transformer banks, and substations, the DGEM analysis also 

considers secondary costs.  Secondary costs include any equipment needed between distribution 

systems and the customer including, but not limited to, distribution transformers, service drops, 

and secondary lines.189  The costs of these upgrades are significant but are not often studied.  The 

DGEM assesses secondary costs by adding a percentage of the primary costs for each IOU 

drawn from the Replicate scenario.  The EIS provided the secondary cost percentages, as 

displayed in Table A-13.190 

Table A-13.  Secondary cost percentage by IOU from the EIS. 

IOU 
Secondary costs as a 

percentage of primary cost 

PG&E 45% 

SCE 47% 

SDG&E 40% 

A.9. Calculating rate impact 

To estimate the residential rate impact, we accounted for the expected increase in distribution 

capital and maintenance expenses allocated to residential rates, plus forecasted transmission and 

generation costs allocated to residential rates and weighed them against the forecasted increase in 

residential electricity sales. 

∆𝑅𝑎𝑡𝑒 =
𝑅𝑅2023 + ∆𝑅𝑅𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 +  ∆𝑅𝑅𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + ∆𝑅𝑅𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝐸𝑆2023 +  ∆𝐸𝑆
−  

𝑅𝑅2023

𝐸𝑆2023
  

The incremental change in residential rate is equal to the new residential rate (the left half of the 

equation) minus the 2023 residential rate (the right half of the equation).  The 2023 rate is equal 

 
185 EIS at 117. 
186 EIS at 117. 
187 EIS at 117. 
188 EIS at 117. 
189 See Brown.  
190 EIS at 26-29.  Data show the average from the year 2035, excluding the EIS’s Baseline scenario. 
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to the 2023 revenue requirement (RR2023) divided by the 2023 energy sales (ES2023).  All rate 

components, including sales and revenue requirements, were allocated to residential using the 

currently representative factors for each IOU.  The new rate was calculated from the new 

revenue requirement divided by the new energy sales.  The new revenue requirement is equal to 

the 2023 revenue requirement plus the incremental revenue requirements from distribution, 

transmission, and generation (the three ∆RRs).  The new sales are equal to the 2023 sales plus the 

incremental sales associated with electrification (∆ES).  Table A-14 provides the 2023 sales and 

revenue requirements. 

Table A-14.  2023 system residential revenue requirements and system residential sales. 

IOU 
System residential revenue 

requirement ($ Billion) 
System residential sales (kWh) 

PG&E $6.425 27,986,000,000 

SCE $6.513 26,274,000,000 

SDG&E $2.447  6,059,000,000 

The revenue requirement for distribution infrastructure was calculated by depreciating capital 

over forty years and including the depreciation and the return on undepreciated capital (at the 

weighted-average cost of capital) in the revenue requirement.  To account for distribution O&M, 

we assumed an incremental O&M cost of 3.5 percent per year on the undepreciated value of 

incremental capital.  This was informed by data from the most recent general rate cases of 

PG&E, SCE, and SDG&E and accounts for wildfire mitigation costs.191  The residential 

component of this cost was added to the revenue requirement.  Table A-15 shows the weighted-

average cost of capital and the residential allocation of distribution costs alongside the residential 

allocation of generation costs (discussed later). 

Table A-15.  Weighted average cost of capital and residential allocation of distribution costs for the 

three IOUs. 

IOU 
Weighted-average 
cost of capital192 

Residential allocation 
of distribution costs 

Residential allocation 
of generation costs 

PG&E 7.27% 41% 38% 

 
191 For PG&E, we used data from A.21-06-022.  Electric distribution rate base for 2020 through 2023 was drawn 

from workpapers to Exhibit PG&E-10, Chapter 15 (at 15-1, 15-4, 15-7, and 15-10).  Distribution expenses were 

drawn from workpapers to Exhibit PG&E-4, Chapter 2 (at 2-2) excluding costs of “Customer Request & Load 

Growth” and “Risk Reduction.”  For SCE, we used data from A.23-05-010.  Distribution rate base for 2025 was 

drawn from workpapers to Exhibit SCE-07 Vol.02 Book A (at 11) and compared to O&M expenses including 

inspections and maintenance, substation, poles, vegetation management, and “other” from Exhibit SCE-02 Vol. 10 

at 1.  For SDG&E, we used data from A.22-05-016.  Distribution capital for 2021-2024 were drawn from 

workpapers to Exhibit SDG&E-35-R (at 12) and compared to distribution capital expenses, from workpapers to 

Exhibit SDG&E-12-R (at 2) plus wildfire expenses from workpapers to Exhibit SDG&E-13-R at 1. 
192 D.22-12-031, Decision Addressing Test Year 2023 Cost of Capital for Pacific Gas and Electric Company, 

Southern California Edison, Southern California Gas Company, and San Diego Gas & Electric Company, 

December 15, 2022 at 1; issued in A.22-04-008 et al.  Available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K015/500015851.PDF.  

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K015/500015851.PDF
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IOU 
Weighted-average 
cost of capital192 

Residential allocation 
of distribution costs 

Residential allocation 
of generation costs 

SCE 7.44% 50% 47.3%193 

SDG&E 7.18% 45% 49.9%194 

Transmission costs were accounted for through the TAC, which is projected to rise to $20/MWh 

in 2029 and exceed $25/MWh in 2035.195  This growth rate was used to forecast increases in the 

current IOU-specific TAC and then multiplied by the incremental energy sales (∆ES) to account 

for the new transmission revenue requirements associated with the sales.  Table A-16 

summarizes the TACs used in our rates analysis. 

Table A-16.  Summary of TACs used in our rate model. 

Year PG&E SCE SDG&E 

2023 $0.006  $0.001  $0.016  

2024 $0.006  $0.001  $0.017  

2025 $0.007  $0.001  $0.018  

2026 $0.007  $0.001  $0.018  

2027 $0.007  $0.001  $0.020  

2028 $0.008  $0.002  $0.021  

2029 $0.008  $0.002  $0.022  

2030 $0.008  $0.002  $0.022  

2031 $0.008  $0.002  $0.022  

2032 $0.009  $0.002  $0.023  

2033 $0.009  $0.002  $0.023  

2034 $0.010  $0.002  $0.026  

2035 $0.011  $0.002  $0.028  

Generation costs were derived from the 2022 avoided cost calculator (ACC),196 including costs 

associated with generation energy, generation capacity, ancillary services, greenhouse gases, and 

high global warming potential gases.  Generation costs are a pass-through cost, so the revenue 

requirement is equal to the cost per MWh of generation multiplied by the incremental energy 

sales (∆ES).  The cost per MWh of generation was calculated from the hourly ACC values 

weighted by the hourly peak consumption change (i.e., the electrification load minus additional 

 
193 This is not the same number used in our model.  The number in our model is confidential.  The publicly available 

value provides an indication.  See SCE, Joint Motion of Southern California Edison Company (U 338-E) And 

Settling Parties for Adoption of Marginal Cost and Revenue Allocation Settlement Agreement, December 13, 2021 at 

Attachment A - Page 20; issued in A.20-10-012. 
194 This is not the same number used in our model.  The number in our model is confidential.  The publicly available 

value provides an indication.  See SDG&E, Chapter 2 Prepared Direct Testimony of Ray C. Utama on Behalf of San 

Diego Gas & Electric Company, January 17, 2023 at RU-5; issued in A.23-01-008 
195 See The Public Advocates Office, comments on draft transmission plan of the California Independent System 

Operator, April 25, 2023 at Section 9, Table 1.  Available at:  

https://stakeholdercenter.caiso.com/Comments/AllComments/3b5eb926-9bce-4c7f-806c-9ae156a4f9f3#org-

b4bc96db-9bb3-478b-a339-41f5d6e8413c. 
196 See 2022 Distributed Energy Resources Avoided Cost Calculator Documentation. 

https://stakeholdercenter.caiso.com/Comments/AllComments/3b5eb926-9bce-4c7f-806c-9ae156a4f9f3#org-b4bc96db-9bb3-478b-a339-41f5d6e8413c
https://stakeholdercenter.caiso.com/Comments/AllComments/3b5eb926-9bce-4c7f-806c-9ae156a4f9f3#org-b4bc96db-9bb3-478b-a339-41f5d6e8413c
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self-generation, energy efficiency, etc.).197  We used the same ACC values for all IOUs since 

little variation was observed.198  Table A-17 summarizes the average prices from the ACC and 

the weighted average prices used in our rate model.  We calculate the revenue requirement from 

incremental generation as the product of the weighted-average price, the incremental sales (see 

below), and the share of generation costs allocated to residential customers for each IOU. 

Table A-17.  Summary of ACC prices and weighted average prices used in our rate model. 

Year Average price Weighted-average price 

2023 $0.071 $0.094 

2024 $0.083 $0.11 

2025 $0.082 $0.11 

2026 $0.085 $0.11 

2027 $0.088 $0.11 

2028 $0.086 $0.11 

2029 $0.088 $0.11 

2030 $0.069 $0.088 

2031 $0.075 $0.092 

2032 $0.079 $0.097 

2033 $0.078 $0.094 

2034 $0.080 $0.097 

2035 $0.079 $0.095 

The strategy to forecast residential electricity sales was to apply the growth rate of energy sales 

to the baseline system residential sales for each IOU.  Table A-18 provides the geometric 

average annual growth rate in energy sales that we calculated and used in the DGEM. 

Table A-18.  Annual growth rates of energy sales used in the rate model. 

IOU Annual growth rate 

PG&E 1.81% 

SCE 1.45% 

SDG&E 2.14% 

One limitation of the DGEM is that it does not estimate total energy consumption directly, only 

hourly total peaks and annual EV energy.  We used the annual EV energy from the DGEM 

combined with non-EV forecasts from the 2022 IEPR hourly and annual tables to derive total 

energy to serve load.  The hourly tables199 for the Planning Scenario provided the non-EV energy 

to serve load (i.e., gross generation – self generation) for 2023 to 2035.  From the annual 

 
197 Average hourly consumption would provide a better representation.  But since DGEM does not produce full 

hourly load profiles, only hourly peak loads, these data were not available. 
198 We used values for SCE climate zone 9. 
199 2022 CED, hourly Planning Scenario forecast data for each of the three IOUs under Hourly Demand Forecast 

Files. 
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tables200 we extracted the losses201 as a percentage of total energy to serve load in all years of the 

study (i.e., 2023-2035).  Sales are total energy to serve load minus losses. 

  

 
200 2022 CED, annual Baseline Forecast data for each of the three IOUs under Baseline Demand Forecast Files. 
201 In the IEPR, percent losses in all years varied little for each IOU (calculated as a percentage of total energy to 

serve load).  We used the average values: 8.3 percent for PGE, 6.4 percent for SCE, and 7.6 percent for SDG&E. 
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Appendix B EV Deployment by IOU Service Territory 

While the DGEM’s projected total annual electricity consumption by all EVs aligns closely with 

the 2022 IEPR, there is more variation between the IOUs, as shown in Figure B-1.  Relative to 

the IEPR, the DGEM predicts less EV adoption in PG&E’s service territory in most propensity 

scenarios and more uptake in SCE’s and SDG&E’s service territories. 

 

Figure B-1.  Consumption forecasts relative to the IEPR (shown in black).  The DGEM predicts 

more adoption in SCE’s and SDG&E’s territories and less in PG&E’s service territory than the 

2022 IEPR. 

Table B-1 explores the DGEM’s maximum and minimum forecasted EV consumption in each 

IOU’s service territory and the EV adoption scenarios that achieve these outcomes.  These 

results are provided alongside the IEPR’s forecasted electric consumption for comparison.  The 

DGEM’s consumption forecasts in PG&E’s service territory align with the 2022 IEPR in the 

maximum case and are about 2,000 GWh/year less in the minimum case.  The DGEM’s forecast 

for SCE ranges from 1,000 to 4,000 GWh/year above the IEPR.  Moreover, the DGEM’s 

forecast for SDG&E ranges from aligned with the IEPR in the minimum case to nearly 2,000 

GWh/year above the IEPR in the maximum case. 

Table B-1.  Comparison of the DGEM’s minimum and maximum forecasts of EV consumption in 

each IOU service territory and the corresponding scenarios for 2035.  IEPR load consumption for 

2035 is shown for reference. 

 Consumption, GWh/year Propensity model scenarios 

IOU IEPR Min Max 

Minimum consumption Maximum consumption 

Personal Fleet Personal Fleet 

PG&E 25,150 23,293 25,044 Random Body Type Regression By Feeder 

SCE 20,574 21,881 24,568 Regression Body Type Random Random By Vehicle 
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 Consumption, GWh/year Propensity model scenarios 

SDG&E 6,174 6,225 7,852 Random By Feeder Regression Body Type 

More importantly, Table B-1 shows which vehicle deployment models lead to which outcome: 

the regression model leads to the least uptake in SCE’s service territory and the most in the other 

IOUs’ territories.  This implies that demographic factors considered in the regression model 

favor adoption in SDG&E’s and PG&E’s territories (i.e., these territories tend to have customers 

who are more educated and wealthier). 

The fleet propensity model outcomes are more complicated.  PG&E sees the most adoption using 

the by-feeder propensity model.  This means that PG&E currently has a higher EV adoption rate.  

SDG&E shows the lowest adoption with the by-feeder propensity model, which means that 

SDG&E has low EV adoption rates at present.  But SDG&E shows the most adoption under the 

by-body-type adoption model, which means that SDG&E has many vehicles of body types with 

high rates of EV adoption across the state.  This could favor near-term adoption of fleet vehicles 

in SDG&E’s service territory.  SCE sees the greatest adoption of MD and HD vehicles in the 

random scenario, implying that SCE has neither a high MD and HD adoption to date nor many 

vehicles of the types with high EV adoption across California. 
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Appendix C Calculation of the 2020-2022 Pace of Upgrades 

for the IOUs 

For each IOU, we categorized planned upgrades into three categories: new substation equipment, 

new distribution feeders, and possible new distribution feeders or upgrades to existing feeders.  

Possible new distribution feeders or feeder upgrades are included in the high end of the range for 

“Historic Pace” of feeder upgrades presented in Table 3-2.  For all three IOUs, we examined the 

planned upgrades for three years spanning 2020 through 2022.  For SCE and PG&E, we looked 

at the planned upgrades in the Distribution Deferral Opportunity Reports (DDOR) for the years 

2020 through 2022 and counted the upgrades planned for each year, removing redundant records.  

For SDG&E, we used the 2022 DDOR dataset, which included records for 2020 and 2021.  We 

also removed redundant records for SDG&E’s DDOR dataset.  The following paragraphs 

provide IOU-specific details on the categorization process. 

We used data from SCE’s 2020,202 2021,203 and 2022204 DDORs.  We categorized entries using 

the “Type of Equipment To Be Installed” data column.  We counted entries containing “Primary 

Feeder - New Distribution Line” as new distribution feeders.  We counted entries with 

“Substation – Transformer” as new substation equipment.  We included “Primary Feeder – 

Cable” and “Primary Feeder - Overhead Conductor” as possible new distribution feeders or 

feeder upgrades.  We excluded all projects that required voltage distribution services.  We further 

excluded projects with only switches, switch racks, service transformers, capacitors, bus cables, 

upgrades for protection equipment, transmission infrastructure projects, projects whose purpose 

was unclear, and other assets not included in the DGEM’s level of infrastructure analysis. 

For SDG&E we used data from the 2022 DDOR,205 which included planned upgrades in 2020, 

2021, and 2022.  We categorized using the “Description” column.  We categorized entries of 

“New Circuit” as new distribution feeders.  We categorized the entry of “New Transformer” with 

 
202 SCE, Reports of the Southern California Edison Company (U 338-E) of its 2020 Grid Needs Assessment and 

2020 Distribution Deferral Opportunities Report, August 17, 2020 at Appendix C: 2020 Distribution Deferral 

Opportunities Report Redacted Dataset (PUBLIC VERSION); filed in R.14-08-013.  Available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M345/K926/345926397.PDF. 
203 SCE, Reports of Southern California Edison Company (U 338-E) of its 2021 Grid Needs Assessment and 2021 

Distribution Deferral Opportunities Report, August 16, 2021 at Appendix C: 2020 Distribution Deferral 

Opportunities Report Redacted Dataset (PUBLIC VERSION), filed in R.14-08-013.  Available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M400/K580/400580035.PDF. 
204 SCE, 2022 Grid Needs Assessment and Distribution Deferral Opportunity Report of Southern California Edison 

Company (U 338-E) Public Version, January 13, 2023 at Attachment D: 2022 Distribution Deferral Opportunities 

Report Redacted Dataset (PUBLIC VERSION); filed in R.21-06-017.  Available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M501/K533/501533114.PDF. 
205 SDG&E, 2022 Grid Needs Assessment and Distribution Deferral Opportunity Report of San Diego Gas & 

Electric Company (U 902 E) Public Version, August 16, 2022 at Appendix A – August 15, 2022 DDOR; filed in 

R.21-06-017.  Available at: https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M496/K592/496592463.PDF. 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M345/K926/345926397.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M400/K580/400580035.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M501/K533/501533114.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M496/K592/496592463.PDF
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“Substation transformer bank” as the “Equipment Involved” under new substation equipment.  

We categorized “Reconductor” and “Transfer with new equipment” as possible new distribution 

feeders or feeder upgrades (because these are ways to mitigate distribution feeder overloads). 

We used data from PG&E’s 2020,206 2021,207 and 2022208 DDORs.  We categorized entries using 

the “Project Name” and “Project Type” columns for 2020 and 2022.  In 2021, PG&E featured a 

“Project Description” column that included more detail than the other two years.  For 2020 and 

2022, we counted entries of “Feeder” in “Project Type” as new distribution feeders unless the 

“Project Name” indicated new or replacement switches, disconnects, risers, regulators, 

capacitors, or other protection equipment identifiably out of the scope of the DGEM.  We also 

counted entries of “Bank” in “Project Type” as new substation equipment.  Other “Project 

Name” entries such as “line work,” “reconfigure,” “transfer,” “line section,” and “recable” were 

all counted as possible new distribution feeders or feeder upgrades.  For 2021, we generally 

followed the same procedure, but the “Project Description” column provided more detail on the 

scope of the projects, so the “Project Description” column served as the primary source for 

parsing out the projects into the three categories.  

 
206 PG&E, PG&E’s 2020 Distribution Deferral Opportunity Report, August 17, 2020 at Appendix A – Planned 

Investments, Appendix B – Candidate Deferral Opportunities; filed in R.14-08-013. 
207 PG&E, PG&E’s 2021 Distribution Deferral Opportunity Report, August 16, 2021 at Appendix A – Planned 

Investments, Appendix B – Candidate Deferral Opportunities; filed in R.14-08-013.  Available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M400/K593/400593924.PDF. 
208 PG&E, Corrected Project Cost Data to the 2022 Distribution Deferral Opportunity Report of Pacific Gas and 

Electric Company (U 39 E) Public Version, March 24, 2023 at Appendix E: LNBA – Planned Investments – 

Results; filed in R.21-06-017.  Available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M505/K748/505748651.PDF. 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M400/K593/400593924.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M505/K748/505748651.PDF

