Future Impacts to Land Subject to Coastal Storm Flowage

Julia Knisel Coastal Shoreline & Floodplain Manager

Historic Rate of Sea Level Rise (Boston Tide Gauge)

Mean range (MHW-MLW) = 9.5 feet

Record = 1921-2012 (91+ years)

Sea level rise = 0.9 feet/100 years

Historic Sea Level Trends from 1921 to 2006-2012 (Boston)

- Linear mean sea level rates (◆) & 95% confidence intervals (mm/yr) calculated from 1921 to recent years (2006-2012) at the NOAA Boston tide gauge station
- Values are trend of entire data period up to that year

Global Sea Level Rise Projections/Scenarios

Scenario	SLR by 2100 (m)*	SLR by 2100 (ft)*
Highest	2.0	6.6
Intermediate-High	1.2	3.9
Intermediate-Low	0.5	1.6
Lowest	0.2	0.7

^{*} Using mean sea level in 1992 as a starting point.

Recent Expert Assessment of Sea Level Rise Projections

Coastal Inundation Mapping Elements

Water Level:

- Local tide ranges
- Sea level rise data & projections
- Flood event data (surge & precipitation)

High Resolution Elevation Data:

- Topographic & bathymetric LIDAR
- Digital elevation models referenced to tidal datums

Natural & Human Responses:

- Current ecosystems (beaches & wetlands)
- Landform changes (erosion & accretion)
- Physical barriers to migration (development, seawalls, culverts, etc.)

Buzzards Bay Potential Flood Zone Expansion with Sea Level Rise (static)

Buzzards Bay Potential Hurricane Impacts with Sea Level Rise (dynamic)

Hurricane Scenarios

- Hurricane Scenarios Oft SLR
- Hurricane Scenarios 1ft SLR
- ☐ Hurricane Scenarios 2ft SLR
- ✓ Hurricane Scenarios 4ft SLR
 - Category 1
 - Category 2
 - Category 3
 - Category 4
 - Category 4 (Extreme)

South Shore Coastal Inundation Depth Scenarios (dynamic)

South Shore Coastal Inundation Depth Classification

South Shore
Potential
Nor'easter
Impacts with
Sea Level Rise
(5 ft, dynamic)

3D Coastal Inundation Depth (with 5 ft of Sea Level Rise & Nor'easter Storm Surge)

Critical Parameters for Modeling Marsh Migration

Marshes on the Move, 2011

 If sediment accretes (traps on surface or accumulates) as fast as sea level rises, then marsh may avoid being converted or submerged

Wetland Types & Tidal Ranges

^{*}includes silt, sand, or gravel that is subject to inundation and redistribution due to the action of water; substrates lack vegetation

Marsh Conversion to Unconsolidated Shore (Gloucester)

Current

75-Year Time Horizon (2080) Net marsh impact = MHHW +

4.5 ft sea level rise - 1 ft accretion

Marsh Conversion to Unconsolidated Shore (Salisbury)

Current

75-Year Time Horizon (2080)

Net marsh impact = MHHW + 4.5 ft sea level rise - 1 ft accretion

Marsh Migration Limited by Development & Infrastructure (Newbury)

Current

75-Year Time Horizon (2080)

Net marsh impact = MHHW + 4.5 ft sea level rise - 1 ft accretion

Marsh Migration Limited by Development & Infrastructure (Salisbury)

Current

75-Year Time Horizon (2080)

Net marsh impact = MHHW + 4.5 ft sea level rise - 1 ft accretion

Summary of Sea Level Rise Projections & Impacts

- Historic rate of sea level rise (~ 1 ft/century) has shaped our shoreline
- Current rate accelerating
- 1.5 3x current rate reasonable by 2100 with climate mitigation measures...but uncertain
- Data exists to evaluate potential impacts & communities are actively engaged in projects
- Communities are vulnerable without shoreline migration/erosion
- Loss of wetlands increases reach of storm surge & flooding
- Preparation is extremely important

