Updates to TEL and AAL Values Air Toxics

Sandra Baird, Ph.D. Chief, Toxicology Division Office of Research and Standards MassDEP

May 23, 2024

TELS AND AALS

HEALTH BASIS

Outline

MOTIVATION AND PROCESS

UPDATES TO TELS AND AALS

MassDEP Air Guideline Values

TELs

Threshold Effects Exposure Limits (non-cancer)

NTELs

Non-Threshold Effects Exposure Limits (cancer)

AALs Allowable Ambient Levels

A Short History of TELs and AALs

Health Basis of MassDEP Air Guideline Values

CHEM/AAL

Chemical Health Effects Assessment Methodology and the Method to Derive Allowable Ambient Limits

Developed by ORS in the mid-1980s

Consistent process

Based on occupational standards

Updating Methodology

Developed by ORS in 2011 Consistent process Primarily based on toxicity values developed by USEPA Agency for Toxic Substances and Disease Registry (ATSDR) California EPA

Toxicity Values

TEL – Threshold Effect Exposure Limits - Noncancer effects

Reference Concentration (RfC) – an estimate of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime (USEPA)

NTEL – Non-Threshold Effect Exposure Limits - Cancer risk Inhalation Unit Risk (IUR) – the estimated excess lifetime cancer risk from continuous exposure at a concentration of 1 ug/m³ in air (USEPA)

Exposure and Target Risk Values MassDEP Air Guideline Values

TELsRfC & relative source contribution (RSC) = 20%TEL = RfC x RSC = 10 ug/m³ x 0.2 = 2 ug/m³

Compare to 24-hour average

NTELs Cancer risk = 1 in 1 million

NTEL = 1×10^{-6} / IUR = 1×10^{-6} / 1×10^{-5} per ug/m³ = 0.1 ug/m³

Compare to annual average

AAL Minimum of TEL and NTEL AAL = 0.1 ug/m³ Compare to annual average Motivation for 2024 Updates

- 2020 legislation Cumulative Impact Analysis - CIA -
 - Cumulative risk estimates for permit applications
- Update the air toxics chemical list
 - last reviewed and updated in 2011
- Incorporate new toxicity data
 - New methods from USEPA for developing toxicity values

Q

MassDEP 2024 Air Guideline Values

Inhalation Toxicity Value Reference Table 2024

CIA - Cumulative Risk Characterization MATRiST

Air Guideline Values TELs and AALs

Process for 2024 Updates

Identifying New Chemicals

Review chemical lists

- USEPA HAPs (188)
- Massachusetts specific
 - Monitored air toxics VOCs, carbonyls, metals, PAHs
 - NATTS National Air Toxics Trends Station
 - Emissions from sources in MA based on source registration
 - MCP listed chemicals inhalation pathway
 - TURI listed chemicals
- TRI reporting
- States NH, NY, NJ, CA

Identifying Toxicity Values

- Identify existing peer reviewed toxicity values (RfC, IUR) from
 - USEPA IRIS Integrated Risk Information System
 - CalEPA OEHHA Office of Environmental Health
 - ATSDR Agency for Toxic Substances Disease Registry
- Additional sources
 - USEPA PPRTV Provisional Peer Reviewed Toxicity Values
 - Surrogate similar chemicals
 - Route to route extrapolation from oral toxicity value
 - ORS Derived values (e.g., CHEM/AAL)

Selecting Toxicity Values

- Principles from MassDEP Methodology for Updating Air Guidelines -2011
 - Quality of the data evaluated
 - Approach used to extrapolate to the general human population
 - Weight was given to values based on the studies with
 - more up-to-date data
 - greater ability to detect effects
 - more sensitive effects evaluated
 - dose extrapolation methods most consistent with current methods
 - dose-response methods most consistent with current methods

Selecting Toxicity Values

Considered consistency across MassDEP programs

General rules:

- Adopt MassDEP existing guidance
 - Petroleum hydrocarbons (2003)
 - Dioxins (1991)
- Values within a factor of 3
 - usually adopt USEPA value
- Values greater than a factor of 3
 - adopt value with best qualities

Document Rationale for Value Selected

Inhalation Toxicity Value Reference Table 2024

- Each value for each chemical, includes
 - Source and date
 - Any adjustments

2024 Updates to TELs/AALs

- Identify new chemicals
- Changes to existing values
- Examples of significant changes

Chemicals added to AAL/TEL list

- 141 new chemicals
- 69 in groups
 - 21 Polycyclic Aromatic Hydrocarbons (PAHs)
 - 22 Dioxins/Furans (TCDD and equivalents)
 - 16 Petroleum hydrocarbons
 - 9 Metals
- 72 additional chemicals
 - Ethylene Oxide
 - Diesel Particulate Matter

Changes to Existing AAL/TEL Values

	TELs	AALs
Lower	34	32
Same	27	29
Higher	30	35

Example of large change in existing AAL/TEL

Nickel (metal and compounds, excludes nickel oxide) 2024 AAL is ~100 times lower

Example of large change in existing AAL/TEL

Ethyl Benzene – 2024 AAL is 600 times lower

Summary - Updates to TEL/AALs

- Updated and expanded list of chemicals evaluated for air toxics
- Toxicity values reviewed and incorporate new toxicity data
- 141 new chemicals added
- 237 total number of chemicals evaluated for air toxics

Thank You!

ORS Toxicology Group

Nicole Moody

Thomas Angus

Greylin Nielsen

Emma Spady

