INTERBASIN TRANSFER ACT PERFORMANCE STANDARDS

WATER RATES AND BILLING

STAFF PROPOSAL – PART 2
(Performance Standards, Appendix B)

Water Resources Commission Meeting, March 2021

Purpose of update

- Reflect updated Interbasin Transfer Regulations (2018)
- Reflect updated Water Conservation Standards (2018)
- Align with industry best practice

Interbasin Transfer Act Regulations (313 CMR 4.09(3)(c)1.a.)

(iii) Implementation of Rate Structures that reflect the costs of operation, proper maintenance, proposed capital improvements, and water conservation and that encourage the same

Interbasin Transfer Act Regulations (313 CMR 4.09(3)(c)1.a.)

(iii) Implementation of Rate Structures that reflect the costs of operation, proper maintenance, proposed capital improvements, and water conservation and that encourage the same

Proposed Language for Performance Standards

"The rate structure must encourage water conservation. Appendix B provides guidance on financially sustainable conservation-oriented rate structures."

Appendix B

- List of resource documents
- Six principles of conservation rates
- Conservation rate structures and submittal requirements for each

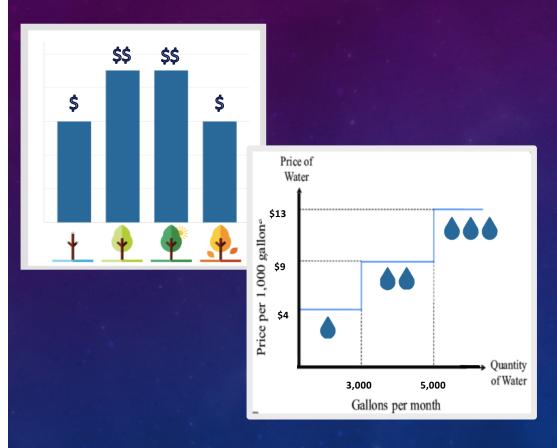
Recommended Guidance Documents:

- Water Conservation Standards, Pricing Chapter
- Water Conservation-Oriented Rates: Strategies to Extend Supply, Promote Equity, and Meet Minimum Flow Levels (AWWA 2005)
- Building Better Water Rates for an Uncertain World: Balancing Revenue Management, Resource Efficiency, and Fiscal Sustainability (AWE 2014)
- Principles of Water Rates, Fees, and Charges (AWWA M1)
- Developing Rates for Small Systems (AWWA M54), if appropriate

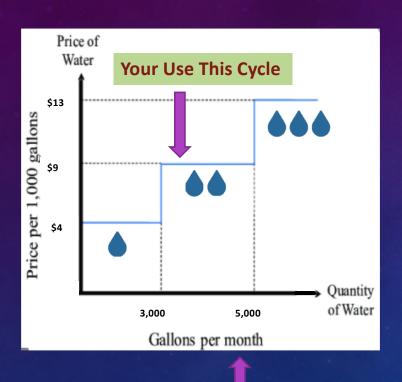
Appendix B

List of resource documents

Conservation rate structures and submittal requirements for each


#1 - Rates and charges should reflect the true cost of delivering safe, reliable, and sustainable water services into the future.

#2 - Rate structures should send strong price signals that reduce inefficient and nonessential use.


#3 - Rate structures should incorporate mechanisms to address revenue stability and sufficiency in the face of reduced demand.

#4 - Rates should be easy to interpret, reflect fair distribution of costs, and incorporate affordability protections for water to meet basic needs.

#5 - Rates should be reviewed annually and adjusted as needed.

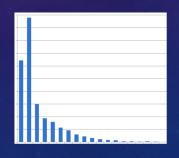
- #6 Billing practices should support price signals by:
- helping customers understand the impact of their usage on their charges
- occurring frequently enough for customers to adjust their use or investigate possible leaks soon after a sudden increase in metered use; monthly billing is ideal.

Appendix B

- List of resource documents
- Six principles of conservation rates
- Conservation rate structures and submittal requirements for each

Conservation-Oriented Rate Structures

Two categories

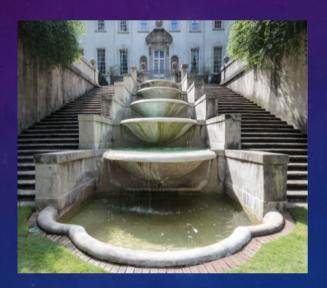

Per-unit price increase(s)

Uniform rate

Per-Unit Price Increase(s)

Two elements needed to be fair and effective:

- 1) Reasonable basis for determining water targeted for reduction
- 2) Substantial price increase for water targeted for reduction (i.e. meaningful *percentage* increase and sufficiently high absolute price)



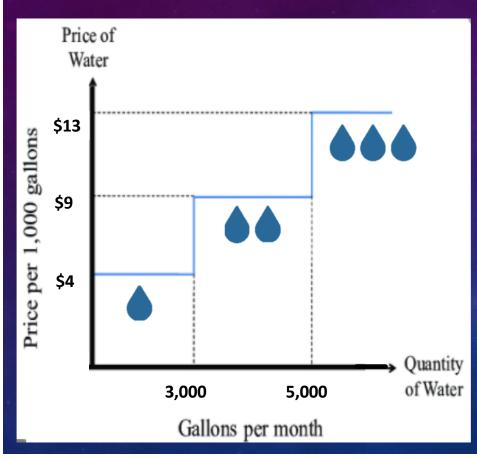
Unit-Price Increases Applicable for:

Inefficient use

Nonessential use

Use at burdensome times for system or environment

Unit Price Increase Example

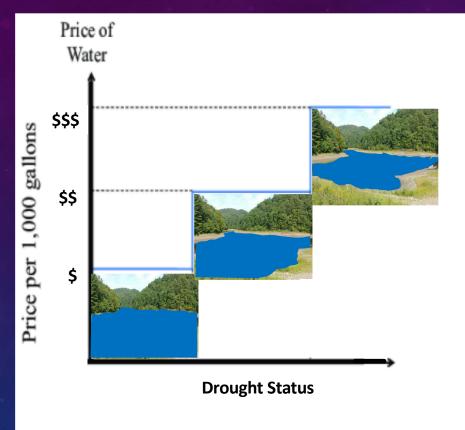


Seasonal Rates

Unit charges increase to reflect seasonal peak demands and/or seasonal source stressors.

Proponents should describe the seasonal triggers and how they were selected.

Unit Price Increase Example

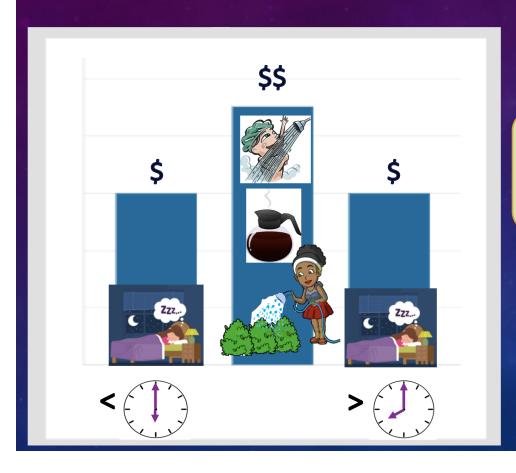

Tiered Rates

Unit charges increase as usage crosses set volume thresholds within a billing period.

Proponents should describe the basis for the tier breaks.

Note! The more distinction made between customer types, the more effective and fair a tiered rate is, but the more administratively complex.

Unit Price Increase Example



Drought or Scarcity Rates

Unit charges increase based on drought triggers or other specific metrics of source stress.

Proponents should describe how the indicators that trigger price increases are determined and tracked.

Unit Price Increase Example

Peak Use Rates

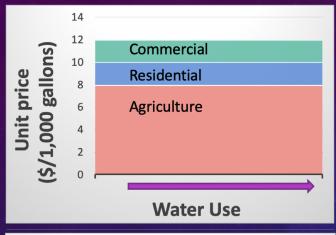
Unit charges increase during times the supply system is under the greatest stress from demand.

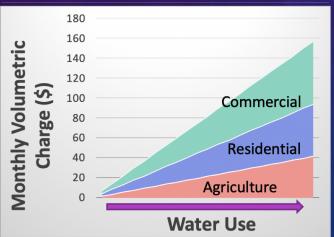
Proponents should describe how the peak use period is defined and the basis by which it was determined.

Conservation-Oriented Uniform Rate

Two elements needed to for a fair and effective price signal:

1) Unit price should be sufficiently high to incentivize reduction




2) Program should be in place to help ensure customers can afford water for basic needs

Uniform Rate

Example

Three sectors

Within each sector, unit charges stay the same, regardless of demand.

Proponents should describe the mechanism(s) in place to protect affordability of water for basic needs.

Evaluation of Conservation Rates

Per Unit Price Increase

Reasonable basis for identifying water targeted for reduction

Sufficient price signal in categories targeted for reduction

Uniform Rate

Reasonable affordability protections

Sufficient price signal overall

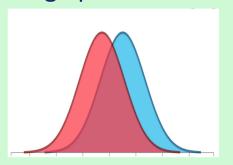
Evaluation of Conservation Rates

Per Unit Price Increase

Reasonable basis for identifying water targeted for reduction?

Sufficient price signal in categories targeted for reduction

Uniform Rate


Reasonable affordability protections

Sufficient price signal overall

Evaluation of Per Unit Price Increase Structure

Examples of "reasonable" bases for identifying water targeted for reduction:

Analysis of customer usage patterns

Cost of service inflection points

Regulatory or operational thresholds

Other

Does the percentage of accounts exposed to each price category indicate that the targeted customers are receiving the signal(s)?

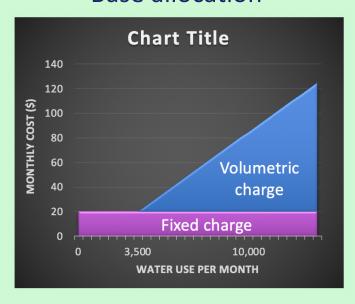
Evaluation of Conservation Rates

Per Unit Price Increase

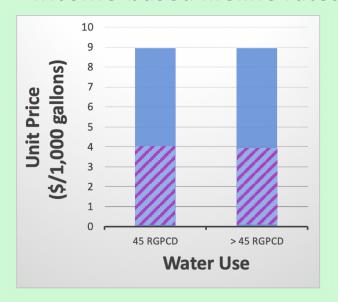
Reasonable basis for identifying water targeted for reduction

Sufficient price signal in categories targeted for reduction

Uniform Rate


Reasonable affordability protections?

Sufficient price signal overall


Evaluation of Uniform Rate Structure

Examples of "reasonable" affordability protections:

Base allocation

Income-based lifeline rates

Other

Evaluation of Conservation Rates

Per Unit Price Increase

Reasonable basis for identifying water targeted for reduction

Sufficient price signal in categories targeted for reduction?

Uniform Rate

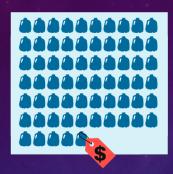
Reasonable affordability protections

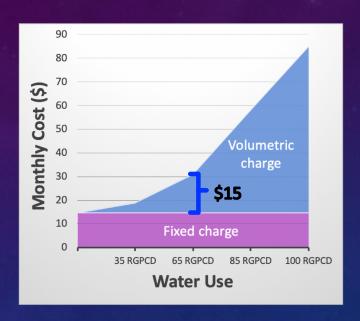
Sufficient price signal overall?

How do you compare price signals across utilities?

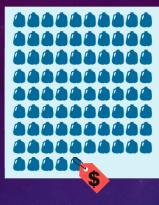
- Different units
- Different billing cycles
- Different base allocations
- Different number of tiers
- Different tier volumes
- Different prices for each tier
- Different average household sizes

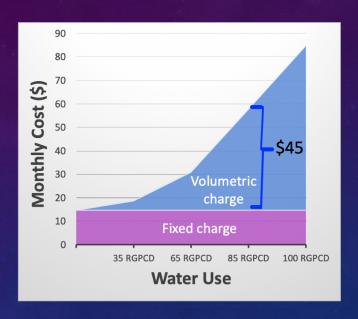
... Create common price metrics across all systems.





Average household size in the community


Using 65 gpcd


- Monthly cost from volumetric charges
- Cost per gallon for the next gallon used

Average household size in the community

Using 85 gpcd

- Monthly cost from volumetric charges
- Cost per gallon for the next gallon used

Evaluation of Per Unit Price Increase Structureand Uniform Rate Structure

Benchmark for "sufficient" price signal

Volumetric charge and marginal price for the next gallon for average-sized households using:

- 65 gpcd
- 85 gpcd

As an initial benchmark, these four metrics should be at or above the state median. *THIS IS REBUTTABLE*.

Potential Reasons for Rebuttal

- Small/simple system with low cost of operation
- Low RGPCD within customer segment(s) facing low prices AND effective structure to target problematic customer segment(s)
- Other?

Evaluation of Conservation Rates

Per Unit Price Increase

Reasonable basis for identifying water targeted for reduction

Sufficient price signal in categories targeted for reduction

Uniform Rate

Reasonable affordability protections

Sufficient price signal overall

PISCUSSION

