

225 CMR 16.00

Renewable Thermal Technologies in the APS

Metering Subgroup Meeting
November 21, 2014
Boston, MA

Agenda

- Introduction
- Metering of technologies
 - > Solar thermal
 - ➤ Air Source Heat Pumps
 - ➤ Ground Source Heat Pumps
 - > Biomass Pellet Boilers

Accuracy? Methodology?

Goal of Metering

- Calculate appropriate incentive credits
- Ensure long-term and optimal operation
- Avoid rebound effect

- > Right (accurate), Reliable, Replicable, Reported
 - Metering heat, steam, fuel
 - Standards
- > Reasonable (cost, effort)

Heating and Cooling in the Massachusetts Alternative Portfolio Standard, Report to the Legislature, EEA/DOER with assistance from Meister Consultants Group and MassCEC, 2012

Metering Approach

- Large systems: continuous accurate metering and automatic reporting
 - Available equipment / standards / industry practice
- Small systems: calculate projected output
 - Cut-off large/small = 400 kBtu/h (total system capacity)
 - Meant to cover residential, small multi-family and small commercial
 - Verification of ongoing operation through spot checks and run-time monitoring

Solar Thermal – Large System Metering

- Hydronic Solar Thermal: quantify useful thermal generation by combining
 - \triangleright Metering of flow, ΔT (storage tank/collector)
 - > SRCC rating of system
 - System vs. collector
 - Which climate zone
- Solar hot air systems?

Solar Thermal – Large System Metering

- Systems with solar heated only storage tank in series with traditional hot water heater
 - > A Btu Meter consisting of
 - Flow meter at either city water inlet or hot water outlet to the solar storage tank
 - A pair of thermal sensors: one at the city cold water inlet and the other at the hot water outlet of the solar water storage tank
 - A Btu computer that converts the metered flow and temperatures to Btus

Solar Thermal – Large System Metering

- Systems with a single tank with supplementary non-solar heating and constant panel flow
 - > A thermal sensor on the supply and return for the collector loop, along with flow meter.
 - ➤ A Btu computer that converts the metered flow and temperatures to Btus

Accuracy?
Standards?
Equipment?

Heat Pumps - Large System Metering

- Air/Ground Source Heat Pumps: quantify the consumption of the site grid electricity and the supply of renewable heat energy terms by combining
 - \triangleright Directly metered values (ΔT , runtime)
 - > Nominally rated system performance
 - Original equipment manufacturer certified (AHRI)
 - Need for performance data (COP) at different temperature ranges

Heat Pumps - Large System Metering

- ASHP
 - Outside temperature
 - ➤ Delta T of Working fluid across loop?
 - > Unit runtime
- GSHP
 - > Incoming/returning water temperature
 - > Unit runtime

Accuracy?
Standards?
Equipment?

Biomass - Large System Metering

- Biomass pellet/chip: quantify useful thermal generation based on
 - > OEM Rated efficiency of boiler
 - > Parasitic power meter (if >25kW)
 - ➤ Btu meter in water/steam loop and/or volume and energy content of fuel use

Biomass - Large Systems Metering

Large (> 100 BHP = 3.3 MMBtu/h)

- BTU Metering
 - Steam or Hot Water Supply & Feedwater Return
 - Flow, Temperature
 - Btu module converts flows and temperatures to Btus
- > Parasitic grid power
 - kWh meter for boiler feedwater pumps if full load demand is > 25kW
- > Fuel (do we need this if BTU meter?)
 - Volume and energy content of fuel (pellets/chips) consumed

Biomass - Large Systems Metering

Small (<3.3 MMBtu/h, >400kBtu/h)

- Volume and energy content of fuel (pellets/chips) consumed
- > OEM Rated efficiency of boiler

Accuracy?
Standards?
Equipment?

Next Questions

- Modeling for small systems
 - ➤ Large/small cut-off
 - Modeling approach
 - > Verification of ongoing operation

