Reclaimed Asphalt Pavement (RAP) Characterization in Massachusetts

MassDEP's Fall-2023 C&D Materials Market

Development Webinar Series

Ed Naras

Pavement Management Engineer MassDOT - Highway Division

Walaa S. Mogawer, P.E.

Professor and Director Highway Sustainability Research Center University of Massachusetts Dartmouth

Outline

➢ Background > Problem Statement > Objectives > Methodology Data and Analysis > Conclusions ➢ Recommendations

Background

RAP use in a mixture is typically specified by State agencies following the guidance of the AASHTO M323.

Method #1:Percent by Dry Weight of the Mixture

Recommended Virgin Asphalt Binder Grade	RAP Percentage
No change in binder selection	<15
Select virgin binder one grade softer than normal (e.g., select a PG 58-28 if a PG 64-22 would normally be used)	15 to 25
Follow recommendations from Appendix X1	>25

Method #2: RAP Binder Ratio (RAPBR)

Recommended Virgin Asphalt Binder Grade	RAPBR
No change in binder selection	<0.25
Follow recommendations from Appendix X2	>0.25

> AASHTO M323 also provides blending equations for higher RAP percentages

Problem Statement

- For surface mixtures, MassDOT specification currently allows up to 15% RAP by dry weight of the mixture with no change to the typical specified binder (PG64-28).
- > The specification implies that:
 - 1. The required binder properties of the mixture will be met regardless of the properties of the aged RAP binder or the RAP binder content.
 - 2. Mixture performance will be independent of the <u>source of the virgin</u> <u>PG64-28 asphalt binder</u>.

Objectives

- 1. Determine if MassDOT specification which allows up to 15% RAP in surface mixtures is valid regardless of RAP source and virgin binder source.
- 2. Determine if the MassDOT specification should be based on RAPBR instead of by dry weight.
- 3. Use a Balanced Mix Design (BMD) procedure to determine the effects of using 15%, 25%, and 35% percent RAP without using a softer binder or a rejuvenator, and which mixtures would remain balanced.
- 4. Determine what changes are needed, if any, to the current MassDOT specification for RAP use in surface mixtures.

Methodology

Four Steps:

- > Determination of RAP Properties Throughout Massachusetts
- Determination of Virgin Binders Properties Throughout Massachusetts
- > Analysis of Methods to Specify RAP in a Mixture
- Mixture Design with RAP Using a BMD Approach

Step 1: Determination of RAP Properties Throughout the State

Average RAP Binder Grading

Step 2:

Determination of Virgin Binders Properties Throughout the State

	PG64-28 Virgin Binder Source				
<u>Property</u>	Deerfield [A]	Providence [B]	Newington [C]	Canada [D]	
Performance Grade	PG64-28	PG64-28	PG64-28	PG64-28	
Average Continuous Grade	65.8(15.8)-30.9	66.2(20.4)-28.6	65.0(16.3)-30.6	65.5(16.8)-30.9	
Average Delta $T_c (\Delta T_c)$	+0.8°C	-1.2°C	-1.2°C	-0.1°C	

Close to thresholds for a PG 64-28

22°C Intermediate temperature

-28.0°C Low temperature

<u>Step 3:</u>

Analysis of Methods to Specify RAP in a Mixture

Methods of RAP Specification

- 1. Percent Dry Weight of Mixture Method
- 2. RAP Binder Ratio (RAPBR) Method
- 3. AASHTO M323 Blending Charts/Equations

Percent Dry Weight of Mixture Method

%
$$RAP = \frac{T_{Blend} - T_{Virgin}}{T_{RAP} - T_{Virgin}}$$

Where:

= Critical temperature of the virgin asphalt binder (high, intermediate, or low)
= Critical temperature of the blended asphalt binder (high, intermediate, or low)

= Critical temperature of the recovered RAP binder (high, intermediate, or low)

Percent Dry Weight of Mixture Method

Predicted Allowable Percent RAP

	PG64-28 Virgin Binder Source						
Location	Deerfield [A]	Pro	ovidence [B	B] Newington [C]	Canada [D]		
District 1							
Lenoxdale RAP 2019	18.7		4.5F	17.1	18.7		
District 2							
Deerfield RAP 2017	23.0		5.8F	21.1	23.0		
Deerfield RAP 2018	22.3		5.6F	20.5	22.3		
Northfield RAP 2019	22.8		5.8F	21.0	22.8		
District 3							
Millbury RAP 2017	46.8		15.4	44.1	46.8		
Cumberland RAP 2018	17.5		4.2F	16.0	17.5		
District 4							
Dracut RAP 2017	29.9		8.1F	27.7	29.9		
Dracut RAP 2018	26.9		7.1F	24.8	26.9		
Dracut Millings 2017	14.6F		3.4F	13.3F	14.6F		
Dracut Millings 2018	33.3		9.4F	31.0	33.3		
District 5							
Wrentham RAP 2017	33.3		9.4F	31.0	33.3		
Acushnet RAP 2017	27.4		7.2F	25.2	27.4		
Acushnet Millings 2017	29.9		8.1F	27.7	29.9		

F = Failed to have a percentage of RAP greater than or equal to 15%.

RAPBR Method

$$RAPBR_{max} = \frac{T_{Need} - T_{Virgin}}{T_{RAP} - T_{Virgin}}$$

Where:

RAPBR_{max} = Maximum RAP binder ratio

 T_{Virgin} = Critical temperature of the virgin asphalt binder (high, intermediate, or low)

 T_{Need} = Critical temperature needed for the climate or pavement layer (high, intermediate, or low)

 T_{RAP} = Critical temperature of the recovered RAP binder (high, intermediate, or low)

Estimate of % RAP from RAPBR_{max}

The maximum percentage of RAP corresponding to the calculated $RAPBR_{max}$ can be determined:

$\% RAP = \frac{100(RAPBR_{max})(Pb_{Total})}{(Pb_{RAP})}$

Where: RAPBR_{max} Pb_{RAP} % RAP Pb_{Total}

- = Maximum RAP binder ratio
- = Binder content of RAP
- $= P_{RAP} =$ Percent RAP by dry weight of mixture
- = Total binder content of the mixture (5.5% for this study which corresponds to mixture testing)

RAPBR_{max} **To Maintain PG64-28**

	PG64-28 Virgin Binder Source							
		Deerfield [A]		Providence [B]		on [C]	Canada [D]	
District 1	RAPBR _{max}	% RAP	RAPBR _{max}	% RAP	RAPBR _{max}	% RAP	RAPBR _{max}	% RAP
Lenoxdale RAP 2019	0.19F	17.2	0.05F	4.2	0.17F	15.7	0.19F	17.2
District 2								
Deerfield RAP 2017	0.23F	19.2	0.06F	4.9	0.21F	17.6	0.23F	19.2
Deerfield RAP 2018	0.22F	19.5	0.06F	4.9	0.20F	17.9	0.22F	19.5
Northfield RAP 2019	0.23F	20.9	0.06F	5.3	0.21F	19.2	0.23F	20.9
District 3								
Millbury RAP 2017	0.47	44.4	0.15F	14.6	0.44	41.8	0.47	44.4
Cumberland RAP 2018	0.17F	16.6	0.04F	4.0	0.16F	15.1	0.17F	16.6
District 4								
Dracut RAP 2017	0.30	31.6	0.08F	8.6	0.28	29.3	0.30	31.6
Dracut RAP 2018	0.27	27.3	0.07F	7.2	0.25	25.2	0.27	27.3
Dracut Millings 2017	0.15F	13.4	0.03F	3.1	0.13F	12.2	0.15F	13.4
Dracut Millings 2018	0.33	29.6	0.09F	8.3	0.31	27.5	0.33	29.6
District 5								
Wrentham RAP 2017	0.33	35.9	0.09F	10.1	0.31	33.4	0.33	35.9
Acushnet RAP 2017	0.27	32.7	0.07F	8.6	0.25	30.2	0.27	32.7
Acushnet Millings 2017	0.30	27.9	0.08F	7.6	0.28	25.8	0.30	27.9

Blending Charts/Equations

- Used at larger RAP contents (>15%) and larger RAPBR (>0.25). Analysis conducted at 15%, 25% & 35% RAP.
- Method shows what continuous PG would be provided if a certain percentage of RAP were to be used.
- ➢ Goal is to maintain a PG64-28.

$$\succ T_{Virgin} = \frac{T_{Blend} - (\% RAP \ x \ T_{RAP})}{(1 - \% RAP)}$$

Where:

 T_{Virgin} = Critical temperature of the virgin asphalt binder (high, intermediate, or low) T_{Blend} = Critical temperature of the blended asphalt binder (high, intermediate, or low) T_{RAP} = Critical temperature of the recovered RAP binder (high, intermediate, or low) % RAP = Percentage of RAP expressed as a decimal

Blending Charts – Results 15% RAP

	Source A		Source B		Source C	Source D
District 1			\frown			
Lenoxdale RAP 2019	PG 64-28		PG 70-22 F		PG 64-28	PG 64-28
District 2						
Deerfield RAP 2017	PG 64-28		PG 64-22 F		PG 64-28	PG 64-28
Deerfield RAP 2018	PG 64-28		PG 64-22 F		PG 64-28	PG 64-28
Northfield RAP 2019	PC 64-28		DC 64 22 E		DC 64 29	PG 64-28
District 3			1 E 0/ D	Λ Ι		
Millbury RAP 2017			<u>15% R</u> /			PG 64-28
Cumberland RAP 2018	29%	of	Combinat	io	ns Failed	PG 64-28
District 4				_		
Dracut RAP 2017	PG 64-28		PG 64-22 F		PG 64-28	PG 64-28
Dracut RAP 2018	PG 64-28		PG 64-22 F		PG 64-28	PG 64-28
Dracut Millings 2017	PG 70-22 F		PG 70-22 F		PG 70-22 F	PG 70-22 F
Dracut Millings 2018	PG 64-28		PG 64-22 F		PG 64-28	PG 64-28
District 5						
Wrentham RAP 2017	PG 64-28		PG 64-22 F		PG 64-28	PG 64-28
Acushnet RAP 2017	PG 64-28		PG 64-22 F		PG 64-28	PG 64-28
Acushnet Millings 2017	PG 64-28		PG 64-22 F		PG 64-28	PG 64-28

Blending Charts – Results 25% RAP

	Source A	Source B	Source C	Source D		
District 1						
Lenoxdale RAP 2019	PG 70-22 F	PG 70-22 F	PG 70-22 F	PG 70-22 F		
District 2						
Deerfield RAP 2017	PG 70-22 F	PG 70-22 F	PG 70-22 F	PG 70-22 F		
Deerfield RAP 2018	PG 70-22 F	PG 70-22 F	PG 70-22 F	PG 70-22 F		
Northfield RAP 2019	PC 70 22 E	DC 70 22 E	DC 70 22 5	PG 70-22 F		
District 3		250/ D	۸D			
Millbury RAP 2017		<u>25% RAP</u>				
Cumberland RAP 2018	60%	60% of Combinations Failed				
District 4						
Dracut RAP 2017	PG 70-28	PG 70-22 F	PG 64-28	PG 70-28		
Dracut RAP 2018	PG 70-28	PG 70-22 F	PG 70-28	PG 70-28		
Dracut Millings 2017	PG 70-22 F	PG 70-22 F	PG 70-22 F	PG 70-22 F		
Dracut Millings 2018	PG 64-28	PG 64-22 F	PG 64-28	PG 64-28		
District 5						
Wrentham RAP 2017	PG 64-28	PG 64-22 F	PG 64-28	PG 64-28		
Acushnet RAP 2017	PG 70-28	PG 70-22 F	PG 64-28	PG 64-28		
Acushnet Millings 2017	PG 70-28	PG 70-22 F	PG 64-28	PG 64-28		

Blending Charts – Results 35% RAP

	Source A	Source B	Source C	Source D
District 1				
Lenoxdale RAP 2019	PG 70-22 F	PG 70-22 F	PG 70-22 F	PG 70-22 F
District 2				
Deerfield RAP 2017	PG 70-22 F	PG 70-22 F	PG 70-22 F	PG 70-22 F
Deerfield RAP 2018	PG 70-22 F	PG 70-22 F	PG 70-22 F	PG 70-22 F
Northfield RAP 2019	PC 70 22 E	DC 70 22 5	DC 70 22 5	PG 70-22 F
District 3				
Millbury RAP 2017		<u>35% RA</u>	<u> </u>	PG 64-28
Cumberland RAP 2018	94%	of Combinatio	ns Failed	PG 70-22 F
District 4				
Dracut RAP 2017	PG 70-22 F	PG 70-22 F	PG 70-22 F	PG 70-22 F
Dracut RAP 2018	PG 70-22 F	PG 70-22 F	PG 70-22 F	PG 70-22 F
Dracut Millings 2017	PG 70-22 F	PG 76-22 F	PG 76-22 F	PG 70-22 F
Dracut Millings 2018	PG 70-22 F	PG 70-22 F	PG 70-22 F	PG 70-22 F
District 5				
Wrentham RAP 2017	PG 70-22 F	PG 70-22 F	PG 64-22 F	PG 70-22 F
Acushnet RAP 2017	PG 70-22 F	PG 70-22 F	PG 70-22 F	PG 70-22 F
Acushnet Millings 2017	PG 70-22 F	PG 70-22 F	PG 70-22 F	PG 70-22 F

Methods of RAP Specification - Discussion

- Percent dry weight of mixture method: Analysis showed 15% RAP could be not used in 15 of 52 combinations (29%).
- RAPBR method: 31 of 52 combinations (60%) failed to have a RAPBR_{max} of at least 0.25.
- ➢ None of the methods showed agreement to each other.
- The accuracies of the above methods need to be determined by looking at the performances of actual mixtures incorporating different RAP sources and virgin binder sources.

Step 4: Mixture Design with RAP Using a Balanced Mix Design (BMD) Approach

Balanced Mixture Design (BMD)

- Utilized volumetric properties followed by performance evaluation.
- RAP sources selected were the Dracut Millings 2017 (Stiff RAP) and Millbury RAP 2017 (Soft RAP).
- Source A (Deerfield) & B (Providence) binders were selected as they represented the two extremes in terms of the intermediate and low temperature continuous grade.

BMD Performance Evaluation Measures

DISTRESS	TEST	AGING	CRITERIA
Rutting	Hamburg Wheel Tracking Test (AASHTO T324)	Short-Term 4 hrs. at 135°C	45°C Test Temperature < 12.5 mm & No SIP before 15,000 passes
Intermediate Temperature Cracking	Flexibility Index Test (AASHTO TP124)	Short-Term 4 hrs. at 135°C	25°C Test Temperature FI > 8.0

Balanced Mixture Design

RAP Source = Stiff RAP PG94-10 (99.3-11.0)							
	15% RAP	25% RAP	35% RAP	Criteria			
Volumetric Properties							
Air Voids, %	4.2	4.8	5.2	4%			
Voids in Mineral Aggregate (VMA), %	15.5	15.9	15.9	15% min.*			
Voids Filled with Asphalt (VFA), %	73.1	69.9	67.2	65-78%			
Dust to Binder Ratio	0.95	0.96	1.00	0.6-1.2			
Performance - Rutting							
HWTT rutting at 20,000 passes, mm	3.3	3.0	2.4	< 12.5 mm**			
HWTT Stripping Inflection Point	NONE	NONE	NONE	-			
Performance - Cracking							
Average FIT Flexibility Index (FI) @ 25°C	14.5	11.8	9.4	≥8.0**			
RAP Source = So	oft RAP P	G76-22 (7	6.8-24.7)				
	15% RAP	25% RAP	35% RAP	Criteria			
Volumetric Properties							
Air Voids, %	3.9	3.9	3.9	4%			
Voids in Mineral Aggregate (VMA), %	15.3	15.0	14.5	15% min.*			
Voids Filled with Asphalt (VFA), %	74.6	74.0	73.2	65-78%			
Dust to Binder Ratio	0.94	0.98	1.02	0.6-1.2			
Performance - Rutting							
HWTT rutting at 20,000 passes, mm	1.8	2.0	2.2	< 12.5 mm**			
HWTT Stripping Inflection Point	NONE	NONE	NONE	-			
Performance - Cracking							
Average FIT Flexibility Index (FI) @ 25°C	8.8	10.6	10.7	≥8.0**			

* MassDOT specifications require a 1% increase in VMA as presented here.

** Specimens were short-term aged.

Mixture Performance Evaluation with Respect to RAP Source and Virgin Binder Source

DISTRESS	TEST	AGING	CRITERIA
Rutting	Hamburg Wheel Tracking Test (AASHTO T324)	Short-Term 4 hrs. at 135°C	45°C Test Temperature < 12.5 mm & No SIP before 15,000 passes
Intermediate Temperature Cracking	Flexibility Index Test (AASHTO TP124)	Long-Term 5 Days Loose at 95°C	25°C Test Temperature FI > ???

Mixture Performance Evaluation with Respect to RAP Source and Virgin Binder Source

DISTRESS	TEST	AGING	CRITERIA
Intermediate Temperature Cracking	IDEAL-CT (ASTM D8225)	Long-Term 5 Days Loose at 95°C	15°C Test Temperature CT _{Index} > ???
Low Temperature (Thermal) Cracking	Disc Shaped Compact Tension DC(T) (ASTM D7313)	Long-Term 11 Days Loose at 95°C	-18°C Test Temperature FE > ????

HWTT Results @ 45°C

RAP Source	PG64-28 Virgin Binder Source	% RAP Specified by Weight	RAPBR	Stripping Inflection Point (SIP)	Maximum Rut Depth at 20,000 Passes	
	CG (65.8-30.9)	1	0.16	None	(mm) 3.3	
Stiff RAP	CG (66.2-28.6)	15% 15%	0.10	None	2.4	
PG94-10 CG (65.8-30.9)		25%	0.27	None	3.0	
(99.3-11.0)	CG (66.2-28.6)	25%	0.27	None	2.5	
	80	None	2.4			
< 12.5 mm &			0.38	None	2.0	
	0.16	None	1.8			
So PG No SIP before 15,000 Passes			0.16	None	1.4	
			0.26	None	2.0	
			0.26	None	1.3	
(76.5-2-7.7)	CG (65.8-30.9)	35%	0.37	None	2.2	
	35%	0.37	None	1.3		

FIT Results @ 25°C

RAP Source	PG64-28 Virgin Binder Source	% RAP Specified by Weight	RAPBR	Blended Intermediate CG	FI	FE (J/m²)
	CG (65.8-30.9)	15%	0.16	23.0	3.3	1,907
Stiff RAP	CG (66.2-28.6)	15%	0.16	23.0	1.9	1,782
PG94-10	CG (65.8-30.9)	25%	0.27	21.3	3.3	1,830
(99.3-11.0)	CG (66.2-28.6)	25%	0.27	24.7	2.0	1,773
	CG (65.8-30.9)	35%	0.38	23.5	2.7	1,933
	CG (66.2-28.6)	35%	0.38	26.5	1.0	1,332
	CG (65.8-30.9)	15%	0.16	16.9	3.4	1,816
Soft RAP	CG (66.2-28.6)	15%	0.16	20.9	3.7	1,801
	CG (65.8-30.9)	25%	0.26	17.7	3.8	1,882
PG76-22 (76.8-24.7)	CG (66.2-28.6)	25%	0.26	21.2	2.6	1,685
	CG (65.8-30.9)	35%	0.37	18.5	3.7	1,829
	CG (66.2-28.6)	35%	0.37	21.5	2.6	1,700

IDEAL-CT Results @ 15°C

RAP Source	PG64-28 Virgin Binder Source	% RAP Specified by Weight	Blended RAPBR Intermediate CG		CT _{Index}	FE (J/m²)
	CG (65.8-30.9)	15%	0.16	23.0	15.2	10,378
Stiff RAP	CG (66.2-28.6)	15%	0.16	23.0	9.7	8,543
PG94-10	CG (65.8-30.9)	25%	0.27	21.3	15.5	11,241
(99.3-11.0)	CG (66.2-28.6)	25%	0.27	24.7	6.4	8,398
	CG (65.8-30.9)	35%	0.38	23.5	9.9	10,416
	CG (66.2-28.6)	35%	0.38	26.5	2.8	7,468
	CG (65.8-30.9)	15%	0.16	16.9	15.4	10,032
Soft RAP	CG (66.2-28.6)	15%	0.16	20.9	11.9	9,141
	CG (65.8-30.9)	25%	0.26	17.7	22.1	10,267
PG76-22 (76.8-24.7)	CG (66.2-28.6)	25%	0.26	21.2	16.9	9,857
	CG (65.8-30.9)	35%	0.37	18.5	13.6	9,693
	CG (66.2-28.6)	35%	0.37	21.5	17.3	10,131

DC(T) Results @ -18°C

RAP Source	PG64-28 Virgin Binder Source	% RAP Specified by Weight	RAPBR	Blended Low Temperature CG	FE (J/m²)
	CG (65.8-30.9)	15%	0.16	- 27.9	443
Stiff RAP	CG (66.2-28.6)	15%	0.16	-26.0	333
PG94-10	CG (65.8-30.9)	25%	0.27	-25.9	537
(99.3-11.0)	CG (66.2-28.6)	25%	0.27	-24.2	418
	CG (65.8-30.9)	35%	0.38	-23.9	397
	CG (66.2-28.6)	35%	0.38	-22.4	360
	CG (65.8-30.9)	15%	0.16	-30.0	479
	CG (66.2-28.6)	15%	0.16	-28.0	371
Soft RAP PG76-22	CG (65.8-30.9)	25%	0.26	-29.4	474
	CG (66.2-28.6)	25%	0.26	-27.6	382
(76.8-24.7)	CG (65.8-30.9)	35%	0.37	-28.7	478
	CG (66.2-28.6)	35%	0.37	-27.2	403

ANOVA Analysis Summary

Variable	FI Test FI		IDEAL CT _{Index}	IDEAL FE	DC(T) FE
RAP Source	SIG	-	SIG	-	-
Virgin Binder Source	SIG	SIG	SIG	SIG	SIG
Percent RAP	SIG	SIG	SIG	-	_

ANOVA Discussion

- Virgin binder source had a significant effect on all three measures.
- <u>RAP source and percent RAP</u> also had a significant effect on the two intermediate cracking performance.
- The analyses showed an inconsistency among the cracking performance tests and measures except virgin binder sources has a significant effect.

Conclusions

- The current specification, which allows up to 15% RAP in surface mixtures by dry weight of the mixture without using a softer grade virgin binder or blending equations, was not valid based on blended binder properties.
- Utilizing the RAPBR for specifying RAP in lieu of the percent by dry weight of the mixture method produced similar results.

Conclusions

- A statistical analysis of the mixture test data indicated universally that virgin binder source significantly impacted all cracking performance measures.
- RAP source and percent RAP also had a significant effect on intermediate cracking measures being explored by MassDOT to incorporate in a BMD protocol.

Case Study of High RAP Content Surface Mixtures Placed on High-Volume Roads

Outline

Problem Statement
Objectives
Methodology
Results

Conclusions

Problem Statement

- MassDOT specifications only allow up to 15% Reclaimed Asphalt Pavement (RAP) in surface course mixtures.
- Based on a UMass/MassDOT 2020 study entitled "Influence of Reclaimed Asphalt Pavement (RAP) Source and Virgin Binder Source on RAP Specifications and Balanced Mix Design" the following was concluded:
 - The RAP content could be increased over the 15% maximum based on the properties of the RAP, which is source dependent.
 - The RAP source has a significant effect on the cracking resistance of the asphalt mixture.

Problem Statement

MassDOT approved demonstration projects beginning in 2021 for high RAP surface mixtures with RAP contents between 25% and 30%.

These mixtures were placed on high-volume interstate projects to evaluate the RAP content specification limit and to document/evaluate their production, placement, and variability.

Objectives

- 1. Evaluate the variability of each high RAP content surface mixture, obtained on different production days, with respect to the properties of the virgin binder and RAP, and laboratory mixture performance (cracking and rutting).
- 2. Determine the effect of virgin binder and RAP properties on the laboratory performance of the mixtures.
- 3. Determine the influence of material variations during production on the performance of the mixtures.

Methodology - Experimental Plan

Results – RAP Binder Content & Aggregate Gradation

Mix ID	LTMF RAP (Control)	RAP for 10/21	RAP for 11/21	RAP for 6/22	RAP for 5/23	Standard Deviation	Suggested NCHRP 752 Standard Deviation Limits
Sieve Size	Percent Passing by Weight						
19 mm (3/4'')	100	100	100	100	100	0	< 5.0
12.5 mm (3/4'')	98.1	97.3	98.5	97.6	98.8	0.63	< 5.0
9.5 mm (3/4'')	92.4	90.6	90.8	88.2	93.4	1.97	< 5.0
4.75 mm (No. 4)	69.7	71.9	63.5	61.2	73.7	5.4 F	< 5.0
2.36 mm (No. 8)	51.9	57.0	46.1	44.2	57.4	6.05 F	< 5.0
1.18 mm (No. 16)	39.0	44.0	33.8	32.7	44.1	5.41 F	< 5.0
0.6 mm (No. 30)	28.4	32.1	24.5	24.1	32.4	3.99	< 5.0
0.3 mm (No. 50)	18.8	21.7	16.7	17.1	21.8	2.46	< 5.0
0.15 mm (No. 100)	11.7	13.5	10.3	11.0	13.5	1.44	< 5.0
0.075 mm (No. 200)	7.5	8.7	6.5	7.1	8.5	0.93	< 1.5
Asphalt Content, %	4.88	5.37	5.15	5.00	5.46	0.24	< 0.5

Note: F= Standard deviation of measurements outside suggested NCHRP 752 limits

Results – Mixture Binder Content and Aggregate Gradation

Mix ID	LTMF Mixture	10/21 Mixture	11/21 Mixture	6/22 Mixture	5/23 Mixture	9.5 mm Superpave Specification	LEL**	UEL***
Sieve Size	Percent Passing by Weight							
19 mm (3/4'')	100	100	100	100	100	100	100	100
12.5 mm (3/4")	100	98.2 F	98.9 F	99.5 F	99.9 F	100 min	100	100
9.5 mm (3/4'')	94.0	92.6	93.3	95.2	96.4	90-100	90	100
4.75 mm (No. 4)	62.0	59.8	59.1	68.2 F	66	90 max	56	68
2.36 mm (No. 8)	40.0	39.7	39.1	47.3 F	43.1	32-67	35	45
1.18 mm (No. 16)	29.0	27.1	26.8	31.6	29	-	26	32
0.6 mm (No. 30)	20.0	18.4	18.5	21.2	19.5	-	17	23
0.3 mm (No. 50)	13.0	12.2	12.6	12.8	12.6	-	10	16
0.15 mm (No. 100)	8.0	7.6	8	7.6	7.4	-	6	10
0.075 mm (No. 200)	4.0	4.6	5.3	4.3	4.6	2-10	2.5	5.5
Asphalt Content, %	5.60	5.74	5.91	6.1 F	5.83	-	5.2	6.0
G _{mm}	2.471	2.474	2.473	2.501*	2.479	-	-	-

Note: F= *Outside MassDOT acceptance limit*

* Has a significantly different G_{mm} compared to the LTMF

** Lower quality engineering limit

*** Higher quality engineering limits

Mixture Performance Evaluation

	Rutting & Moisture Susceptibility	Intermediate Temp Tes	Low Temperature Cracking		
Test	HWTT	I-FIT	IDEAL-CT	TSRST	
Specification	AASHTO T 324	AASHTO T 393	ASTM D 8225	AASHTO TP 10-93	
Test Temperature	45°C	25°C	25°C	n/a	

Results – HWTT Rutting and Moisture Susceptibility

• All mixtures met the MassDOT specification criteria with all mixtures exhibiting very low rut depths and no stripping inflection point, which implies that rutting and moisture damage were not issues for these mixtures.

Results – IDEAL-CT Intermediate Temperature Cracking

Results – IFIT Mixture Performance Evaluation

Results – TSRST Low Temperature Cracking

HWTT & CT_{Index} Mixture Performance Space Diagram

HWTT & FI Mixture Performance Space Diagram

Massachusetts Department of Transportation Highway Division

CT_{Index} &**TSRST** Mixture Performance Space Diagram

Conclusions

Three of four production mixture binders (extracted & and recovered from the mixture) did not meet the MassDOT specification criteria of a PG64E-28.

- ➢ Results indicated that RAP stockpile properties (binder grade) should be verified during production to ensure that the approved mix design will be maintained.
- ➢Results indicated that rutting and moisture damage were not issues for these mixtures.
- Cracking performance test results showed the influence of material variations on performance with respect to when the mixture was produced. The material properties changed over time. This indicates the need for more comprehensive QC/QA testing for these mixtures to ensure that the approved mix design is maintained.

Conclusions

Surface course mixtures with high RAP content (25-30%) can be produced and provide acceptable balanced performance in terms of rutting and cracking (intermediate and low temperature).

➤Asphalt mixtures with high RAP content can be produced and provide an acceptable balanced performance for rutting, intermediate- and low- temperature cracking resistances.

➢ However, material characteristics should be rigorously validated during production to ensure that the approved mix design is obtained and adjusted if the material properties significantly change.

