Restructuring traditional biotoxin monitoring programs for proactive management of new and emerging threats

Kohl Kanwit - Director, Bureau of Public Health

What biotoxin in Maine used to mean

- Biotoxin was synonymous with red tide/PSP/saxitoxin
- Decades of experience
- Predictable season from March to October
- Predictable hot spots
- Established sampling stations
- Species specific responses
 HPLC PCOX method provides early warning

What we didn't know.....

Red tide was easy!

Use historic information to inform strategy, sample between March and October, monitor phytoplankton, test shellfish, close, open, relax till the following March

.....What we know now

- The Gulf of Maine now has PSP <u>and</u> ASP
- Maybe DSP but definitely *Dinophysis norvegicia*
- We also have other HAB species that impact marine organisms but not necessarily human health
- Karenia mikimotoi first showed in 2017 and can cause anoxic conditions as well as toxic effects on fish and shellfish
- Margalefidinium (previously Cochlodium) polykrikoides first showed in 2016 and can cause anoxic conditions as well as toxic effects on fish and shellfish

Why mention HABs that don't impact human health?

Guess who the Commissioner calls when the Marine Patrol pilot sees this:

Or when the public sees this on the Portland waterfront:

Questions that are asked

- Telling the Commissioner we only look for HABs that affect human health isn't the "right" answer.
- Will these blooms affect aquaculture farms? yes, maybe
- Will these blooms affect wild shellfish resources?
 - yes, documented clam kills
- Will these blooms affect fish? yes, maybe

No one wants this to happen

Restructuring traditional biotoxin monitoring programs for proactive management of new and emerging threats

Programmatic changes

- Monitor phytoplankton samples for these species as well as HABs that affect human health
- Alert management and industry when blooms are observed
- Identify/monitor visible blooms
- Monitor DO
- Additional burden on staff resources

Blah blah blah ASP

- Pseudo-nitzschia present in the Gulf of Maine since.....forever?
- Toxin present in 2012
- No toxin measured above limit in Maine until 2016
- Identification of *P. australis* in GOM in 2016
- Toxin measured above the limit in 2016, 2017 and 2018

ASP is NOT like PSP

- Decades of experience
- Predictable season from March to October
- Predictable hot spots
- Established sampling stations
- Species specific responses
- HPLC PCOX method provides early warning

- Nope (3 years and counting)
- Nope (year-round)
- Nope (or maybe?)
- Nope (continually adapting)
- Nope (or maybe?)
- HPLC UV method also provides early warning

Worst case scenario

- Shellfish seem to exceed the ASP limit quickly when conditions are right
- Testing frequency can't keep up with increases in toxicity
- In 2016 and 2017, closures were implemented after samples exceed ASP limit and recalls were necessary
- Felt like worst case, but really worst case would be an illness outbreak which we avoided
- Recalls work

Restructuring traditional biotoxin monitoring programs for proactive management of new and emerging threats

Programmatic changes (ASP)

- Year-round phytoplankton sampling
- Qualify cell type (LG v. SM)
- Low LG cell/L trigger
- Presence/absence toxin test on phyto
- Once phytoplankton samples show presence of toxin, meat sampling begins
- Presence of measurable toxin in shellfish triggers precautionary closures

Protect public health and avoid recalls

More programmatic changes (ASP)

- Significance of regional mussel closures
- No sampling of noncommercial species
- Biotoxin MOUs (not for LPAs)
- Industry phytoplankton samples required
- Mandatory education for LPAs
- Manage the burden on staff and budget
 resources

Explaining the phyto component

- We are not regulating on phyto counts
 - That's only allowed in the NSSP MO for *K. brevis*
- Not all *Pseudo-nitzschia* makes toxin and only some species make toxin sometimes
- We use phyto to inform frequency and timing of shellfish meat testing
- If phyto is not making toxin there is no need to do more expensive meat testing

Explaining precautionary closures

- For ASP this seems to be the best way to avoid recalls
- Very disruptive to industry
- Difficult to communicate
- Strains staff and budget resources
- Moving forward:
 - predictable closure periods
 - Increased sample processing capability

And then there's DSP

- Or is there?
- Blooms of *Dinophysis norvegica*
- 2016 and 2018 phosphatase inhibitor assay (PP2A) showed toxicity > regulatory limits
- Approved LCMS method did not show toxicity >regulatory limits

So what do you do?

- Closed area for 3 months
- Closed based on PP2A, reopened with PP2A
- FDA found new toxin that explains conflicting results between methods
- Unknown if new toxin has a human health impact

Restructuring traditional biotoxin monitoring programs for proactive management of new and emerging threats

Stick with the program

- Going forward use the approved LCMS method
- Supported ECOHAB proposal for investigating this problem
- Collect and purify toxin
- Conduct mouse testing to determine toxic effects

