Evapotranspiration (ET) Index Revision

July 14, 2022
Water Resources Commission Meeting

DMP Indices

Precipitation

• ET

Causes > One or both Index
Severity Levels elevate first

Streamflow

Groundwater

Lakes & impoundments

 Fire – soil moisture in top 8" **Impacts** → Index Severity Levels elevate after Precipitation &/or ET

Goals for Revision

- Timely identification of drought onset/intensification
 - Currently, no signal from Crop Moisture Index (CMI) can cause delays in drought onset/intensification identification

- Show the effect of temperature/ET on "available" precipitation
 - Help identify "flash droughts" by knowing when impacts will occur more quickly than when just low precip
 - With climate change, importance of identifying heat/ET in addition to precip-induced dryness

Process

Analyses conducted by Cornell University

- Evaluation of results by technical group similar to 2019 DMP revision
 - State and federal staff comprised of USGS, NOAA NWS, NOAA NERFC, MassDEP, DFG, DCR, EEA
 - Reviewed analyses and made recommendation
- Presented to and approved by the DMTF on June 15, 2022
- Draft redline of the Drought Management Plan to be shared with the DMTF and public for comment
- Draft Final DMP to WRC for review and approval

Options Evaluated

- Gravity Recovery and Climate Experiment (GRACE), National Water Model (NWM),
 Climate Prediction Center Soil Moisture (CPCSM) Soil moisture → net effect of precip,
 ET and infiltration
- Evaporative Stress Index (ESI)— ET as calculated by energy balance using remotely sensed temperature
- Standardized Precipitation and Evapotranspiration Index (SPEI) Precip minus theoretical maximum ET
- Evaporative Demand Drought Index (EDDI) Theoretical maximum ET (based on temperature, radiation, wind, etc.), aka 'thirst of the atmosphere'

Evaluation Criteria

Logistics

- Spatial resolution unique value per drought region
- Historical availability of data for evaluating against past droughts
- Long reference period/period of record for calculating percentiles
- Appropriate look-back periods or depths for drought monitoring
- Update frequency (at least 1/week)
- Timely availability

Performance

- Timely drought onset/intensification identification, especially when precipitation amounts are still near normal
- Effect of temperature/ET on drought amount of precipitation expected to remain available

How to Evaluate Performance

 Frequency – Matching the Index Severity Level percentiles specified in the DMP

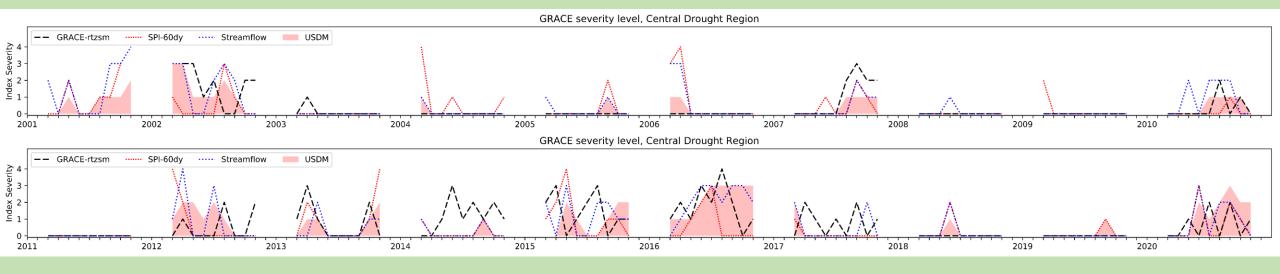
- Timing Earlier elevated signal relative to other indices and historical droughts when there are high temperatures
 - Early similar to precipitation index so it signals onset and/or intensification

Index Severity Level	Percentile Range
0	>30%
1	>20 and ≤30%
2	>10 and ≤20%
3	>2 and ≤10%
4	≤2%

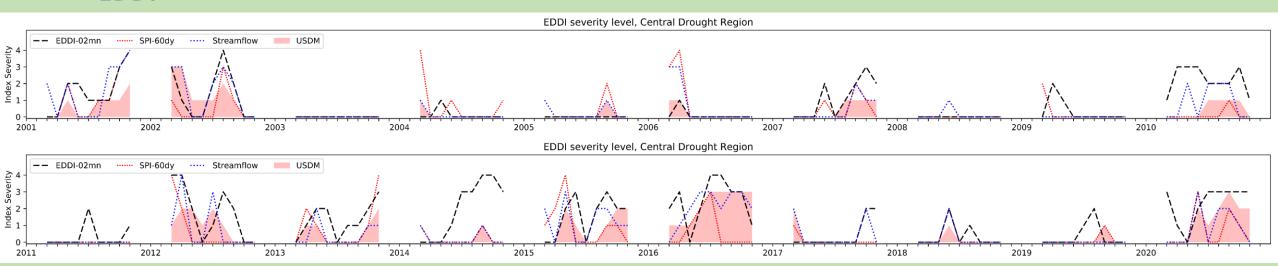
Matching Index Severity Level Percentiles

Index Severity Level	0	1	2	3	4
DMP Percent of Months	70	10	10	8	2
+/-10%	63-77	9-11	9-11	7.2-8.8	1.8-2.2
CMI	96	3	1	0	0
ESI-04wk	71	11	7	6.1	4.8
GRACE-rtzsm-100cm	67	11	12	10.3	0.4
NWM-SM-40cm	74	13	8	5.5	0
SPEI-02mn	73	10	8	7.9	1.5
EDDI-02mn	67	11	12	7.2	3.2

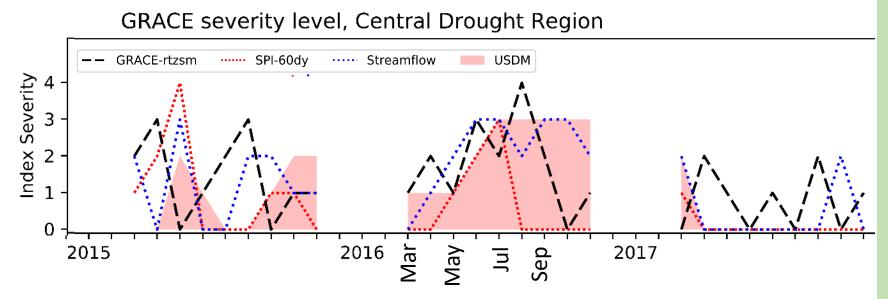
Most indices perform well:

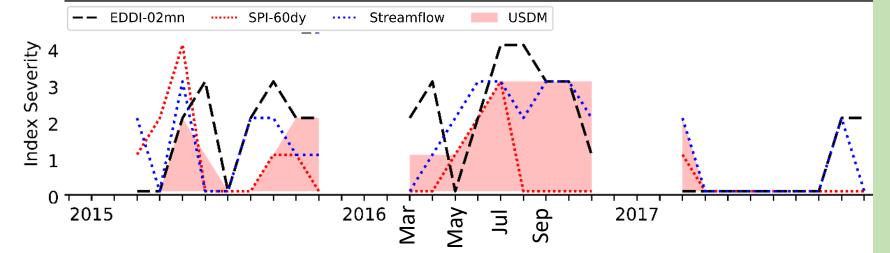

- relative to CMI
- for Level 0 and Level 1 droughts (i.e., onset)

Crop Moisture Index (CMI), Central Region



- Rarely provides a signal
- Can delay drought calls
 - 1 of 3 onset signals like precipitation & streamflow
- More important with newer, faster developing flash droughts
- Why doesn't it work?
 Developed and calibrated for central US; not as appropriate for the NE US

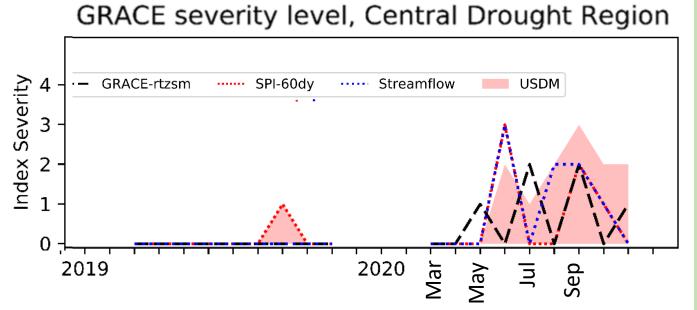

GRACE


EDDI

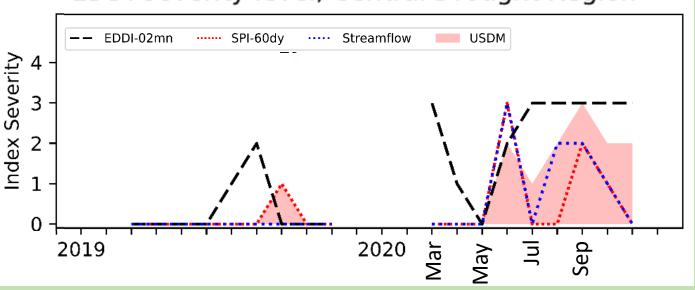
Product Comparison - 2016 Drought

GRACE root zone – soil moisture at 40 in

- Satellite product
- Ref period: 1948-2014


EDDI – max evapotranspiration demand/PET

- Penman-Monteith, uses reference crop of well watered 0.5m alfalfa
- Ref period 1979-2015


2016 Average Temperature			
Month	Percentile over POR		
Mar	11 th		
Apr	67 th		
May	51 th		
Jun	47 th		
Jul	23 th		
Aug	7 th		
Sep	15 th		
Oct	47 th		
Nov	23 th		
Annual	12 th		

Percentiles are for the 129 years between 1892 and 2021. Lower percentiles=warmer months/year

Product Comparison - 2020 Drought

EDDI severity level, Central Drought Region

	Average erature	
Month	Percentile over POR	
Mar	12 th	
Apr	85 th	
May	63 th	
Jun	15 th	
Jul	2 th	record high
Aug	7 th	summer
Sep	28 th	
Oct	43 th	
Nov	2 th	
Annual	4 th	

Percentiles are for the 129 years between 1892 and 2021. Lower percentiles=warmer months/year

GRACE

- -generally running low despite **record** heat months
- may be due to moderation by precip rewetting soil moisture as seen by relatively low index levels

Recommendation: 2-month EDDI

 EDDI is better than CMI and other options at signaling the role of temperature and ET in drought

 Helps identify drought onset/intensification in a timelier manner especially when it is ET rather than precipitation-induced

Provides additional information to complement the other indices