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Executive Summary 

The urban rail transit (URT) system operated by the Massachusetts Bay Transportation Au-

thority (MBTA) is the fourth busiest in the United States by passenger ridership. It comprises 

a light rail line (Green Line) and three heavy rail lines (Red, Orange, and Blue Lines). In 

2019, the light and heavy rail systems of the MBTA area served 151 million rides and con-

sumed 414 GWh of energy. In 2020, the system served 52 million rides yet consumed 385 

GWh of energy. Given the medium to long-range planning required by the MBTA, there is 

an urgent need for decision support tools to facilitate effective and robust responses. 

Given the medium to long-range planning required by the MBTA, particularly in light of 

imminent disruptive events (such as the recent pandemic) or natural disasters, there is an 

urgent need for decision support tools to facilitate effective and robust responses. Such a 

framework would allow planners at the MBTA’s Energy and Environment division to 

reasonably predict the energy and cost impacts of a variety of strategies spanning schedule 

changes, train additions or removal, among others, in order to meet performance targets and 

budget constraints. 

Data utilized in this study include energy consumption, train location data, tap-in ridership, 

and weather data from NOAA. This study used a Long Short-Term Memory (LSTM) recur-

rent neural network to predict daily energy consumption and average daily temperature. The 

modeling inputs included sequential historical energy data and temperature, with additional 

exogenous variables like ridership, number of trips, operating distance, and average speed. 

The results indicated that the model could reliably predict energy consumption with a root 

mean squared error (RMSE) of 50.6 MWh and temperature with an RMSE of 6.62°F. The 

high accuracy and reliability of this model underscore its effectiveness as an assistance of de-

cision-making, providing urban planners and transportation authorities with valuable insights 

to improve energy efficiency and operational resilience in MBTA URT systems. A decision-

making tool was developed to simulate various operational strategies and their impacts on 

energy consumption and temperature predictions. This tool allows for adjustments in operat-

ing distance, number of trips, and average speed, providing a valuable resource for MBTA 

officials in strategic planning. 

The findings of this study offer a comprehensive framework for sustainable and energy-effi-

cient planning of the MBTA URT system. The energy forecasting model and decision-sup-

port tool developed can aid in data-driven decision-making, enabling the MBTA to optimize 

operational strategies and enhance system resilience during disruptive events. The study un-

derscores the importance of incorporating detailed operational data and scenario analysis in 

urban transit planning to achieve sustainability goals. 
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1.0 Introduction 

In today's rapidly urbanizing world, with the increasing threats of climate change impacts, 

pandemics and other extreme events, there is a growing need for transit systems to respond 

well to disruption. Particularly vulnerable to these disruptions are urban rail transit (URT) 

systems, which are often indispensable to the regions they serve and provide efficient 

transportation to millions of people daily [1]. However, the operations of these extensive 

transportation networks incur significant energy demands, accounting for a substantial 

portion of total energy consumption in many areas, and costing millions of dollars annually 

[2]. In 2019, operating rail transit systems in the United States consumed a substantial 

amount of energy, totaling 4953 GWh. At the same time, these systems facilitated a 

considerable volume of travel, with annual passenger miles reaching about 20 billion [3]. 

Moreover, the patterns of energy consumption significantly vary among different rail 

systems. For instance, electricity consumption in Beijing surged from 650 GWh in 2006 to 

1400 GWh in 2017 [4]. An effective energy forecasting model thus serves not only as a tool 

for proactively managing demand in a sustainable and economical manner but also as a 

critical asset in planning and maintaining resilience under disruption. 
 

Decision-making, forecasting, and assessment of the environmental impact played important 

roles in the URT systems. A tool based on fuzzy logic and algorithms has been developed to 

mitigate CO2 emissions from transportation, underlining the significance of stakeholder 

engagement and transparency in decision-making for sustainable transportation [5]. 

Sustainability indicators have been demonstrated to play a crucial role in guiding 

transportation planning and policy-making, particularly when there are well-established 

monitoring criteria [6]. The complexity of urban traffic systems and the multifaceted impacts 

of URT systems on traffic, economy, society, and environment can be practically analyzed 

using a system dynamics model [7]. Diverse forecasting models have been used to project the 

energy usage of URT systems in different contexts. For instance, in Queensland, Australia, 

the multivariate adaptive regression spline (MARS) and support vector regression (SVR) 

models were applied to short-term electricity demand forecasting. The MARS model was 

found to perform well for 0.5 and 1.0-hour predictions, whereas the SVR model excelled in 

daily forecasting, especially when considering various parameters such as weather data and 

economic factors [8]. Furthermore, binary nonlinear fitting regression (BNFR) and SVR 

models were also used to forecast energy consumption in URT. It was observed that the SVR 

model accurately predicted traction and total electricity consumption. However, both models 

faced challenges with HVAC system predictions due to complex influencing factors [9]. 

 

In spite of the various energy modeling efforts for urban rail transit systems, there remains a 

notable gap in their ability to effectively assist planners in evaluating how energy 

consumption could change in response to operational alterations. Current models do not 

specifically cater to the analysis of disruption-response strategies and their potential energy 

outcomes, highlighting a crucial need to address the current gap in research regarding energy 

planning for URT systems.  In this paper, we estimate a system-energy forecasting model 

using planning variables as exogenous variables. The URT system in Boston served as the 

study area. Through scenario analyses, we demonstrate how such a model can be used to 

support decision-making in response to disruption for sustainable and energy-efficient 

outcomes. 
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In order to facilitate effective planning for current and future needs, the MBTA requires a 

framework that not only provides important consumption metrics but also explains the 

various contributors to energy consumption and their interactions. Furthermore, this 

framework should also be useful for predicting energy usage in order to evaluate the relevant 

impacts of proposed strategy decisions, particularly in response to disruptive events or 

financial constraints. Ultimately, there is a critical need to reduce costs while still meeting the 

mobility needs of the surrounding communities in the Boston area. 

1.1 Aim and objectives 

The overall aim of this project is to develop an energy planning tool that the MBTA can 

utilize to provide detailed energy forecasts for any given planning strategy defined by a set of 

planning metrics. Thus, the specific objectives are: 

• Enumerate and analyze high-level operational planning metrics relevant the MBTA 

decision-making process 

• Train a generative model that provides energy forecasts from the planning metrics 

• Develop a decision-support tool with a user-friendly interface that the MBTA can use 

to specify planning strategies and compare energy outcomes of various plans. 

 

Report Structure 

The rest of the report is organized as follows. In Chapter 2, we describe the data structures 

and sources used in the project. In Chapter 3, we present the methods, followed by the results 

in Chapter 4. These consist of the performance of model prediction on energy and 

temperature. We conclude in Chapter 5 with a summary of our findings.
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2.0 Data Summary 

We utilized the following types of data and sources for this project: 

1. Energy consumption data from 2019 through 2021 (provided by the MBTA as Excel 

spreadsheet) 

2. Timestamped train location (latitude and longitude) data from the MBTA Research 

Database (for light and heavy rail vehicles) 

a. Tables obtained from 2019 and 2021 

3. Timestamped tap-in ridership, also from the MBTA Research Database 

a. Tables obtained from 2019 to 2021 

4. Daily average temperature for Boston from 2019 and 2021 (obtained from National 

Oceanic and Atmospheric Administration (NOAA) historical records) 

5. General Transit Feed Specification (GTFS) for MBTA from 2019 to 2021 

2.1 Study area 

The case study area for the forecasting model was the Massachusetts Bay Transportation 

Authority's (MBTA) urban rail transit (URT) system (Figure 1). The fourth largest transit 

agency in the U.S., the MBTA URT served 1.7 billion passenger miles in the area in [10]. 

Comprising a light rail line (Green Line) and three heavy rail lines (Red, Orange, and Blue 

Lines), this network accounted for an annual average electricity consumption of 422 GWh at 

a cost of approximately $38 million between 2009 and 2020 [11]. 

 

In addition to system energy aggregated at the daily level, we obtained five planning 

variables―ridership, operating speed, distance, and operating time and average speed---at 

the same temporal resolution to serve as predictive variables for energy consumption. 

The planning variables were selected as possible instruments for modifying service in order 

to plan for sustainability as well as respond to disruptive events. We sourced energy data 

directly from the MBTA, while the planning variables were derived from the MIT-MBTA 

research database [10,11]. 
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Figure 1 The map of MBTA urban rail transit system with the marker size indicating the 

annual ridership in 2021 across stations
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2.2 Energy consumption 

We collected and analyzed system energy data from the MBTA urban rail transit rail network 

over the period 2019 to 2021. The data were obtained from energy meters installed 

throughout the system and captured at an hourly resolution. For the purpose of our analysis, 

however, we aggregated this data into daily totals as shown in Figure 2. 

 
Figure 2 The daily energy consumption time series from 2019 to March in 2023 

 

Figure 3 provides a visual representation of the distribution of energy consumption over the 

years. This graphical illustration offers insights into temporal trends and patterns in energy 

usage, facilitating a better understanding of how consumption has evolved over time. In 

2019, the mean daily system energy was 1135 MWh, with a median of 1093 MWh. The 

maximum system energy reached roughly 1617 MWh, while the minimum was around 870 

MWh. In 2020, both the mean and median system energy decreased, reflecting a lower 

overall energy consumption compared to the previous year. The mean system energy was 

around 1049 MWh and the median was 1029 MWh. The maximum system energy also 

decreased to around 1433 MWh, while the minimum slightly decreased to 18 MWh. This 

trend continued into 2021, with further reductions in both the mean and median system 

energy, which were approximately 976 and 958 MWh respectively. The maximum system 

energy also decreased to around 1401 MWh. Interestingly, the minimum system energy 

decreased considerably to 748 MWh, suggesting a reduction in the lowest level of energy 

consumption in the system. 
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Figure 3 The daily energy distributions in each year from 2019 to 2021 

 

The URT system witnessed a consistent decrease in energy consumption from 2019 to 2021 

because of COVID-19. This analysis provides crucial insights for understanding the system's 

energy performance, which could inform energy-saving strategies and sustainability 

measures for the URT system. 

 

2.3 Ridership 

Figure 4 reveals variations in total ridership from January 2019 to December 2021, with an 

initial period of high and relatively stable ridership levels until early 2020. The onset of the 

COVID-19 pandemic in March 2020 led to a dramatic and immediate drop in ridership, 

reflecting the impact of lockdowns and travel restrictions. This sharp decline marked a 

significant disruption in train operations, with ridership remaining low through much of 

2020. As restrictions gradually eased and vaccines were rolled out, a slow recovery began 

around mid-2020. 
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Figure 4  The daily ridership distribution across months from 2019 to 2021 

2.4 Weather 

We obtained average daily temperatures in Boston from the National Oceanic and 

Atmospheric Administration (NOAA) database for the years 2008 through 2020. Figure 5 

shows the time series of the temperatures from 2019 to 2021. As expected, we observe a 

seasonal pattern in the data. 

 

Figure 5 Average daily temperature in Boston from January 2019 through December 2023 

(Source: NOAA) 
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2.5 Operating distance 

 We compiled line-specific daily operating distances from the high-resolution train location 

data obtained from the MBTA database shown in Figure 6. The Mattapan is a branch of the 

Red Line that is a light rail, and thus, we compute metrics for this branch separately. To 

begin with, the Green Line, which is a light rail, exhibits the highest daily operating distance 

across the years 2019 to 2021. However, there has been a decrease in both the mean and 

median operating distance over the years. The mean distance dropped from approximately 

18,797 miles in 2019 to about 15,779 miles in 2021, indicating a decrease of 16% on the 

Green Line. The minimum operating distance also decreased by 29% over the same period. 

 

In contrast, the heavy rail lines have considerably lower operating distance than the Green 

Line. Among the heavy rail lines, the Red Line reports the highest mean and median 

distance, followed by the Orange Line, with the Blue Line trailing behind. The Red Line 

showed a slight increase in mean operating distance from 2019 to 2020, but then a decrease 

in 2021. Despite these fluctuations, the Red Line's operating distance remains noticeably 

higher than the Blue and Orange Lines. The Blue Line exhibited a slight decrease in mean 

and median operating distance from 2019 to 2021. The maximum operating distance for the 

Blue Line also decreased during this period, but interestingly, the minimum operating 

distance increased. This suggests a possible narrowing of the range of operating distance over 

these years. The Orange Line, however, saw an increase in the mean operating distance from 

2019 to 2020, followed by a decrease in 2021. Its maximum operating distance followed a 

similar trend, whereas the minimum distance increased significantly from 2019 to 2020 and 

then slightly decreased in 2021. 

 

While the light rail component (Green Line) still has the highest operating distance, there is a 

noticeable downward trend over the years. Among the heavy rail systems, there are some 

fluctuations in the operating distance, with the Red Line consistently outperforming the 

others. 

 

Figure 6 Time series of the daily operating distance from 2019 to 2021 
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2.6 Operating time 

The operating time refers to the total duration for which all the trains across each line are in 

operation. It was calculated from trajectory data and aggregated to the daily level. The line-

specific time series of the daily operating time from 2019 through 2021 are shown in Figure 

7. 

 

We observe that the Green Line (light rail) has the highest operating time among all lines, as 

shown in Figure 7. However, a decreasing trend is observed in the mean and median 

operating hours from 2019 to 2021. This aligns with the observed trend in operating distance, 

indicating a potential reduction in service hours or frequency. The maximum operating hours 

also decreased during this period, but the minimum hours increased slightly, hinting at a 

possible reduction in the variability of operating hours. For the heavy rail lines, the Red Line 

exhibits the longest operating hours, followed by the Orange Line, with the Blue Line 

operating for the shortest hours. The Red Line experienced a decrease in its mean and median 

operating hours from 2019 to 2021, but the minimum operating hours increased, which might 

suggest a greater consistency in service hours. The Orange Line also showed a decrease in 

the mean and median operating hours from 2019 to 2021. Interestingly, while the maximum 

operating hours decreased over this period, the minimum operating hours in 2020 increased 

compared to 2019, followed by a significant decrease in 2021. The Blue Line, similar to the 

other lines, showed a decrease in mean and median operating hours from 2019 to 2021. Both 

the maximum and minimum operating hours saw minor fluctuations during this period.  

 

The operating hours mirror the patterns observed in the operating distance. The Green Line, 

despite its decreasing trend, still operates for the longest hours. Among the heavy rail lines, 

the Red Line consistently leads in operating hours. 
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Figure 7 Time series of the daily operating time from 2019 to 2021. 

2.7 Planning metrics 

We collected the train schedules from the GTFS data. Based on our discussions with the 

MBTA planning team, we identified daily trips, daily operating distance, and average speed 

by Line as the planning metrics to extract from the schedules. 

2.7.1 Daily trips 

Figure 8 depicts the daily trips for each Line from January 2019 to January 2022. The Green 

Line consistently shows the highest number of daily trips, peaking around 1400 trips per day. 

This indicates that the Green Line is the most frequently used line in the system. In contrast, 

the other lines show significantly lower daily trips, with the Red Line averaging around 400 

trips per day, and the Blue, Orange, and Mattapan Lines showing even fewer trips. 
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Figure 8 Time series of the scheduled daily trips across different Lines 

2.7.2 Average daily speed 

Figure 9 illustrates the average daily speeds by Line of a transit system from January 2019 to 

December 2021. The Red, Blue, Mattapan, and Orange Lines generally maintain higher 

average speeds, ranging between 16 to 20 mph. These lines exhibit relatively consistent 

speeds over the observed period, with some minor fluctuations. The Green Line, however, 

shows significantly lower average speeds, mostly ranging between 8 to 12 mph. This 

discrepancy could be attributed to the Green Line is the only light rail in the system. 

 

Figure 9 Time series of the scheduled average daily speeds across different Lines 
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2.7.3 Operating distance 

 

Figure 10 shows the scheduled operating distances of different Lines from early 2019 to the 

end of 2021. The Green line exhibits the highest and most variable operating distances, 

frequently fluctuating between approximately 6000 and 9000 miles. Both the Red and 

Orange lines maintain relatively stable distances, with the Red line covering between 6000 

and 8000 miles and the Orange line between 4000 and 6000 miles. These lines show some 

periodic adjustments, suggesting a consistent service pattern with occasional operational 

changes. All lines experienced a significant reduction in operating distance around mid-2020, 

likely due to the COVID-19 pandemic, followed by a gradual recovery. 

 

Figure 10 Time series of the scheduled operating distance across different Lines 

2.8 Correlation between running time and 

operating distance 

Figure 11 reveals the relationship between operating distance (in miles) and running time (in 

hours) for different transit lines. Across all lines, there is a clear positive correlation between 

operating distance and running time. Given the strong linear relationships observed, it is 

feasible to express the relationship between operating distance and running time using linear 

equations. In this way, we can efficiently compute the running time given the operating 

distance and vice versa. Understanding these patterns allows for the development of 

predictive models that can enhance planning efficiency. 
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Figure 11 Correlation between running time and operating distance by Line 
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3.0 Research methodology 

3.1 Noise estimation and generation 

Based on our analysis of actual train trajectories and schedule data, we identified a 

discrepancy between actual operations and scheduled times. To address this, we estimated 

the distributions of these discrepancies using a systematic approach. First, we computed the 

discrepancies and tested multiple predefined distributions (such as normal, exponential, 

gamma, etc.). For each distribution, we estimated the parameters that maximize the 

likelihood of observing the given data under that distribution. We then computed goodness-

of-fit statistics (such as AIC, BIC, and others) to assess how well each distribution fit the data 

as shown in Figure 12. The distribution with the best goodness-of-fit statistics was selected 

as the best-fitting distribution as shown in Table 1. 

 

Table 1 The summary of the estimated distributions of discrepancies for each planning 

metric by Line 

Planning 

metrics 

Line Estimated distributions Estimated Parameters 

Average daily 

speed (mph) 

Red  Exponential power (0.88, -2.21, 7.79) 

Orange Exponential power (0.58, -1.40, 2.07)   

Blue Exponential power (0.87, 1.43, 3.59) 

Green Cauchy (4.73, 0.38)  

Mattapan Exponential power (0.29, 5.3, 1.28) 

Operating 

distance 

(miles) 

Red  Rayleigh (-6350.27, 4209.57)   

Orange Power law (3.38, -3502.01, 4396.01) 

Blue Power law (4.11, -2240.23, 2885.58) 

Green Cauchy (10455.29, 1515.99) 

Mattapan Power law (1.50, -826.48, 1280.53)  

Number of 

trips 

Red  Cauchy (-97.51, 14.38)   

Orange Power law (3.38, -3502.01, 4396.01) 

Blue Power law    (0.51, -74, 308)   

Green Power law (0.56, -218, 149)  

Mattapan Power law (1.24, -179.23, 505.23) 
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Figure 12 Time series of the discrepancy between scheduled and actual planning metrics 

 

By generating noise from these estimated distributions as shown in Figure 13, we can 

simulate new variations as new data is obtained. This generated noise can then be added to 

the schedule, resulting in predictions that more closely align with real operations. This 
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method allows us to measure the differences more accurately and improve schedule 

precision.  

 
Figure 13 Estimated distributions and CDF of the discrepancy between schedule and train 

trajectories for each Line 
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3.2 Long short-term memory network 

Recurrent Neural Networks (RNNs) are a type of neural networks designed to recognize 

patterns in sequences of data, such as time series, speech, or text. They perform well in tasks 

where understanding the context and order of inputs is crucial, as they can maintain a 

memory of previous inputs through hidden states. However, traditional RNNs struggle with 

long-term dependencies due to issues like vanishing gradients, which is where Long Short-

Term Memory (LSTM) networks excel. 

 

We used an LSTM recurrent neural network [12] modeling approach to predict daily energy 

consumption using various planning metrics. The modeling pipeline is shown in Figure 15. 

The input layer was configured to accept energy data and average daily temperature as 

sequential inputs to the LSTM hidden layer. Within each LSTM neuron as shown in Figure 

15, the current input data and the hidden and cell states from the previous time step are 

processed through three gates: the input gate, forget gate, and output gate. The input gate 

filters the incoming data, the forget gate determines which information to retain or discard 

from the previous cell state, and the output gate regulates the influence of the updated cell 

state on the hidden state. This mechanism allows the LSTM to maintain and use long-term 

dependencies for forecasting future observations. 

 

Figure 14 The modeling pipeline of co-predicting energy and temperature 
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Figure 15 The architecture of the LSTM cell1 

3.3 Model specification and training 

Additionally, ridership and line-specific planning metrics, including the number of trips, 

operating distance, and average speeds, were incorporated as exogenous variables fed into 

the dense layer. To reduce the risk of overfitting, we added dropout layers between the layer 

transitions. For optimizing the model, we conducted a grid search to select the 

hyperparameters, including the dropout rate, number of layers, types of activation functions, 

and number of epochs used to train the model. A concatenation layer was then used to 

combine the intermediate outputs from the LSTM layer and the dense layer. 

 

Figure 16 illustrates the training and validation loss of the model over 50 epochs, with the 

loss being measured as the mean squared error (MSE). Initially, both the training and 

validation losses are relatively high, indicating that the model is just beginning to learn from 

the data. During the first few epochs, there is a sharp decline in both losses, showing rapid 

learning as the model adjusts its weights to better fit the training data. As training progresses, 

the rate of decrease in the training loss slows down, reflecting that the model is refining its 

learning by making smaller adjustments. 

In the middle epochs, both the training and validation losses continue to decrease but at a 

more gradual rate, with the validation loss showing signs of stabilization. This suggests that 

the model is improving its performance on unobserved data. Towards the later epochs, both 

losses converge and fluctuate around a low value, which signifies that the model has reached 

a point where further significant improvements are minimal. The close alignment of the 

training and validation losses in these later stages indicates that the model performs 

consistently well on both training and validation datasets. 

 
1 Source: https://thorirmar.com/post/insight_into_lstm/ 
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Figure 16 The loss curve presents how the model converges to the optimal point 
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4.0 Results 

4.1 Model performance 

Figure 17 shows the energy prediction performance over time, demonstrating the model's 

reliability with a root mean square error (RMSE) of 50.6 MWh and a MAPE of 4.44%, as 

indicated in Table 2. Similarly, Figure 18 illustrates the average daily temperature prediction 

performance, with an RMSE of 6.62°F and a mean absolute percentage error (MAPE) of 

9.01%, also detailed in Table 2. These metrics highlight the model's ability to co-predict both 

energy and temperature fairly accurately. 

 
Figure 17 Energy predictions from 2021-06 to 2022-01 

 

 

Figure 18 Average temperature predictions from 2021-06 to 2022-01 
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Table 2 Summary of the model performance in predicting the energy and temperature 

Variables 
Performance metrics 

RMSE MAPE (%) 

Energy consumption (MWh) 50.6 4.44 

Average daily temperature (F) 6.62 9.01 

4.2 Scenario analysis 

To demonstrate the capability of our framework in assessing energy forecasts for various 

decision-making scenarios, we implement two hypothetical operation plans for a 6-month 

test period (06-2021 to 12-2021). Plan A addresses speed reduction, which can be required in 

order to reduce track degradation. Plan B addresses distance reduction, which could be 

necessitated under disruption (either due to construction or a pandemic). The base plan is the 

historical plan that was followed during the test period. The plans are summarized in Table 3. 

 
Table 3 Hypothesis of the operational changes to the MBTA URT system 

Scenario 
Percentage change (%) 

Green Orange Red Blue Mattapan 

Base Plan 0 0 0 0 0 

Plan A: Speed 

reduction 
-5 -10 -10 -10 -5 

Plan B: 

Distance 

reduction 

-5 -15 -15 -15 -5 

 

The forecast energy and temperature of the base and hypothetical plans are shown in Figure 

19. We observe that the base plan generally shows higher energy consumption as shown in 

Table 4. while both reduction strategies tend to lower energy usage. Notably, the distance 

reduction scenario appears to have a more pronounced impact on reducing energy 

consumption, as evidenced by the lower and more variable energy levels compared to the 

base plan and speed reduction scenario. The temperature predictions are relatively consistent 

across the different plans with minor variations. This suggests that while the speed and 

distance reduction strategies significantly affect energy consumption, their impact on 

temperature predictions is less substantial. 
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Figure 19 Time series of model predictions on various plans 

 

Table 4 The summary of energy statistics for all cases 

Scenario Mean Variance Max Min 

Base Plan 965.21 4964.72 1153.94 819.32 

Plan A 959.07 4560.58 1151.89 821.24 

Plan B 961.68 3890.28 1131.74 827.31 
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4.3 Decision-making tool 

The decision-making tool for the MBTA URT system is designed to evaluate the effects of 

various strategies on energy consumption. Users can simulate various operational scenarios 

and analyze their impact on energy and temperature predictions by adjusting sliders for 

different input features such as operating distance, number of trips, and average speed. This 

functionality is particularly valuable for strategic planning, enabling MBTA officials to 

anticipate the effects of different operational strategies and assist with decision-making. A 

preliminary version of the tool is shown in Figure 20. 

 

Figure 20 An example of the first version of a decision-making tool for the MBTA URT system 
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5.0 Conclusion 

In this project, we developed a comprehensive pipeline for predicting energy consumption 

and temperature based on planning metrics, ridership data, and historical sequences. The 

model demonstrated high accuracy, with a MAPE of 4.44% for energy predictions and 9.01% 

for temperature predictions, underscoring its reliability and effectiveness. 

Additionally, we implemented two hypothetical plans in order to showcase the practicality of 

our framework in forecasting the energy outcome for a given operational plan. By analyzing 

plans involving speed reduction and distance reduction, we demonstrated the model's capa-

bility to provide insightful forecasts that inform decision-making processes.  

Finally, for user interaction and technology transfer, we developed a decision-making tool 

that allows operators to specify planning metrics for a given plan over a specified horizon 

(month, quarter, etc). Under the hood, the model computes the energy forecasts. Ultimately, 

this tool will enable MBTA to forecast energy requirements for various planning strategies, 

and potentially save costs and improve service outcomes. 
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