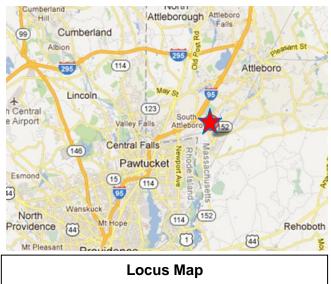

MassDEP Field Assessment and Support Team

After Incident Report	RTN 4-23914
Seekonk – Abandoned Mill Fire	May 2012

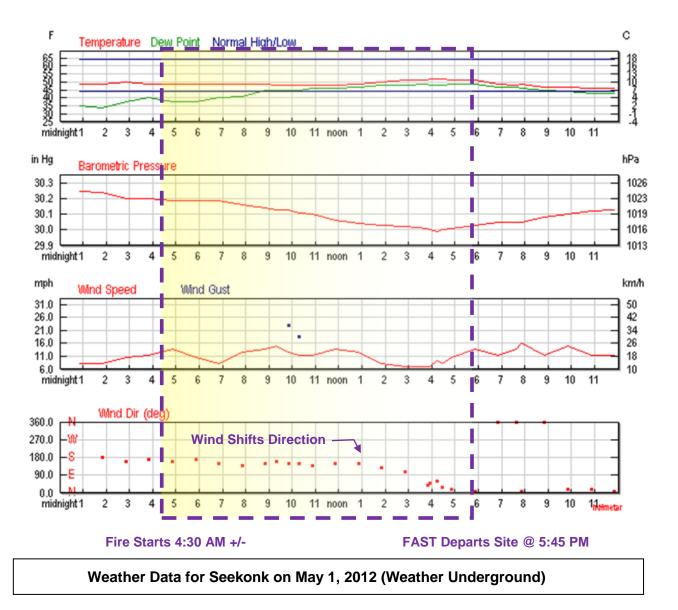


BACKGROUND

At about 4:30 AM on May 1, 2012, a suspicious fire broke out at the former Attleboro Dyeing and Finishing Company mill at 35 Maple Avenue in Seekonk. Reportedly, this 105,000-square foot industrial complex has been vacant for a number of years.

FAST assistance was requested by SERO ER at approximately 9 AM. The FAST mobile lab vehicle arrived at the site at approximately 11:30 AM, and set up in a parking lot behind a church south of the site. At that time, and throughout the day, the fire continued to smolder and emit a smoke plume.

Little information was available on what oils or hazardous materials may have been present


at this facility. However, concern existed over the possible presence of toxic constituents in the smoke plume, as well as firefighting runoff. As such, FAST staff activated the on-board weather station, to monitor wind direction and speed, and two on-board gas chromatographs, to analyze smoke, air, and water samples for volatile organic compounds (VOCs).

Mill Building and Surrounding Area

WINDS

Upon arrival at the site, the on-board FAST weather station recorded winds from the south/southeast, at about 2 to 5 MPH. However, the wind direction gradually began to shift in the afternoon, changing direction by 180° by 3:30 PM, at which time winds were from the north. This observation is consistent with records available on-line for Seekonk via the Weather Underground (<u>http://www.wunderground.com/</u>), as depicted below, which indicates this change of direction coincided with a drop in barometric pressure:

This would indicate that plume impacts from the fire would have been most pronounced in areas north of the site, until late afternoon, when the still-smoldering site would have emitted airborne pollutants in a southerly direction.

RECEPTORS

The mill complex is somewhat isolated, with commercial buildings located about 800 feet due north of the facility, though residential areas are closer to the northeast. As the wind shifted in the afternoon, the smoke plume began to travel to the west, a wooded area with no residences within several thousand feet. Finally, by late afternoon when winds were from the north, plume


movement was to the south, where a few scatted homes and commercial/church buildings are located. This was also where the FAST vehicle was stationed, and a smoky haze and odor were apparent at that time.

According to MassDEP GIS maps and data, there is a Zone II (drinking water) area about 500 feet easterly of the site, though groundwater flow is likely to the west. There are no other identified sensitive receptors, except for the Ten Mile River, which abuts the site.

SAMPLING

Air samples were collected in 1 Liter bags. Initially, a sample of the smoke at the facility was obtained by fire department personnel in Level B protective gear, to provide a "worst case" characterization of the plume at the time of sampling (about 12:45 PM). Subsequent air samples were obtained by FAST staff in areas downwind of the smoldering complex (Air-1 and Air-2).

Firefighting runoff water from the site was sampled by EPA contractors (SW-01 and SW-02), as well as SERO ER staff (FW-1 and FW-2). Additional surface water samples were obtained by FAST personnel from a retention pond and from the Ten Mile River. The locations of these samples are provided below:

Sample Locations

SAMPLE ANALYSIS

Air samples were analyzed on a HAPSITE Gas Chromatograph with a Mass Spectrometer Detector (GC/MS), using a "TO-14" type method with 35 calibrated volatile organic compounds (VOCs). While reporting limits for most target analytes were in the range of 1 to 5 ppbV, detection limits were generally in the 0.2 to 1 ppbV range. Moreover, in addition to the 35 Target Analyte

VOCs, this method is also able to tentatively identify thousands of organic compounds, based upon mass spectra.

Water samples were analyzed on the HAPSITE GC/MS and an SRI Gas Chromatograph with inseries photoionization and electrolytic conductivity detectors (GC/PID/ELCD). The GC/PID/ELCD is calibrated for 15 common contaminants. Aqueous concentrations in μ g/L were estimated by analyzing the headspace above these samples, and using Henry's Law to calculate the value in water corresponding to the level in the headspace, assuming a 90% partitioning condition. MassDEP has used this technique for more than a decade, and in almost all cases such data is comparable (+/- 30%) to EPA Method 8260 data.

RESULTS

Data sheets for each analyzed sample are provided at the end of this report.

The highest concentration VOC contaminant in the smoke (at the time of sampling), and the most toxic component, was benzene, at 330 ppbV (0.33 ppmV). This level is still well below the 8 hour EPA "AEGL-1" value for exposures to the general public, which is 9 ppmV. There were lower and less problematic levels of other hydrocarbons, including Toluene, Ethylbenzene, and Xylenes There were only trace levels of a few chlorinated compounds, i.e., Bromomethane and Chlorobenzene (see table below)

VOCs in Mill Fire Smoke (12:45 PM)									
Air Contaminant Conc. in Safe Levels ¹ (below conc for given time period) - p									
Air Contaminant	ppmV	1 hr	8 hr	5 yrs	30 yrs	Odors	Worker	µg/m³/ppb	
Bromomethane	0.032	1	0.2	0.013	0.001	10	20	3.89	
Benzene	0.3309	52	9	0.07	0.001	0.8	0.1	3.19	
Toluene	0.1079	200	200	13.3	1.35	4	100	3.76	
Chlorobenzene	0.0031	10	10	0.043	<0.001	0.11	75	4.62	
Ethylbenzene	0.0736	33	33	2.3	0.23	0.23	100	4.34	
p/m-Xylene (see note)	0.0056	5	0.8	0.23	0.023	0.005	100	4.34	
Styrene	0.0445	20	20	0.059	0.01	0.16	50	4.25	
o-Xylene	0.0099	5	0.8	0.23	0.023	0.005	100	4.34	
1,2,4-Trimethylbenzene	0.001	140	45	NA	NA	0.4	25	4.91	

¹Safe Levels: 1 hr =1 hr EPA AEGL-1 or 1 hr California REL or (DOE TEEL-0)/2; 8 hr = 8 hr EPA AEGL-1 or (California REL1hr)/5, or (DOE TEEL-0)/10; 5 yr and 30 year exposure levels per MassDEP MCP; Worker = lower of OSHA PEL or NIOSH REL for 8 hrs.

Many of these same compounds were found in ambient air samples S-1 and S-2, but at much lower concentrations, in the 1 ppbV to 20 ppbV range, well below levels of short-term-exposure concern. There we no significant unidentified chromatographic peaks on any of the sample chromatograms, negating the need to search for Tentatively Identified Compounds (TICs).

The firefighting runoff water (SW-01 and SW-02; FW-1 and FW-2) similarly contained only low levels of these hydrocarbons (generally less than 10 μ g/L). No contaminants were detected in a retention pond downstream of the mill complex. Only trace levels of a few VOCs were detected in the Ten Mile River sample.

CONCLUSIONS

It does not appear that significant quantities of volatile hazardous chemicals were present in the mill complex, and firefighting runoff did not appear to significantly impact downstream areas or the Ten Mile River.

At the time of sampling (i.e., afternoon hours), the still smoldering fire did not appear to be significantly impacting downwind areas with volatile organic compounds.

MassDEP Field Assessment and Su										
City or Town:	Seekonk					Maple Av	1			Location:
Date Sampled:	5/1/12	Time:	12:45PM		Smoke		Seekonk		Smoke plum	
Date Analyzed:	5/1/12	Time:	1:32 AM	Lab ID:	003	Analyst:	Fitzgerald		@ building	
Method Analyte	es	Concer ppbV	ntration μg/m ³	Reporti ppbV	ng Limit µg/m ³	Peak Fit	Peak Purity		Synonym	
Vinyl Chloride		N.D.	N.D.	5	13	0.644	0.028	Chloroe	ethene	
Bromomethane		32.5	144.9	5	22	0.999	0.327		Bromide	
Chloroethane		N.D.	N.D.	5	23	0.912	0.08	Ethyl C		
Trichloromonof	uoromethane	N.D.	N.D.	30	210	0.972	0.007	Freon 1		
1,1-Dichloroeth	ene	N.D.	N.D.	1	4	0.591	0.106	Vinylide	ene Chloride	
Methylene Chlo		N.D.	N.D.	1	3.5	0.931	0.048		omethane	
1,1,2-Trichlorot		N.D.	N.D.	1	7.7	0.628	0.005	Freon 1		
1,1-Dichloroeth		N.D.	N.D.	1	4.1	0.58	0.028			
Cis 1,2-Dichlor	oethylene	N.D.	N.D.	1	4	0	0	cis-1.2-	-Dichloroethen	
Chloroform	-	N.D.	N.D.	1	4.9	0.627	0.01		romethane	
1,2-Dichloroeth	ane	N.D.	N.D.	5	20	0.546	0.016	Ethylen	e Dichloride	
1,1,1-Trichloroe		N.D.	N.D.	1	5.5	0	0		Chloroform	
Benzene		330.9	1058.9	1	3.2	0.993	0.669			
Carbon Tetrach	loride	N.D.	N.D.	1	6.3	0.892	0.016	Tetrachloromethane		
1,2-Dichloropro	pane	N.D.	N.D.	1	4.6	0.19	0.05	Propyle	ene Dichloride	
Trichloroethyler	-	N.D.	N.D.	1	5.4	0.777	0.052		roethene	
cis-1,3-Dichloro		N.D.	N.D.	1	4.5	0	0			
trans-1,3-Dichle		N.D.	N.D.	1	4.5	0.651	0.006			
1,1,2-Trichloroe		N.D.	N.D.	1	5.5	0.377	0.287			
Toluene		107.9	406.8	1	3.8	0.999	0.753			
1,2-Dibromoeth	ane	N.D.	N.D.	1	7.7	0.835	0.035	Ethylen	e Dibromide	
Tetrachloroethy	lene	N.D.	N.D.	1	6.8	0.389	0.25		proethylene	
Chlorobenzene		3.1	14.1	1	4.6	1	0.584			
Ethylbenzene		73.6	319.3	1	4.3	1	0.649			
p/m-Xylene (se	e note)	5.6	24.2	1	4.3	0.997	0.622			
Styrene	-	44.5	189.7	1	4.3	1	0.68	Vinyl be	enzene	
o-Xylene		9.9	43.1	1	4.3	0.892	0.779			
1,1,2,2-Tetrach	loroethane	N.D.	N.D.	5	34	0.855	0.119			
1,3,5-Trimethyll	benzene	N.D.	N.D.	5	25	0.968	0.167	Mesityle	ene	
1,2,4-Trimethyll	benzene	1.4	6.8	5	25	0.999	0.485			
1,3-Dichlorober	nzene (meta)	N.D.	N.D.	5	30	0.87	0.545	m– Dic	hlorobenzene	
1,2-Dichlorober	nzene (ortho)	N.D.	N.D.	5	30	0.882	0.541	o – Dic	hlorobenzene	
1,4-Dichlorober	nzene (para)	N.D.	N.D.	5	30	0.879	0.401	p – Dic	hlorobenzene	
1,2,4-Trichlorol	penzene	N.D.	N.D.	5	37	0	0			
HexachloroButa	diene	N.D.	N.D.	5	53	0	0			
Concentration fo	r combined p- &	m- Xylenes	could be up	to twice the	listed value	, due to co-e	elution condit	ions.		
nstrument: HAPS	SITE Smart Plus	GC/MS	Quality Con	trol: 3-6 poir	nt cal w/ %F	RSD<30, Inte	ernal Stds, da	aily blank,	daily cal check	
N.D. = Not Detect	ted Italicized =	estimated "J	" value (con	centration is	less than F	Reporting Lir	nit).	Last Cal	ibration: 3/31/11	
	ent w/ spectral d								- 11 I	

MassDEP Fie		-	-	-				RTN:	Lac -ti-:
City or Town:	Seekonk		Address:		Maple Av				Location:
Date Sampled:	5/1/12	Time:	3:00 PM	Field ID:	Air-1	Collector:			Ambient Air
Date Analyzed:	5/1/12	Time:	3:31 PM	Lab ID:	006	Analyst:	Fitzgerald	1	South of fire
Method Analyte	od Analytes		ntration μg/m ³	Reporti ppbV	ng Limit µg/m ³	Peak Fit	Peak Purity		Synonym
/inyl Chloride		N.D.	N.D.	5	13	0	0	Chloroe	ethene
Bromomethane		N.D.	N.D.	5	22	0	0	Methyl	Bromide
Chloroethane		4.1	10.8	5	23	0.937	0.205	Ethyl C	
Frichloromonofl	uoromethane	N.D.	N.D.	30	210	0.992	0.184	Freon	
I,1-Dichloroeth	ene	N.D.	N.D.	1	4	0	0	Vinylide	ene Chloride
vethylene Chlo		N.D.	N.D.	1	3.5	0	0	-	omethane
1,1,2-Trichlorot		N.D.	N.D.	1	7.7	0.621	0.114	Freon '	113
I,1-Dichloroeth		N.D.	N.D.	1	4.1	0	0		
Cis 1,2-Dichlor		N.D.	N.D.	1	4	0	0	cis-12	-Dichloroether
Chloroform		N.D.	N.D.	1	4.9	0	0		romethane
I.2-Dichloroeth	ane	N.D.	N.D.	5	20	0	0		e Dichloride
1,1,1-Trichloroe		N.D.	N.D.	1	5.5	0	0		Chloroform
Benzene	anano	3.6	11.6	1	3.2	0.993	0.664	moaryr	
Carbon Tetrach	loride	N.D.	N.D.	1	6.3	0.916	0.004	Tetrach	loromethane
,2-Dichloropro		N.D.	N.D.	1	4.6	0.910	0.155		ene Dichloride
Frichloroethyler		N.D.	N.D.	1	5.4	0.961	0.458		roethene
sis-1,3-Dichloro		N.D.	N.D.	1	4.5	0.901	0.450	THEHIO	Demene
rans-1,3-Dichlor		N.D.	N.D.	1	4.5	0	0		
1,1,2-Trichloroe		N.D.	N.D.	1	5.5	0	0		
Foluene	anane	1.0	3.7	1	3.8	0.999	0.747		
1,2-Dibromoeth	000	N.D.	N.D.	1	7.7	0.999	0.747	Ethylon	o Dibromido
Fetrachloroethy		N.D.	N.D.	1	6.8	0	0	-	e Dibromide proethylene
Chlorobenzene	lelle	N.D.	N.D.	1	4.6	0	0	Ferchic	foethylene
Ethylbenzene		0.5	2.0	1	4.0	0.999	0.666		
-	a nota)								
o/m-Xylene (se	e note)	N.D.	N.D.	1	4.3	0.998	0.528	Vindh	
Styrene		0.6	2.4	1	4.3	0.999	0.677	Vinyl b	enzene
o-Xylene	le re eth en e	N.D.	N.D.	1	4.3	0.967	0.576		
1,1,2,2-Tetrach		N.D.	N.D.	5	34	0	0	Marital	
1,3,5-Trimethyll		N.D.	N.D.	5	25	0.913	0.45	Mesityl	ene
1,2,4-Trimethyll		N.D.	N.D.	5	25	1	0.395	Dia	h
1,3-Dichlorober		N.D.	N.D.	5	30	0	0		hlorobenzene
1,2-Dichlorober		N.D.	N.D.	5	30	0	0		hlorobenzene
1,4-Dichlorober		N.D.	N.D.	5	30	0	0	p – Dic	hlorobenzene
1,2,4-Trichlorob		N.D.	N.D.	5	37	0	0		
lexachloroButa		N.D.	N.D.	5	53	0	0		
Concentration fo	r combined p- &	m- Xylenes	could be up	to twice the	listed value	, due to co-e	elution condit	tions.	
nstrument: HAPS	ITE Smart Plus	GC/MS	Quality Con	trol: 3-6 poir	nt cal w/ %F	RSD<30, Int	Stds, daily b	lank, daily	cal check
I.D. = Not Detect	ed Italicized =	estimated "J	J" value (con	centration is	s less than F	Reporting Lir	nit).	Last Cal	ibration: 3/31/11
			-			-			

MassDEP Field Assessment and Sup City or Town: Seekonk			Address:	Mill Eire	· Maple Av	<u> </u>	Location:				
			Seekonk	T			· · ·		Q1		
Date Sampled:	5/1/12	Time:	3:00 PM		Air-2	Collector:			Ambient Air SW of fire		
Date Analyzed:	5/1/12	Time:	4:04 PM	Lab ID:	007	Analyst:	Fitzgerald		SW OF ITE		
Method Analyte	es	Concer ppbV	htration μg/m ³	Reporti ppbV	ng Limit µg/m ³	Peak Fit	Peak Purity	s	Synonym		
Vinyl Chloride		N.D.	N.D.	5	13	0.89	0.013	Chloroet	hene		
Bromomethane		N.D.	N.D.	5	22	0	0	Methyl B			
Chloroethane		4.4	11.7	5	23	0.944	0.179	Ethyl Ch			
Frichloromonof	uoromethane	N.D.	N.D.	30	210	0.97	0.186	Freon 1			
1,1-Dichloroeth		N.D.	N.D.	1	4	0	0		ne Chloride		
Methylene Chlo		N.D.	N.D.	1	3.5	0	0	-	methane		
1,1,2-Trichlorot		N.D.	N.D.	1	7.7	0.614	0.118	Freon 1			
1,1-Dichloroeth		N.D.	N.D.	1	4.1	0	0				
Cis 1,2-Dichlor		N.D.	N.D.	1	4	0	0	cis-1 2-[Dichloroether		
Chloroform	ootiyiono	N.D.	N.D.	1	4.9	0	0		methane		
1.2-Dichloroeth	ane	N.D.	N.D.	5	20	0.608	0.009		Dichloride		
1,1,1-Trichloroe		N.D.	N.D.	1	5.5	0.000	0.003		hloroform		
Benzene	etilane	6.2	19.8	1	3.2	0.991	0.661	Interry C			
Carbon Tetrach	lorido	N.D.	N.D.	1			0.001	Tetrachk	oromethane		
			N.D.	-	6.3	0.914					
1,2-Dichloropro	-	N.D.		1	4.6	0	0		ne Dichloride		
Trichloroethyler		N.D.	N.D.	1	5.4	0		Trichloro	etnene		
cis-1,3-Dichlor		N.D.	N.D.	1	4.5	0	0				
rans-1,3-Dichl		N.D.	N.D.	1	4.5	0	0				
1,1,2-Trichloroe	ethane	N.D.	N.D.	1	5.5	0	0				
Toluene		1.4	5.1	1	3.8	0.996	0.758	E (1)	D 1 11		
1,2-Dibromoeth		N.D.	N.D.	1	7.7	0	0		Dibromide		
Tetrachloroethy		N.D.	N.D.	1	6.8	0	0	Perchlor	oethylene		
Chlorobenzene		N.D.	N.D.	1	4.6	0	0				
Ethylbenzene		0.3	1.1	1	4.3	1	0.647				
p/m-Xylene (se	e note)	N.D.	N.D.	1	4.3	0.999	0.539				
Styrene		0.6	2.6	1	4.3	0.999		Vinyl be	nzene		
o-Xylene		N.D.	N.D.	1	4.3	0.963	0.459				
1,1,2,2-Tetrach		N.D.	N.D.	5	34	0	0				
1,3,5-Trimethyll		N.D.	N.D.	5	25	0.932	0.189	Mesityle	ne		
1,2,4-Trimethyl		N.D.	N.D.	5	25	1	0.342				
1,3-Dichlorober		N.D.	N.D.	5	30	0	0		lorobenzene		
1,2-Dichlorober		N.D.	N.D.	5	30	0	0	o – Dich	lorobenzene		
1,4-Dichlorober		N.D.	N.D.	5	30	0	0	p – Dich	lorobenzene		
1,2,4-Trichlorot		N.D.	N.D.	5	37	0	0				
HexachloroButa	diene	N.D.	N.D.	5	53	0	0				
Concentration fo	r combined p- &	m- Xylenes	could be up	to twice the	listed value	, due to co-e	elution condit	tions.			
nstrument: HAPS	SITE Smart Plus	GC/MS	Quality Con	trol: 3-6 poir	nt cal w/ %F	RSD<30, Inte	ernal Stds, d	aily blank, o	daily cal check		
N.D. = Not Detect	ted Italicized =	estimated "J						· ·	oration: 3/31/1		
		atabase; Pe						1			

MassDEP Field Assessment and Support Team (FAST)

WATER SCREENING DATA RTN: 4-2

RTN: 4-23914

Name of Site	Address	Sample Collected By		
SEEKONK FIRE	MAPLE AVENUE	FAST		
Sample Location	Field ID	Lab ID	Date Sampled	Date Analyzed
FIRE WATER	FW-1	P6945 / E6945	5/1/12	5/1/12
FIRE WATER	FW-2	P6946 / E6946	5/1/12	5/1/12
RETENTION POND	RT-1	P6947 / E6947	5/1/12	5/1/12
10 MILE RIVER	RS-1	P6948 / E6948	5/1/12	5/1/12

SAMPLE RESULTS			Sample Identifier							
Estimated Aqueous Concer		FW-1		FW-2		RT-1	RS-1			
Headspace Screening Tech	nique		Est	Estimated		Estimated		Estimated	Estimated	
			RL	Water Conc		Water Conc		Water Conc	Water Cond	
ANALYTE	Detector		ug/L	ug/L		ug/L		ug/L	ug/L	
methyl(t)butylether	PID		22	ND	_	ND		ND	ND	
benzene	PID		1.0	ND		TR (<1.0)		ND	ND	
toluene	PID		1.0	TR (<1.0)		1.1		ND	TR (<1.0)	
ethylbenzene	PID		1.0	ND		TR (<1.0)		ND	ND	
total xylenes	PID		1.3	ND		TR (<1.3)		ND	ND	
(1,2,4)-trimethylbenzene	PID		1.7	ND		TR (<1.7)		ND	ND	
naphthalene	PID		33	9.2		18		ND	ND	
TPH adjusted	PID		*	ND		ND		ND	ND	
Total unk. non-chloro (PID		1.3	ND		ND		ND	ND	
methylene chloride	ELCD		4.8	ND		ND		ND	ND	
(1,1)-dichloroethane	ELCD		2.1	ND		ND		ND	ND	
cis(1,2)-dichloroethene	ELCD		4.0	TR (<4.0)		TR (<4.0)		ND	TR (<4.0)	
(1,1,1)-trichloroethane	ELCD		1.0	ND		ND		ND	ND	
(1,2)-dichloroethane	ELCD		11.5	ND		ND		ND	ND	
trichloroethene (TCE)	ELCD		1.0	TR (<1.0)		ND		ND	TR (<1.0)	
tetrachloroethene	ELCD		1.0	ND		ND		ND	TR (<1.0)	
chlorobenzene	ELCD		3.6	ND		ND		ND	ND	
unk chloro VOC	ELCD		1.0	ND		ND		ND	ND	
unk chloro VOC	ELCD		1.0	ND		ND		ND	ND	
unk chloro VOC	ELCD		1.0	ND		ND		ND	ND	

COMMENTS

1. ND means a compound was not detected. 2. (TR) means that a target compound was found at a trace level - less than it's reportable level "RL", but above it's method detection limit (MDL).

Sampling Method: NERO Lab

Instrumentation: SRI Analytical Method: NERO

MassDEP F	ield Assessment an	d Support Team (FAS	T)
Water Sample GC	/MS Data by Headsp	ace Screening Techniqu	ue - μg/L
Method Analytes	SW-01	SW-02	
Vinyl Chloride	ND	ND	
Bromomethane	ND	ND	
Chloroethane	ND	ND	
Trichloromonofluoromethane	ND	ND	
1,1-Dichloroethene	ND	ND	
Methylene Chloride	ND	ND	
1,1,2-Trichlorotrifluoroethane	ND	ND	
1,1-Dichloroethane	ND	ND	
Cis 1,2-Dichloroethylene	ND	ND	
Chloroform	ND	ND	
1,2-Dichloroethane	ND	ND	
1,1,1-Trichloroethane	ND	ND	
Benzene	3	3	
Carbon Tetrachloride	ND	ND	
1,2-Dichloropropane	ND	ND	
Trichloroethylene	ND	ND	
cis-1,3-Dichloropropene	ND	ND	
trans-1,3-Dichloropropene	ND	ND	
1,1,2-Trichloroethane	ND	ND	
Toluene	Trace (<1)	1	
1,2-Dibromoethane	ND	ND	
Tetrachloroethylene	ND	ND	
Chlorobenzene	ND	ND	
Ethylbenzene	Trace (<1)	Trace (<1)	
p/m-Xylene (double listed conc)	Trace (<1)	Trace (<1)	
Styrene	6	3	
o-Xylene	Trace (<1)	Trace (<1)	
1,1,2,2-Tetrachloroethane	ND	ND	
1,3,5-Trimethylbenzene	ND	ND	
1,2,4-Trimethylbenzene	2	Trace (<1)	
1,3-Dichlorobenzene (meta)	ND	ND	
1,2-Dichlorobenzene (ortho)	ND	ND	
1,4-Dichlorobenzene (para)	ND	ND	
1,2,4-Trichlorobenzene	ND	ND	
HexachloroButadiene	ND	ND	