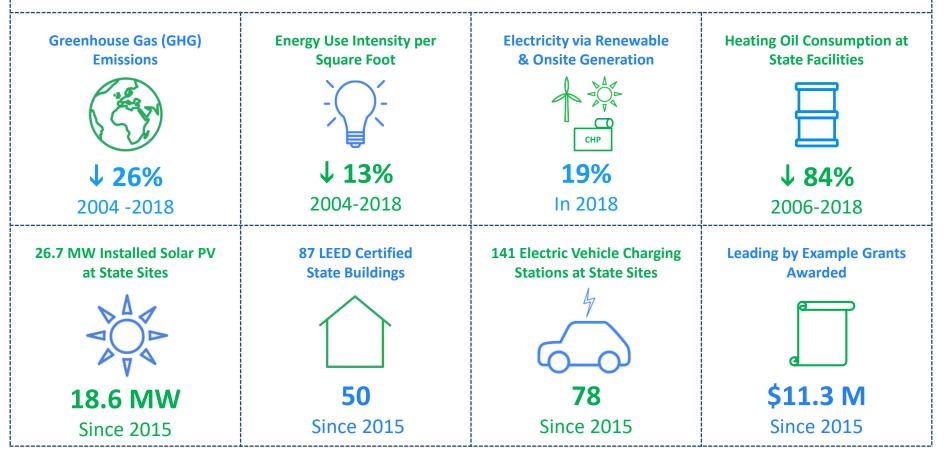
MA Leading by Example Council Meeting



September 17, 2019

UMass Lowell

State Government Progress – as of September 2019

Welcome and Introductions

Share your name and organization

May 14, 2019 Name Agency/Campus Email (if ve don't have						
- · ·						

Please make sure to add yourself to the sign-in sheet when it comes around

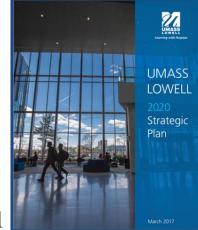
Massachusetts Department of Energy Resources

Creating A Clean, Affordable and Resilient Energy Future For the Commonwealth

UMASS LOWELL SUSTAINABILITY INITIATIVES

CAMPUS & COMMUNITY PARTNERSHIPS IN AN URBAN SETTING

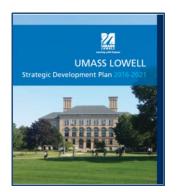
LEADING BY EXAMPLE COUNCIL MEETING 09/17/19

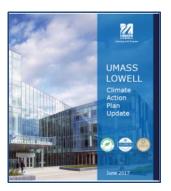


UMASS LOWELL

BRIEF OVERVIEW

- 18,000 students and 2,000 employees
- 16 NCAA Division 1 Athletic Teams
- Over 40 buildings with 4.85 million square feet spread across 150 acres.
- UMass Lowell has undergone a significant transformation. FY2011 - FY2019:
 - 42% increase in gross building area
 - 23% increase in enrollment
 - 90% of freshmen living on campus
 - 50/50 split between commuters and residents




UMASS LOWELL

SUSTAINABILITY APPROACH

- Urban Campus Focus on Urban Sustainability Issues.
- Continued support from our Chancellor and Executive Cabinet to prioritize sustainability in everything that we do.

• *"Establish UMass Lowell as an <u>urban-focused</u> center of excellence for sustainability and resiliency that merges expertise in academics, research and operations".*

HOW ARE WE DOING?

- A lot done, a lot more to do!
- Since the Climate Action Plan was adopted in 2012, emissions have fallen 28% per 1000 Square Foot and 19% per FTE despite a period of enormous growth.
- Collective focus on partnerships, both on campus and in the greater Lowell community.
- Merging operations with teaching and research to ensure our students get a holistic (and realistic) understanding of sustainability in real-world setting.

RECENT HIGHLIGHTS

- Largest Completed Accelerated Energy Program in State.
 \$23.1m project implemented over 100 energy saving measures in 30 buildings across campus:
 - \$1.2m in annual energy savings
 - 1.7m gallons of water saved annually
 - 9m lbs. of CO2 avoided annually
 - \$10m in deferred maintenance

RECENT HIGHLIGHTS

Transportation Enhancements

\$13.7 million TIGER Grant

Close Relationship with City of Lowell

Free Regional Transit

Free Campus Transit

Bike Share (Freewheelers & Veoride)

EV Infrastructure build-out

Full Suite of TDM Options

ESSENTIAL SERVICES

Electronics Recycling	Centralized Shredding	Furniture Removal	I.T. Asset Recycling	Compost Enhancement s
2016 - Cost for service 2019 Cost Neutral Receiving rebates/credits	Consolidated Services Centralized Billing Monthly Reports & Audit Trail	Partnership with Facilities O&S / Project Management	Joint Effort with I.T. & Procurement	Partnership with Dining / Facilities / Tsongas (Athletics)

Formal policies for all areas

SUSTAINABLE GROUNDS MANAGEMENT

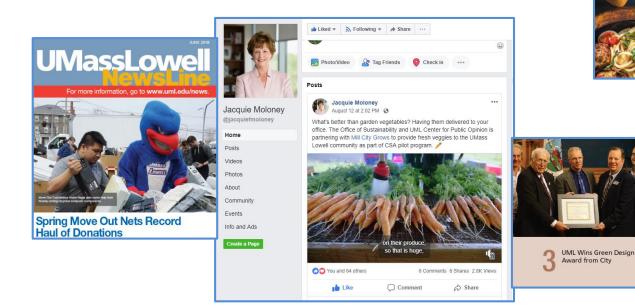
URBAN AGRICULTURE PROGRAM

Sites Throughout Campus	Research Location	Farmshare Program				
Urban Agriculture Farm Rooftop Gardens Community Gardens	Clean Energy Center Nutrition Department Center for Public Opinion	40 Participants 20 Week Program				

Capital Funding supported over \$400,000 in grant funds

Partnership with local food access organization – Mill City Grows

STUDENT ENGAGEMENT


- Close relationship with SGA & environmental clubs on campus
- Student sustainability fee instituted in 2017
- \$50K Annual S.E.E.D. Grant Program:
- Bike Parking Upgrades
- Super Air Condensers in Org Chem Lab eliminate 85,500 liters of water waste each year
- Lowell Energy Ambassadors
- Motion: "Support a change in the set-up of the existing Student Sustainability Fee from its current opt-out format to a mandatory annual fee with the caveat that student involvement in the administration of the fund is continued through initiatives such as the SEED Committee and Office of Sustainability engagement with student sustainability clubs and the Student Government Association".
- Outside of \$50k S.E.E.D. Grant Program this funding also supports:
 - LRTA, MVRTA, MBTA Program
 - Student Employees with Office of Sustainability
 - Support of continued academic programs e.g. Freshmen Seminar & CCI

CAMPUS / COMMUNITY ENGAGEMENT

- Close working relationship with University Relations staff
- Critical to market the work that the university is doing around sustainability
- Dedicated writer from University Relations on all of our projects

RANKINGS AND REPUTATION

- AASHE STARS Gold (highest ranked UMass Campus)
- 2019 AASHE Sustainable Campus Index Top Performer
- Princeton Review Green Schools List (2016, 2017, 2018, 2019)
- Sierra Club Green Schools (137 place jump since first appearance in 2016)
 - Important for perspective students and families
 - Important for alumni engagement

NEXT STEPS

- Establish the RIST Institute for Sustainability and Energy
- UMass Lowell first college in North East to join Green
 Sports Alliance
- Continued GHG Reductions in all areas. Focus on increasing renewables.
- Enhanced Transportation & TDM Programs
- Ongoing Support of Teaching & Research Sustainability Efforts
- Continued pursuit of grant funding opportunities
- Partnerships & Consensus building are crucial to approach
 Staff / Students / Community Partnerships

CONTACTS / QUESTIONS

UML.EDU/SUSTAINABILITY @SUSTAINABLEUML

SUSTAINABILITY@UML.EDU

Learning with Purpose

Test Your Knowledge!

PollEV.com/lbedoer647

Image source

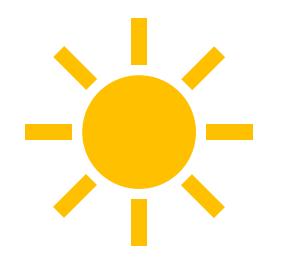
Massachusetts Department of Energy Resources

Creating A Clean, Affordable and Resilient Energy Future For the Commonwealth

Agenda

- News From Around the World (I): Extreme Heat 2019
- Program Updates: SMART and CPS
 - Climate and Energy Resilience

LBE Updates

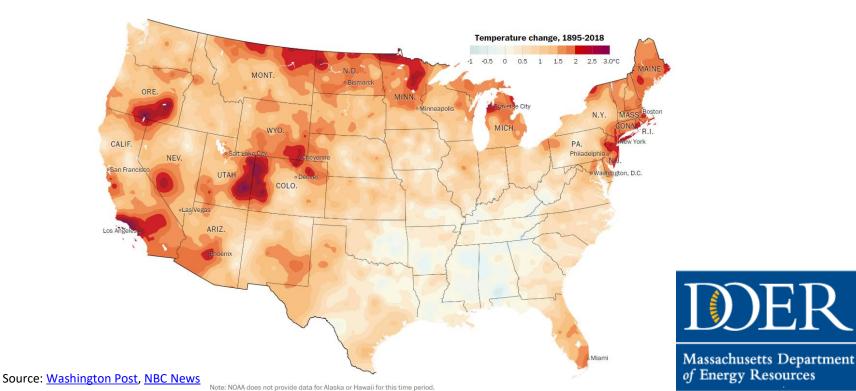


News from Around the World (II)

Massachusetts Department of Energy Resources

Creating A Clean, Affordable and Resilient Energy Future For the Commonwealth

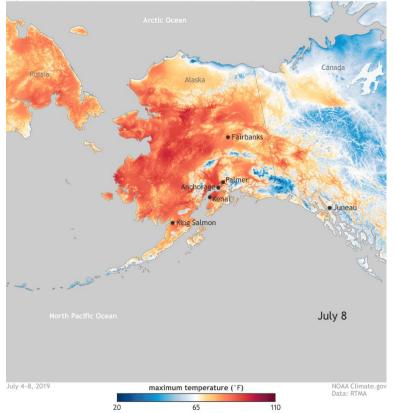
News from Around the World (I): Extreme Heat 2019



Creating A Clean, Affordable and Resilient Energy Future For the Commonwealth

Massachusetts Department of Energy Resources

2°C: Beyond The Limit


- July 2019 was the hottest month ever recorded on earth, 1.71°F higher than the 20th century global average of 56.7°F
- Winter temperatures across the northeast have risen by over 2°C since the late 19th century
 - Lake ice in New England breaks up 9 to 16 days earlier than in the 19th century

A Tropical Alaska

- Alaska averaged 58.1°F in July,
 5.4 degrees above average
- Sea ice in southern Alaska melted earlier than any other year.
- By early August, over 2 million acres across the state

High temperatures smash all-time records in Alaska in early July

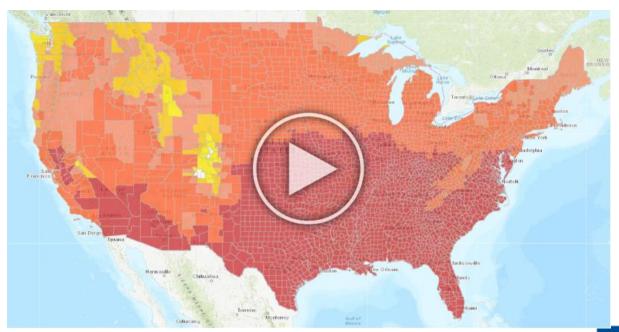
Anchorage reached 90°F for the first time EVER The state had 30 days over 75°F, double its previous record

Massachusetts Department of Energy Resources

Creating A Clean, Affordable and Resilient Energy Future For the Commonwealth Source: Earth.com, KTVA

Heat Around the Arctic

- The current Greenland ice melt rate is equivalent to what models projected for 2070
- In Iceland, Okjökull was declared the first glacier lost due to climate change
 - Site was renamed to Ok after "Jökull," Icelandic for "glacier," was dropped



This combination of Sept. 14, 1986, left, and Aug. 1, 2019 photos provided by NASA shows the shrinking of the Okjokull glacier. NASA, via Associated Press

Source: Inside Climate News, EcoWatch, NY Times

The Future of Dangerously Hot Days

- UCS analyzed historic and projected data to track the increase in the number of extreme heat days across the US
- Created interactive map that enables viewers to see long-term heat impacts across the US of varying climate action scenarios

Massachusetts Department of Energy Resources

Source: Union of Concerned Scientists 'ating A Clean, Affordable and Resilient Energy Future For the Commonwealth

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

Massachusetts Department of Energy Resources

Program Updates: SMART and CPS

- DOER has been conducting a review of the SMART program
 - Results and a straw proposal for program modifications were released this month
 - Since its launch in November 2018, SMART has received 11,300 applications for over 1,000 MW of capacity
 - SMART blocks for systems >25 kW are full or nearly full in most territories
- The straw proposal seeks to address program oversubscription, land use impacts, geographic and project type diversity, grid saturation, energy storage benefits, accessibility of low-income communities, and other administrative fixes

of Energy Resources

Source: SMART 400 MW Review Straw Proposal

SMART Proposed Program Expansion

- Expand capacity by 800 MW, with future block values declining between 2% (BTM systems) and 4% (standalone)
- Require all solar generation units >500 kW be paired with energy storage
- Increase applicability and magnitude of greenfield subtractor
- Expand alternative on-bill credit availability and modify value of energy for BTM facilities to make more equitable with standalone systems
- Increase and support low-income and community-shared solar

Massachusetts Department of Energy Resources

Source: SMART 400 MW Review Straw Proposal

Proposed Program Expansion

- Introduce a **pollinator adder** for projects awarded pollinator certification by UMass Amherst Clean Energy Extension
 - Both new and existing projects could apply for this adder
- Explore **locational benefits** by working with electric distribution companies to obtain data on where the grid could benefit from additional solar
 - A subtractor would apply for interconnected locations identified as too congested
- Exempt eligible storage systems from the 52-cycle requirement if they are participating in utility **demand** response programs

Massachusetts Department of Energy Resources

Source: SMART 400 MW Review Straw Proposal

The following changes would apply to public projects, which are defined as those sited on publicly owned or operated land with 100% of offtake to public entities:

- Increase public adder from $0.02/kWh \rightarrow 0.04/kWh$
- Enable applicants to earn a statement of qualification upon contract signing with an 18-month reservation period
- Qualify as Category 1 land use (exempt from greenfield subtractor)

Massachusetts Department of Energy Resources

Source: SMART 400 MW Review Straw Proposal

Creating A Clean, Affordable and Resilient Energy Future For the Commonwealth

	Distribution Company	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7	Block 8	Block 9	Block 10	Block 11	Block 12	Total
	Unitil	3.947	3.947	3.947	3.947	3.947	3.947	N/A	N/A	N/A	N/A	N/A	N/A	23.682
	National Grid (Massachusetts Electric)	90.022	90.022	90.022	90.022	90.022	90.022	90.022	90.022	90.022	90.022	90.022	90.022	1,080.266
	National Grid (Nantucket Electric)	3.021	3.021	3.021	N/A	N/A	N/A	9.063						
	Eversource (East)	91.514	91.514	91.514	91.514	91.514	91.514	91.514	91.514	107 240	107.249	107.249	107.249	1 296 099
-	Eversource (West)	15.735	15.735	15.735	15.735	15.735	15.735	15.735	15.735	107.249	107.249	107.249	107.249	1,286.988
	Total Capacity	204.239	204.239	204.239	201.218	201.218	201.218	197.271	197.271	197.271	197.271	197.271	197.271	2,400.000

- DOER collecting comments on the straw proposal through September 27th
- Review of draft regulation expected through mid-November 2019, with emergency regulations expected to be filed around late November
 - Most changes would go into effect upon regulation filing; tariff filings (e.g. AOBC for behind-the-meter) would need to go through DPU process first

Source: SMART 400 MW Review Straw Proposal

Creating A Clean, Affordable and Resilient Energy Future For the Commonwealth

Massachusetts Department of Energy Resources

Quick Recap of Clean Peak Standard

- Part of 2018 Act to Advance Clean Energy
 - Without a policy to address peak periods, Massachusetts will remain dependent on gas and oil generation to meet our peak demand, resulting in high costs and emissions, despite our substantial investment in clean energy resources
- CPS is a market mechanism designed to shift clean energy to peak and reduce demand at peak, thereby decreasing emissions and costs
 - Any eligible resources that generate, dispatch or discharge energy during a seasonal peak period will generate Clean Peak Energy Certificates (CPECs)
 - CPECs can be sold to retail electricity suppliers, which are required to purchase a certain amount each year to meet the minimum standard obligation

Source: DOER Clean Peak Energy Standard

Creating A Clean, Affordable and Resilient Energy Future For the Commonwealth

Massachusetts Department of Energy Resources

Recent Clean Peak Standard Updates

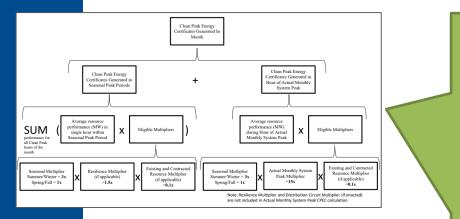
- In August, DOER released draft CPS program details such as alternative compliance payment rates, annual obligation increases, eligibility criteria, and multiplier values
- Draft regulation is expected to be filed in Q4 2019

Eligibility

- New RPS Class 1 resources
- Existing RPS Class 1 or 2 resources paired with qualified energy storage systems
- Qualified energy storage systems
- Demand response resources

Multipliers

- Seasonal (higher for winter and summer vs. spring and fall)
- Actual monthly system peak
- Resource provides a resilience benefit by enabling provision of electric service to a load during external outage conditions
- Existing and contracted resources



Massachusetts Department of Energy Resources

Source: DOER Clean Peak Energy Standard

Creating A Clean, Affordable and Resilient Energy Future For the Commonwealth

Clean Peak Energy Certificate Generation

- Clean Peak resource must provide hourly interval data for preceding month
- Reported data will go to NEPOOL GIS to mint CPECs
- Depending on configuration and performance, a new 1 MW storage project could theoretically generate tens of thousands of dollars annually

Actual CPECs generated in a month (and potential revenue) will depend on several variable factors

- Timing and frequency of energy generation/dispatch/discharge
- Monthly system peak
- Actual performance within seasonal peak periods
- Applicability of multipliers
- Time of year
- Etc.

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

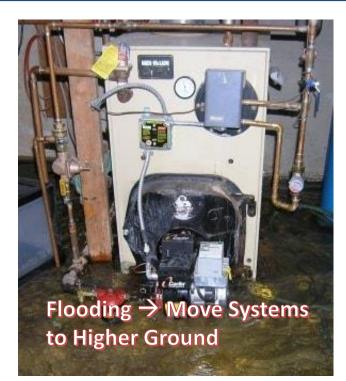
Massachusetts Department of Energy Resources

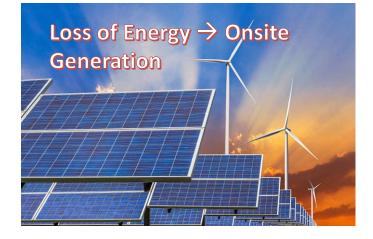
Preparing State Facilities for the Future: Climate and Energy Resilience

Resilience Comes in Many Forms

Resilience is: The ability of a system and its component parts to anticipate, absorb, accommodate, or recover from the effects of a hazardous event in a timely and efficient manner. (MA SHMCAP)

Increased Rainfall \rightarrow Stormwater Retention





known Author is licensed und

Energy Resilience

Energy Resilience is: The ability of an energy system to recover quickly from a shock or stress event and is a significant factor in a facility's ability to maintain critical operations during that time without disruption (Arup)

Why Do We Need to Be Resilient?

- Increases public and patient safety
- Avoids/delays evacuations
- Protects vulnerable populations
- Reduces burden on emergency management personnel
- Reduces costs associated with crisis management

Tampa Bay Times

Following deaths from Irma, Florida looks to new rules for keeping nursing homes cool after outages

Some hospitals hang on as others close amid Harvey's floods

By Jen Christensen, CNN

The New York Times

Nursing Home Deaths in Florida Heighten Scrutiny of Disaster Planning

and Re

Hospital-Based Medicine > General Hospital Practice Bahamas Hospitals Struggle With Dorian's Impact

- Patients in wheelchairs evacuated from flooded hospital during storm's height

Home Specialties CME/CE Health Policy Meetings Practice Mgmt Videos Opinion Condition Centers Careers

State Government Programs Supporting Resilience Efforts

• Overall goal to make residents safer, keep vital services online, reduce long-term costs of climate-related risks, and protect the value of property

Examples of current resilience programs

Agency/Program	Goal
Executive Order 569	Establishes an Integrated Climate Change Strategy for the Commonwealth
Agricultural Climate Resiliency and Efficiency Grant Program (MDAR)	Improve resilience in agriculture by supporting practices that address potential impacts of climate on agriculture
Coastal Resiliency Grant Program (CZM)	Advance local efforts to address coastal flooding erosion and sea level rise
Statewide Resilience Master Plan (DCAMM)	Lays the groundwork to implement resilient building strategies for future projects at state facilities
Division of Ecological Restoration Priority Projects (DER)	Habitat restoration and culvert replacements to better prepare wetlands, rivers, and municipalities for climate impacts
Water Utility Resilience Program (DEP)	Supports local drinking water and wastewater utilities to build up resilience to severe weather events
Municipal Vulnerability Preparedness grant program (EEA)	Make communities safer, keep vital services online, reduce long-term costs of climate-related risks
Community Clean Energy Resilience Initiative (DOER)	Helps municipalities use clean energy to protect against service interruptions caused by severe weather

MA Integrated State Hazard Mitigation and Climate Adaptation Plan (SHMCAP)

- Required to receive FEMA Disaster Assistance
- First of its kind to integrate climate change impacts and adaptation strategies with hazard mitigation plan
- Identifies potential hazards for populations, government, built environment, natural resources, and the economy
- Resilient MA Action Team
 - Launched in August 2019
 - Inter-agency team led by EEA
 - > SHMCAP implementation and guidance
 - > Develop statewide climate resilience standards
 - Ensure capital investments are climate-smart

Source: SHMCAP Creating A Clean, Affordable and Resilient Energy Future For the Comm

SHMCAP: State Agency Key Vulnerabilities

Key Vulnerability Assessment Findings for State Agencies

- Vulnerability assessment completed by approximately 80 state agencies
- Nearly 1,000 critical items were assessed: 386 physical/non-physical assets | 340 functions | 231 population groups
- Vast majority of agencies identified multiple concerns regarding impacts from climate change and natural hazards
- Top five hazards based on number of assets with a "High Risk" rating: Extreme Precipitation | Hurricanes/Tropical Storms | Nor'easter | Ice Storms | Severe Winter Storm
- Ability to withstand natural hazards and climate impacts: Excellent: 6% | Good: 38% | Satisfactory: 42% | Fair: 14% | Poor: 0%
- Length for agency to return to essential functionality following an extreme weather event that results in significant damage to critical assets and/or functions: Months: 7% | Weeks: 32% | Days: 43% | Hours: 19%
- Remote operation capability:

Yes: 82% | No: 18%

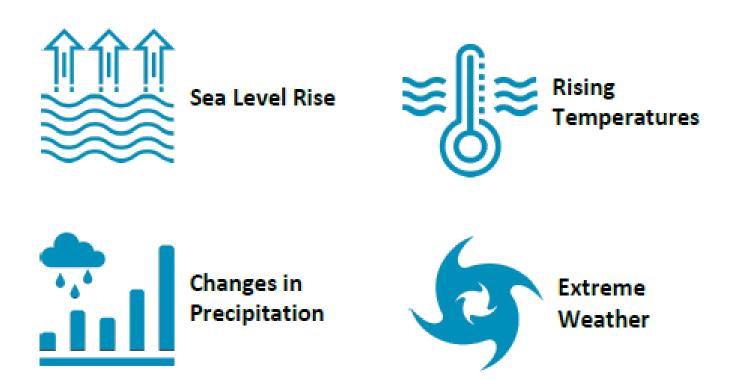
- Status of incorporating natural hazard mitigation and climate change adaptation into programs: Currently incorporating: 28% | Planning to incorporate: 32% | Not incorporating: 29% | Don't know: 10%
- Plans, policies, or procedures in need of revision to better consider climate change: Yes: 24% | No: 37% | Don't know: 39%
- Application of factors derived from state agency adaptive capacity responses to risk scores significantly reduced the number of "High Risk" critical items – overall 80% reduction
- Top hazards with "High Vulnerability" scores based on number of critical items: Physical/Non-Physical Assets: Severe Winter Storm/Ice Storm | Functions: Coastal Flooding | Population Groups: Coastal Flooding

Assessing Climate Change Vulnerability

Creating A Clean, Affordable and Resilient Energy Future For the Commonwealth

Massachusetts Department of Energy Resources

Planning for Resilience at DCAMM



Agenda

- 1. Vulnerability What is the problem?
- 2. Planning How address the problem?
- 3. Implementation Applying the solution.

Vulnerability

f y 🖂 2

NEWS IN BRIEF

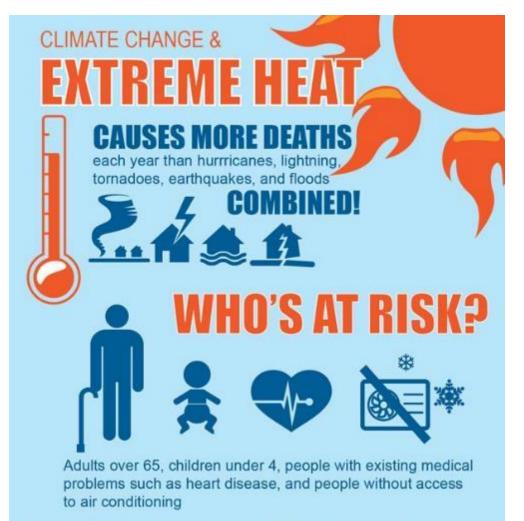
Atlantic Ocean Excited To Move Into Beautiful Beachfront Mansion Soon

9/14/15 11:39am • SEE MORE: NEWS ~

Character Source America's Finest News Source.

PLANNING FOR RESILIENCE AT DCAMM

Flooding During March 2018 Noreaster


PLANNING FOR RESILIENCE AT DCAMM

Resilience at DCAMM

CATEGORY D EL 18.3 CANCORY 2 EL 13.8			
		Elevation in Feet	Relation to First
	Reference Level		
		(NGVD 29) ¹	Floor (ft.)
	Reference Level Ground Elevation Cat 1 Hurricane at		
FEMA 500 EL. 12.2	Ground Elevation	(NGVD 29) ¹ 12	Floor (ft.)
lasses and a second	Ground Elevation Cat 1 Hurricane at	(NGVD 29) ¹ 12	Floor (ft.)
Salem Ruane Judicial Center generator flood susceptibility.	Ground Elevation Cat 1 Hurricane at MHHW ²	(NGVD 29) ¹ 12 10.1	Floor (ft.) - Below ground
lasses and a second	Ground Elevation Cat 1 Hurricane at MHHW ² Cat 2 Hurricane at MHHW ² Cat 3 Hurricane at	(NGVD 29) ¹ 12 10.1	Floor (ft.) - Below ground
Salem Ruane Judicial Center generator flood susceptibility.	Ground Elevation Cat 1 Hurricane at MHHW ² Cat 2 Hurricane at MHHW ² Cat 3 Hurricane at MHHW	(NGVD 29) ¹ 12 10.1 13.8 18.3	Floor (ft.) - Below ground 1.8 6.3
Salem Ruane Judicial Center generator flood susceptibility.	Ground Elevation Cat 1 Hurricane at MHHW ² Cat 2 Hurricane at MHHW ² Cat 3 Hurricane at	(NGVD 29) ¹ 12 10.1 13.8	Floor (ft.) - Below ground 1.8

Extreme Heat & Health Risks

Extreme Heat and Health Risks

Health inspectors visit prisons after receiving complaints about heat

By Laura Crimaldi Globe Staff, July 13 2018. 6:55 p.m.

A cell block at MCI-Cedar Junction in Walpole. (GLOBE FILE PHOTO/1993).

By CRINESIDER STAFF | AP | February 15, 2017, 12:13 FM

Civil trial ordered of Texas prisons after heat deaths

Massachusetts cites two prisons for ventilation problems

By Laura Crimaldi Globe Staff, August 2, 2018, 6:40 p.m.

🖾 🛉 🍠 🖶 🗩

State public health officials have cited two state prisons for inadequate ventilation, after receiving complaints of excessive heat inside the facilities during a heat wave this summer.

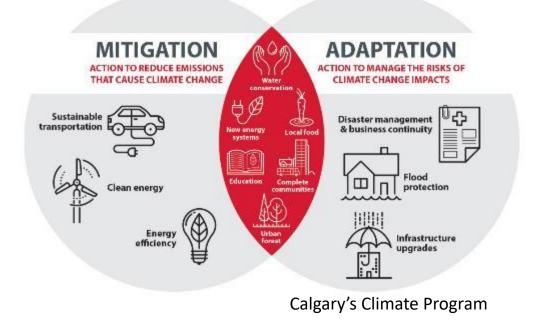
During inspections conducted July 12, public health officials found parts of MCI Concord and MCI Cedar Junction in Walpole failed to meet state standards for ventilation in correctional facilities, according to Department of Public Health documents made public Wednesday.

Vulnerability at DCAMM

Basement Mechanical Room

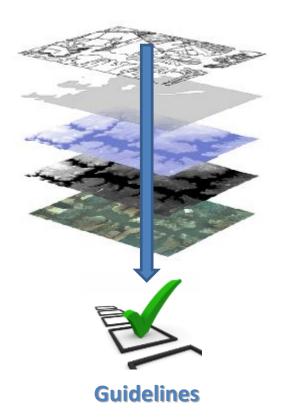
PLANNING FOR RESILIENCE AT DCAMM

Vulnerability at DCAMM


Stormwater Damage

PLANNING FOR RESILIENCE AT DCAMM

Planning


Building Climate Resilience

Statewide Resilience Master Plan (SRMP)

Portfolio Evaluation

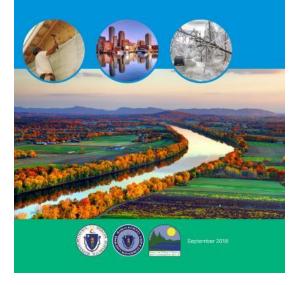
- **1.** Benchmarking & Criticality Analysis
- 2. Risk and Vulnerability Analysis & Pilot Site Workshops
- 3. Compilation and Distribution of Guidelines

State Hazard Mitigation & Climate Adaptation Plan

Resilience goals for DCAMM

Incorporate hazard and
climate change
vulnerability into capital
planning, master
planning, and facilities
management functions.

Incorporate climate change vulnerability, resilience, and adaptation standards into capital planning for new projects.


Refer to agency climate change vulnerability assessments in master planning exercises.

Integrate climate change vulnerability assessments into a facilities management system.

A&F / DCAMM

Greater than 5 years

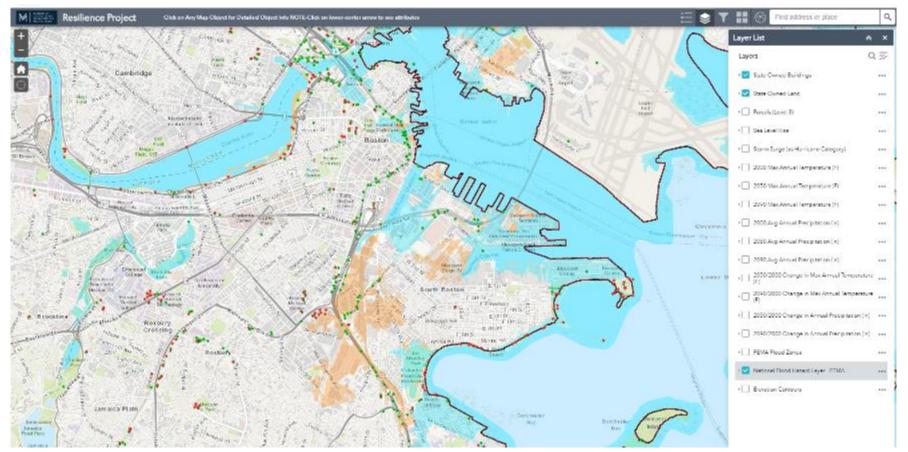
Massachusetts State Hazard Mitigation and Climate Adaptation Plan

PLANNING FOR RESILIENCE AT DCAMM

DCAMM Resilience Checklist

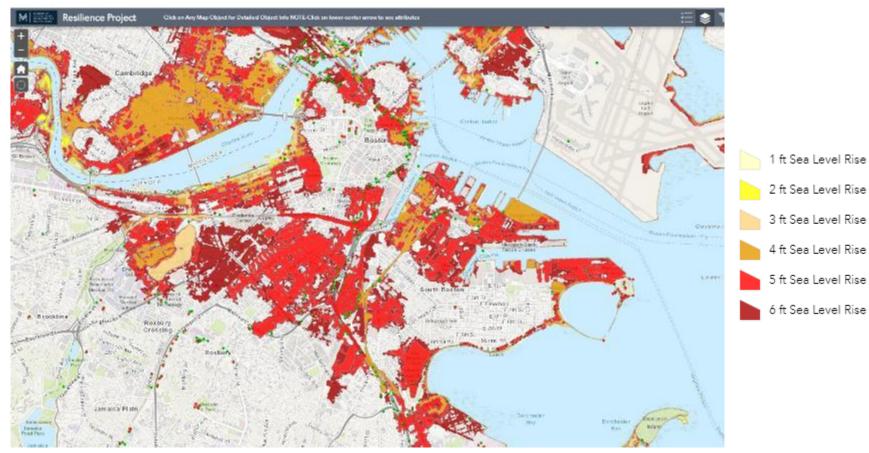
V. Flooding, Sea Level Rise, and Storms

Inland Flooding				
For site-specific sea-level-rise and flood hazard information by address for Massachusetts, please visit:				
http://massgis.maps.arcgis.com/apps/webappviewer/index.html?id=930e4afb48c14cdca6b6e71b393fe023				
Is any part of the project site located in FEMA	Yes / No	Is any part of the project site located in a	Yes / No	
zones A, AE, AO, AH, or VE (1% annual chance of		FEMA zone X (0.2% annual chance of		
flooding)?:		flooding)?:		
Sea Level Rise / Storm Surge [NAVD88]				
Will any part of the project fall within Hurricane	Yes / No	What minimum level of sea level rise is	Feet	
Category 1?		the project vulnerable to (if any)?		
If you answered YES to any of the above questions, please complete the following questions. Otherwise you have completed the questionnaire; thank you!				
Base Flood Elevation (BFE):	Feet	Site elevation at building:	Feet	
Lowest occupiable floor elevation:	Feet	Proposed Site Elevation – High:	Feet	
Lowest basement floor elevation:	Feet	Proposed Site Elevation – Low:	Feet	
Accessible route elevation:	Feet			
List any building uses and critical equipment locat	ted below the *	3FE (Base Flood Elevation) (e.g. switchgears, di	stribution	
panels, air handling units, generators, etc.):				
Switchgear Eme	rgency Generato	or 🗆 Boiler		
Transformer Com	munications	Server		
Distribution Panel Wat	er heater	Elevator pit		
□ Substation □ Air h	andling unit	Other (list below)		

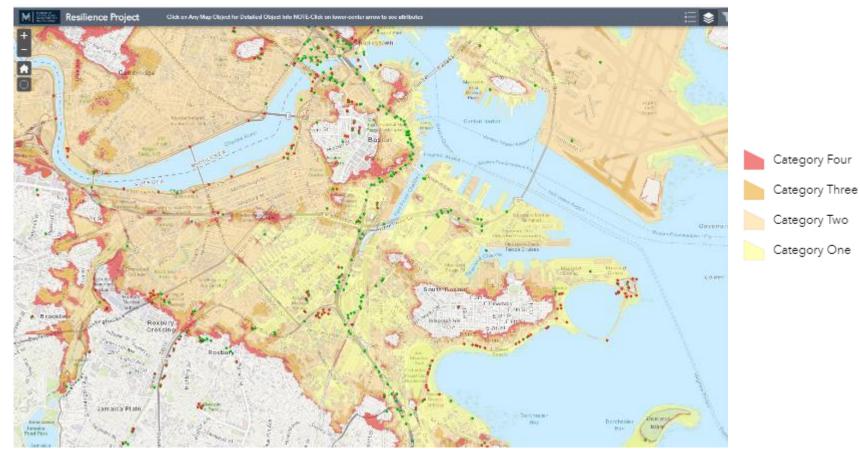

http://massgis.maps.arcgis.com/apps/webappviewer/index.html?id

=930e4afb48c14cdca6b6e71b393fe023

PLANNING


Mapping – Flood Plains

PLANNING


Mapping – Sea Level Rise

PLANNING

Mapping – Storm Surge

PLANNING FOR RESILIENCE AT DCAMM

Implementation

PLANNING FOR RESILIENCE AT DCAMM

SRMP Resilience Guidelines – Green Infrastructure

Exterior Site Features and Grounds Example SITE DRAINAGE

Climate Stress:

- EXTREME PRECIPITATION
- FLOODING

Adaptation: Select green infrastructure, such as rain gardens, to facilitate infiltration and reduce stormwater runoff.

Planning Horizon: During/After Strategy: Accommodate Cost: \$-\$\$ Effectiveness: Moderate Feasibility: Yes Adaptability: Flexible Timing: Short- to Mid-term Co-benefits: Heat reduction **Discussion:** This adaptation will reduce stormwater runoff during extreme precipitation events and help reduce recovery times after flooding, as well as reduce heat island effects. Rain gardens should be constructed in accordance with the Massachusetts Stormwater Handbook. Feasibility and Adaptability are typically site dependent. In addition to lessening climate impacts, it is also beneficial to site aesthetics and community wellness.

SRMP Resilience Guidelines – Pervious Paving

Exterior Site Features and Grounds Example SITE DRAINAGE

Climate Stress:

EXTREME PRECIPITATION

FLOODING

Adaptation: Install permeable pavement in the parking lot and walkways to aid with infiltration on site and reduce stormwater runoff

Planning Horizon: During/After Discussion: This adaptation will reduce stormwater runoff during extreme Strategy: Accommodate precipitation events and help reduce recovery times after flooding. Porous Cost \$\$ pavement should be maintained Effectiveness: Moderate in accordance with the designers' recommendations. Facility Managers Feasibility: Maybe should develop a schedule for maintaining Adaptability: Not Flexible Photo courtesy of Oregon State the pavement in order to maximize University effectiveness. Porous pavement may not Timing: Mid-term be feasible at all sites. Co-benefits: No

Electrical Building System Example BELOW GRADE TRANSFORMER

Climate Stress:

FLOODING

EXTREME PRECIPITATION

Adaptation: Elevate transformer to above-ground pad with critical threshold 2 ft. above predicted flood elevation.

Planning Horizon: Before
Strategy: Retreat (elevate/relocat
Cost: \$\$\$
Effectiveness: Max
Feasibility: Yes
Adaptability: Not Flexible
Timing: Mid to Long-term
Co-benefits: Yes, easier to maintain

Discussion: This adaptation should be implemented before climate impacts. This adaptation is more expensive than replacement-in-kind for subgrade transformers, but the life cycle of the transformer will be longer than if left in the ground. By relocating/raising the transformer 2 ft. above the predicted flood elevation, flood risk is eliminated and easier access is provided to facility maintenance staff. Once the elevation is raised, the strategy is not flexible (i.e. cannot easily be adjusted to higher elevations). This strategy is likely feasible to implement once funds are available. It will require design and construction, so timing of implementation is mid- to long-term.

SRMP Resilience Guidelines – Heat Recovery

Mechanical Building System Example HVAC SYSTEM

Climate Stress:

- HEAT

Adaptation: Air handling units with heat recovery.

Planning Horizon: Before Strategy: Protect Cost: \$\$\$ Effectiveness: Maximum Feasibility: Maybe Adaptability: Not Flexible Timing: Long-term Co-benefits: Yes (wellness, energy) **Discussion:** This adaptation should be implemented to prepare for heat waves and increased baseline temperatures. Its effectiveness depends on the overall efficiency of the of the mechanical system and the building envelope. This strategy may be feasible, but it would likely be an extensive retrofit for older buildings. The solution would help to ensure occupants' wellness and reduce building energy demands.

IMPLEMENTATION

SRMP Resilience Guidelines – Foundation Floodproofing

Adaptation: Exterior drainage

Photo courtesy of dspinspections.com

Planning Horizon: During/After Strategy: Accommodate Cost: \$\$- \$\$\$ Effectiveness: Moderate Feasibility: Yes (depending on roof) Adaptability: No Timing: Mid to Long-term Co-benefits: No

Discussion: In general, foundations, floor slabs and building walls are not designed to withstand hydrostatic pressures. Perimeter drains are custom in design, and effectiveness should be considered during prolonged flood events. Sump pumps may be required to bail the system if drainage systems are inundated and over capacity. Pressure relief valves discussed in other sections may be considered. Green infrastructure may be useful in reducing recovery time for the site.

IMPLEMENTATION

SRMP Resilience Guidelines – Temporary Flood Barriers

Adaptation: Deploy temporary barriers to alter the flow of stormwater runoff away from the site.

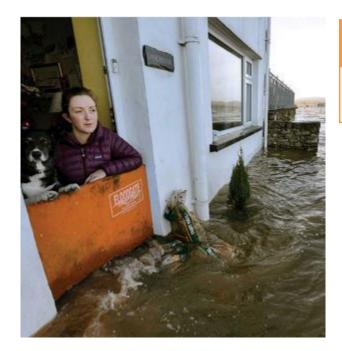


Photo courtesy of NOAQ BOXWALL FLOOD BARRIER Planning Horizon: During Strategy: Protect Cost: \$ Effectiveness: Moderate Feasibility: Yes Adaptability: Flexible Timing: Short-term Co-benefits: No

Discussion: This adaptation should be during climate impacts when stormwater is flowing from another site onto this site. This solution provides temporary relief from water damage. This solution requires personnel on site immediately before, during, and after an event to implement. It will require purchase of the barriers, so timing of implementation is short-term. Barriers can range from sandbags, quick dams, to NOAQ flood defenses (pictured).

SRMP Resilience Guidelines – Temporary Flood Barrier

VULNERABLE FACILITY ELEMENT	LOCATION	CLIMATE STRESS	PRIORITY
Basement doorways to	North side of site	Extreme	High
Outdoor Equipment Room,		Precipitation &	
Mechanical Room, etc.		Flooding	

- Planning Horizon: Before & During
- Strategy: Protect
- Cost \$: ~\$900/dam
- Effectiveness Max: depends on structural strength of building walls
- Feasibility Yes: easy to install, use, store and transport
- Adaptability Flexible: 26" high, gate fits 30"-35" opening
- Timing Short term: 2 minute installation
- Co-benefits No.

SRMP Resilience Guidelines – Exterior Shading

VULNERABLE FACILITY ELEMENT	LOCATION	CLIMATE STRESS	PRIORITY
Window curtainwall	Facade-Floors 1 through 5	Heat	High

- Cost \$: \$\$-\$\$\$ according to system selected and if additional structural requirement to support
- Effectiveness: medium to high
- Feasibility: to be assessed if shades will required their own structural system
- Adaptability: No
- Timing short-term and long term
- **Co-benefits** this measure will also reduce the energy demand for the building and contribute to achieve GHG reduction.

IMPLEMENTATION

SRMP Resilience Guidelines – Operable Windows

Adaptation: Operable Windows

Planning Horizon: Before/During

Strategy: Accommodate

Cost: \$ - \$\$

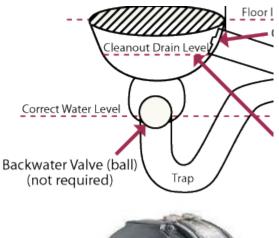
Effectiveness: Minimum to Moderate

Feasibility: Yes

Adaptability: Flexible

Timing: Short- to Long-term Co-benefits: Yes, occupancy comfort Discussion: This adaptation allows introduction of outside air to improve quality and control temperature. This can be implemented for newwindows or during retrofitting a structure. This adaptation is typically low to moderate costs. Typically installed by construction subcontractor. Typical results are improved occupant comfort and improved energy savings. Windows may be sized or designed with locks to provide security.

SRMP Resilience Guidelines – Under Slab Drains



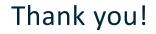
VULNERABLE FACILITY ELEMENT	LOCATION	CLIMATE STRESS	PRIORITY
Mechanical & Electrical Room	Basement	Flooding	High

- Planning Horizon: Before & During
- Strategy: Accommodate
- **Cost** \$, Low, retrofit
- Effectiveness Moderate, reduces hydrostatic pressure
- Feasibility Yes: easy to install
- Adaptability Flexible, taller pipes could be used
- Timing Short term
- Co-benefits No.

SRMP Resilience Guidelines – Backflow Prevention

VULNERABLE FACILITY ELEMENT	LOCATION	CLIMATE STRESS	PRIORITY
Mechanical & Electrical Room	Basement	Extreme Precip./Flooding	High

- Planning Horizon: Before
- Strategy: Protect
- **Cost** \$, Low initial cost, up to moderate cost for retrofit
- Effectiveness Moderate, does not reduce hydrostatic pressure, requires maintenance, degrades over time.
- Feasibility Maybe: ease of installation base
- Adaptability Not flexible.
- Timing Short term
- Co-benefits No.


SRMP Resilience Guidelines – Elevating Servers

VULNERABLE FACILITY ELEMENT	LOCATION	CLIMATE STRESS	PRIORITY
MDF Servers, Communications	Basement	Extreme Precip./Flooding	High

- Planning Horizon: Before
- Strategy: Retreat (elevate within room or to first floor)
- Cost \$ \$\$\$
- Effectiveness Moderate to Max; if moved within room, humidity is still a problem for the equipment
- Feasibility Maybe: ease of installation base
- Adaptability Flexible; not flexible.
- Timing Short term; Long term.
- Co-benefits No.

Questions?

Resilience Gaps and Clean Energy Solutions for State-owned Medical and Residential Care Facilities

PUBLIC LEADERSHIP, STEWARDSHIP, COMMITMENT

Massachusetts Department of Energy Resources

Resilience at HHS Facilities: A Study

• Is there potential for clean energy solutions to support added resiliency at HHS critical care facilities that operate around-the-clock?

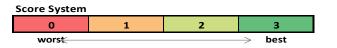
- Examine existing energy resiliency conditions and identify clean energy technologies that could improve site energy resilience
- Support the Commonwealth's broader climate adaptation and mitigation objectives

[Study funded by DOER's Leading by Example Program, conducted by Arup between February 2018 and March 2019]

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

Resilience at HHS Facilities: A Study

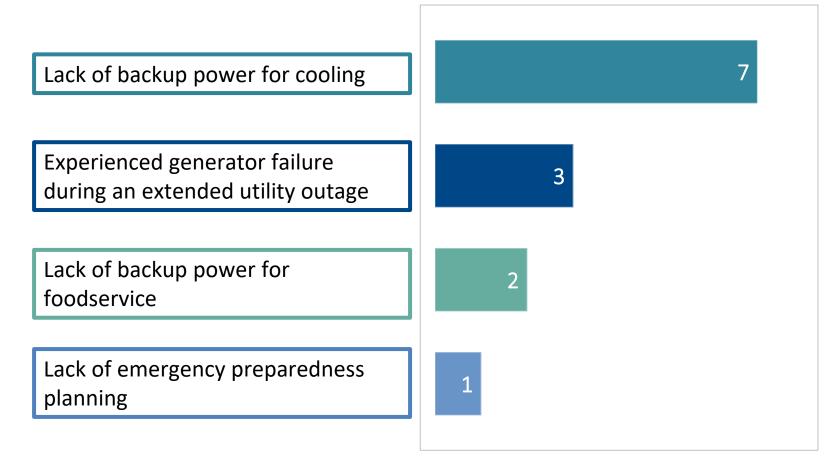
- The study included detailed evaluation of how each facility might expand or increase the duration of power maintenance during an electric grid outage
- Critical care facilities were chosen for the study due to the complications associated with relocation of residents, many of whom require significant medical attention


Study Phases

Task 1. Perform an existing conditions assessment and energy resiliency gap analysis Task 2. Identify several clean energy technology options that could address energy resiliency gaps

Task 4. Develop resiliency guidance documents for other state agencies based on the experience of the study Task 3. Conduct feasibility assessments on the most promising technologies for each site, including returnon-investment

Portfolio Systems Resilience Scorecard


	Systems Resilience Summary						
Systems	Elect	trical	нν				
Resilience Average	Normal Power	Backup Power	Heating	Cooling	Misc. Systems		
1.4	1.5	1.3	2.2	0	2.0		
1.3	1.8	1	2	0	1.8		
0.7	1.8	0	0	0	1.5		
1.4	2	1.5	2	0	2.0		
1.4	1.5	1.5	2.2	0	2.0		
1.6	2	1.8	2	0	2.2		
2.0	2	1.8	2.2	1.8	2.0		
2.2	1.5	2.8	2.4	2.3	2.2		
2.2	1.8	2.5	2.4	2	2.3		
2.0	1.5	2.3	2	1.8	2.2		
1.8	1.5	2	1.6	2	1.8		
1.8	2.3	2.3	2.2	0	2.0		
1.6	1.7	1.7	1.9	0.8	2.0		

Each system and operational category was assigned a score between 0—3 based on existing conditions and expected impact on the facility's required emergency functions

Massachusetts Department of Energy Resources

Portfolio Energy Resilience Gaps

Number of Sites

Energy Modeling and Resilience Needs

Average hourly electric load by month 120.0 - January -February 100.0 -March -April 80.0 Typical annual and daily May KW 60.0 -June load profiles -July 40.0 -August September 20.0 -October November 0.0 - December 0 6 10 12 16 18 20 22 14 HOUR OF THE DAY Hourly resilience load profile 80 70 60 Daily load profile of 50 kWh 40 critical systems 30 20 10 0 0 1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 3 4

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

Massachusetts Department of Energy Resources

Hour of the day

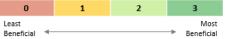
Clean Energy Technologies Assessed

The study utilized a set of 12 performance criteria to assess the technologies including benefit to resiliency, costeffectiveness, and ease of integration

	Energy Generation			Energy			
Technology	Solar PV	Solar Thermal	СНР	Fuel Cells	Electrical Storage	Thermal Storage	Microgrid
Grid-making	0	0	3	3	3	0	3
Dispatchability	0	3	2	1	3	3	3
Thermal characteristics	0	2	3	2	0	3	0
Fuel/storage capacity	0	2	2	2	3	3	0
Black-start req.	0	0	2	2	3	0	3
Space req., power density	1	2	2	2	2	1	3
Ease of integration	3	2	1	1	2	1	1
Structural impact	3	2	2	2	1	1	3
Efficiency	3	3	2	2	1	1	3
GHG emissions impact	3	3	2	2	1	2	2
Order-of-magnitude cost	2	1	2	1	1	2	1

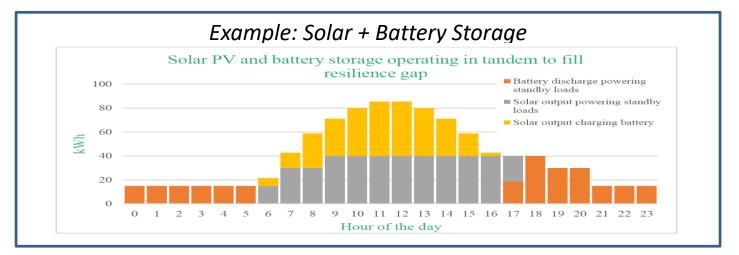
Score System

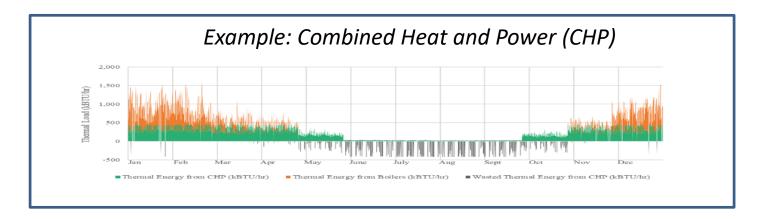
Technology Comparison


Clean Energy Technologies Assessed

These four technologies, either alone or in combination, were most commonly found to mitigate energy resilience gaps at facilities without extreme cost or modifications

	Energy Generation				Energy		
Technology	Solar PV	Solar Thermal	СНР	Fuel Cells	Electrical Storage	Thermal Storage	Microgrid
Grid-making	0	0	3	3	3	0	3
Dispatchability	0	3	2	1	3	3	3
Thermal characteristics	0	2	3	2	0	3	0
Fuel/storage capacity	0	2	2	2	3	3	0
Black-start req.	0	0	2	2	3	0	3
Space req., power density	1	2	2	2	2	1	3
Ease of integration	3	2	1	1	2	1	1
Structural impact	3	2	2	2	1	1	3
Efficiency	3	3	2	2	1	1	3
GHG emissions impact	3	3	2	2	1	2	2
Order-of-magnitude cost	2	1	2	1	1	2	1


Score System


Technology Comparison

Clean Energy Load Profiles and Meeting Resilience Needs

DDER

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

Massachusetts Department of Energy Resources

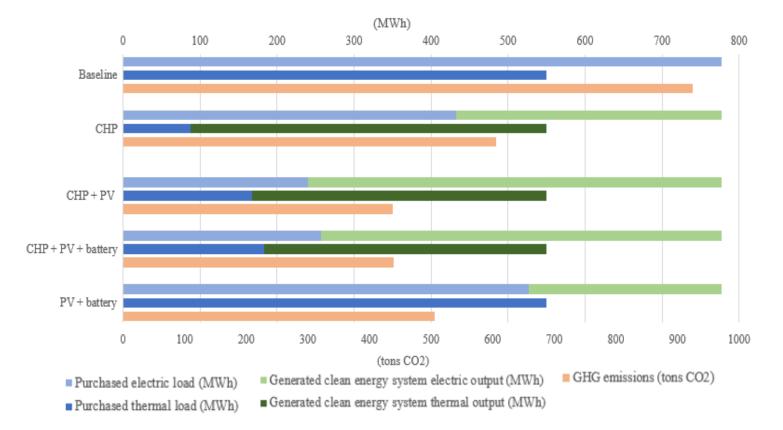
Financial Analysis

	Baseline	65 kW CHP	65 kW CHP w/ 200 kW PV inside	65 kW CHP w/ 200 kW PV and 120 kWh battery	200 kW solar PV and 302 kWh battery		
First costs (\$)							
Installed cost	N/A	(215,000)	(1,315,000)	(1,448,000)	(1,435,000)		
Mass Save CHP program incent.	N/A	27,100	16,900	15,800			
LBE incentive	N/A	-	330,000	354,000	390,400		
Net installed cost	N/A	(187,300)	(968,100)	(1,078,200)	(1,044,600)		
Annual costs (\$) Utility electric supply							
cost	(45,700)	(16,500)	(5,000)	(6,200)	(22,900		
Utility electric T&D cost	(25,900)	(9,400)	(2,900)	(3,500)	(13,000		
Utility electric demand cost	(11,000)	(4,400)	(1,800)	(100)	(4,800		
Utility thermal energy cost	(31,800)	(13,200)	(19,200)	(19,400)	(31,800		
Proposed clean energy system maintenance cost	N/A	(3,260)	(2,000)	(1,900)			
Proposed clean energy system fuel cost	N/A	(40,940)	(25,000)	(23,300)			
Annualized overhaul cost	N/A	(2,600)	(2,600)	(5,300)	(6,700		
SMART incentive	N/A	-	24,300	32,500	37,80		
AEC incentive	-	8,000	5,700	5,700			
Net annual cost	(114,400)	(82,300)	(28,500)	(21,500)	(41,400		
Net annual incentives	N/A	8,000	30,000	38,200	37,800		
Annual savings compared to baseline	N/A	32,100	85,900	92,900	73,00		
Summary							
Payback period (simple payback, years)	N/A	5.8	11.3	11.6	14.3		
30-yr NPV (\$)	N/A	375,000	527,000	544,000	316,00		

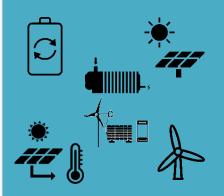
Does not include financial benefits from resilience or draft Clean Peak Standard

First Costs

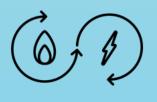
- Conservative cost estimates
- MassSave incentives
- LBE solar incentives


Annual Savings / Costs

- Energy cost savings
- Demand charge savings
- SMART Program incentives
- AECs / RECs
- Clean energy system O+M costs
- Fuel costs


Greenhouse Gas and Energy Impact

Confirmed overall GHG reductions for each option as well as reduction in purchased energy



Key Study Takeaways

Except for 2 gaps that were operational in nature, all identified critical resilience gaps could potentially be mitigated with the use of onsite clean energy technology

CHP is often the most cost-accessible clean energy option in the current market with or without a combination of battery storage and solar

Utility incentives have a pronounced impact on technology cost-effectiveness; future revenue programs, like the CPS, will likely change financial analyses further

Striking a Balance

Size system to maximize costeffectiveness and then determine resilience benefit that can be provided

Need to balance financial considerations with resilience needs

Maximize Resilience

Additional Observations

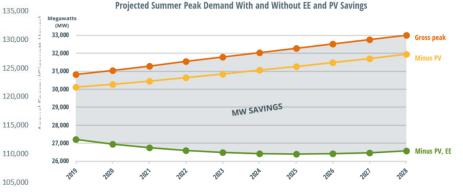
- Understanding how overall and individual energy systems work can be critical to the development of strategies that can complement business-as-usual operations and enhance resiliency
- The better the data, the more accurate and potentially viable the solution
- Project economics are moving targets given changing technology costs, changing incentives, etc.
- Successful strategies will vary depending on how objectives are prioritized; some resilience is better than none
- Resiliency may address a range of challenges and include multiple strategies

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

Massachusetts Department of Energy Resources

Resilience Discussion

Massachusetts Department of Energy Resources


SSU Green Commuting Options

Regional Grid Historical Peak Demand

30,000 140,000 25,000 Peak (Megawatts) 20,000 p p p р 5 D m m m р р 3 m m 3 p p m 3 р m р 5 3 15,000 3 р m 3 р m 5 р р р m m p p m m m m m 10,000 5,000 0 114.13.2017 M.21.2000 WS-14,2002 112 27,2005 112 62010 14.19.2013 14.22014 112 20,2015 NG. 12.2016 NG.28.2018** MC.9.2001 115.2.205 AUG 30,2004 we.3.2001 AUG-18-2019 14.2.2011 14.17.2012 NIG-2,2006 101.10.2008

Peak Demand vs. Annual Energy Use on New England Power System As of January 18, 2019

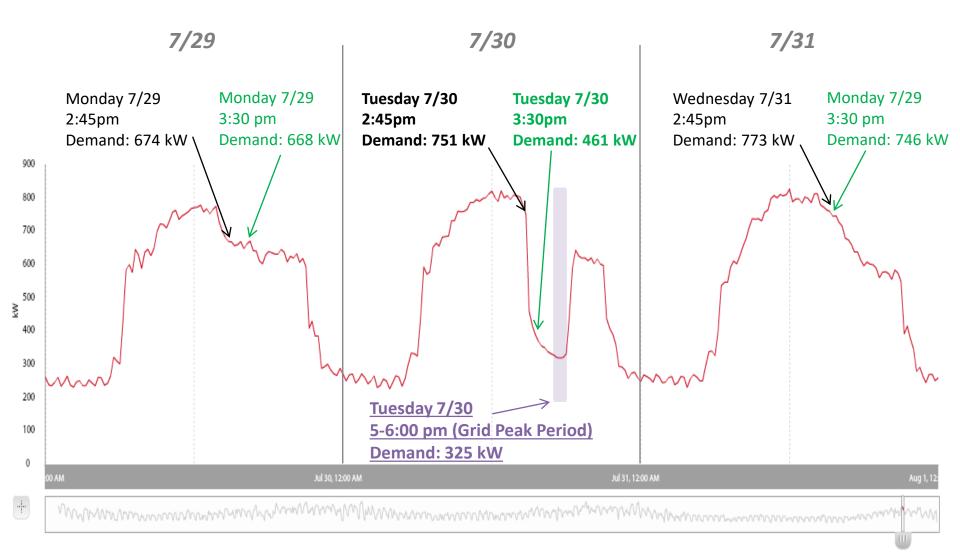
System Peak* ---- Annual Energy Use (Net Energy for Load)***

2019 Peak of 23.9 GW on July 30, 6 p.m.

•

Massachusetts Department of Energy Resources

2019 Peak Demand Response


 July 2019 was Boston's hottest July on record, and the city's hottest month since meteorological data was first recorded in 1872

Quick audience so Did your facility participate in peak demand reduction on July 30th?

Would you be interested in a webinar about demand reduction tactics next spring?

Source: WGBH

Peak Demand Reduction: Bristol Community College

Estimated \$19,000 savings in next year capacity tag charges (or \$1,600/month savings per monthly utility bills)

Peak Demand Reduction: McCormark Building

FY19 LBE Tracking Form

- Release date: September 20th
- Tracking form categories:
 - Contact Info
 - Square footage
 - Utility account verification
 - Electricity consumption
 - Building fuel consumption
 - Vehicle & other fuel consumption
 - EE projects
 - Installed Clean Power
 - Vehicle Fleet
 - EV Charging Stations
 - Recycling
 - Water Use
 - Sustainability
 - Landscaping

- New elements:
 - Utility account inventory
 - Energy storage section
 - Vehicle fleet inventory request
 - Landscaping tab reformatted
 - Additional autofill sections

NEW ELEMENTS OF FY19 TRACKING FORM The new tracking form for fiscal year 2019 has undergone some minor changes in an effort to make the tracking form more comprehensive and user-friendly. Below is a list of changes that have occurred to the form.					
General	Where appropriate, we have automated additional tabs to pre-populate with previously submitted data. As with last year's form, ALL pre-populated fields rely on the selection of your agency/campus from the "Contact Information" tab dropdown. If not selected, no data will pre-populate. Additionally, you will no longer be able to select your agency/campus on individual tabs.				
Utility Account Inventory	This new tab lists all electricity and natural gas utility accounts on file with LBE in one/both of our utility account databases. Accounts will autopopulate and we request that you either confirm or correct each account. If additional accounts are not listed, please provide these. If easier for your agency/campus, you may also submit a separate attachment with your submission that includes all active accounts.				
Installed Clean Power	A third section requesting information about energy storage systems at your agency/campus as been added to this tab. Any energy storage information that LBE currently has for your site(s) will autopopulate and we ask that you make any necessary corrections. If an existing energy storage system is not provided or there is a planned system in the near future, please provide as much information in the appropriate space provided.				
Vehicle Fleet	A question has been added to this tab inquiring into the availability of a detailed fleet inventory for your campus/agency. If available and your campus/agency is willing to share this inventory with LBE, we ask that you list vehicle details in the section provided or attach a separate document with your submission. If a detailed inventory is not available or you choose not to provide this information, please complete the rest of the tab as requested.				
Landscaping	The format of this tab as been The pollinator-related section of this tab has been reformatted to pre-populate with any existing information LBE has regarding current efforts at your agency/campus . Please review any pre-populated data and make corrections in the appropriate section. If LBE is missing efforts entirely, please provide as much information available in the section provided.				

• Due date: December 20th

VEH102 Update

- Statewide Contract VEH102 reopened for additional vendors in June; bids currently under review
 - Aims to cover a wide range of Advanced Transportation Technology (ATT) equipment, supplies and services including:

Electric vehicle supply equipment (EVSE) hardware, software, and installation

- Level 1, Level 2 and DCFC Hardware
- Inductive Charging Hardware
- Network Software and Reporting Services
- Billing Services
- Site Assessment
- Installation and/or Commissioning
- Servicing and maintenance

- EV chargers with clean energy (e.g. solar) and/or storage
- Portable EV chargers
- Software and services
 - Vehicle to X
 - Demand management
 - Fleet charging

Anti-idling technologies

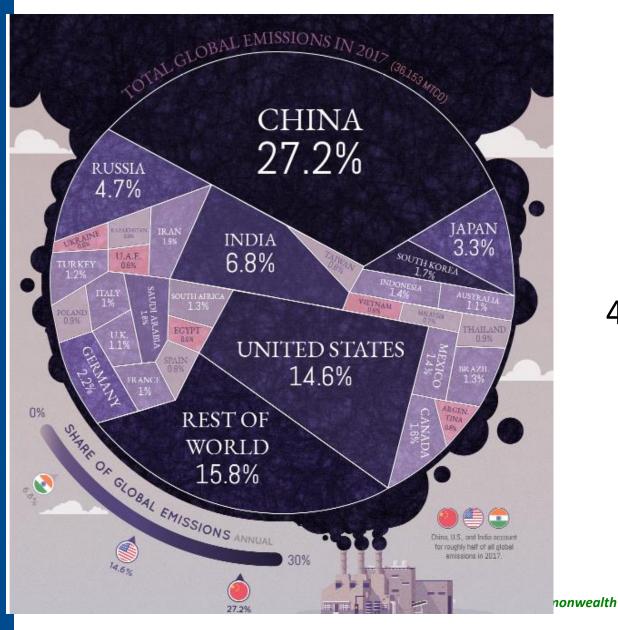
After-market conversion technologies (retrofits, upfits)

LBE Awards: December 2019

Recognizing the outstanding energy and environmental sustainability efforts of Commonwealth agencies, public colleges and universities, and municipalities.

Nomination Deadline: Tuesday, October 1st, 5pm

For more information and to submit a nomination, email: <u>Ryan.Kingston@mass.gov</u>


Or visit: <u>https://www.mass.gov/service-details/leading-by-example-awards</u>

News from Around the World (II): Global Emissions and Energy Shifts

Massachusetts Department of Energy Resources

Global Emissions Share by Country

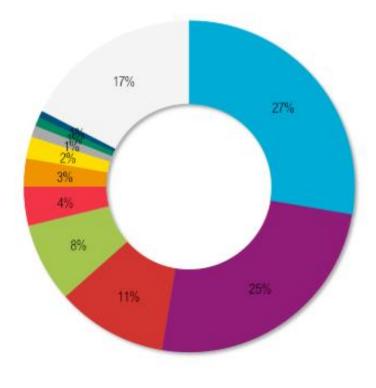
China, the US and India account for 48.6% of global emissions

Massachusetts Department of Energy Resources

Emissions per person

Qatar 49.2 2. Birth TODI/PERSON POPULATION	Bahrain 23.1 100/7458506 1.5m 9104047100	Sauc Ara 19.3 100/Pers 32.90 PORMATIO	bia m n	Kazak- hstan 16.1 tou/feesda 1.8m population	U.S. 16.2 1003/PERSON 327.2m FORMATION
Trinidad & Tobago 29.7 1.4 m too/mercan merchanon	Australia 16.9 24.6m tox./PERSON POPULATION Estonia		South Korea 12.1 tct://fe2850N 51.5m PDPULATION	Turkmenistan 12.6 5.8m	Singapore 11.3 5.6m
Kuwait 25.2 4.1m ICOL/PERSON POPULATION	15.1 1.3m тоб/Рексон Рокидатом Canada 15.6 36.7m тоб/Рексон Рокидон		Taiwan 11.5 ta./tence Russia	1 23.6m 1990.000	Germany 9.7 tods/person 82.7m population
United Arab Emirates 24.7 9.4 m TGD/PERSON POPULATION	Oman 14.1 4.6m TCD:/PERSON POPULATION		11.8 144.5m тол/гизов начисков Czech Republic 10.2 10.2 10.5m тол/гизов начисков		Mongolia 9.9 ton:/person 3.1m population

Data only for locations with a population over 1 million


- The US is the 8th highest emitter of GHGs on a per capita basis at 16.2 tons pp
- China emits fewer than 7 tons pp
- India emits fewer than 2 tons pp

Massachusetts Department of Energy Resources

Cumulative Emissions

Cumulative CO, Emissions 1850–2011 (% of World Total)

- United States
- European Union (28)
- China
- Russian Federation
- Japan
- India
- Canada
- Mexico
- Brazil
- Indonesia
- Rest of the World

Cumulative emissions data help to assign overall responsibility for addressing climate change

http://bit.ly/11SMpjA

WORLD RESOURCES INSTITUTE

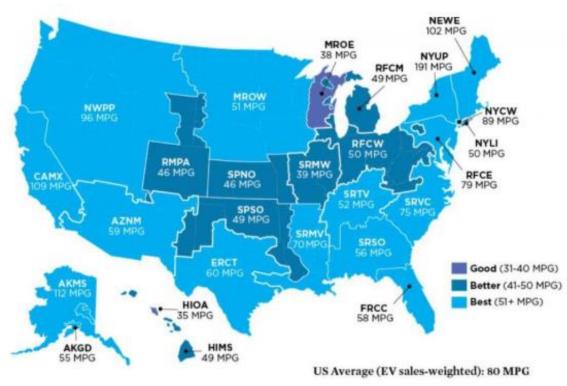
Massachusetts Department of Energy Resources

Lightbulb Efficiency Standard Rollback

- Trump administration proposed roll-backs to energy efficiency standards that were to take effect in 2020
 - 1. Eliminate new energy efficiency requirements for standard pear-shaped bulbs
 - 2. Eliminate rules on 'non-traditional' types of bulbs, such as three-way bulbs and candle-shaped bulbs used in chandeliers
 - Industry claims that by the end of 2019, 84% of "general purpose" light sockets will be filled by LED and compact fluorescent bulbs, regardless of regulation

Eliminating inefficient bulbs nationwide would save enough energy to shut down at least 25 large power plants

Renewables on the Rise


- Jan-June, 2019, Scotland's wind turbines generated 10 million mWh of electricity, enough to power a second Scotland!
- Germany to close all 84 coal plants over the next 19 years. Renewables to provide 65-80% of power by 2040.
- In July, Berkley became first city in US to ban natural gas in new buildings
- In 2018, MA became 5th state to go a year without burning coal

Carbon Emissions from EVs

The average EV in the US has the same GHG emissions as a car getting 80 mpg

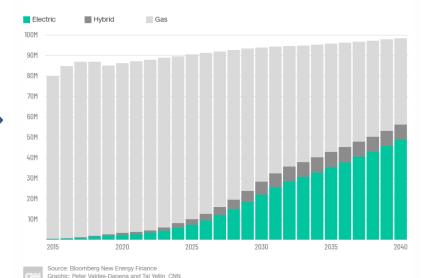
MA: An EV produces 1.2 metric tons of emissions per year. Traditional vehicles produce 4.9 metric tons.

Average miles per gallon equivalent of electric vehicles, 2018 UNION OF CONCERNED SCIENTISTS

EVs on the Rise

- Cadillac Escalade EV SUV touting 400mile range
- <u>Electric Ford F150 pulls 1M+ lbs of train</u>
- WiTricity: Developing systems that deliver power wirelessly to car batteries using magnetic resonance
- EV sales in MA rose 94% from 2017 to 2018, reaching 22,573 sold by Jan 2019

Source: WiTricity


EV Sales Projections

"Today, electric car batteries cost about \$176 per kilowatt-hour, but that figure will drop to just \$87 per kWh by 2025." (Source: CNN)

"Oil will have to fall to \$9-\$10 a barrel in the long-term in order for gasoline cars to remain competitive with clean-powered electric vehicles." (Source: <u>Bloomberg</u>)

By 2040, electric cars could outsell gasoline-powered cars

Over the next two decades, sales of electric cars may begin to outstrip global sales of internal combustion cars.

Cape Air: Flying Without Fossil Fuels First airline in the world to order commercial airplanes that run on electric batteries; could be as early as 2023

- Lithium ion batteries will provide instant power to the rear-facing propellers to take off on shorter runways
- Will be able to fly 50% faster and farther then current fleet, and will be quieter
- Expect to spend 40% less on direct operating costs

Next LBE Council Meeting

Save the Date! Scheduled for November 12th 10:00 am-12:00 pm Location: TBD Should we change the date due to Veterans Day?

> Potential Theme: Strategic Electrification

OCreators Syndicate.

Massachusetts Department of Energy Resources