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Executive Summary 
 

 

 

 

 

  

The number of fatalities due to work zone crashes has increased by 42% from 2013 to 2019. 
Also, approximately 24% of non-recurring congestion is attributed to work zones. Given the 
aging infrastructure in the United States and the recent $1.2 trillion infrastructure bill, it is 
anticipated that there will be more work zones in the coming years. How to improve work 
zone traffic safety and operations will become an increasingly important issue. 

Many strategies can potentially affect work zone safety and traffic operations, including taper 
length and transverse rumble strips. The performance of these strategies is often evaluated 
based on traffic throughput, speed, and so forth, measured at selected locations. Such metrics 
do not provide sufficient detail regarding individual drivers’ speed choice and lane-changing 
behavior over the course of the entire work zone, which are critical for understanding work 
zone safety and traffic operations under different traffic, control, and layout conditions. 

This research aims to (1) develop artificial intelligence (AI) methods to extract vehicle 
trajectories from thermal videos; (2) utilize the trajectories to analyze driver behavior, 
particularly lane-changing behavior under different traffic conditions; (3) use the trajectories 
to quantify the effects of various merging taper lengths and rumble strip configurations on 
vehicle speed and lane-changing behavior; and (4) identify safety hazards and opportunities 
to improve work zone safety and operations based on the trajectory analysis results. 

Specifically, this research utilizes ultrahigh-definition radar and thermal camera sensors to 
capture detailed driver behavior data. The radar sensors provide individual vehicle speed 
profiles along the segment prior to a work zone, allowing us to study how drivers adjust 
speeds in response to various control strategies. From the thermal camera videos, last-minute 
lane-changing events at the beginning of lane closure taper are extracted, which are further 
correlated with work zone control settings.  

Two taper lengths, transverse rumble strips, portable changeable message sign, and flashing 
speed limit signs are field evaluated in this study. Both descriptive and regression analyses 
have been conducted. The results do not show consistent or statistically significant impacts of 
transverse rumble strips and taper length on approaching speed and vehicle merges. 
However, both flashing speed limit signs and portable changeable message signs can 
significantly encourage early merging and reduce approaching speed. Additionally, drivers 
tend to drive slower and merge later at nighttime than in daytime work zones. 
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1.0 Introduction 

The number of fatalities due to work zone crashes has increased by 42% from 2013 to 2019 
[1 2

 

 

 

 

 

 

 

 

]. Also, approximately 24% of non-recurring congestion is attributed to work zones [ ]. 
Many control and design strategies can have significant impacts on work zone traffic 
operations, including taper length and rumble strips. The performance of these strategies is 
often evaluated based on traffic throughput, time headway, and speed (or travel time) 
measured at multiple locations or over a segment. Such metrics cannot fully reflect work 
zone safety and mobility performance. They do not provide sufficient details regarding 
individual drivers’ speed choice and lane-changing behavior over the course of the entire 
work zone, which are critical for understanding the fundamental causes of work zone crashes 
under different traffic, control, and layout conditions. 

Given the aging infrastructure in the United States and the recent $1.2 trillion infrastructure 
bill, it is anticipated that there will be more work zones in the next few years. How to 
improve work zone traffic safety and operations will become an increasingly important issue.  

This study aims to do the following: 

• Develop advanced computer vision technologies to extract trajectories of vehicles 
approaching nighttime work zones. 

• Use the detailed continuous trajectory results to analyze driver behavior. Specifically, 
we would like to study drivers’ lane-changing behaviors when approaching the lane 
closure taper under different traffic conditions. 

• Use the detailed trajectory data to quantify the effects of various work zone control 
strategies and design features, including lane closure taper length (referred to as taper 
length for simplicity in the rest of this report) and transverse rumble strips (referred to 
as rumble strips in the rest of this report), on vehicle speed and lane-changing 
behavior. 

• Use the results to identify safety hazards and opportunities to improve work zone 
safety and operations. 

This research will demonstrate how work zone traffic operations can be evaluated by 
utilizing detailed vehicle trajectory data. It targets four popular control strategies affecting 
work zone mobility and safety: taper length, rumble strips, flashing speed limit sign, and 
portable changeable message sign. The findings can be used by MassDOT to improve work 
zone layout design, develop guidance for installing rumble strips, and enhance existing smart 
work zone dynamic merge control.  

In addition, the developed computer vision approach is a general method for trajectory 
extraction, which has broad applications. For example, it can be applied to analyze and 
improve traffic operations at on-ramps and entrances of managed lane facilities.  
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2.0 Data Collection 

This research collected data from two highway work zones in Massachusetts. Also, data 
collected through another research project funded by the New England Transportation 
Consortium (NETC) was provided to the team and analyzed in this research. Our data 
collection was conducted using both ground sensors and sensors mounted on drones. Ground 
sensors included radar and thermal cameras, and the drone-mounted sensors consisted of 
RGB and thermal cameras. The rest of this section presents our data collection efforts in 
Massachusetts and briefly describes the NETC dataset collected in Campton, NH. 

2.1 Site Selection and Control Strategies 

Working with the MassDOT project champions, the team identified two work zones. The 
first work zone was located on I-93S in Medford, MA, and the second one was on I-95N in 
Danvers, MA. The exact locations are illustrated in Figure 2.1. The detailed site plans for 
each work zone are provided in Figure 2.2 and Figure 2.3. 
 

 

 
Figure 2.1. Work zone locations 
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Figure 2.2. Work zone in Danvers, MA 
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Figure 2.3. Work zone in Medford, MA 
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As shown in Figure 2.2 and Figure 2.3, both work zones were on a highway with four lanes 
in each direction. Also, the work zone lane closure taper was right next to an exit ramp. Both 
work zones had the right-most lane closed. A simplified view of these two work zones is 
illustrated in Figure 2.4, in which the circled dashed lines represent the position of the lane 
closure taper. Table 2.2 shows the coordinates of sensor locations and the start and end dates 
of those work zones. Location M1 in Figure 2.4 is not listed in Table 2.2, since data from this 
location was not utilized in the analysis.  
 

 

 

 

Figure 2.4. Medford and Danvers data collection sites 

Table 2.1. General site information and sensor locations 

Coordinate Location Name (see 
definition in Figure 2.4) Start date End date 

42.400244, −71.094581 M1 2023-05-08 2023-05-23 
42.404189, −71.098262 M2 2023-05-08 2023-05-23 
42.402282, −71.096515 M3 2023-05-08 2023-05-23 
42.560039, −70.973476 D1 2023-05-31 2023-06-06 
42.561895, −70.972527 D2 2023-05-31 2023-06-06 

Transverse rumble strips and two different lane closure taper lengths were considered at the 
Medford and Danvers sites. The rumble strips were deployed following the requirements in 
the MassDOT Work Zone Safety Manual [3]. This manual also specifies the standard lane 
closure taper length (L), which is calculated as L=WS for highways with a posted speed limit 
of ≥45 mph. W represents lane width in ft, and S is the posted speed limit measured in mph. 
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Therefore, the standard (normal) taper length for both Danvers and Medford was set to 780 ft 
(65 mph and 12 ft lane width). This study also collected speed data before the work zone 
started. The measured 85th percentile speed at the Danvers site was 71 mph. Given the 
discrepancy between the posted speed limit and the measured 85th percentile speed, this 
study also considered a longer taper length of 900 ft. Therefore, the following control 
strategy combinations were considered: 
 

 

 

• No rumble strips and normal taper length (780 ft), 
• Rumble strips and normal taper length (780 ft), and 
• Rumble strips and longer taper length (900 ft). 

2.2 Radar and Ground Camera Data 
Collection 

Ultrahigh-definition (UHD) radar and thermal cameras were adopted for traffic data 
collection. The UHD radar sensor utilizes forward-firing technology, which is different from 
the widely used side-firing radar sensors. Although the side-firing radar sensors can cover 
multiple lanes and both travel directions, they only provide point detection results such as 
spot speed. The UHD radar used in this study can detect and track individual vehicles over a 
road segment of up to 1,000 feet. If mounted above the traffic, the radar sensor theoretically 
could directly differentiate vehicle trajectories by lanes to study lane-changing behavior. 
However, we were only able to mount the radar sensor on a trailer deployed on the roadside. 
Therefore, an algorithm was developed to separate data points into different lanes. The 
detailed speed data generated by the UHD radar allows us to study how drivers adjust their 
speed when approaching a highway work zone. 

The thermal cameras were also mounted on roadside trailers. The resolution of the cameras is 
640 × 480 pixels. Although higher-resolution thermal cameras are more desirable, they are 
much more expensive. The thermal cameras effectively address the challenges of nighttime 
data collection due to poor lighting and provide important data for understanding driver 
behavior during the night at highway work zones. Several key insights were learned 
throughout data collection for this study: 

• The radar sensor should be mounted between 20 and 26 ft above the pavement. 
• Ideally, both radar and camera sensors should be mounted on a stable structure (e.g., a 

sign gantry) directly above the traffic, although achieving this in many cases is 
difficult. 

• Mounting radar and camera on the roadside made it challenging to separate 
trajectories by lane. To address this issue, an algorithm was developed to estimate the 
average speeds of each lane based on the radar data.  

• The trailer’s vibrations affected the quality of the collected video data. Algorithms 
were developed to correct the changes in the camera’s field of view.  

• The radar unit accurately detected and tracked small-sized vehicles. For heavy trucks, 
it sometimes generated phantom targets. This was likely caused by the radar’s 
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mounting position. Mounting the radar directly above the traffic may well address 
this problem. These phantom targets were filtered out during our data processing. 

 

 

 

To minimize the impact on traffic, work zones at the Medford and Danvers sites were mostly 
set up around 9 p.m. and removed before 5 a.m. Table 2.2 and Table 2.3 show the start and 
end times of temporary work zones at these two sites on different dates in summer 2023. 
Data from certain days were excluded due to major changes in traffic patterns, such as the 
closure of adjacent exit ramps. Data were gathered during the night at both the Medford and 
Danvers sites. Although there were streetlights at the Medford site, the overall light coverage 
of the road segments was poor, as seen in drone video footage in Figure 3.12 and Figure 
8.43. 

Table 2.2. Medford work zone schedule 

Start date, time End date, time Selected? Traffic Control 
05/08/2023, 22:45 05/09/2023, 04:15 No Rumble Strips + Normal Taper 
05/09/2023, 21:00 05/10/2023, 03:00 Yes Rumble Strips + Normal Taper 
05/21/2023, 21:15 05/22/2023, 04:00 Yes Rumble Strips + Normal Taper 

05/14/2023, 22:30 05/15/2023, 03:45 Yes No rumble strips + Normal 
Taper 

05/15/2023, 20:15 05/16/2023, 04:15 Yes No rumble strips + Normal 
Taper 

05/17/2023, 21:30 05/18/2023, 03:45 No No rumble strips + Normal 
Taper 

05/22/2023, 21:15 05/23/2023, 03:45 Yes Rumble strips + Longer Taper 
05/23/2023, 23:45 05/24/2023, 03:30 No Rumble strips + Longer Taper 
05/24/2023, 22:45 05/25/2023, 03:45 Yes Rumble strips + Longer Taper 

Table 2.3. Danvers work zone schedule 

Start date, time End date, time Selected? Traffic Control 
05/31/2023, 20:15 06/01/2023, 04:30 Yes Rumble Strips + Normal Taper 
06/01/2023, 20:15 06/02/2023, 04:00 Yes No rumble Strips + Normal Taper 
06/05/2023, 20:15 06/06/2023, 05:00 Yes Rumble strips + Longer Taper 
06/06/2023, 20:30 06/07/2023, 03:45 No Rumble strips + Longer Taper 

 

 

2.2.1 Ground Camera Data 

Video data was collected using FLIR TrafiSense AI-632 thermal cameras, with the recorded 
data being stored on site. These cameras were mounted on roadside trailers and a boom lift, 
as shown in Figure 2.5. The average power consumption of the cameras is rated at 10.5W, 
with a peak of 15W. 
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Figure 2.5. Thermal cameras and radar systems at Medford 

 

 

Table 2.4. Thermal video recording sessions at Medford 

Camera Site Phase Start Date, Time End Date, Time Duration 
(hours) 

Size 
(GB) 

M1 Downstream 1 05/09/2023, 18:57 05/14/2023, 16:00 117 105.2 
M1 Downstream 2 05/14/2023, 22:37 05/25/2023, 22:40 252 226.8 
M2 Upstream 1 05/09/2023, 15:57 05/14/2023, 14:20 119 106.2 
M2 Upstream 2 05/14/2023, 22:00 05/25/2023, 09:22 203 181.7 
M2 Downstream 1 05/09/2023, 14:00 05/14/2023, 13:20 119 106.5 
M2 Downstream 2 05/14/2023, 20:57 05/25/2023, 08:23 204 181.6 
M3 Upstream 1 05/08/2023, 22:45 05/14/2023, 15:12 136 123.5 
M3 Upstream 2 05/14/2023, 22:24 05/25/2023, 08:45 250 226.5 
M3 Downstream 1 05/08/2023, 22:45 05/14/2023, 14:44 136 122.2 
M3 Downstream 2 05/14/2023, 22:24 05/25/2023, 08:46 250 224.8 
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In Medford, the camera data collection started on May 9 and ended on May 25, using five 
cameras. Two cameras were located at Location M2 (Figure 2.4), one facing upstream 
(North) and one facing downstream (South). Similarly, two cameras were deployed at 
Location M3. Location M1 was further downstream of the lane closure taper. Due to data 
logger storage limitations, data collection was conducted in two phases. The retrieval of 
recorded videos in Phase I on May 14 was needed to accommodate the subsequent recording 
Phase II.  
 

 

 

 

  

At the Danvers site, videos were recorded continuously from May 31 to June 7, 2023, 
employing four cameras without the need for interim data retrieval. Detailed accounts of the 
camera setups, recording periods, and specific configurations employed at the Danvers site 
are given in Table 2.5. 

Table 2.5. Overview of thermal video recording sessions at the Danvers site 

Camera Site Start Date, Time End Date, Time Duration 
(hours) Size (GB) 

D1 Downstream 05/31/2023, 14:45 06/07/2023, 12:58 166 149.2 
D1 Upstream 05/31/2023, 13:47 06/07/2023, 11:59 166 146.4 
D2 Downstream 05/31/2023, 16:37 06/07/2023, 12:10 165 147.1 
D2 Upstream 05/31/2023, 16:44 06/07/2023, 12:11 164 147.2 

2.2.2 Radar Data 

In Medford and Danvers, we utilized two radars at each site. Table 2.6 and Table 2.7 show 
the start and end time stamps of our radar installation.  

Table 2.6. Overview of radar recording sessions at the Danvers site 

Radar Site Start Date, Time End Date, Time Duration 
(hours) Size (MB) 

D1 Downstream 05/31/2023, 14:40 06/01/2023, 19:54 29.2 107.90 
06/01/2023, 19:54 06/05/2023, 17:44 93.8 268.59 
06/05/2023, 18:32 06/07/2023, 12:57 42.4 121.27 

D2 Downstream 05/31/2023, 16:49 06/01/2023, 19:57 27.1 113.97 
06/01/2023, 19:57 06/05/2023, 17:56 94.0 333.25 
06/05/2023, 17:56 06/07/2023, 12:12 42.3 148.87 
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Table 2.7. Overview of radar recording sessions at the Medford site 

Radar Site Start Date, Time End Date, Time Duration 
(hours) Size (MB) 

M2 Upstream 05/09/2023, 20:54 05/11/2023, 20:30 47.6 122.38 
05/11/2023, 20:58 05/14/2023, 16:51 67.9 184.25 
05/14/2023, 21:41 05/15/2023, 14:14 16.6 36.77 
05/15/2023, 22:46 05/16/2023, 10:40 11.9 15.72 
05/17/2023, 20:25 05/18/2023, 12:06 15.7 35.22 
05/21/2023, 20:24 05/22/2023, 20:05 23.7 65.99 
05/22/2023, 20:27 05/23/2023, 20:17 23.8 63.60 
05/24/2023, 20:31 05/25/2023, 05:33 9.0 29.08 

M2 Downstream 05/09/2023, 20:53 05/10/2023, 06:27 9.6 36.50 
05/11/2023, 21:05 05/12/2023, 05:47 8.7 36.27 
05/14/2023, 21:39 05/15/2023, 06:24 8.8 31.29 
05/15/2023, 22:46 05/16/2023, 06:22 7.6 21.39 
05/17/2023, 20:25 05/18/2023, 06:35 10.2 43.77 
05/21/2023, 20:25 05/22/2023, 06:32 10.1 44.04 
05/22/2023, 20:27 05/23/2023, 06:23 9.9 40.05 
05/24/2023, 20:30 05/25/2023, 05:51 9.3 40.32 

 

 

2.3 Drone Videos 

Table 2.8. Aggregated drone video data recorded at Medford 

Date Flight 
Location 

Start 
Time 

Duration 
(min) Video Type 

No. of 
Video 
Clips 

Size (GB) 

05/08/2023 North 21:20 84 RGB 14 38.7 
Central 21:26 9 RGB 1 4.1 
South 21:35 107 RGB 14 48.9 

05/09/2023 North 21:06 98 RGB 15 44.7 
South 21:02 121 RGB 15 54.3 

05/15/2023 North 21:20 81 RGB + 
Thermal 5 + 5 11.1 

South 21:21 99 RGB 12 44.7 
05/23/2023 North 21:23 90 RGB + 

Thermal 5 + 5 12.3 

South 21:25 100 RGB + 
Thermal 8 + 8 28 
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This research also collected videos using drones. Both RGB and thermal cameras were 
experimented with during the study. Drone cameras provided a much better view than ground 
cameras and minimized the impacts of occlusion. However, providing continuous monitoring 
covering multiple days is challenging. Table 2.8 and Table 2.9 summarize our drone video 
data collection efforts. 
 

 

 

Table 2.9. Aggregated drone video data recorded at Danvers 

Date Flight  
Location 

Start 
Time 

Durati
on 
(min) 

Video Type 
No. of 
Video 
Clips 

Uncompressed 
Size (GB) 

05/31/2023 North 20:29 102 RGB + 
Thermal 8 + 8 28.7 

South 20:23 85 RGB + 
Thermal 5 + 5 11.7 

06/01/2023 North 20:25 103 Thermal 4 4.8 

South 20:19 87 RGB + 
Thermal 5 + 5 12.0 

06/06/2023 North 19:03 40 Thermal 2 1.86 

— 21:06 41 RGB + 
Thermal 4 + 4 11.6 

South 20:24 91 RGB + 
Thermal 6 + 6 12.6 

2.4 Additional Data from Campton, NH 

The team also obtained camera and radar data from another work zone in Campton, NH. This 
Campton dataset was collected through a study [4] funded by the NETC. At the Campton 
site, only radar and ground thermal cameras were utilized. This site was on the southbound of 
Interstate Highway 93 (I-93). The southbound direction had two lanes, and the left lane was 
closed from August 17 to August 31 in 2023.  
 
The left lane closure taper started at mile marker 86.2. Two flashing speed limit signs (FSLS) 
were located at mile marker 86.4 on the two sides of the highway. The right-side FSLS 
coordinate was 43.845542, −71.646369, and the left-side FSLS coordinate was 43.845486, 
−71.646117. A portable changeable message sign (PCMS) was located in the median cross-
over at mile marker 88.2, and the coordinate was 43.866556, −71.662878. The PCMS was 
two miles upstream of where the left lane closure taper started. The Campton site is 
illustrated in Figure 2.6. More details regarding this work zone can be found in the NETC 
study [4]. 
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Figure 2.6. Campton data collection site 
 

The FSLS had three different states as listed in Table 2.10, which are defined as follows: 

• UP/ON: The sign was up, and its beacons were on. 
• UP/OFF: The sign was up but the beacons were turned off. 
• DOWN/OFF: The sign was taken down, and its beacons were also turned off.  

Table 2.10. Campton traffic control schedule 

Date Flashing Speed Limit Signs (FSLS) PCMS Message 

UP/ON UP/OFF DOWN/OFF LEFT 
 LANE 

 CLOSED/ 
MM 86.4 
 MERGE 
 EARLY 

POSSIBLE 
 SLOW OR 
 STOPPED/ 
TRAFFIC 
 AHEAD 

 BE AWARE 
8/17/2023 06:00 13:30 NO ALL DAY NO 
8/18/2023 06:00 NO 09:00 UNTIL 12:30 12:30 
8/19/2023 NO NO ALL DAY NO ALL DAY 
8/20/2023 NO NO ALL DAY NO ALL DAY 
8/21/2023 06:00 13:30 UNTIL 06:00 13:00 UNTIL 13:00 
8/22/2023 06:00 13:30 NO ALL DAY NO 
8/23/2023 06:00 13:30 NO ALL DAY NO 
8/24/2023 06:00 13:30 NO ALL DAY NO 
8/25/2023 06:00 NO 13:00 UNTIL 15:00 15:00 
8/26/2023 NO NO ALL DAY NO ALL DAY 
8/27/2023 NO NO ALL DAY NO ALL DAY 
8/28/2023 06:00 14:00 UNTIL 06:00 NO ALL DAY 
8/29/2023 06:00 13:00 NO NO ALL DAY 
8/30/2023 06:00 13:00 NO NO ALL DAY 
8/31/2023 06:00 17:30 NO NO ALL DAY 

 
For the PCMS, there were two states represented by a variable ME. ME = 0 means each 
PCMS was displaying “POSSIBLE SLOW OR STOPPED” and “TRAFFIC AHEAD BE 
AWARE” alternately. When ME = 1, it means each PCMS was displaying “LEFT LANE 
CLOSED” and “MM 86.4 MERGE EARLY” alternately. At the Campton site, radar data 
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was collected from August 17 to August 23, 2023, while thermal video data was collected 
from August 17 to August 31, 2023. The radar sensor stopped working on August 23, 2023, 
probably due to a power supply issue. 
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3.0 Video Data Analysis 

This section focuses on the methodologies and technologies applied to detect and track 
vehicles in thermal videos, starting with dataset curation and annotation, progressing to model 
training and validation. It details algorithm development for vehicle trajectory extraction, lane 
usage assessment, and detection of vehicle proximity to work zone lane closure tapers. 
Additionally, it discusses the analysis of drone video data, highlighting the advantages and 
disadvantages of using drone footage and how it can complement traditional data collection 
methods. 

3.1 Introduction: Vehicle Detection in 
Thermal Videos 

In contemporary transportation engineering and safety analysis, the significance of accurate 
vehicle detection cannot be overstated. The advent of deep learning has revolutionized the field 
of object detection across diverse domains. Among its numerous applications, vehicle detection 
and tracking has emerged as a critical area, particularly in the context of enhancing road safety 
and traffic management. This technology’s ability to automate the monitoring and analysis of 
vehicle behavior presents a significant opportunity to enhance our understanding of driver 
behavior under different traffic management strategies. 
 
One significant advantage of deep learning in vehicle detection is its ability to learn and 
recognize object features effectively, even without color information. This attribute is 
particularly beneficial when applied in conjunction with thermal imaging. Unlike traditional 
optical cameras, thermal cameras capture heat emitted by objects, making them highly 
effective under poor lighting conditions where optical cameras often struggle. This capability 
ensures that vehicle detection systems remain operational across various times of the day. Also, 
unlike conventional video feeds that can capture and potentially compromise personal privacy 
through identifiable features or license plates, thermal imagery abstracts these details into 
anonymous heat maps. This abstraction preserves individual privacy and allows for continuous 
monitoring of traffic flow and vehicle behavior without ethical concerns. 
 
The integration of recent deep learning models such as YOLOv8 (You Only Look Once 
version 8) [5] and ByteTrack [6] is particularly effective for vehicle tracking in work zones, 
even in challenging scenarios involving occlusion. YOLOv8 represents the latest advancement 
in a series of robust, real-time object detection systems, which have been systematically 
enhanced to deliver superior accuracy and speed. ByteTrack complements YOLOv8’s 
capabilities by offering an efficient solution for tracking vehicles through instances of partial or 
complete occlusion, enabling a detailed analysis of their trajectories, speeds, and lane-changing 
behaviors over time. Together, these technologies establish a comprehensive framework for the 
analysis of vehicle behavior in work zones, utilizing thermal videos to provide critical data 
without the constraints of lighting conditions or privacy issues. 
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This section discusses the video analytics facilitated by deep learning, with a focus on 
employing thermal imaging for vehicle detection and tracking within work zones. Our work is 
structured around several key methodologies that span the entire process from initial data 
collection to final analysis. We begin with the curation and annotation of a comprehensive 
dataset derived from thermal videos, ensuring a robust foundation for model training. 
Following this, we detail the process of model training, emphasizing the application of 
YOLOv8 and ByteTrack algorithms for accurate vehicle detection and tracking. The 
subsequent sections describe the specifics of algorithm development tailored for analyzing 
vehicle trajectories from thermal footage. We also outline the methods employed for validating 
the performance of our deep learning models, using precise metrics to assess their effectiveness 
in real-world scenarios. Through this systematic approach, we aim to offer a thorough 
understanding of vehicle dynamics in work zones. 

3.2 Related Datasets 

The development and refinement of algorithms for vehicle detection in thermal videos heavily 
relies on comprehensive and diverse datasets. A relatively popular dataset is the Boston 
University Thermal Infrared Video Benchmark [7]. This dataset serves as a critical 
benchmark for researchers in computer vision and machine learning, facilitating the 
advancement of visual analysis tasks in thermal infrared videos. The C3I dataset [8] is a 
comprehensive collection of thermal images that are instrumental in developing and testing 
algorithms for automotive applications, which covers a variety of vehicle types and scenarios. 
Similarly, the Teledyne FLIR Thermal Dataset, provided by a leading manufacturer of 
thermal imaging cameras, has high-quality thermal and RGB image pairs. The Oregon State 
University Thermal Pedestrian Dataset [9]. is a collection of thermal sequences. It includes 
both thermal and visible light image data captured from the rooftop of an 8-story building, 
providing aerial perspectives that are invaluable for developing algorithms capable of 
interpreting and analyzing scenes from elevated viewpoints. 
 

 

Deep learning has emerged as a transformative force in vehicle detection, particularly in the 
domain of connected and autonomous vehicles (CAV), automated traffic analysis, and driver 
behavior modeling. This technology has shown outstanding capability in identifying and 
tracking vehicles from both ground-level cameras and drones [10,11,12,13], offering a level 
of precision and adaptability previously unattainable with traditional computer vision 
techniques. Despite the advancements in this domain, there remain significant gaps in 
research, particularly concerning the specific application of these technologies to work zone 
safety and operations. Most existing studies and datasets do not focus on the unique 
dynamics and challenges presented by highway work zones. Moreover, the datasets available 
predominantly comprise either general traffic scenarios or controlled environments, lacking 
the specificity required to address the complexities of work zones and traffic analytics. 

This study aims to fill these gaps by collecting and analyzing thermal video data from cameras 
strategically placed next to highway work zones. This approach is novel in that no existing 
dataset specifically caters to the thermal imaging of vehicles in such a context. By focusing on 
thermal video data captured by fixed cameras, we provide unique insight into vehicle dynamics, 
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lane-changing behaviors, and speed variations near work zones. Our methodology is designed 
to be highly adaptable, allowing it to be replicated in other work zones or similar traffic 
environments to enhance traffic safety and operational efficiency. 

3.3 Dataset Curation and Annotation 

The foundation of any successful deep learning application lies in the quality and diversity of 
its training dataset. Recognizing this, a significant portion of our effort was dedicated to the 
curation and annotation of a comprehensive thermal vehicle dataset, tailored to the unique 
environmental and operational variables present in highway work zones. This dataset is 
critical not only for training our models but also for ensuring their applicability and 
effectiveness in real-world scenarios. 
 

 

  

The dataset was compiled from thermal video footage recorded at locations in Medford and 
Danvers. From these videos, frames were extracted to create an image dataset. We ensure 
that the dataset includes a broad spectrum of vehicles, positions, and environmental 
conditions. Figure 3.1 shows some sample frames captured in Danvers and Medford. CVAT 
(Computer Vision Annotation Tool) is an open-source, web-based tool designed to facilitate 
the annotation of images and videos for training computer vision models, offering features 
like object detection, classification, and segmentation. CVAT streamlines the annotation 
process with its user-friendly interface and efficient task distribution capabilities among 
several annotators, significantly enhancing the management and annotation of large datasets 
for computer vision projects. Figure 3.2 shows a screenshot of the tool. 

Vehicles within the dataset were categorized into three distinct classes based on their size and 
type: small, medium, and large. Small vehicles encompass sedans, motorbikes, SUVs, pickup 
trucks, and generally smaller cars. Medium vehicles include single-piece trucks such as 
garbage trucks, concrete mixer trucks, construction vehicles, and buses. Large vehicles are 
primarily comprised of tractor-trailers. This categorization not only reflects the diversity of 
vehicles encountered in highway work zones but also facilitates the nuanced analysis and 
understanding of different vehicle dynamics and their implications on traffic flow and safety. 
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Figure 3.1. Sample frames recorded in Medford and Danvers 

Figure 3.2. CVAT annotation tool 
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The final dataset comprised 2,728 images, representing over 11,000 instances of vehicles. 
This significant instance count shows the dataset’s diversity, with a wide range of vehicle 
types, sizes, and thermal signatures represented. Such diversity is critical for deep learning 
applications, ensuring that the trained models can accurately recognize and track vehicles 
under various conditions and in different traffic scenarios. To further enrich our dataset and 
enhance the robustness of our models, data augmentation was performed by creating copies 
of frames that contained only medium and large vehicle instances. This comparison is shown 
in Figure 3.3. These copies were subjected to minimal random rotation, along with small 
random cropping and translation, to simulate a broader range of angles and positions, thereby 
increasing the diversity and complexity of our training data without compromising the 
integrity of vehicle instances. 
 

 

 

 

 

Figure 3.3. Instances before and after data augmentation 

In addition to the vehicle dataset, a separate dataset was created for the segmentation of the 
roadway. This includes classifications for the highway, exit lanes, shoulders, gore areas, and 
channelizer drums.  

By training our models on this rich dataset, we ensure that they can accurately detect and 
track vehicles across a spectrum of real-world conditions, from varying weather conditions to 
diverse traffic densities. Moreover, the inclusion of roadway segmentation data allows for a 
more nuanced analysis of vehicle trajectories, enabling us to understand not just how vehicles 
move, but how their movements relate to the surrounding infrastructure (e.g., lane boundary, 
channelizer drums). This comprehensive approach is critical for identifying potential safety 
hazards and inefficiencies in work zone layouts and traffic management strategies. The 
curation and annotation of this dataset represent a foundational step in our research, enabling 
the development of deep learning models that are both robust and relevant.  
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3.4 Model Training and Validation 

The selection of YOLOv8 and ByteTrack for this study was primarily influenced by their 
state-of-the-art capabilities and their suitability for addressing the unique challenges posed by 
thermal video analysis. YOLOv8, recognized for its cutting-edge performance in object 
detection, is ideally suited to our project’s requirements. Given that vehicle movements 
within our study context are predominantly unidirectional and not random, there was no 
necessity to develop a custom tracking algorithm. Instead, fine-tuning the hyperparameters of 
these existing, advanced models proved to be sufficient for achieving robust tracking results. 
This approach significantly reduced our implementation timeline, allowing us to focus on 
other critical aspects of the project. Moreover, ByteTrack’s efficiency and accuracy are well 
aligned with the demands of our project, which involves processing hundreds of hours of 
video feeds. Its ability to track objects accurately in real-time is critical for analyzing the 
extensive amount of data collected, ensuring that our study benefits from both rapid 
processing and high-quality tracking outcomes. This strategic choice of technologies enables 
us to harness the full potential of deep learning for vehicle detection and tracking in thermal 
videos. 
 

 

 

 

In the field of computer vision, particularly in object detection and segmentation tasks, 
several metrics are essential for evaluating the performance of models. Among these, 
classification accuracy, mean Average Precision (mAP), mAP(50), and mAP(50–95) stand 
out as key indicators of how well a model can identify and delineate objects within images. 
These metrics are used for both bounding box predictions (object detection) and 
segmentation (delineating the exact outline of objects). Validation involved comparing the 
models’ performance against a subset of the dataset not used during training. 

Classification accuracy, as defined in equation 1, is the simplest and most intuitive metric, 
representing the proportion of correct predictions (both true positives and true negatives) out 
of the total number of cases examined. Precision and Recall are also commonly used metrics 
used to compare model performance. In the following equations, TP, TN, FP, and FN, 
respectively, mean True Positive, True Negative, False Positive, and False Negative. 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

                                                   (1) 
 

 
Precision = TP

TP+FP
                                                            (2) 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                                                              (3) 

Mean Average Precision (mAP), shown in equation 4, is a comprehensive metric that 
combines precision and recall across all classes and prediction thresholds. Precision measures 
the correctness of the predictions (the percentage of your predictions that are correct), while 
recall measures the completeness (the percentage of total relevant instances that have been 
retrieved). mAP computes the average precision (AP) for each class at different recall levels, 
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then averages these APs across all classes. This metric provides a holistic view of the 
model’s performance, balancing between precision and recall. 
 

 

 

 

 

 

 

 

𝑚𝑚𝑚𝑚𝑚𝑚 = 1
|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|  ∑

|𝑇𝑇𝑇𝑇𝑐𝑐|
|𝐹𝐹𝑇𝑇𝑐𝑐|+|𝑇𝑇𝑇𝑇𝑐𝑐|𝑐𝑐∈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                              (4) 

mAP(50) is a specific instance of mAP, where the model’s predictions are considered correct 
if the Intersection over Union (IoU) between the predicted bounding box and the ground truth 
is greater than 50%. IoU is a measure of overlap between two boundaries, indicating how 
much the predicted boundary coincides with the ground truth. mAP(50) thus focuses on 
predictions that are reasonably accurate in terms of location and size, offering a lenient 
threshold for correctness. It is widely used due to its simplicity and the clear interpretability 
of its results. mAP(50–95) is a more stringent and detailed version of mAP, calculated by 
averaging the mAP values for IoU thresholds from 50% to 95%, in steps of 5%. Figure 3.4 
shows how the various performance metrics improves over the training process, and Table 
3.1 shows the metrics for different models after final epoch of training. 

Figure 3.4. Object detection model metrics across successive training epochs  

Table 3.1. Performance comparison of YOLOv8 models 

Precision Recall mAP50 mAP50–95 
YOLOv8-s 78.8 85.2 85.5 71.5 
YOLOv8-m 82.6 83.1 86.2 72.5 
YOLOv8-l 81.9 85.4 87.6 72.6 

Metrics used for validating tracking results are consistency, ID switching, and frame-to-
frame continuity. Tracking consistency refers to the ability of the tracking algorithm to 
maintain continuous tracking of an object over a specified distance or period without losing 
its trajectory. It is quantified by counting the number of unbroken trajectories in the test 
dataset. We optimized the parameters of ByteTrack for our specific scenarios and achieved 
98.0% consistency across test videos. 
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Figure 3.5. Vehicle segmentation output generated by the YOLOv8 large model 

Figure 3.6. Output generated by YOLOv8 trained on the roadway segmentation dataset 

Figure 3.5 and Figure 3.6 show visualization of the segmentation results; in Figure 2.1, the 
tracking ID assigned by the tracking module is also shown. The performance of the tracking 
module was particularly notable in challenging conditions, such as tracking of occluded and 
partially visible vehicles as shown in Figure 3.8. The results show the effectiveness of 
combining and fine-tuning YOLOv8 and ByteTrack for vehicle detection and tracking in 
thermal videos. The Python code and additional Shell scripts are available for review and 
download in a Github repository: https://github.com/z00bean/SmartWorkZoneControl. 

https://github.com/z00bean/SmartWorkZoneControl
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3.5 Inference and Tracking on Thermal 
Videos 

The process of analyzing thermal videos to detect and track vehicles, particularly in the 
challenging environments of highway work zones, involves a sophisticated pipeline that 
leverages the power of deep learning models alongside state-of-the-art computational 
resources. Utilizing NVIDIA’s A100 GPUs and NVIDIA RTX 4090 graphics cards, our 
setup was designed for high throughput and efficiency, ensuring rapid processing of 
extensive video datasets without compromising accuracy or quality of the output. We 
leveraged both in-house server capabilities and the resources provided by the Unity cluster, a 
high-performance computing facility located at the Massachusetts Green High Performance 
Computing Center (MGHPCC).  
 

 

 

 

 

 

 

We developed a comprehensive video processing pipeline: 

1. Model Deployment: The trained YOLOv8 model and tracking module was deployed 
on two separate computing environments. This allowed us to process the videos from 
both the Medford and Danvers locations simultaneously. NVIDIA A100 and NVIDIA 
RTX 4090 GPUs were used. 

2. Thermal Video Inference: For each thermal video, the models perform frame-by-
frame inference to detect vehicles and track their trajectories. The powerful hardware 
enabled close to real-time processing. 

3. Combining Output Postprocessing: After processing each frame, the detection and 
tracking results were aggregated. A script was developed to compile these results into 
a structured format for each video, with the combined outputs stored in a JSON file. 
This format was chosen for its versatility and ease of integration with further 
analytical tools, allowing for detailed examination of vehicle behavior and traffic 
patterns. 

4. Video Compression: To facilitate storage and sharing of the processed videos, 
additional scripts were utilized to compress the output videos using ffmpeg, a leading 
multimedia framework. This step ensured that the insights gained from the analysis 
could be easily accessed and reviewed, without the need for extensive storage 
capacity. A typical output file in avi format of 1 hour duration could be compressed 
from 3.5 to 4 GB to 60 to 110 MB, a compression ratio of approximately 95%. 

By seamlessly integrating vehicle detection, tracking, data aggregation, and the ability to 
process multiple videos concurrently, ensures that our methodology is not only powerful but 
also scalable and adaptable to other video-based applications. 
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3.6 Algorithm Development for Extracting 
Trajectories and Risky Merging Events 

In the development of algorithms for trajectory extraction, lane usage determination, and 
detecting vehicle proximity to work zone control devices (i.e., traffic drums), a systematic 
approach was employed to harness the full potential of thermal sensor data. Following 
vehicle detection using the YOLOv8 model, the ByteTrack algorithm was integrated to stitch 
together vehicle trajectories across successive frames, ensuring robust tracking even in 
instances of occlusion or sudden vehicle movements. To further refine the analysis, 
algorithms were developed to interpret the stitched trajectories in the context of segmented 
lane information, allowing for the automatic determination of lane usage. Additionally, a 
specific focus was placed on developing a methodology to assess vehicle proximity to 
designated work zone control devices, leveraging the spatial data from trajectories and road 
segmentation. This comprehensive suite of algorithms represents a multilayered approach to 
understanding and improving traffic dynamics and safety around work zones. 
 

 

  

 

Algorithm #1 helps in refining the tracking results by focusing on vehicles that move in the 
intended direction of traffic and have a significant presence across the frames, thus reducing 
noise and improving the accuracy of the trajectory analysis. Sample outputs are shown in 
Figure 3.7. 

Figure 3.7. Visualization of trajectories 

Algorithm #2 processes each relevant vehicle trajectory to determine whether the vehicle is 
using the highway or taking the exit. It leverages segmentation results to identify the 
vehicle’s location in relation to designated areas like the highway, shoulder, exit lane, and 
gore. By examining the trajectory direction and the vehicle’s known position within these 
segmented regions (line highway, exit lane, etc.) we can deduce the vehicle’s path choice 
with a high degree of accuracy. This discernment between highway and exit lane usage is 
critical for understanding traffic flow patterns. The algorithm, therefore, not only categorizes 
each vehicle’s trajectory based on its final segment of travel but also incorporates a temporal 
element by tracking the vehicle’s progression over time. This allows for a dynamic analysis 
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that accounts for temporary occlusions or instances where the vehicle’s path may intersect 
with multiple segmented regions, ensuring a comprehensive understanding of each vehicle’s 
decision-making process and its implications on overall traffic dynamics. 
 

 
 

 
 

Algorithm #1. Detecting relevant trajectories considering traffic direction and occlusions. 
 
Input: List of segmented objects per frame, Trajectories of all tracked objects, 
Direction of traffic flow 
Output: List of relevant trajectories 
  
Algorithm: 
1. Initialize an empty list called relevant_trajectories 
2. For each trajectory in Trajectories: 
    2.1. Initialize a variable called trajectory_visibility_count to 0 
    2.2. Initialize a variable called consistent_direction_count to 0 
    2.3. For each frame in trajectory: 
        2.3.1. If the segmented object for this trajectory in this frame is valid: 
            2.3.1.1. Increment trajectory_visibility_count 
            2.3.1.2. If the direction of movement for the object matches the traffic 
flow direction: 
                2.3.1.2.1. Increment consistent_direction_count 
    2.4. Calculate visibility_ratio = trajectory_visibility_count / total number of 
frames in trajectory 
    2.5. Calculate direction_consistency_ratio = consistent_direction_count / 
trajectory_visibility_count 
    2.6. If visibility_ratio is above a predefined threshold (e.g., 0.5) and 
direction_consistency_ratio is high (e.g., > 0.8): 
        2.6.1. Add this trajectory to relevant_trajectories 
  
3. For each trajectory in relevant_trajectories: 
    3.1. Check for sporadic segmentation results within the trajectory: 
        3.1.1. If a segmented object appears only in a single frame or sporadically 
without a consistent trajectory: 
            3.1.1.1. Remove the sporadic segmentation results from the trajectory 
  
4. Return relevant_trajectories 
 

  
(a) Danvers 

  
(b) Medford 

Figure 3.8. Tracking of occluded and occluding vehicles 
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Algorithm #2. Detecting highway or exit lane usage and saving vehicle frames. 
 
Input: List of relevant trajectories, Segmentation results for highway, shoulder, exit 
lane, and gore, Direction of each trajectory 
Output: List of vehicle lane usage (Highway or Exit), Saved frames for each vehicle 
  
Algorithm: 
1. Initialize an empty list called vehicle_lane_usage 
2. For each trajectory in relevant trajectories: 
    2.1. Initialize a variable called last_known_position to store the last frame's 
position of the vehicle 
    2.2. Initialize a variable called vehicle_lane to "Unknown" 
    2.3. For each frame in trajectory: 
        2.3.1. Determine the segmented area (highway, shoulder, exit lane, gore) where 
the vehicle is located 
        2.3.2. Update last_known_position with the current frame's position 
        2.3.3. If the vehicle is in the exit lane or crossing the gore area: 
            2.3.3.1. Set vehicle_lane to "Exit" 
            2.3.3.2. Break the loop 
        2.3.4. Else if the vehicle remains in the highway lane: 
            2.3.4.1. Continue checking until a change is detected or trajectory ends 
    2.4. If vehicle_lane remains "Unknown" by the end of trajectory: 
        2.4.1. Set vehicle_lane to "Highway" 
    2.5. Add the vehicle's lane usage and last_known_position to vehicle_lane_usage list 
    2.6. Save the frame at last_known_position for this vehicle 
  
3. Return vehicle_lane_usage, along with saved frames for each vehicle 
 

 
Algorithm #3. Detecting vehicles close to the work zone. 

 
Input: List of relevant trajectories, Segmentation results for road and shoulder, 
Threshold distance for proximity to work zone 
Output: List of vehicles close to work zone 
  
Algorithm: 
1. Initialize an empty list called vehicles_close_to_workzone 
2. For each trajectory in relevant trajectories: 
    2.1. For each frame in trajectory: 
        2.1.1. Determine the vehicle's position on the frame 
        2.1.2. Extract segmentation results for road and shoulder for the current frame 
        2.1.3. Calculate the shortest distance from the vehicle's position to the 
shoulder segmentation boundary 
        2.1.4. If the distance is less than the threshold distance: 
            2.1.4.1. Mark this frame as indicating the vehicle is close to the work zone 
    2.2. If any frame in the trajectory indicates the vehicle is close to the work zone: 
        2.2.1. Add this vehicle's trajectory to vehicles_close_to_workzone list 
  
3. Return vehicles_close_to_workzone 
 

 
Algorithm #3 iterates through each vehicle’s trajectory, calculating the distance from the 
vehicle to the closest point on the shoulder segmentation boundary for each frame. By 
comparing this distance to a predefined threshold, the algorithm identifies vehicles traveling 
too close to work zone control devices. Such merges are referred to as last-minute or late 
merges in this report. In this research, our focus is to identify vehicles that merge at the last 
minute and get too close to the traffic drums in the lane closure taper. Vehicles that come 
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within a predefined distance threshold to the traffic drums in the taper in their trajectory are 
added to the list of vehicles close to the work zone, enabling targeted analysis of traffic 
patterns and potential safety concerns in this critical area. The distance threshold is a hyper 
parameter which must be adjusted based on location and camera position. Two sample 
outputs of the algorithm are given in Figure 3.9 and additional examples are provided in 
Appendix F. 
 

 
  

 

 

 

Figure 3.9. Vehicles traveling too close to work zone lane closure taper 

The charts in Figure 3.10 illustrate the relationships between freeway traffic volumes and 
instances of last-minute merges or late merges at the Danvers location on different days. This 
type of visualization could help in analyzing how traffic volume correlates with driver 
behavior, in this case, the tendency to merge late near the beginning of work zone taper. 
Besides traffic volume, factors such as taper length, presence of rumble strips, and weather 
could impact the occurrences of late merge. These factors are also considered in Figure 3.10. 
Figure 3.11 shows the late merge results for the work zone in Medford, which are averages 
over three days each, and offer a more aggregated view, smoothing out daily variations to 
highlight broader trends in merge behavior and its relationship to various impact factors.  
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Figure 3.10. Freeway traffic volume and late merges at Danvers 
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Figure 3.11. Freeway traffic volume and late merges at Medford 
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When interpreting these charts, it is essential to consider factors such as time of day, day of 
the week, and potential external influences like weather conditions, taper length, and the 
presence of rumble strips that could affect driver behavior. Such data visualization assists in 
understanding driver decisions, potentially informing the design of traffic control strategies 
and placement of control devices to enhance safety around work zones. Given the various 
factors involved, a deeper statistical analysis is necessary to quantify the correlation between 
such factors and the occurrences of late merges, allowing for more definitive conclusions 
beyond visual interpretation. The detailed statistical analysis results are provided in Section 
5. Additional details of traffic volume and late merges are given in Appendix E. 

3.7 Analysis of Drone Video Data 

This section focuses on the utilization of both deep learning approaches and basic computer 
vision tracking methods for analyzing drone-captured footage, discussing their respective 
strengths and challenges in the context of trajectory analysis. 
 

 

 

  

  

The application of deep learning models, such as YOLOv8, to drone video data facilitates the 
accurate detection and tracking of vehicles. These models excel in extracting detailed 
trajectory information, even in densely populated or cluttered scenes typical of work zones. 
They are also good at handling the variability in vehicle appearance and size seen in top-
down views, enabling precise identification and continuous tracking of vehicles as they 
navigate through work zones. 

However, a notable challenge in processing drone video data arises during nighttime 
conditions, where low light and glare from headlights can significantly degrade video quality. 
To address this problem, a guided filtering and dehazing method was implemented using 
Python, incorporating functions such as gamma adjustment, and edge preserving bilateral 
filter. These enhancements, as shown in Figure 3.12, made it possible to improve the 
visibility of nighttime RGB videos, ensuring consistent trajectory analysis across varying 
lighting conditions. 

Figure 3.12. Nighttime image before and after applying enhancement 
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In addition to deep learning techniques for RGB videos, basic computer vision tracking 
methods have shown promise in analyzing thermal drone footage, especially due to the 
distinct features observable in top-down views. Techniques such as background subtraction, 
contour detection, and the use of more traditional tracking methods such as Kernelized 
Correlation Filter tracker, leverage the simplicity and high contrast of vehicles against the 
road surface. These methods are particularly effective in scenarios where deep learning 
models might be computationally intensive or require extensive training data. This approach, 
while beneficial in terms of computational efficiency and effectiveness for certain scenarios, 
comes with the caveat that parameter adjustments are necessary for each new location; at 
times, even drone movement could necessitate recalibrations, adding a layer of complexity to 
their application. Figure 3.13 shows two sample frames with the detected moving vehicle 
contours, and final detection results with bounding boxes are shown in Figure 3.16. 
 

  

 

 

Figure 3.13. Background subtraction, contour estimation of moving objects 

We created a dataset for vehicle detection consisting of 1,260 curated and annotated images. 
To expand the dataset, extra images were generated by duplicating frames with large vehicles 
and altering them with random rotations (±8 degrees), as well as minor cropping and scaling, 
simulating slight drone movements. Within this dataset, vehicles are classified into two 
categories: small and large. We implemented a new model architecture that improves upon 
the YOLOv8 model, to enable better detection of small objects, including the substitution of 
standard convolution functions with GSConv modules and an enhancement of the neck to 
integrate higher resolution information, specifically targeting the detection of densely packed 
and small OBBs. 

Although YOLOv8 models effectively detect a range of objects, they can struggle with 
smaller objects, especially in drone-captured images that have slanted views toward the 
horizon, making distant vehicles appear tiny. This issue is mitigated in top-down views 
unless the drone is at a high altitude. In YOLOv8, outputs from the third to fifth blocks of the 
Path Aggregation Feature Pyramid Network (PAFPN) are typically processed, as these levels 
possess mature features crucial for detection tasks. To improve detection of small vehicles, 
the P2 layer, which has higher resolution, is added to YOLOv8’s neck network, and the 
number of detection heads is increased to four. These changes enable the P2 feature map to 
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capture finer details lost in deeper layers. Figure 3.14 illustrates the modified PAFPN 
structure utilizing the P2 output for enhanced detection. 

 

 

Figure 3.14. Schematic diagram of PAFPN 

We also implemented a modified version of Slicing Aided Hyper Inference (SHAI) method 
that strategically selects image slices for fine-tuning based on their overlap with roadway 
segmentation results. This targeted selection ensures that our model focuses on areas of 
highest relevance optimizing both the efficiency and effectiveness of the detection process. 
Slicing aided fine-tuning (SF) involves extracting and processing these image patches or tiles 
and training the model using these. But unlike the traditional SF methodology, we do not 
select all image tiles for training the model. Also, we upscale the selected tiles to double its 
original size using cubic interpolation. Image tiles are only selected if they overlap with the 
segmentation output from the roadway segmentation model. Figure 3.15 illustrates the basic 
steps involved. The roadway segmentation model operates at 2 fps, which is suitable for 
scenarios where the drone remains mostly stationary. 

Figure 3.15. Basic steps in selective slicing using roadway segmentation information 
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We selected the Medium YOLOv8 model because it offers a balanced trade-off between 
performance and computational overhead. As indicated in Table 3.2. Evaluation results on 
Nighttime Thermal Drone datasetthis configuration achieved an mAP-50 score of 0.963 on 
the test set. 
 

 

 

  
  

 

Table 3.2. Evaluation results on Nighttime Thermal Drone dataset 

Model Class Precision Recall mAP50 mAP50–95 
YOLOv8-m All 91.4 78.5 90.0 72.3 
Our model All 96.1 89.9 96.3 80.2 
Our model Small 95.2 85.5 94.0 74.8 
Our model Large 97.0 94.2 98.6 85.1 

Comparing deep learning-based methods with basic computer vision tracking, each approach 
has its advantages. Deep learning models offer superior accuracy and robustness in detecting 
and tracking vehicles but require significant computational resources and training data. On 
the other hand, traditional computer vision methods are less resource-intensive and can be 
quickly implemented but might lack the precision and adaptability of deep learning 
techniques, especially in complex or dynamic scenes. The unexpected movement of the drone 
camera can introduce inconsistencies in the video data, complicating the task of continuous 
object tracking. Deep learning models must be sufficiently robust or adapted to account for 
these variations, ensuring accurate trajectory extraction despite the instability of the aerial 
platform. 

Figure 3.16. Vehicle detection and tracking using filtered-background subtraction method 

In our analysis based on drone videos at the Medford location, we closely monitored 140 
vehicles as they traversed over the rumble strips. Our findings revealed that only 40 of these 
vehicles exhibited a speed reduction greater than 15% upon encountering the rumble strips. 
This indicates that the presence of rumble strips, while effective for some vehicles, does not 
universally lead to significant speed adjustments. Furthermore, within the context of lane 
changes, particularly in the second lane from the left—which also leads directly to a 
downstream exit ramp—only 22 vehicles (or approximately 15%) engaged in immediate lane 
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changes within a 160-foot distance following the rumble strips. This observation underscores 
the complexity of interpreting vehicle behavior, as not changing lanes could also align with 
the intention to exit, rather than not being influenced by the rumble strips. 
 

 

 

   

 

At the Danvers location, the analysis of trajectories for 100 vehicles revealed a consistent 
pattern, where a similar proportion (15%) of drivers executed immediate lane changes upon 
encountering rumble strips. This consistency across both locations suggests a broader trend 
where the presence of rumble strips influences a subset of drivers to adjust their speed or 
change lanes, albeit a relatively small fraction. These insights are further complicated by the 
operational challenges posed by abrupt movements of the drone camera, which can affect the 
precision of tracking vehicle movements. Nonetheless, these observations provide valuable 
insights into driver behavior and the partial effectiveness of rumble strips in influencing 
vehicular speed and lane-changing decisions in work zones. 

Drone video data were manually synchronized with  time stamped ground thermal video data 
to compare the tracking results of ground thermal and drone footage in 15-minute intervals. 
An example of this synchronization is given in Figure 3.17, and additional examples are 
given in Figure 8.43 of Appendix D. 

Figure 3.17. Thermal video and drone video at Medford on 05/15/2023, 22:17 

Table 3.3. Ground thermal and drone video footage results for Medford 

Date Hour 15-
min 

Total 
Volume 

Late 
Merges 

Total 
Volume 
(Drone) 

Late Merge 
(Drone) 

5/8/2023 23 0 294 4 267 3 
5/8/2023 23 30 239 1 218 1 
5/9/2023 21 30 641 5 598 5 
5/9/2023 22 0 420 7 352 5 
5/9/2023 22 30 389 0 331 0 
5/9/2023 23 0 308 4 261 4 
5/15/23 22 30 450 2 396 2 
5/15/23 23 0 268 3 237 3 
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Table 3.3 and Table 3.4 compare the total traffic volume and vehicles traveling close to the 
work zone, as determined from the analysis of ground thermal and drone video footage. The 
presence of shadows and dark areas within the video frame occasionally results in the 
omission of certain vehicle trajectories, particularly those of darker colored vehicles. This 
analysis is based on complete 15-minute segments for which entire drone videos are 
available.  

Table 3.4. Ground thermal and drone video footage results for Danvers 

Date Hour 15-
min 

Total 
Volume 

Late 
Merges 

Total 
Volume 
(Drone) 

Late Merge 
(Drone) 

5/31/2023 20 45 340 2 332 2 
5/31/2023 21 15 268 2 264 2 

5/31/2023 21 45 283 1 271 1 
6/1/2023 20 30 407 2 394 2 

6/1/2023 21 0 298 1 286 1 
6/1/2023 21 30 272 1 270 2 

 

 

 

In the case of the Danvers site, thermal drone footage was utilized due to the limitations of 
RGB drone videos under low-light conditions. Examples comparing RGB and thermal drone 
in varying light conditions are provided in Figure 8.42 in Appendix D. This comparison 
underscores the limitations of RGB drone footage in providing usable data, particularly in 
low-light environments. 

In the analysis of drone-captured video data, several limitations were observed despite 
preprocessing efforts to enhance the RGB footage. Challenges included persistent dark areas 
and occlusions, such as gantries and shadows cast by gantries, which particularly affected the 
detection of vehicles. This limitation led to occasional underestimation of vehicle volumes, 
with a noted marginal error in total volume calculations attributable to timing discrepancies. 
However, these conditions did not significantly hinder the identification of late merges, as 
the illumination from work zone lighting mitigated the impact of occlusions. Despite the 
challenges presented by drone video analysis, it is important to acknowledge that drone 
footage remains a valuable asset for vehicle trajectory analysis, particularly when adequate 
lighting is available. The unobstructed aerial perspective provided by drones, especially 
under daylight conditions, significantly enhances the quality and accuracy of the data 
collected, making it an indispensable tool for comprehensive traffic study and assessment. 

The integration of drone video data into trajectory analysis represents a promising frontier in 
traffic monitoring and work zone safety evaluation. While deep learning approaches offer 
comprehensive insights and high accuracy, basic computer vision tracking methods provide a 
more accessible alternative for certain applications. The choice between these methods 
depends on the specific requirements of the analysis, including the need for precision, 
computational efficiency, and adaptability to varying conditions. 
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4.0 Radar Data Analysis 

The radar data collection effort is described in Section 2, which includes details on the data 
collection time periods and locations. This section presents how the collected radar data was 
further processed to remove noise. Based on this cleaned dataset, average vehicle speed 
profiles were generated. These profiles demonstrate how drivers, on average, adjust their 
speeds under various traffic control settings when approaching a highway work zone. The 
processed speed data is then utilized in the regression models in Section 5 to analyze the 
impacts of different traffic control strategies. 

4.1 Data Processing and Cleaning 

The direct output of the radar sensors was in binary format, which was converted to generate 
vehicle ID,  time stamp, x and y coordinates, vehicle speed, vehicle length, and so forth. The 
converted radar data was noisy due to the impacts of environmental factors and had to be 
further cleaned to remove fragmented trajectories and ghost targets. The cleaning process 
involved several steps to ensure data accuracy and integrity.  
 

 

 

 

 
 

• First, the radar unit assigns cyclic IDs between 0 and 255 to targets. This approach is 
fine for a short time period when there are fewer than 256 targets. However, it creates 
duplicate IDs over time. Therefore, a script was written to update target IDs. This is 
an important but relatively straightforward process since duplicate IDs are typically 
separated by clear time gaps.  

• To remove ghost targets, trajectories were filtered based on their distances to the 
radar sensor and trajectory lengths. Trajectories that were too far from/close to the 
sensor (i.e., outside the highway boundary) were excluded.  

• Some of the short trajectories were caused by vehicle occlusions, as the radar was 
mounted on the roadside. We considered the longest continuous trajectory as the 
baseline and used a threshold value of 80% of this longest trajectory length for data 
cleaning. This process excluded all trajectories shorter than the threshold.  

• Furthermore, some trajectories had gaps in the middle that were probably due to 
occlusions. These gaps were typically 2–3 seconds long but did not happen often. 
Since we had plenty of data samples, we decided to remove these trajectories. After 
the data cleaning, we compared the traffic counts derived from the thermal videos 
(treated as the ground truth) and the remaining radar samples. We found that 
approximately 77% of the vehicle trajectories were captured by the radar. 
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4.2 Lane-Speed Segmentation 

Understanding vehicle speed distribution by lane in a work zone is helpful. Given the 
resolution of the thermal cameras and their mounting positions, obtaining such speed data 
from radar is more practical. However, the mounting positions of the radar sensors make it 
difficult to directly differentiate vehicle trajectories and speeds by lane. Therefore, the 
following algorithm was developed. 
 

 

 

When deriving vehicle speed distributions, the raw radar data was separated by both time and 
space. A time window of 𝑡𝑡=1 hour was considered. This time window should not be too long 
or short. A very long time window cannot capture temporal variations in the data, whereas a 
very short window may result in insufficient data points. The radar sensors sampled each 
vehicle’s speed at multiple locations along a road segment. In this study, these speed data 
points were separated based on their locations using 30-ft long segments. Similar to the time 
window length, segments that are too long may result in a loss of data granularity. 
Conversely, segments that are too short could lead to the generation of distribution patterns 
that appear very noisy. By separating the raw speed data based on time and space, the 
resultant distributions show the average speed profile of how vehicles approach a work zone. 

Algorithm #4 Lane-speed segmentation algorithm. 
1: Initialize variables such as Timewindow list, Distance list and lists to store data, 
left lane ID: l_ID and right lane ID: r_ID 
2: Set window_count = 1 
3: For{each time window in Timewindow} 
4:      Extract data within the current time window 
5:      For{each segment along the Distance} 
6:         Padding all the trajectories to have the same length of records 
7:          Determine the mean positions of each records and select two out (END0 and 
END1) for the segment 
8:          Classify vehicles into left and right lanes based on their positions 
relative to the lane center (line across END0 and END1) 
9:          Store the IDs of vehicles in the left and right lanes (l_ID, r_ID) 
10:     EndFor 
11:     Initialize lists to store statistics for left and right lanes: l_mean_speed, 
l_sample r_mean_speed$, r_sample  
12:     For{each segments along the Distance} 
13:        Query and select the IDs shared by the current and next segment 
14:        Calculate statistics (mean speed and sample size) for the left and right 
lanes based on the selected ID 
15:        Append the calculated statistics to respective lists 
16:     EndFor 
17:     Update the window count 
18: EndFor 

Based on the preceding results, we further separated the radar speed data by the left two lanes 
and the right two lanes utilizing a data-driven process. Within a 30-ft segment, each valid 
speed data point is represented by a set of x, y, and speed measures. Based on the x and y 
values, these data points were clustered into two groups, representing the left two lanes and 
the right two lanes. This study also attempted to cluster the speed data into four groups, each 
representing a single lane. However, this turned out to be challenging given the quality of the 
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vehicle lateral position data. For future data collection, mounting radar sensors directly above 
the traffic on a fixed structure would help to generate more accurate vehicle lateral position 
measurements, making it possible to separate vehicles by lane. 
 

 

 

Some vehicles changed lanes within a 30-ft segment. In this case, we excluded their 
corresponding trajectories in that particular segment during the speed distribution calculation. 
Algorithm #4 summarizes the radar data cleaning and processing steps. 

4.3 Speed Distribution Analysis 

Figure 4.1 shows some sample speed distribution analysis results for the Medford site. The 
first and third columns are for the M2-Upstream radar (i.e., radar at Location M2 facing 
upstream), while the second and forth columns are for the M2-Downstream radar. By 
positioning radar data in this way, the speed profiles in the same row from the first and the 
second columns can be concatenated to show how drivers adjust speeds as they approach a 
work zone. Similarly, subfigures in the same row from the third and the fourth columns can 
be viewed in one group. The horizontal axis indicates the distances between vehicles and the 
radar unit. The two radar units were located right next to each other at the Medford site. 
Therefore, vehicles first approached the radar facing upstream and drove away from the radar 
facing downstream as the horizontal axis values suggest. The vertical axis is for speed. 

Rumble strips and a normal taper were deployed in Medford on May 9, 2023. The data in 
Figure 4.1 clearly suggest that the left two lanes had higher average speeds than the right two 
lanes. There was a blind zone between the coverage areas of the two radar units. It is 
interesting to observe some speed fluctuations within this blind zone. The trends (e.g., 
increasing, decreasing) in these fluctuations are not always consistent. This is likely caused 
by lane-changing activities in the blind zone, for example, fast vehicles changing from a left 
lane into a right lane, and slow vehicles in a right lane accelerating and moving into a left 
lane. Another possible reason is that vehicles traveled toward the M2-Upstream radar but 
drove away from the M2-Downstream radar. Compared to receding targets, approaching 
targets can be better detected. Figure 4.1 also indicates vehicles clearly decreased speed 
gradually and slightly as they traveled downstream toward the work zone lane closure taper. 
Additional speed distributions for the Medford site can be found in Figure 8.1 through Figure 
8.5 in Appendix A. 

As shown in Figure 8.6 through Figure 8.8 in Appendix A, the Danvers site is slightly 
different from the Medford site. The second radar (D2-Downstream) covers an area 
downstream of the beginning of the lane closure taper. Some vehicles covered by the first 
radar (D1-Downstream) may have exited the highway and not been captured by the second 
radar (D2-Downstream). At the Danvers site, both radar units were facing receding vehicles. 
The average speed of vehicles in the left two lanes remained relatively constant from the D1-
Downstream radar to the D2-Downstream radar, while the average speed of vehicles in the 
right lanes increased. This was most likely due to slow vehicles exiting the highway just 
before the coverage area of the D2-Downstream radar. We compared the data from two dates 
(05/31/2023 and 06/01/2023), where the only main difference was the presence or absence of 
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rumble strips. However, we did not observe any obvious changes in vehicle speeds, 
suggesting that rumble strips did not significantly slow vehicles down at this site. Also, the 
vehicle speeds in both the left and right lanes remained largely unchanged between the 
upstream and downstream segments. 
 

 

The work zones in Medford and Danvers were set up only during the night, from about 8:30 
p.m. to 5 a.m., while the work zone in Campton was in place all day for nearly two weeks. 
Another major difference is that the Campton site lane closure taper was about 2,000 ft 
downstream of an on ramp and was not affected by any exit ramp. At the Campton site (see 
Figure 8.9 through Figure 8.15 in Appendix A), vehicles in both lanes clearly reduced speed 
as they approached the beginning of the lane closure taper. During congested periods, speed 
decreased to as low as 40 mph. The right lane typically exhibited slower speeds than the left 
lane, possibly due to the interference of vehicles cutting in. The approaching speed between 
10 and 11 p.m. was typically around 60 mph, consistently lower than those during other 
periods, except for very congested ones.  

Evaluating and comparing the effectiveness of various traffic control strategies based on 
descriptive analysis results is challenging, because it is difficult to control all other factors 
and filter out the impact of a single variable. Therefore, statistical analysis was conducted to 
model the data from all three sites, and the results are provided in the next section. 
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Figure 4.1. Medford speed profile: late May 9, 2023, and early May 10, 2023 



42 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page left blank intentionally. 



43 
 

5.0 Regression Analysis 

Section 4 provided a descriptive analysis of speeds at different work zones. However, vehicle 
speed and merge behaviors are potentially affected by several factors, such as congestion, 
FSLS, PCMS, and rumble strips. It is difficult to rely solely on descriptive statistics to 
quantify the impacts of a single factor, because the values of other factors also change. 
Therefore, this section employs regression analysis to investigate the impacts of individual 
factors on vehicle speeds and last-minute merges. 

5.1 Variable Definition 

This section describes the variables considered in the regression analysis. For the Medford 
and Danvers sites, the following variables are considered: 
 

 

 

  

• Total_FREEWAY: Freeway traffic volume measured in number of vehicles for every 
15 minutes. 

• Total_EXIT: Exit ramp traffic volume measured in vehicles for every 15 minutes. 
• Long: This variable is 1 when a longer lane closure taper was used (0 otherwise). 
• Normal: This variable is 1 when a normal lane closure taper was used (0 otherwise).  
• Rumble: This variable is 1 when transverse rumble strips were installed (0 otherwise). 
• mean_abs_speed: Mean average speed at the middle of the covered road segment 

measured in miles per hour. This is averaged across all vehicles observed in every 15 
minutes. 

• Num_LM_merge: The number of last-minute merges observed at the beginning of 
lane closure taper. This is counted for every 15 minutes. 

Two sets of regression models have been developed. The first set uses mean_abs_speed as 
the dependent variable, and the second one considers the Num_LM_merge as the dependent 
variable. Table 5.1 lists the independent variables utilized in different regression models.  

Note that in the last-minute merge models, variable Long is not included. This is because 
such models only utilize data from work zone scenarios. Therefore, between Long and 
Normal, only one variable is needed, since Long = 1 is equivalent to Normal = 0. For the 
speed models, we also include data points for some non-work zone scenarios. Therefore, both 
Long and Normal are considered. When both variables equal 0, the corresponding data point 
is for a non-work zone scenario. 
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Table 5.1. Independent variables utilized in the Medford and Danvers regression models 

Speed Model Last-Minute Merge Model Independent Variable 
✓ ✓ Total_FREEWAY 
✓ ✓ Total_EXIT 
✓ — Long 
✓ ✓ Normal 
✓ ✓ Rumble 
— ✓ mean_abs_speed 

 

 

 

For the Campton data, we developed two similar sets of regression models for speed and 
risky merges. The following independent variables were considered: 
 

• VOLUME: Defined in the same way as Total_FREEWAY for the Medford and 
Danvers sites. 

• UP: This variable is for the status of the flashing speed limit sign (FSLS). UP = 0 if 
the FSLS is folded down. Otherwise, UP = 1. 

• ON: ON = 0 if the flashing beacons on the FSLS are off. Otherwise, ON = 1. Note 
that when UP = 0, ON will also be 0. 

• ME: This variable is for the status of the portable changeable message sign (PCMS), 
which displays two sets of messages. ME = 0 if the PCMS displays “POSSIBLE 
SLOW OR STOPPED” and “TRAFFIC AHEAD BE AWARE.” ME = 1 if the PCMS 
displays “LEFT LANE CLOSED” and “MM 86.4 MERGE EARLY.” 

• mean_abs_speed: Defined in the same way as for the Medford and Danvers sites. 
• Daylight: The value Daylight = 1 indicates the duration between sunrise and sunset 

on each day. 

For the Campton speed model, only the first four variables listed are included as independent 
variables. For the Campton risky merge model, all five variables are considered as 
independent variables. The risky merges for the Campton site are defined in Figure 5.1. 
Because of the camera mounting position, it is possible to observe the area prior to the lane 
closure taper. This area is divided into green, yellow, and red zones. Depending on how 
vehicles approach the work zone, their trajectories are classified into safe, somewhat risky, 
risky, and extremely risky. In the Campton regression analysis, the total number of risky and 
extremely risky events in 15-minute intervals is used as the dependent variable. 
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Figure 5.1. Vehicle tracking and detection of risky last-minute merges 

 

 

Among the variables, freeway and exit ramp traffic volumes were derived using thermal 
videos and AI techniques. Speeds were derived based on radar data. Last-minute merges and 
risky merges were counted using AI models. Specifically, we segmented both vehicles and 
travel lanes. In this way, the impacts of occasional changes in the camera field of view (due 
to vibration) on vehicle tracking can be mitigated. By assessing the overlap between vehicle 
segmentation masks and the segmented risky region (e.g., red zone inside the rectangle in 
Figure 5.1), we were able to detect risky last-minute merges and record the corresponding 
frame numbers and  time stamps. The speed, traffic volume, and last-minute/risky merge data 
were aggregated using 15-minute intervals so that each hour resulted in four data points. 

5.2 Multicollinearity and Variable Selection 

In multiple linear regression, it is important to carefully choose independent variables to 
mitigate multicollinearity, which occurs when two or more independent variables are highly 
correlated with each other. Significant multicollinearity can lead to inaccurate estimates of 
the individual effects of each independent variable or predictor. 

Two categories of methods can be used to address the multicollinearity issue. The first 
category involves using regularization techniques such as Ridge Regression and Lasso 
Regression to penalize the inclusion of highly correlated predictors. The second category 
attempts to identify and remove highly correlated predictors, utilizing methods such as 
variance inflation factor (VIF) analysis. In our last-minute/risky merge analysis for the 
Medford and Danvers sites, the VIF method was used, which revealed a high level of 
correlation between predictors “Normal” and “Long.” This is not surprising since we 
considered last-minute merges when there was a work zone, and a work zone either had a 
normal taper or a longer taper. In the speed regression analysis, normal traffic scenarios 
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without a work zone were also included. In this case, the VIF analysis did not show any 
significant multicollinearity issues.  
 

 

 

 

Furthermore, the predictors have varying ranges of values; for instance, traffic volume may 
range from tens to hundreds, while rumble strip data is binary. To facilitate variable 
importance comparison, we standardized those noncategorical predictors. 

5.3 Regression Results 

The regression analysis generates extensive results that are presented in Figure 5.2 through 
Figure 5.8. The results for the Medford and Danvers sites are further summarized in Table 
5.2, since the two sites share the same work zone control strategies. Table 5.3 summarizes 
the results for the Campton site. Throughout the remainder of this subsection, only variables 
that are statistically significant at the 0.05 level will be discussed. 

The same work zone control strategies were deployed at Medford and Danvers, which were 
transverse rumble strips and different lane closure taper lengths. In Table 5.2, statistically 
insignificant variables are shown in italic font. The results suggest that Normal Taper, 
Longer Taper, and Rumble Strips all contribute to decreasing speeds. However, the results 
are inconsistent and should be interpreted with caution. The relationship between 
“Normal/Longer Taper” and “reduced speeds” might be correlational rather than causal. 
Since we also incorporate data from non-work-zone scenarios in speed regression analysis, 
the reduction in speeds may be attributed to the presence of a work zone, which correlates 
with either a “Normal” or a “Longer” taper. Additionally, Rumble Strips are associated with 
significant speed reductions only at the Medford M3 location but not at other locations. This 
inconsistency might be attributed to the disturbance caused by exiting vehicles. Overall, the 
speed regression results at the Medford and Danvers sites suggest that 

• No statistically significant and consistent evidence show that Rumble Strips can 
reduce vehicle approaching speed; and 

• Although both Normal and Longer tapers are associated with speed reductions in 
most cases, such relationships are inconsistent. They most likely are due to 
correlation rather than causation and should be interpreted with caution. There is no 
consistent evidence showing that a longer taper is more beneficial in reducing vehicle 
approaching speed. 

At the two Medford locations (i.e., M2 and M3), freeway volume is positively associated 
with speed, while exit volume is negatively associated with speed. Both variables are 
statistically significant at the 0.05 confidence level. This result seems reasonable and 
demonstrates the impact of exiting traffic on vehicle speed. As vehicles exit the freeway, they 
gradually decelerate, which affects the average speed. At the two Danvers locations (i.e., D1 
and D2), only the Total_EXIT variable at D2 is statistically significant at the 0.05 level and is 
positively associated with speed. This seemingly contradictory result is due to the location of 
D2, which is downstream of the exit ramp. (Note that M3 at Medford is upstream of the exit 
ramp.) Therefore, more exiting traffic does not negatively affect the average freeway speed. 
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Table 5.2. Medford and Danvers regression results 

Dependent 
Variable Location Independent Variable Coefficient p-value 

Speed Medford M2 Total_FREEWAY 6.17 0.00 
Medford M2 Total_EXIT −9.90 0.00 
Medford M2 Long −1.55 0.02 
Medford M2 Normal −2.15 0.00 
Medford M2 Rumble −0.54 0.25 
Medford M3 Total_FREEWAY 17.54 0.00 
Medford M3 Total_EXIT −22.23 0.00 
Medford M3 Long 0.30 0.67 
Medford M3 Normal −1.57 0.00 
Medford M3 Rumble −2.28 0.00 

Last-Minute 
Merge 

Medford Lane Closure Taper Total_FREEWAY −0.01 0.97 
Medford Lane Closure Taper Total_EXIT 7.54 0.00 
Medford Lane Closure Taper mean_abs_speed −1.19 0.23 
Medford Lane Closure Taper Normal −0.71 0.07 
Medford Lane Closure Taper Rumble −0.52 0.20 

Speed Danvers D1 Total_FREEWAY 1.75 0.13 
Danvers D1 Total_EXIT 1.89 0.39 
Danvers D1 Long −4.07 0.00 
Danvers D1 Normal −3.51 0.00 
Danvers D1 Rumble 0.44 0.46 
Danvers D2 Total_FREEWAY −0.78 0.51 
Danvers D2 Total_EXIT 4.79 0.03 
Danvers D2 Long −5.08 0.00 
Danvers D2 Normal −3.77 0.00 
Danvers D2 Rumble 0.67 0.26 

Last-Minute 
Merge 

Danvers Lane Closure Taper Total_FREEWAY 1.78 0.01 
Danvers Lane Closure Taper Total_EXIT 1.13 0.20 
Danvers Lane Closure Taper mean_abs_speed 0.74 0.14 
Danvers Lane Closure Taper Normal −0.02 0.92 
Danvers Lane Closure Taper Rumble 0.24 0.36 

 

 

For the Medford site, Total_EXIT traffic is positively associated with last-minute merges, 
and all other independent variables are statistically insignificant. This is probably because 
some through vehicles followed exiting vehicles and failed to merge early. For the Danvers 
site, only the Total_FREEWAY variable is statistically significant and is positively 
associated with last-minute merges. This result is also understandable because drivers tend to 
merge late in congested traffic. 

The Campton site regression results in Table 5.3 are more intuitive and easier to interpret 
than those for the Medford and Danvers sites. For the speed modeling results, only one 
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variable, “ON,” is statistically significant at the 0.05 level. This suggests that a FSLS is more 
effective than PCMS and static speed limit signs in reducing vehicle speed. This finding 
aligns with common understanding. Compared to PCMS, FSLS appears to be a more direct 
and effective way of communicating warning messages to drivers. Drivers do not need to 
read long messages to comprehend what is happening ahead of them.  
 

 

 

 

  

The results of the risky merge regression analysis also indicate that both FSLS and PCMS are 
effective in encouraging early merging. However, FSLS appears to be twice as effective as 
PCMS. Traffic volume shows a strong positive correlation with risky merges. This is 
reasonable. In fact, late merge (not risky merge) is often encouraged when the traffic is 
congested [14], although it may inevitably lead to risky merging scenarios as defined in this 
study. The true risk of a merge should be assessed by accounting for vehicle speeds and time 
headways.  

Additionally, the adjusted R2 value (Figure 5.8) for the Campton site risky merge model is 
0.768, which is much higher than those for the Medford and Danvers sites. This suggests that 
the Campton site risky merges can be properly explained by three factors: FSLS, PCMS, and 
traffic volume. At Danvers and Medford, the last-minute merges probably also depend on 
other factors not observed during our study. Another possibility is that the relationship 
between last-minute merges and the independent variables is nonlinear.  

The adjusted R2 value (Figure 5.9) for the Campton site speed model is 0.101, which is lower 
than those for the Danvers and Medford sites. This is likely due to the exclusion of 
significant factors, such as the presence of construction workers, in the Campton site model. 
Unlike the Campton site, both the Medford and Danvers sites experienced construction 
activities throughout the entire work zone. 

Last but not least, the Campton dataset covers both daytime and nighttime, which is different 
from the Danvers and Medford work zones. To quantify the impacts of the time of day on 
work zone speed and late merges, we developed additional models for the Campton site and 
presented the results in Table 5.4, Figure 5.10, and Figure 5.11. Because the data was 
collected in the summer of 2023, daylight spanned from 5:30 a.m. to 8:15 p.m. We 
considered nighttime as the baseline. After incorporating the daytime factor, the R2 values for 
the merge and speed regression models increased to 0.782 and 0.166, respectively (Figure 
5.10 and Figure 5.11). This indicates that including the daylight factor is necessary and can 
improve the models’ goodness of fit. Based on the new models, both displaying “merge 
early” message (ME=1) and higher traffic volumes can reduce vehicle approaching speeds. 
Higher speeds will increase the chance of risky merges. In addition, drivers tend to drive 
slower and merge later at nighttime than in daytime work zones. 
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Table 5.3. Campton results without considering the time of day 

Dependent variable Independent variable Coefficient p-value 
Speed Volume −0.83 0.22 

UP 0.13 0.84 
ON −2.48 0.00 
ME −0.76 0.18 

Risky Merge Volume 31.97 0.00 
mean_abs_speed 1.42 0.43 

UP 1.08 0.13 
ON −4.52 0.00 
ME −2.01 0.00 

 

 
  

Table 5.4. Campton results considering the time of day 

Dependent variable Independent variable Coefficient p-value 
Speed Volume −5.59 0.00 

UP 0.47 0.43 
ON −3.22 0.00 
ME −1.09 0.05 

Daylight 2.81 0.00 
Risky Merge Volume 37.07 0.00 

mean_abs_speed 3.88 0.03 
UP 0.71 0.31 
ON −3.57 0.00 
ME −1.61 0.01 

Daylight −2.98 0.00 
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Figure 5.2. Medford M2 upstream speed regression results 

Figure 5.3. Medford M2 downstream speed regression results 
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Figure 5.4. Medford last-minute merge regression results  

Figure 5.5. Danvers D1 downstream speed regression results 
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Figure 5.6. Danvers D2 downstream speed regression results 

Figure 5.7. Danvers last-minute merge regression results 
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Figure 5.8. Campton last-minute merge regression results without considering time of day 

Figure 5.9. Campton speed regression results without considering time of day 
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Figure 5.10. Campton last-minute merge regression results considering time of day 

Figure 5.11. Campton speed regression results considering time of day 
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6.0 Conclusions and Discussion 

Given their substantial impacts on traffic operations and safety, highway work zones are 
attracting increasing attention. This study focuses on utilizing vehicle segment speed profiles 
and trajectory data collected in the field to evaluate four work zone control strategies: 
 

 

 

 

 

 

 

• Transverse rumble strips. 
• Normal versus longer lane closure taper lengths. 
• Flashing speed limit sign. 
• Portable changeable message sign. 

Ultrahigh-definition radar and thermal camera sensors were utilized to collect data from two 
work zones in Massachusetts. In addition, radar and thermal video data collected from a work 
zone in New Hampshire was kindly made available for this study by the New England 
Transportation Consortium. Compared to previous studies that relied on speed data measured 
at limited locations, this research utilizes (1) vehicle speed profiles along a road segment, and 
(2) vehicle trajectories at the beginning of a work zone lane closure taper. Such detailed data 
makes it possible to closely examine how drivers react to different work zone control 
strategies. 

This study is the first application of ultrahigh-definition radars to track vehicles along a road 
segment. It demonstrates the feasibility of using radars to generate vehicle trajectories, 
classify them, and separate their trajectories by lanes. The radar data collection process has 
provided valuable lessons that can guide future research and data collection endeavors. 

This project has also developed YOLOv8-based deep learning models to process the 
collected thermal video data and extract vehicle trajectories. The exploration of deep-
learning-based trajectory data extraction and processing within the scope of this project has 
generated important insights into vehicle merging behavior at nighttime work zone lane 
closure tapers. This study demonstrates, for the first time, the potential of thermal cameras 
and deep learning in studying nighttime work zone safety and traffic operations. 

Based on the derived speed and last-minute merge data, both descriptive and statistical 
analyses have been conducted. Key findings from our research are the following: 

• The developed deep learning models accurately detect and track vehicles from 
thermal videos during both daytime and nighttime. They can categorize vehicles into 
small, medium, and large classes, enabling a nuanced examination of how different 
vehicle types interact with work zone layouts. 

• The deep learning models also segment critical roadway features, allowing for the 
detection of vehicles’ proximity to work zone lane closure tapers. This provides 
important insights into potential safety hazards and operational inefficiencies. 
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• This research found no consistent and statistically significant evidence demonstrating 
that transverse rumble strips effectively reduce vehicle speeds as they approach a 
work zone or encourage early merging. Similarly, there is no clear evidence 
indicating that a longer lane closure taper length is either more or less effective than 
the normal taper length in achieving these outcomes. 

• Both the flashing speed limit sign (FSLS) and portable changeable message sign 
(PCMS) are helpful in encouraging early merging. However, FSLS appears to be 
twice as effective as PCMS. 

• Both FSLS and PCMS appear to be statistically effective in reducing vehicle 
approaching speed when the daytime factor is considered. However, FSLS is three 
times more effective than PCMS.  

• Providing a taper length longer than what is specified in the MassDOT Work Zone 
Safety Manual [3] does not appear to be necessary. 

 
The two work zones in Massachusetts both had exit ramps near the lane closure taper, which 
made it challenging to distinguish the effects of exiting vehicles from the impacts of taper 
length and transverse rumble strips. For future research, it would be beneficial to explore 
work zones unaffected by on and off ramps. Also, increasing the sample size and collecting 
data from more work zones would be helpful. Additionally, mounting radar and camera 
sensors directly above the traffic could provide clearer data.  
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8.0 Appendices 

Appendix A. Speed Distributions  
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Figure 8.1. Medford speed profile on late 5-14-2023 and early 5-15-2023 
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Figure 8.2. Medford speed profile on late 5-15-2023 and early 5-16-2023 
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Figure 8.3. Medford speed profile on late 5-21-2023 and early 5-22-2023 
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Figure 8.4. Medford speed profile on late 5-22-2023 and early 5-23-2023 
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Figure 8.5. Medford speed profile on late 5-24-2023 and early 5-25-2023 
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Figure 8.6. Danvers speed profile on late 5-31-2023 and early 6-01-2023 
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Figure 8.7. Danvers speed profile on late 6-01-2023 and early 6-02-2023 
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Figure 8.8. Danvers speed profile on late 6-05-2023 and early 6-06-2023 
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Figure 8.9. Campton speed profile on 8-17-2023 
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Figure 8.10. Campton speed profile on 8-18-2023 
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Figure 8.11. Campton speed profile on 8-19-2023 
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Figure 8.12. Campton speed profile on 8-20-2023 
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Figure 8.13. Campton speed profile on 8-21-2023 
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Figure 8.14. Campton speed profile on 8-22-2023 
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Figure 8.15. Campton speed profile on 8-23-2023 
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Appendix B. Traffic Volume Data 

Figure 8.16 through Figure 8.28 show the freeway mainline and exit ramp traffic volumes at 
the Medford and Danvers sites. 

 

 
 

 

 
 
 
 

Figure 8.16. Danvers: 5-31-2023 (Rumble strips + normal taper) 

Figure 8.17. Danvers: 6-01-2023 (No rumble strips + normal taper) 
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Figure 8.18. Danvers: 6-05-2023 (Rumble strip + longer taper) 

Figure 8.19. Danvers: 6-06-2023 (Rumble strip + longer taper) 

Figure 8.20. Medford: 5-08-2023 (Rumble strips + normal taper - Day 1) 
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Figure 8.21. Medford: 5-09-2023 (Rumble strips + normal taper - Day 2) 

Figure 8.22. Medford: 5-21-2023 (Rumble strips + normal taper - Day 3) 

Figure 8.23. Medford: 5-08-2023 (No rumble strips + normal taper - Day 1) 
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Figure 8.24. Medford: 5-15-2023 (No rumble strips + normal taper - Day 2) 

Figure 8.25. Medford: 5-17-2023 (No rumble strips + normal taper - Day 3) 

Figure 8.26. Medford: 5-22-2023 (Rumble strips + longer taper - Day 1) 
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Figure 8.27. Medford: 5-23-2023 (Rumble strips + longer taper - Day 2) 

Figure 8.28. Medford: 5-24-2023 (Rumble strips + longer taper - Day 3)  
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Appendix C. Late Merge Data 

The values shown in Figure 8.29 through Figure 8.41 represent aggregated vehicle volumes 
calculated over 15-minute intervals. For instance, a time stamp of 4:15 a.m. on the x-axis 
refers to the period from 4:15 to 4:30 a.m. Consequently, if the work zone concludes at 4:30 
a.m., the final data points (both bars, which represent the late merges, and points, which 
represent the freeway volume) correspond to the 4:15 on the x-axis. 
 

 

 
 
 

 

 
 

Figure 8.29. Danvers: 05-31-2023 (Rumble strips + normal taper) 

Figure 8.30. Danvers: 06-01-2023 (No rumble strips + normal taper) 
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Figure 8.31. Danvers: 06-05-2023 (Rumble strip + longer taper) 

Figure 8.32. Danvers: 06-06-2023 (Rumble strip + longer taper) 
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Figure 8.33. Medford: 05-08-2023 (Rumble strips + normal taper – Day 1) 

Figure 8.34. Medford: 05-09-2023 (Rumble strips + normal taper – Day 2) 

Figure 8.35. Medford: 05-21-2023 (Rumble strips + normal taper – Day 3) 
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Figure 8.36. Medford: 05-14-2023 (No rumble strips + normal taper – Day 1) 

Figure 8.37. Medford: 05-15-2023 (No rumble strips + normal taper – Day 2) 

Figure 8.38. Medford: 05-17-2023 (No rumble strips + normal taper – Day 3) 
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Figure 8.39. Medford: 05-22-2023 (Rumble strips + longer taper – Day 1) 

Figure 8.40. Medford: 05-23-2023 (Rumble strips + longer taper – Day 2) 

Figure 8.41. Medford: 05-24-2023 (Rumble strips + longer taper – Day 3) 
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Appendix D. Drone Video Data 

Table 8.1. Drone data collection at Medford 

Date Location Start 
Time 

Duration 
(min) Type Number of 

Clips 
Size  
(GB) 

05/08/2023 North 21:20 11 RGB 3 5.3 
North 21:49 19 RGB 3 8.6 
North 22:16 20 RGB 3 9.0 
North 22:46 15 RGB 2 6.8 
North 23:09 19 RGB 3 9.0 

Central 21:26 9 RGB 1 4.1 
South 21:35 12 RGB 2 5.8 
South 21:53 25 RGB 3 11.2 
South 22:22 24 RGB 3 10.8 
South 22:50 23 RGB 3 10.8 
South 23:18 23 RGB 3 10.3 

05/09/2023 North 21:06 20 RGB 3 9.0 
North 21:35 24 RGB 3 10.9 
North 10:07 12 RGB 3 5.4 
North 10:28 21 RGB 3 9.5 
North 10:58 21 RGB 3 9.9 
South 21:02 22 RGB 3 9.9 
South 21:28 25 RGB 3 11.2 
South 21:57 25 RGB 3 11.2 
South 22:29 25 RGB 3 11.2 
South 22:58 24 RGB 3 10.8 

05/15/2023 North 21:20 10 RGB + Thermal 1+1 1.4 
North 21:47 13 RGB + Thermal 1+1 1.8 
North 22:14 19 RGB + Thermal 1+1 2.6 
North 22:43 20 RGB + Thermal 1+1 2.7 
North 23:09 19 RGB + Thermal 1+1 2.6 
South 21:21 20 RGB 3 9.0 
South 21:57 26 RGB 3 11.9 
South 22:28 26 RGB 3 11.7 
South 23:00 27 RGB 3 12.1 

05/23/2023 North 21:23 18 RGB + Thermal 1 + 1 2.5 
North 21:50 22 RGB + Thermal 1 + 1 2.9 
North 22:19 18 RGB + Thermal 1 + 1 2.5 
North 22:43 17 RGB + Thermal 1 + 1 2.3 
North 23:11 15 RGB + Thermal 1 + 1 2.1 
South 21:25 21 RGB + Thermal 2 + 2 5.9 
South 21:56 26 RGB + Thermal 2 + 2 7.3 
South 22:28 27 RGB + Thermal 2 + 2 7.5 
South 22:59 26 RGB + Thermal 2 + 2 7.3 
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Table 8.2. Drone data collection at Danvers 

Date Location Start 
Time 

Duration 
(min) Type Number 

of Clips 
Size  
(GB) 

05/31/2023 North 20:29 25 RGB + Thermal 2 + 2 7.1 
North 20:59 26 RGB + Thermal 2 + 2 7.4 
North 21:30 26 RGB + Thermal 2 + 2 7.2 
North 21:58 25 RGB + Thermal 2 + 2 7.0 
South 20:23 19 RGB + Thermal 1 + 1 2.6 
South 20:47 16 RGB + Thermal 1 + 1 2.2 
South 21:12 16 RGB + Thermal 1 + 1 2.3 
South 21:40 18 RGB + Thermal 1 + 1 2.4 
South 22:02 16 RGB + Thermal 1 + 1 2.2 

06/01/2023 North 20:25 25 Thermal 1 1.2 
North 20:54 26 Thermal 1 1.2 
North 21:26 26 Thermal 1 1.2 
North 21:56 26 Thermal 1 1.2 
South 20:19 18 RGB + Thermal 1 + 1 2.5 
South 20:44 18 RGB + Thermal 1 + 1 2.5 
South 21:07 16 RGB + Thermal 1 + 1 2.2 
South 21:33 17 RGB + Thermal 1 + 1 2.4 
South 21:58 18 RGB + Thermal 1 + 1 2.4 

06/062023 North 19:03 19 Thermal 1 0.89 
North 20:30 21 Thermal 1 0.97 
North 21:06 18 RGB + Thermal 2 + 2 5.0 
North 21:32 23 RGB + Thermal 2 + 2 6.6 
South 20:24 12 RGB + Thermal 1 + 1 1.7 
South 20:44 17 RGB + Thermal 1 + 1 2.4 
South 21:06 62 RGB + Thermal 4 + 4 8.5 
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Figure 8.42. RGB versus thermal drone footage under varying light conditions in Danvers 
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Figure 8.43. RGB drone versus thermal ground frames at Medford 

   
 

   
 

   



89 
 

Appendix E. Detailed Traffic Volume and Last-Minute Merge Data 

Table 8.3 through Table 8.6 provide detailed traffic volume and last-minute merge data for Danvers and Medford. In these tables, the 
columns labeled “F,” “E,” and “LM” represent “Freeway Traffic Volume,” “Exit Ramp Traffic Volume,” and “Number of Late 
Merges,” respectively. 
 

 
 

Iin the subsequent tables the recorded start and end times of the work zone are rounded to the beginning or end of the hour; for 
instance, if the work zone commences at 22:30, the entry will be listed under the 22:00 hour column. This does not imply the work 
zone started precisely at 22:00. For accurate timings, please consult the work zone schedule for Danvers detailed in Table 2.3.  

Table 8.3. Danvers 

Date 
Hour 0 Hour 1 Hour 2 Hour 3 Hour 4 Hour 20 Hour 21 Hour 22 Hour 23 

F E LM F E LM F E LM F E LM F E LM F E LM F E LM F E LM F E LM 
5/31/23 – – – – – – – – – – – – – – – 1058 47 10 1065 26 5 846 16 4 681 15 5 
6/1/23 350 7 2 227 3 1 132 4 4 151 2 0 103 8 2 1120 45 10 1072 34 7 926 18 7 783 18 2 
6/2/23 397 5 1 266 7 0 119 5 0 155 4 0 – – – – – – – – – – – – – – – 
6/5/23 – – – – – – – – – – – – – – – 923 27 2 853 15 7 590 7 4 393 13 1 
6/6/23 239 5 2 172 2 1 128 4 0 141 4 0 291 7 0 690 21 7 1029 29 12 686 18 5 541 9 4 
6/7/23 254 4 1 179 5 0 148 2 1 104 4 2 – – – – – – – – – – – – – – – 
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The work zone schedule for Medford is detailed in Table 2.2.  
 
 

Table 8.4. Medford with rumble strips + normal taper 

Date 
Hour 0 Hour 1 Hour 2 Hour 3 Hour 4 Hour 21 Hour 22 Hour 23 

F E LM F E LM F E LM F E LM F E LM F E LM F E LM F E LM 
5/8/23 – – – – – – – – – – – – – – – – – – 297 45 1 852 98 6 
5/9/23 366 39 2 311 25 5 275 16 1 499 41 2 231 19 0 2209 253 19 1422 165 8 948 86 9 
5/10/23 403 22 2 334 17 8 309 20 1 – – – – – – – – – – – – – – – 
5/21/23 – – – – – – – – – – – – – – – 1724 221 16 1692 184 17 1151 94 11 
5/22/23 687 58 1 464 30 4 375 27 0 582 44 2 – – – – – – – – – – – – 

 

Table 8.5. Medford with no rumble strips + normal taper 

Date 
Hour 0 Hour 1 Hour 2 Hour 3 Hour 4 Hour 20 Hour 21 Hour 22 Hour 23 

F E LM F E LM F E LM F E LM F E LM F E LM F E LM F E LM F E LM 
5/14/23 – – – – – – – – – – – – – – – – – – – – – 755 84 4 949 88 8 
5/15/23 564 34 3 368 30 2 337 20 2 390 32 1 – – – 1730 277 24 1981 224 20 1599 183 19 870 72 3 
5/16/23 473 28 1 295 20 2 264 23 2 567 44 2 244 11 0 – – – – – – – – – – – – 
5/17/23 – – – – – – – – – – – – – – – – – – 1101 149 9 1857 237 18 1051 117 8 
5/18/23 532 56 3 295 38 1 310 27 1 412 53 0 – – – – – – – – – – – – – – – 
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Table 8.6. Medford with rumble strips + longer taper 

Date 
Hour 0 Hour 1 Hour 2 Hour 3 Hour 21 Hour 22 Hour 23 

F E LM F E LM F E LM F E LM F E LM F E LM F E LM 
5/22/23 – – – – – – – – – – – – 1527 164 30 1580 168 12 892 87 11 
5/23/23 464 33 4 329 22 5 310 24 3 401 27 2 – – – – – – 176 21 1 
5/24/23 472 46 1 287 34 3 300 35 1 209 34 0 – – – 321 43 0 978 113 4 
5/25/23 570 51 2 382 41 1 350 41 1 388 41 1 – – – – – – – – – 
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Appendix F. Sample Detections of Vehicles 
Traveling Too Close to the Work Zone Lane 
Closure Taper 

 

 

Figure 8.44. Last-minute merges from the Danvers D2-downstream camera  

 
(a) Id: 743, 05/31/2023, 22:14. (b) Id: 954, 05/31/2023, 22:48. 

(c) Id: 11, 06/01/2023, 00:45. (d) Id: 2300, 06/01/2023, 20:30. 
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Figure 8.45. Additional last-minute merges from the Danvers D2-downstream camera 

(a) Id: 179, 06/01/2023, 02:10. (b) Id: 11, 06/02/2023, 00:55. 

(c) Id: 11, 06/06/2023, 20:50. (d) Id: 330, 06/07/2023, 00:21. 
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Figure 8.46. Last-minute merges from the Medford M3-downstream camera  

(a) Id: 78, 05/09/2023, 01:48. (b) Id: 572, 05/09/2023, 02:13. 

(c) Id: 4099, 05/09/2023, 21:16. (d) Id: 959, 05/09/2023, 04:07. 
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Figure 8.47. Additional last-minute merges from the Medford M3-downstream camera 

(a) Id: 66, 05/16/2023, 02:28. (b) Id: 9053, 05/21/2023, 21:12. 

(c) Id: 8935, 05/17/2023, 22:22. (d) Id: 255, 05/10/2023, 01:55. 
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