Statistical Sampling for the Estimation of River Herring Run Size Using Visual Counts

Ultimate Goal

- How many river herring are migrating into a watershed?
 - Trends in abundance over time tell us about status of the run (i.e., declining?)
 - Knowing abundance allows us to set regulations to ensure continued survival (i.e., fixed escapement)

Two Methods to Measure Abundance

- <u>Census</u>
 - Count every individual
 - Can be extremely time consuming, labor intensive and high cost (e.g., US census)
 - For herring can use:
 - Electronic counter (check and calibrate)
 - Video (have to watch every second of images)

Two Methods to Measure Abundance (cont)

- <u>Statistical Survey Sampling</u>
 - Allows estimation of daily run size based on counts of fish from a small number of short time observations (e.g., 10-min counts)

Typically, statistical techniques are used when visual counting is the primary observation method (can use with other methods too).

Presentation Goals

- Discuss statistical survey methodology
 - Basic Procedures
 - Producing reliable estimates
 - Review of the recommended sampling design
 - Power
 - What if sampling procedures aren't followed

Basic Statistical Procedure

- Need a "population" from which to take a sample of members
- For us, the "population" will be defined as the total number of time units (e.g., 10-minute intervals) over which herring could be counted

12 hours, 30 minute intervals = 24 intervals; **total fish = 154**

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	3	4	20	22	13	12	9	5	2	0	0	0	2	7	12	16	18	4	3	2	0

• Select randomly a subset (sample) of units, then make counts

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	3	4	20	22	13	12	9	5	2	0	0	0	2	7	12	16	<mark>18</mark>	4	3	2	0

Basic Statistical Procedure (cont.)

To get daily run size, we first need to estimate:

Mean number of fish per time unit (\bar{y})

12 hours, 30 minute intervals = 24 intervals; true mean = 6.41 fish

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	3	4	20	22	13	12	9	5	2	0	0	0	2	7	12	16	<mark>18</mark>	4	3	2	0

Sample:
$$\overline{y} = \frac{0+0+9+0+18 fish}{5} = \frac{5.4 fish}{interval}$$

Basic Statistical Procedure (cont.)

The total number of time units (N) is multiplied by mean (\bar{y}) to extrapolate to the total number of fish (Y):

$$Y = \bar{y} \cdot N$$

Example:
$$Y = \frac{5.4 \, fish}{interval} \cdot 24 \, intervals = 129.6 \, fish$$

• The mean is the critical statistic (!!!!) and must be estimated accurately and precisely to get a reliable estimate of total number of fish passing

What makes a reliable estimate?

• Accuracy – How close repeated estimates are to the true value

Random selection ensures estimates are unbiased

How to produce unbiased estimates

- Use an estimator (e.g., mean formula) that is known to produce unbiased estimate
- Follow recommended statistical procedures for selecting units!
- Random Selection of Units (without replacement)
- Estimation of statistics is probability-based
 - Each unit has same probability of being selected
 - Selection of one unit has no influence on the selection of another unit (Can't sample contiguous units because of convenience)

How to take a random sample

• Number time units from 1 to total (e.g., 24 thirty-minute intervals in 12 hours)

12 hours, 30 minute intervals = 24 intervals; **total fish = 154**

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	3	4	20	22	13	12	9	5	2	0	0	0	2	7	12	16	18	4	3	2	0

• Use random-number generator to pick subsample of size *n* without replacement (e.g., pick 5 units out of 24)

<u>On-line</u>

https://www.calculatorsoup.com/calculators/statistics/random-number-generator.php

What makes a reliable estimate?

Precision – How close repeated estimates are to each other

Mean

Mean

Mean

What Ensures Accuracy and Precision?

Means Distribution from Repeated Sampling using Different Sample Sizes

Mean

Estimation

- In reality, we only estimate quantity once
- Need to choose units randomly (ensure unbiased) and select appropriate sample size that will ensure our estimate will lie close to true value
- Sample size determination is a big part of sampling and should be considered <u>before</u> study proceeds from a pilot study usually

Sample Size Determination (How many intervals should be sampled)

- SSD big part of estimation (Nelson, 2006)
- Desired Level of Precision (could be restricted due to effort limitation)
- Natural Variability of Counts

- Number of Total Intervals (Population)
- If interested in determining significant changes of counts over time power

Assessing Reliability of Single Estimate

- How can we assess the reliability of an estimate without knowing the true value?
- Confidence intervals!
- CIs are the lower and upper boundaries that theoretically would include the true mean X% of the time if sampling was repeated
- Width gives an indication of reliability/certainty

95% Confidence Limits

(5% Chance True Mean is Not Included)

If we want greater confidence that the interval covers the true value, $\uparrow\%$, but we become less certain about true value

Assessing Reliability of Single Estimate

$$\underline{\text{Mean}}$$
Lower: $\hat{y} - t_{\alpha/2} \cdot \sqrt{\frac{N-n}{N} \cdot \frac{\hat{s}^2}{n}}$
Upper: $\hat{y} + t_{\alpha/2} \cdot \sqrt{\frac{N-n}{N} \cdot \frac{\hat{s}^2}{n}}$

$$\hat{s}^2 = \frac{\sum_{i=1}^n (y_i - \hat{y})^2}{n-1}$$

$$\frac{\text{Total}}{\hat{Y} - t_{\alpha/2}} \cdot \sqrt{N \cdot (N - n) \cdot \frac{\hat{s}^2}{n}}$$
$$\hat{Y} + t_{\alpha/2} \cdot \sqrt{N \cdot (N - n) \cdot \frac{\hat{s}^2}{n}}$$

Must have min. 2 samples to calculate variance (should have > 2)

Sampling Designs

- Concerns every aspect of how data are selected
- Take advantage of consistent patterns in variability to increase precision of estimates
- Five designs discussed in Nelson (2006)
 - Recommended
 - Two-way stratified random sampling

What Does Stratified Random Sampling Mean?

- Based on some factor that is linked to variability in observations, groups known as strata are created
- Units within a stratum are picked at random
- Estimates of mean or total are made for each stratum and then are combined
- By making observations more homogeneous within a stratum, precision can be increased (CIs narrower)

Two-Way Stratified Random Sampling

Counting Period: 7 am to 7 pm

Counting Subperiods: 7-11 am, 11 am-3 pm, 3-7 pm

Counting Interval: 10 minutes

Counting Coverage: 3 counts per subperiod

Daily Run Size = $Y_1 + Y_2 + Y_3$ Total Run Size = $Y_{T,1} + Y_{T,2} + Y_{T,3} + Y_{F,1} + Y_{F,2} + Y_{F,3}$

Power

- The ability to detect changes in run size over time when change is occurring is known as *power*
- The ability to statistically say that there is a change depends on the precision of estimate (and *n*)
- If run size is imprecisely estimated each year, may not conclude statistically that an observed increase or decrease in estimate is occurring
- But may be able to detect changes over several years

Gerrodette (1987; 1991) – many different assumptions from which to choose – see R fishmethods package, *powertrend*

What if the Sampling Procedures Aren't Followed

Three deficiencies that seriously affect the accuracy and precision of run size estimates

- Low sample sizes
- Non-random sampling
- Only counting when observe fish
- Unsampled days

Low Sample Sizes

- Low sample sizes, low precision unless natural variation is very low
- Minimum of 2 required per stratum for all designs
- If only one sample, can't calculate sample variance which means confidence intervals will be underestimated
- Could make erroneous conclusion of the state of the run

Non-Random Sampling

- Estimation theory is dependent on random selection of units
- Subjective selection biases estimates
 - Making contiguous counts for convenience
 - Counting the same time each day
- If patterns in fish migration, departures from random can have big impact on accuracy of estimate

Afternoon Migration

Total = 259

Morning Sampling Only

Total=124.8

Afternoon Sampling Only

Only counting when fish are present

- Bias in run size as number of missing days increases
- Bias in run size as number sequential missing days increases

Other Issues

- Variable count interval length
 - Interval must be constant
- Back-to-back counts
 - Not randomly selected
- Intervals concentrated at same times each day
 - Not randomly selected
- Incorrect species identification
 - More than just river herring migrating
 - Need to properly train volunteers

Main Message

- To obtain unbiased estimates: randomly select units
- To obtain accuracy/precise estimates: increase sample size
- Deviations from theory affect estimates