Stormwater Scenarios, Discussion Forum, Next Steps

Massachusetts Department of Environmental Protection
Stormwater Advisory Committee

Meeting 5: December 2, 2020

Agenda

- Welcome, Agenda, Introductions, Meeting Protocols
- Stormwater Scenarios Presentation and AC Discussion
- Break (5 min) -----
- Facilitated AC Discussion Forum All Stormwater Topics
- Break (10 min) -----
- Public Q&A
- Next Steps and Schedule

Stormwater Scenarios

Project Background

 MassDEP is considering revisions to the Stormwater Management Handbook.

Project Objective:

 Perform analysis of three (3) potential development Scenarios to demonstrate changes that may result from proposed revisions.

Overview of Proposed Revisions

Standard 2, Peak Discharge:

 Change Design Storms from TP40 to NOAA Atlas 14 PLUS.

Standard 3, Recharge Volume

 Increase for New Development and Redevelopment to meet current regulation.

Standard 4, Pollutant Removal

 Increase for New Development and Redevelopment to align with MS4.

Scenario Identification

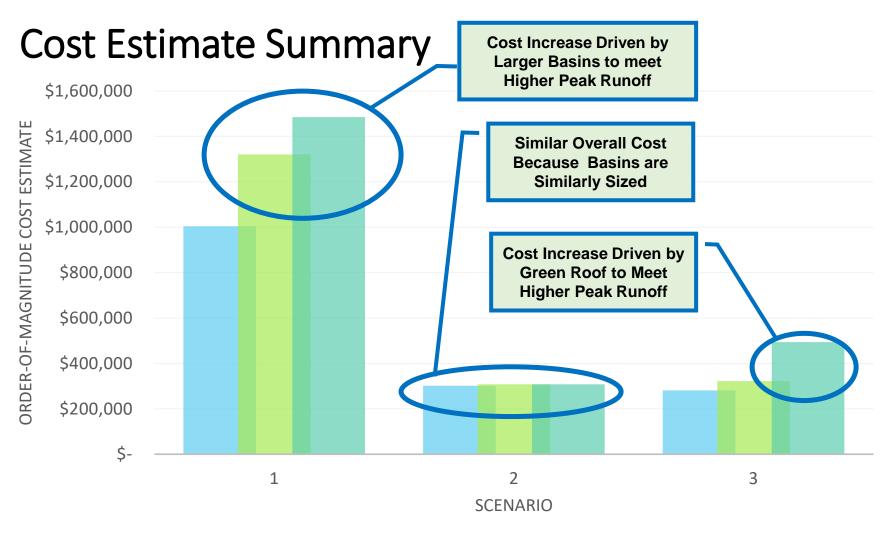
Scenarios represent a range of typical development and redevelopment situations:

• Scenario 1: New Residential Development

Scenario 2: Roadway Redevelopment

Scenario 3: Tight Urban Lot Redevelopment

Stormwater Scenarios Summary of Findings

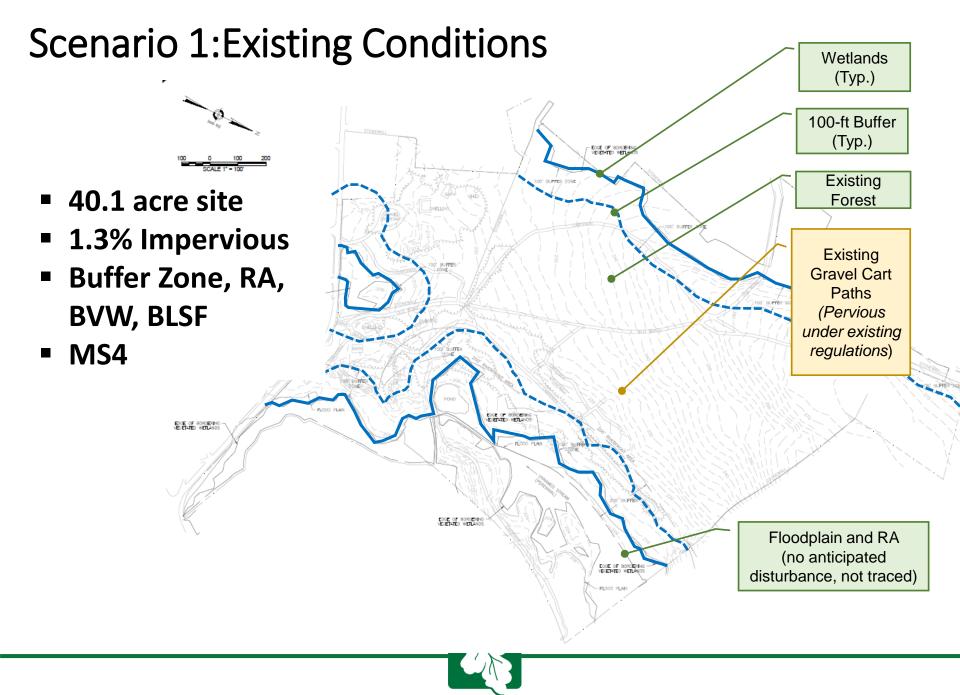


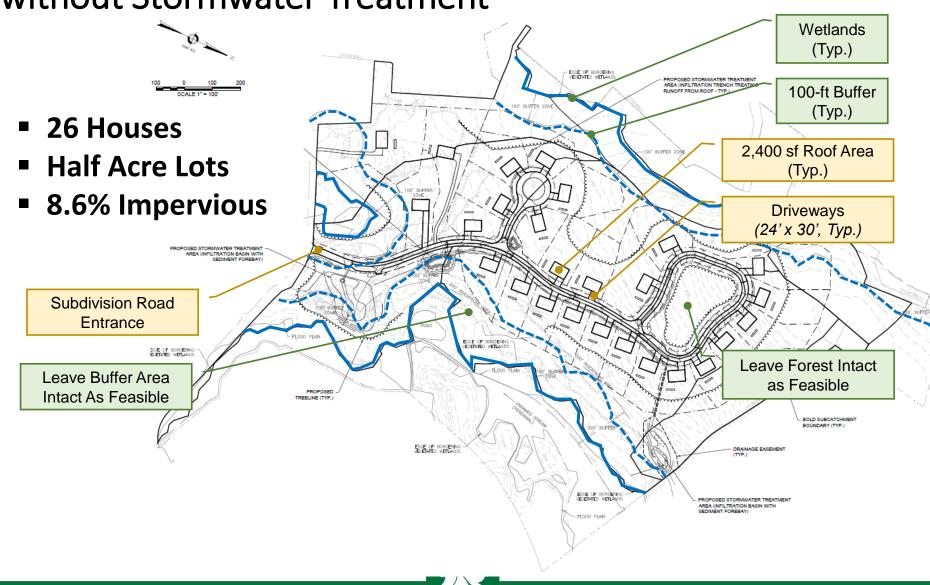
Overall Conclusions for All Three Scenarios

Overall

- Proposed revisions appear to be generally feasible.
 - R_v and peak discharge were the most challenging standards to meet.
- Creative ESSD / LID / off-site mitigation may be required for space constrained sites.
- BMP sizing and associated costs are expected to increase.
- Different standards drive increases in sizing and cost
 - Standard 4 (Water Quality) did not drive sizing in any scenario

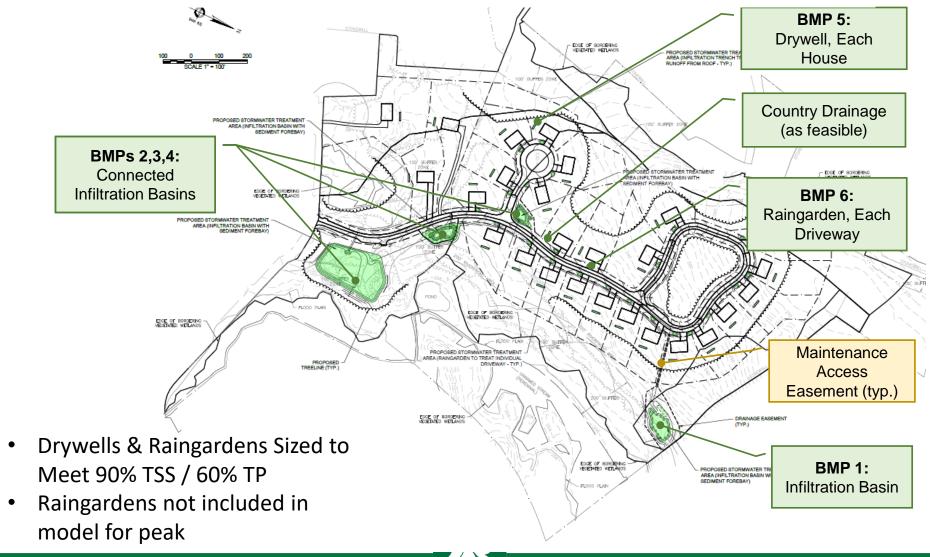
■ Ex. Standards (TP 40) ■ Possible Standards (NOAA Atlas 14) ■ Possible Standards (NOAA Atlas 14 PLUS)


Scenario 1 New Development 26-Lot Residential Subdivision


Scenario 1: Narrative

- Existing Conditions: 40.1 acre parcel primarily comprised of open space and forest.
 - Freshwater wetlands, two unnamed streams present on site.
 Site is crisscrossed by old gravel cart paths.
- Proposed Conditions: Subdivide the site into 26 half-acre single family lots.
 - Proposed ESSD: leave surrounding wetlands undisturbed, keep development out of 100-ft buffer as feasible, leave forested areas intact as feasible, and limit driveway sizing to 24-ft wide by 30-ft long.
- Proposed Stormwater Treatment: See forthcoming slides.

Scenario 1: Proposed Project Conditions without Stormwater Treatment


Scenario 1A:

Treatment Option Under **Existing** Regulation

Scenario 1B:

Treatment Option Under **Proposed** Regulation

Scenario 1A/1B Results

Treatment Goal:	Meet Existing Handbook Criteria	Meet Proposed Handbook Update Criteria
Rainfall Type	TP40	NOAA Atlas 14 PLUS
BMP Design Volumes	- Total: 17,000 cf - Rv: 17,000 cf - WQv: 17,000 cf	- Total: 66,400 cf - Rv. 26,900 cf - WQv. 26,900 cf
Standard 2: Peak Discharge (2-yr)	- Criteria: Post < Pre- Result: 20% Reduction	- Criteria: Post < Pre- Result: 43.8% Reduction
Standard 2: Peak Discharge (100-yr)	- Criteria: Post < Pre- Result: 7.4% Reduction(Criteria Drives Sizing)	- Criteria: Post < Pre- Result: 2.3% Reduction(Criteria Drives Sizing)
Standard 3: Recharge Volume	- Criteria: 0.25" (Type C Soil) - Result: 1.35"	-Criteria: 1" (Type C Soil) -Result: 2.13"
Standard 4: Pollutant Removal	- Criteria: 0.5" WQv, 80% TSS -Result: 1.35" WQv, 81% TSS	- Criteria: EPA Curves, 90% TSS / 60% TP (Appx. Min. WQv Depth = 0.58") - Result: 2.13" WQv; 94% TSS / 79% TP
Cost Estimate for Stormwater System	Total: \$1,004,000 (<i>Per Unit:</i> \$38,615.38)	Total: \$1,485,000 (Per Unit: \$57,115.38)

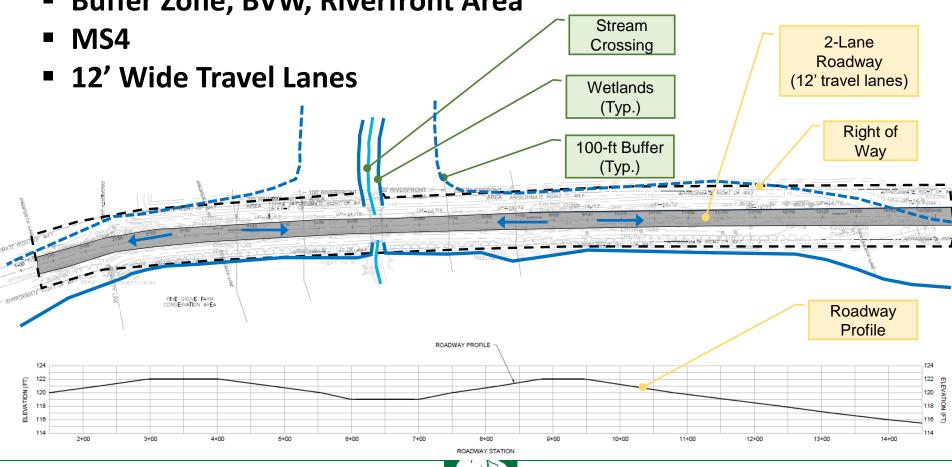
Cost Diff./Unit

- TP40 to NOAA 14 = \$12,192.31
- TP40 to NOAA 14 PLUS = \$18,500.00

Scenario 2 1,500-foot Existing Roadway Widening Less Than Single Lane To Add Sidewalk and Bicycle Path/Shoulder

Scenario 2: Narrative

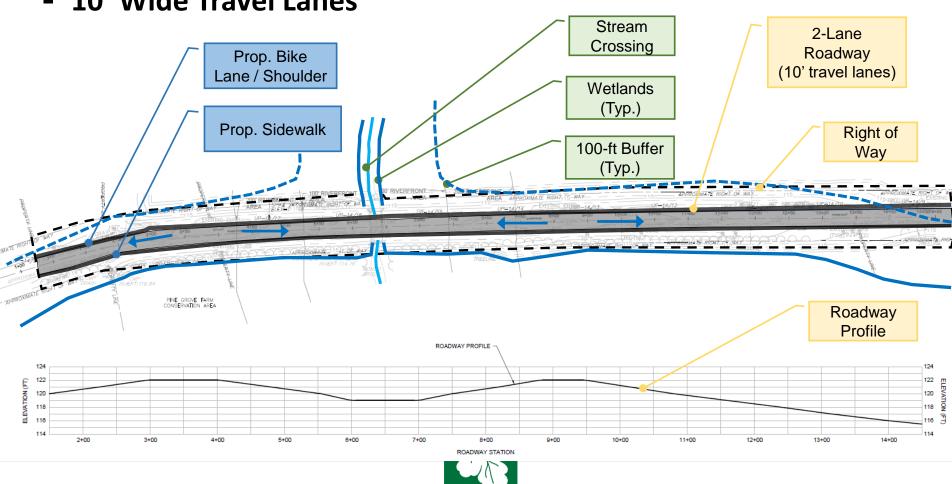
- Existing Conditions: Two lane ~1,500 ft long by 23-ft wide roadway with no shoulders (center line markings only). Roadway is constructed on earthen embankment and includes wetlands on both sides and crosses a stream in a culvert. Curbing and a stormwater collection system conveys roadway runoff directly into the stream.
- Proposed Conditions: Roadway reconstruction to improve pedestrian and bike access by adding a 5-ft wide bike lane on the northern side and a 5-ft wide pedestrian sidewalk on the southern side of the road with a 1-ft wide shoulder.
 - ESSD site practices: reduce each travel lane to 10-ft. Reconstructed road will not include shoulder parking – i.e., shoulder will be shared with the bike lane to reduce width. Overall road width will be 26-ft (1-10-10-5).
- Proposed Stormwater Treatment: See forthcoming slides.



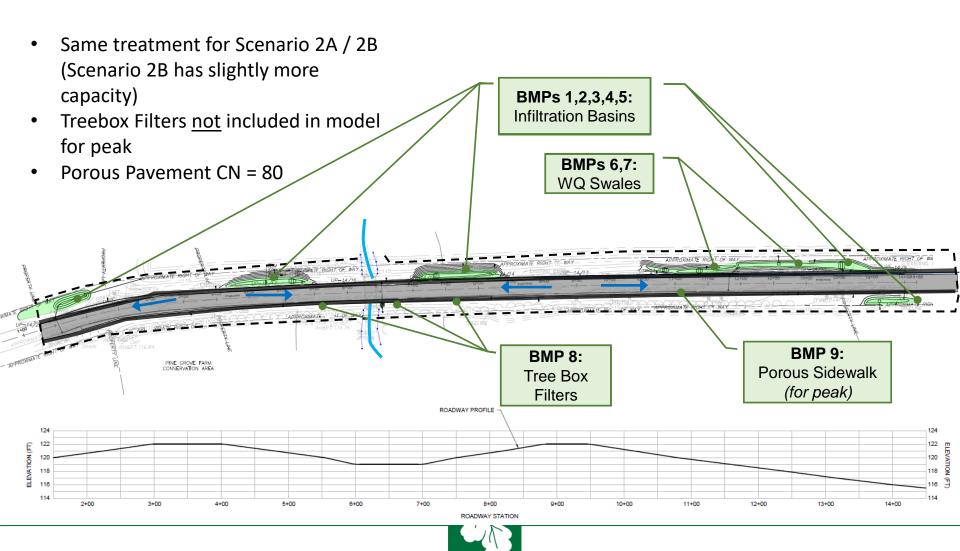
Scenario 2: Existing Conditions

16.18°

- 2.23 acre Right of Way
- 34.1% Impervious


Buffer Zone, BVW, Riverfront Area

Scenario 2: Proposed Project Conditions without Stormwater Treatment


16.18° /

- 2.23 acre Right of Way
- 35.4% Impervious
- 10' Wide Travel Lanes

Scenario 2A / 2B:

Treatment Options Under **Existing & Proposed** Regulation

16.18°

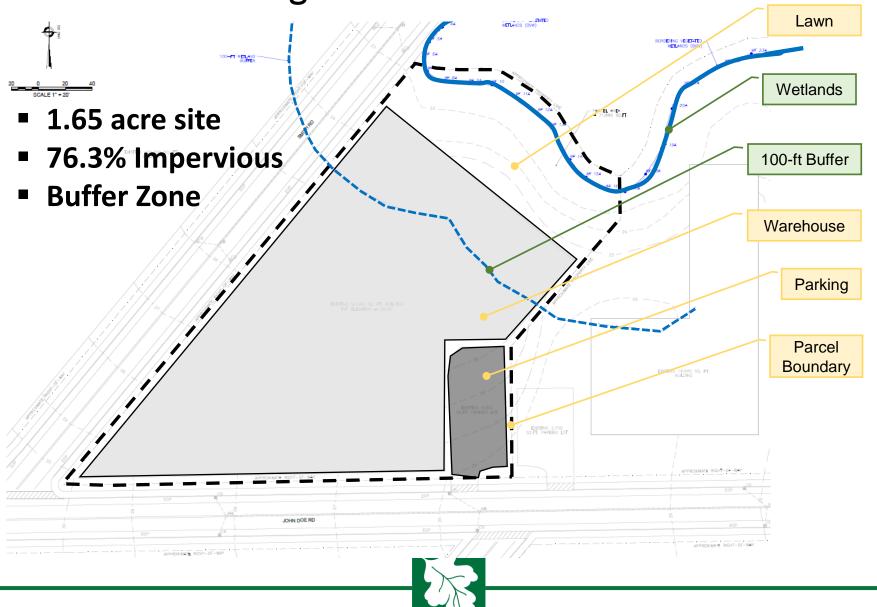
Scenario 2A/2B Results

Treatment Goal:	Meet Existing Handbook Criteria	Meet Proposed Handbook Update Criteria
Rainfall Type	TP40	NOAA Atlas 14 PLUS
BMP Design Volumes	- Total: 1,810 cf - Rv: 1,690 cf - WQv: 1,810 cf	- Total: 2,411 cf - Rv: 2,211 cf - WQv: 2,411 cf
Standard 2: Peak Discharge (2-yr)	- Criteria: Post < Pre (MEP)- Result: 4.6% Reduction	- Criteria: Post < Pre (MEP)- Result: 10.1% Reduction
Standard 2: Peak Discharge (100-yr)	- Criteria: Post < Pre (MEP)- Result: 0.2% Reduction	- Criteria: Post < Pre (MEP)- Result: 4.8% Reduction
Standard 3: Recharge Volume	- Criteria: 0.25" (MEP) - Result: 0.49"	-Criteria: 1" (MEP) -Result: 0.65" (Criteria Drives Sizing)
Standard 4: Pollutant Removal	- Criteria: 0.5" WQv, 80% TSS (MEP) -Result: 0.53" WQv, 82% TSS (Criteria Drives Sizing)	 Criteria: EPA Curves, 80% TSS / 50% TP (Appx. Min. WQv Depth = 0.40") Result: 0.70" WQv, 89% TSS / 66% TP
Cost Estimate for Stormwater System	Total: \$302,000 (Per Linear Foot: \$201.33)	Total: \$308,000 (Per Linear Foot: \$205.33)

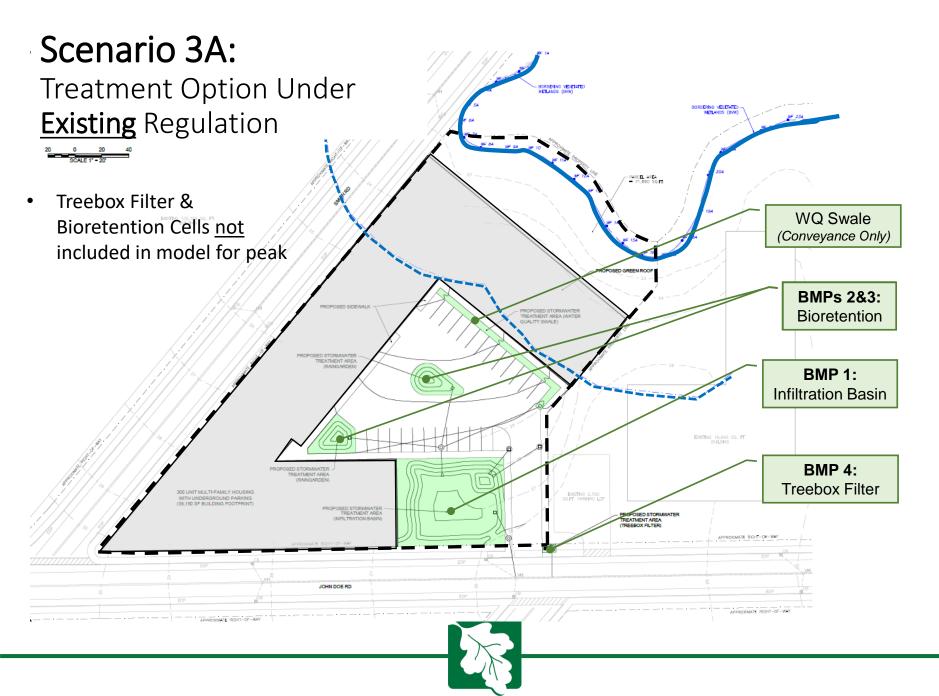
Cost Diff./Linear Foot

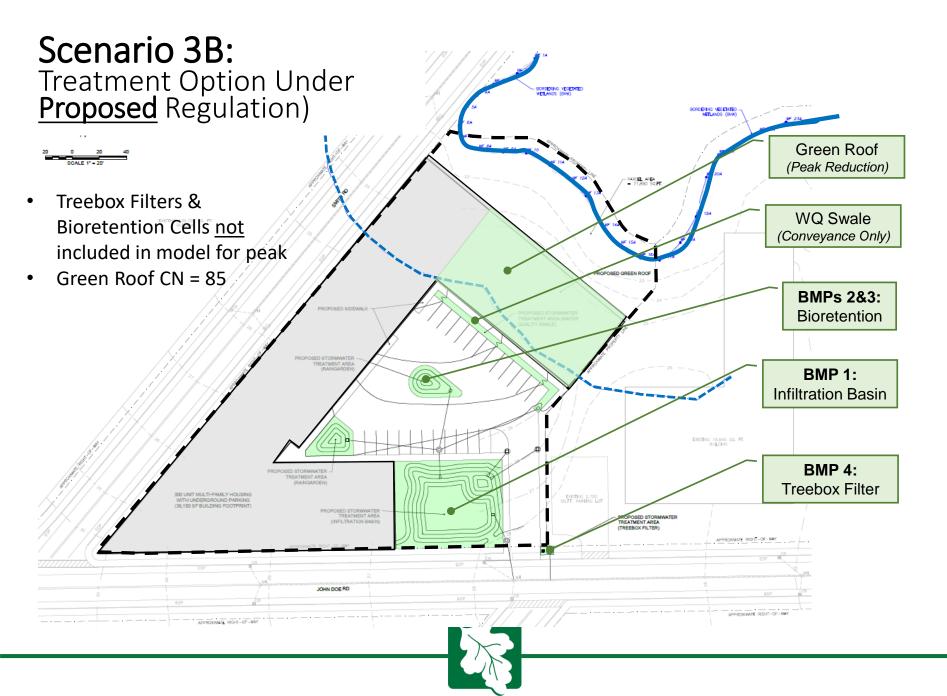
• TP40 to NOAA 14 PLUS = \$4.00

Scenario 3 Redevelopment Manufacturing to 300 Unit Residential Building On Small Urban Lot



Scenario 3: Narrative


- Existing Conditions: 1.65 acre lot in a highly urbanized with an existing warehouse and parking area. Warehouse takes up most of the lot. Site is bordered by two roadways, a freshwater wetland, and an existing building and parking lot. Drainage from the building and parking lot discharges to the existing MS4. A grassed area to the northwest discharges to the freshwater wetland.
- Proposed Conditions: Demolish existing building and construct a 300-unit multi-family housing structure with a slightly larger footprint.
 - ESSD site practices will include: 1) decrease the existing building and parking lot footprint and 2) convert existing grassed area to brush (i.e., shrubs and wildflowers). The building will have 7 floors and parking for ~ 720 vehicles (i.e., 2.4 vehicles per unit) in an underground parking garage.
- Proposed Stormwater Treatment: See forthcoming slides.



Scenario 3: Existing Conditions

Scenario 3: Proposed Project Conditions without Stormwater Treatment Convert Existing Lawn to Shrub / Wildflower Mix (Peak Reduction) Wetlands **300 Housing Units** 7 stories 78.2% Impervious 100-ft Buffer 720 parking stalls 5 levels subsurfage Short-Term **Parking** EXISTING 16,645 SQ. FT BUILDING Parcel Boundary 00 UNIT MULTI-FAMILY HOUSING PROPOSED STORMWATE TREATMENT AREA

Scenario 3A/B Results

Treatment Goal:	Meet Existing Handbook Criteria	Meet Proposed Handbook Update Criteria
Rainfall Type	TP40	NOAA Atlas 14 PLUS
BMP Design Volumes	- Total: 2,620 cf - Rv: 1,345 cf - WQv: 2,620 cf	- Total: 5,320 cf - Rv: 2,045 cf - WQv: 3,320 cf
Standard 2: Peak Discharge (2-yr)	- Criteria: Post < Pre (MEP) - Result: 10.3% Reduction	- Criteria: Post < Pre (MEP)- Result: 23.2% Reduction
Standard 2: Peak Discharge (100-yr)	- Criteria: Post < Pre (MEP) - Result: 8.0% Reduction	- Criteria: Post < Pre (MEP)- Result: No Change(Criteria Drives Sizing)
Standard 3: Recharge Volume	- Criteria: 0.25" (MEP) - Result: 0.29"	-Criteria: 1" (MEP) -Result: 0.44" (Criteria Drives Sizing)
Standard 4: Pollutant Removal	- Criteria: 0.5" WQv, 80% TSS (MEP) -Result: 0.56" WQv, 89% TSS (Criteria Drives Sizing)	- Criteria: EPA Curves, 80% TSS / 50% TP (Appx. Min. WQv Depth = 0.45") - Result: 0.71" WQv, 94% TSS / 63% TP
Cost Estimate for Stormwater System	Total: \$281,000 (Per Unit: \$936.67)	Total: \$494,000 (Per Unit: \$1,646.67)

*1" R_v not met, can't drawdown in 72 hours within available space

Cost Diff./Unit

- TP40 to NOAA 14 = \$136.67
 - TP40 to NOAA 14 PLUS = \$710.00

Overview of Comments

- AC comments from mtng summaries, web submissions, correspondence, etc.
- Six main "buckets" stood out, each with key subtopics

Consistency between MassDEP and EPA Stormwater Requirements

- Pollutant removal/treatment requirements (who's fully subject, MEP etc.)
- New and redevelopment definitions
- Differences in standards for roadways
- Offsite mitigation (proposed for redevelopment Stds 3&4, allowed for MS4)
- Interim guidance to inform municipal bylaws/ordinances
- Impervious surface definition
- TMDL's align with EPA permit

Overview of Comments

Updating Precipitation Data

- Peer review NOAA PLUS
- Use NOAA14 full upper confidence interval, not 0.9
- Impact on conveyance systems
- Change in BLSF and ILSF boundaries (in the event of a conflict)

Recharge/LID

- Recharge should be based on soil type
- MEP for C and D soils
- Size BMP's to provide recharge on an annual basis

Overview of Comments

Low Impact Development

- LID can reduce costs of stormwater management
 Consider options to incentivize LID /higher levels of protection
 - strong standards
 - expedited permitting (carrot)
- Look at zoning and site regulations

Redevelopment - Maximum Extent Practicable Standard (MEP)

- Clarify to avoid loophole (e.g. to address peak runoff)
 Clarify proposed recharge requirement includes MEP for D soils
 Concern about DEP 5-9 lot subdivision proposal
- Keep for new sidewalks, foot/bike paths, bike travel lanes, etc.

Schedule / Timing

- Uncertainty how will state & EPA reqmnts apply now & post-MS4 settlement
- Transition provisions for projects already in pipeline

Next Steps and Schedule

- Conclude Advisory Committee Fall 2020
- Prepare Draft SW Handbook & Reg Revisions Winter 2021
- Issue Draft SW Handbook & Regs for Public Comment Spring 2021
 - Review and prepare response to public comments
- Promulgate Summer 2021

