Stormwater Management Report Municipal Parking Lot & Green Infrastructure Project

Mechanic Street Spencer, MA

PREPARED FOR: Town of Spencer

January 6, 2020

Revised February 21, 2020

PREPARED BY

1550 Main Street, Suite 400 Springfield, MA 01103

Project No. 20170390.D51

Table of Contents

Stormwater Management Report Municipal Parking Lot & Green Infrastructure Project

1	Executive Summary	3
2	Project Description2.1Existing Conditions2.2Proposed Conditions	4 4 4
3	Hydrologic Analysis3.1Existing Watershed Summary3.2Proposed Watershed Summary3.3Hydrologic Analysis Results3.4Storm Sewer Design3.5Climate Resilience	5 5 6 7 7
4	Soil Erosion and Sedimentation Control	8
5	Construction Sequence	8
6	Massachusetts Stormwater Handbook Standards	9
7	Summary	10
7 Figure	Summary	End of Report
7 Figure	Summary es Site Location Map	End of Report
7 Figure 1 2	Summary es Site Location Map Flood Insurance Rate Map	10 End of Report
7 Figure 1 2 3	Summary es Site Location Map Flood Insurance Rate Map NRCS Web Soil Survey Map	10 End of Report
7 Figure 1 2 3 4	Summary es Site Location Map Flood Insurance Rate Map NRCS Web Soil Survey Map Pre-Development Watershed Map	10 End of Report
7 Figure 1 2 3 4 5	Summary es Site Location Map Flood Insurance Rate Map NRCS Web Soil Survey Map Pre-Development Watershed Map Post-Development Watershed Map	10 End of Report
7 Figure 1 2 3 4 5 Appen	Summary. es Site Location Map Flood Insurance Rate Map NRCS Web Soil Survey Map Pre-Development Watershed Map Post-Development Watershed Map	End of Report
7 Figure 1 2 3 4 5 Appen A	Summary. es Site Location Map Flood Insurance Rate Map NRCS Web Soil Survey Map Pre-Development Watershed Map Post-Development Watershed Map endices Soil Investigations	End of Report
7 Figure 1 2 3 4 5 Appen A B	Summary. es Site Location Map Flood Insurance Rate Map NRCS Web Soil Survey Map Pre-Development Watershed Map Post-Development Watershed Map endices Soil Investigations Pre-Development Watershed Analysis	End of Report
7 Figure 1 2 3 4 5 Appen A B C	Summary. es Site Location Map Flood Insurance Rate Map NRCS Web Soil Survey Map Pre-Development Watershed Map Post-Development Watershed Map endices Soil Investigations Pre-Development Watershed Analysis Post-Development Watershed Analysis	End of Report
7 Figure 1 2 3 4 5 Appen A B C D	Summary. es Site Location Map Flood Insurance Rate Map NRCS Web Soil Survey Map Pre-Development Watershed Map Post-Development Watershed Map endices Soil Investigations Pre-Development Watershed Analysis Post-Development Watershed Analysis Storm Sewer Pipe Sizing Calculations	End of Report
7 Figure 1 2 3 4 5 Apper A B C D E	Summary. es Site Location Map Flood Insurance Rate Map NRCS Web Soil Survey Map Pre-Development Watershed Map Post-Development Watershed Map endices Soil Investigations Pre-Development Watershed Analysis Post-Development Watershed Analysis Storm Sewer Pipe Sizing Calculations Storm Sewer Pipe Sizing Calculations	End of Report
7 Figure 1 2 3 4 5 Appen A B C D E F	Summary. es Site Location Map Flood Insurance Rate Map NRCS Web Soil Survey Map Pre-Development Watershed Map Post-Development Watershed Map endices Soil Investigations Pre-Development Watershed Analysis Post-Development Watershed Analysis Storm Sewer Pipe Sizing Calculations Stormwater Management Checklist BMP Sizing Calculations	
7 Figure 1 2 3 4 5 Appen A B C D E F G	Summary es Site Location Map Flood Insurance Rate Map NRCS Web Soil Survey Map Pre-Development Watershed Map Post-Development Watershed Map endices Soil Investigations Pre-Development Watershed Analysis Post-Development Watershed Analysis Storm Sewer Pipe Sizing Calculations Stormwater Management Checklist BMP Sizing Calculations TSS Removal Calculations	

1 Executive Summary

The Town of Spencer proposes to construct a new municipal parking lot located at Mechanic Street in Spencer, Massachusetts. A portion of the property is currently a parking lot while the remaining portion is a poor stand of grass, the location of two recently demolished structures. The site is bounded by the United State Postal Service to the north, Wall Street, LLC to the west, a residential property to the south, and Mechanic Street to the east. The project location is depicted on the Site Location Map attached as *Figure 1* in this report.

The project includes the construction of a parking lot with associated stormwater management systems and landscaping (i.e., green infrastructure). The overall drainage pattern of the site will be similar to existing conditions.

The proposed stormwater management system design is consistent with the guidelines of the Massachusetts Stormwater Handbook and the Spencer Stormwater Bylaw and Regulations. Green infrastructure Stormwater best management practices (BMPs) have been implemented to reduce runoff volumes and Stormwater pollutant loads, mitigate increases in peak runoff rates and to promote groundwater recharge. The existing and proposed site conditions and proposed stormwater management system are described in detail in *Section 2* of this report.

The design drawings include controls to protect receiving stormwater systems and properties adjacent to the development from erosion and sedimentation impacts caused by construction site runoff. The plan incorporates both non-structural and structural controls, such as inspections, waste management, good housekeeping and maintenance, perimeter sediment barriers, dust suppression, and a construction entrance. The proposed drainage systems will be protected with catch basin inlet protection devices, erosion control blankets, and compost filter socks. Additional information related to erosion and sediment controls is included in *Section* 4. In order to ensure the long-term success of the stormwater management system, post-construction operation and maintenance Plan that has been developed for the site.

In addition to flood resilience and water quality benefits, the project will create a highly-visible public green space in the downtown area, providing aesthetic improvements and reducing heat island impacts. The project will showcase green stormwater techniques and offer opportunities for public education and outreach through signage and general use by the public. The project will demonstrate the application of green infrastructure practices in the downtown area and serve as an example for other potential retrofit sites in the community. The proposed project will also advance the Town's broader downtown revitalization and overall economic development initiatives as an Environmental Justice community.

2 **Project Description**

2.1 Existing Conditions

The project is located west of Mechanic Street on three parcels identified by the Spencer Tax Assessor as Map ID U07-35, U07-36, and U07-37, which total approximately 0.53 acres. The site consists of two former residential lots and an adjacent municipal parking lot located at 14, 18, and 20 Mechanic Street. The site contains an existing parking lot and poor stand of grass, where two deteriorated buildings were demolished in 2019. There is no stormwater drainage infrastructure located on the property.

There are no wetlands on the site. The site is not within a NHESP Priority Habitat of Rare Species, Estimated Habitat of Rare Wildlife, or Area of Critical Environmental Concern (ACEC).

Federal Emergency Management Agency (FEMA) mapping shows that the site lies in Zone X, in an area outside the 500-year floodplain. FEMA Flood Insurance Rate Map (FIRM) (Panel Number 25027C0780E, Effective Date: July 4, 2011) is included as *Figure 2*.

The site is characterized by Natural Resources Conservation Service (NRCS) as Paxton-Urban Land complex, 8 to 15 percent slopes (622C), defined by a hydrologic soil group rating "C". The NRCS soils report is included in *Figure 3*.

Fuss & O'Neill observed five test pits and performed infiltration testing at the site in areas of the proposed bioretention cells and infiltration systems. Test pits were excavated to depths between four and eight feet below ground surface. Soil conditions, including soil texture, color, horizon depths, and evidence of saturation were logged in the field in addition the results of the infiltration testing. No evidence of seasonal high groundwater was observed. Soils were found to be a mix of sand, gravel, and fill material. Infiltration rates (i.e., in-situ saturated hydraulic conductivity) were observed to be between 5 and 10 inches per hour, which is considered a "rapid infiltration rate" requiring at least 44% total suspended solids (TSS) pretreatment according to the MA Stormwater Standards. For design purposes, the infiltration rate was assumed to be 50% of the in-situ saturated hydraulic conductivity. The results of the test pits and infiltration testing can be found in *Appendix A*.

2.2 Proposed Conditions

The project includes the construction of a municipal parking lot with associated stormwater management systems and landscaping (i.e., green infrastructure). The stormwater management system is comprised of bioretention areas and a subsurface infiltration system. Runoff from the parking lot and a portion of Mechanic Street sheet flows into one of the three bioretention areas before being conveyed into the subsurface infiltration system.

The proposed BMPs have been sized to accommodate the 100-year design storm without overflow (i.e., no surface discharge from the site) and have been modeled using the infiltration rates observed during field testing. Through the use of these green infrastructure stormwater BMPs, reduction in runoff volume and pollutant loads, stormwater peak discharge, groundwater recharge and stormwater treatment are achieved.

3 Hydrologic Analysis

The hydrologic analyses for existing and proposed conditions were completed using a computer software package, HydroCAD version 10.00-20, to determine peak runoff flow rates and total runoff volumes for the watershed models. The model is based on the NRCS Technical Release 20 and Technical Release 55 (TR-55), and is subject to cumulative rainfall/volume dependent routing calculations. Hydrographs are prepared for each element of the watershed and routed through the dynamic-storage-indication method to produce various time-based results.

Two design points were developed for the project. Design Point 10 (denoted as Link 10L in the hydrologic analyses) is Mechanic Street to the east of the site. Design Point 20 (denoted as Link 20L) is the abutting property to the west of the site.

The pre-development hydrologic analysis is included as *Appendix B*, and the post-development hydrologic analysis is in *Appendix C*.

3.1 Existing Watershed Summary

Stormwater runoff from the site is conveyed via sheet flow to the two design points. Mechanic Street and the abutting property to the west have been used as the limits of analysis. Two subcatchments have been established for the project's pre-development conditions, as described below.

- **Subcatchment 10S** consists of a portion of Mechanic Street, parking lot, and grass in poor condition. Runoff from this area sheet flows towards the gutter line in Mechanic Street (Design Point 10L).
- **Subcatchment 20S** consists of a portion of the parking lot and grass in poor condition. Runoff from this area sheet flows towards the abutting property to the west (Design Point 20L).

The Pre-Development Watershed Map is included as Figure 4.

3.2 Proposed Watershed Summary

The boundary of the post-development analysis is the same as the pre-development conditions. However, the subcatchments have been further delineated based on the drainage area to each individual BMPs drainage area. The post-development subcatchments are described below.

- **Subcatchment 10S** consists of the northeastern portion of the parking lot. Runoff sheet flows into the bioretention area, denoted as 10P, before being conveyed into the subsurface infiltration system, denoted as 30P. Runoff is ultimately infiltrated into the ground.
- **Subcatchment 20S** consists of the norther portion of Mechanic Street. Runoff from Mechanic Street sheet flows into a roadside raingarden through an opening in the existing curb. Overflow from the roadside raingarden is conveyed under the sidewalk into the bioretention area, denoted

as 10P, before being conveyed into the subsurface infiltration system, denoted as 30P. Runoff is ultimately infiltrated into the ground.

- **Subcatchment 30S** consists of the western portion of the parking lot and adjacent grassed area. Runoff sheet flows into the proposed catch basin, before being conveyed into the subsurface infiltration system, denoted as 30P. Runoff is ultimately infiltrated into the ground.
- **Subcatchment 40S** consists of a grassed area to the west of the parking lot. Runoff sheet flows towards the abutting property to the west (Design Point 20L).
- **Subcatchment 50S** consists of the southeastern portion of the parking lot. Runoff sheet flows into the bioretention area, denoted as 50P, before being conveyed into the subsurface infiltration system, denoted as 30P. Runoff is ultimately infiltrated into the ground.
- **Subcatchment 60S** consists of a small portion of the parking lot and southern portion of Mechanic Street. Runoff sheet flows towards the gutter line in Mechanic Street (Design Point 10L).

The Post-Development Watershed Map is included as Figure 5.

3.3 Hydrologic Analysis Results

The proposed BMPs attenuate peak flows from the site, effectively reducing the site's runoff rates compared to existing condition. The pre- and post-development peak flow rates for the two design points are included in the below tables.

2 Year Design Storm				
Design Point	Existing Flow (CFS)	Proposed Flow (CFS)	Net Change (CFS)	Net Change (%)
10L - Mechanic Street	1.13	0.21	-0.92	-81%
20L - Abutting Property West	0.87	0.08	-0.79	-91%
Total	2.00	0.29	-1.71	-86%

10 Year Design Storm				
Design Point	Existing Flow (CFS)	Proposed Flow (CFS)	Net Change (CFS)	Net Change (%)
10L - Mechanic Street	1.80	0.32	-1.48	-82%
20L - Abutting Property West	1.41	0.17	-1.24	-88%
Total	3.21	0.49	-2.72	-85%

25 Year Design Storm				
Design Point	Existing Flow (CFS)	Proposed Flow (CFS)	Net Change (CFS)	Net Change (%)
10L - Mechanic Street	2.31	0.40	-1.91	-83%
20L - Abutting Property				
West	1.82	0.25	-1.57	-86%
Total	4.13	0.65	-3.48	-84%

100 Year Design Storm				
Design Point	Existing Flow (CFS)	Proposed Flow (CFS)	Net Change (CFS)	Net Change (%)
10L - Mechanic Street	3.35	0.58	-2.77	-83%
20L - Abutting Property West	2.65	0.41	-2.24	-85%
Total	6.00	0.99	-5.01	-84%

The results indicates that the proposed improvements will reduce peak runoff rates from the site for the 2-, 10-, 25-, and 100-year, Type III, 24-hour storm events as compared to the pre-development peak runoff rates. The proposed bioretention and infiltration systems will infiltrate the entire runoff volume up to the 100-year design storm, effectively eliminating surface stormwater discharge from the site for most storm events.

3.4 Storm Sewer Design

The drainage analysis for the proposed stormwater management system was completed using Bentley System's StormCAD computer program. Input information for the model was derived using the Rational Formula. Times of concentrations were assumed to be the minimal allowable time of 5 minutes. The StormCAD output indicates that the proposed pipe and catch basins will have adequate capacity to convey and drain the 25-year design storm. Calculations for the proposed storm sewer network are included in Appendix D.

3.5 Climate Resilience

The climate projections for Massachusetts suggest that high-intensity rainfall events will continue to become more frequent with a changing climate, which has implications for the design of drainage infrastructure and stormwater BMPs. The proposed conditions hydrologic analysis and the drainage analysis for the proposed stormwater system were evaluated for a future climate change scenario to account for projected increases in design storm precipitation amounts. MassDOT has developed projected percent change in 24-hour 100-year return interval precipitation (in comparison to the baseline period of 1986-2005) based on downscaled climate projections for Massachusetts. Projections are provided for a range of future time periods, global warming scenarios, and climate model outputs. Our future climate change scenario assumed a 50-year design life (2070 timeframe), a worst-case emissions scenario (RCP 8.5) which is consistent with agency guidance, and median model output, resulting in a

predicted 20% increase in the 24-hour 100-year return interval precipitation. The hydrologic model for the project was therefore run with design storm amounts that are 20% larger than the corresponding NOAA Atlas 14 values.

The results show that even under this future climate scenario, the proposed project still reduces peak rates of runoff for the 2, 10, 25, and 100-year storm when compared with existing conditions. For the future 100-year storm, peak water elevations in Bioretention Basins 10P and 50P are predicted to be below the top of the basins. The peak capacity of the Subsurface Infiltration System 30P will be exceeded by approximately 0.18 feet for the future 100-year storm while still infiltrating the entire future 25-year storm.

The StormCAD output indicates that the proposed pipe and catch basins will have adequate capacity to convey and drain the future 25-year design storm, even with the 20% increase in intensity.

4 Soil Erosion and Sedimentation Control

Soil erosion and sedimentation control details and narratives for construction periods are provided on the site plans. Soil erosion and sedimentation control details and procedures are consistent with the "Massachusetts Erosion and Sediment Control Guideline for Urban and Suburban Areas."

Construction period erosion and sedimentation controls will include a construction entrance, compost filter socks, erosion control blankets, catch basin inlet protection, and water for dust control. Additional erosion and sediment controls will be utilized as required. Perimeter sediment controls will be placed down-gradient of disturbed areas. Water will be applied to exposed soils to provide dust control as needed.

Waste materials generated from construction activities will include excavated soil and pavement. All excavation debris and other waste will be transported to an approved disposal facility.

5 Construction Sequence

Construction is a dynamic operation that is affected by weather and other unanticipated conditions. Therefore, the layout of erosion and sediment controls shown on the plans will likely be modified to best manage changing field conditions. The Massachusetts Erosion and Sediment Controls Guidelines for Urban and Suburban Areas recognize this. Work with Engineer, owner and regulatory agencies so that the intent of the guidelines are met until all disturbed areas are permanently stabilized. The following is a general sequence of major construction operations.

Construction is anticipated to start in the spring of 2020.

- 1. Install erosion and sediment controls.
- 2. Begin general construction.
 - 2.1. Strip and stockpile existing topsoil. Temporary seed stockpiles as required.
 - 2.2. Rough grade and temporary stabilized disturbed areas.
 - 2.3. Construct site utilities and stormwater features.

- 2.4. Adjust erosion and sediment controls as required during construction.
- 2.5. Once areas have reached subgrade, re-spread stockpiled topsoil and stabilized areas that have reached finished grade.
- 3. Maintain all erosion and sediment controls measures until all disturbed areas are stabilized. Sweep Roads and employ dust control measures as needed throughout construction.
- 4. Remove any temporary control measures and accumulated sediment from permanent structures.

6 Massachusetts Stormwater Handbook Standards

The following is a description of how the proposed project conforms with the stormwater management standards (Standards) outlined in the Massachusetts Stormwater Handbook. The Stormwater Management Checklist is included in *Appendix E*.

Standard 1: No Untreated Discharge or Erosion to Wetlands

There are no wetlands on the site. An unnamed stream that originates at Muzzy Meadow Pond, and flows underground for several hundred feet, remerges near the northwest corner of the site and flows away from the site. Perimeter erosion controls will protect undisturbed wetland buffers and wetland resource areas from sedimentation until the site is stabilized. No concentrated flows are proposed into wetlands and/or waterways of the Commonwealth.

Standard 2: Peak Rate Attenuation

Post-development discharge rates from the 2-, 10-, 25-, and 100-year storm events will decrease as a result of the development compared to the pre-development condition. This will be achieved by the storage provide by the subsurface infiltration system. Peak flow results are included above.

Standard 3: Stormwater Recharge

The subsurface infiltration system will allow infiltration and groundwater recharge. The subsurface infiltration system has been designed to provide storage in excess of the recharge volume required by this standard. All the stormwater entering the subsurface infiltration system will be infiltrated into the ground. BMP sizing calculation are included in *Appendix F*.

Standard 4: Water Quality

The subsurface infiltration system will provide water quality treatment through infiltration. The full Water Quality Volume will be treated through the infiltration system. All runoff entering the infiltration system will infiltrate into the ground. The bioretention cells and the deep sump catch basin will provide 25% TSS pretreatment of runoff prior to discharge into the subsurface infiltration system. Total Suspended Solid (TSS) removal calculations are included in *Appendix G*.

Standard 5: Land Uses with Higher Potential Pollutant Loads

The project does not contain any area of higher pollutant loads as defined by the Massachusetts Stormwater Handbook. The proposed parking lot is not considered a parking lot with high-intensity use (1,000 vehicle trips per day or more), as defined in the Massachusetts Stormwater Handbook.

Standard 6: Critical Areas

The site is not located within Zone II or Interim Wellhead Protection Areas, or other Critical Areas, which include Shellfish Growing Areas, Bathing Beaches, Outstanding Resource Waters, Special Resource Waters, and Cold-Water Fisheries.

Standard 7: Redevelopment

The proposed project is considered a redevelopment project per the Massachusetts Stormwater Handbook.

Standard 8: Construction Pollution Prevention and Erosion and Sediment Controls

General erosion and sedimentation controls will be implemented and maintained in accordance with local, state, and federal requirements until construction is complete and disturbed areas have been stabilized.

Standard 9: Long-Term Operation and Maintenance Plan

A Long Term Operation and Maintenance Plan has been prepared and is included in Appendix H.

Standard 10: Illicit Discharges to Drainage System

There are no known illicit discharges at the project site. This project will not result in illicit discharges to Stormwater Management Systems as defined in the Massachusetts Stormwater Handbook.

7 Summary

This Stormwater Management Report describes proposed work and stormwater management associated with the parking lot and green infrastructure project on Mechanic Street in Spencer, Massachusetts. The stormwater management system, which includes an infiltration system, bioretention areas, proprietary water quality system, and a storm sewer system, will provide water quality treatment, runoff reduction, groundwater recharge, and peak flow attenuation. Peak runoff rates from the site will decrease when compared to pre-development conditions during the 2-, 10-, 25-, and 100-year storm events. The proposed bioretention and infiltration systems will infiltrate the entire runoff volume associated with the 100-year design storm, effectively eliminating surface stormwater discharge from the site for all analyzed storms

The proposed design addresses the applicable standards set forth in the MassDEP Stormwater Management Guidelines as described in *Section 6* of this report as well as the standards contained in the Spencer Stormwater Bylaw and Regulations. Erosion control measures have been incorporated into the design. Based on the conditions summarized above, the proposed site improvements will have no adverse effect on abutters or the receiving drainage systems.

Figure 1 Site Location Map

File Path. J.DWGIP2017/0390/D51/C/wilPlan/20170390.D51 LOC01 dvg Layout: FIGURE 1 Plotted: Mon, December 02, 2019 - 9:29 AM User: jdeninger [MS VIEW:] [LAYER STATE:] [LAYER STATE:]] Plotten: DWG TO PDF.PC3 CTB File: FO.STB

Figure 2 Flood Insurance Rate Map

National Flood Hazard Layer FIRMette

Legend

42°14'48.48"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** Zone A 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D APPROXIMATE GENERAL - -- - Channel, Culvert, or Storm Sewer SITE LOCATION STRUCTURES IIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation AREA OF MINIMAL FLOOD HAZARD TOWN OF SPENCER **Coastal Transect** Base Flood Elevation Line (BFE) ~ 513 ~~~~ 250335 Limit of Study Jurisdiction Boundary **Coastal Transect Baseline** OTHER Profile Baseline 25027 C07801 FEATURES Hydrographic Feature eff.7/4 **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. Zone A This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 11/27/2019 at 8:16:05 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, USGS The National Map: Orthoimagery. Data refreshed April, 2019. legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 42°14'21.85"N 1:6,000 Feet unmapped and unmodernized areas cannot be used for regulatory purposes. 250 500 1,000 1,500 2,000

Figure 3 NRCS Web Soil Survey Map

Custom Soil Resource Report Map—Hydrologic Soil Group

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:25,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Worcester County, Massachusetts, Southern Part Survey Area Data: Version 12, Sep 12, 2019

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 18, 2019—Jul 9, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

Figure 3

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

PROJ. No.: 2017 0390 D51 DATE: DECEMBER 2019 Figure 3

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
622C	Paxton-Urban land complex, 8 to 15 percent slopes	С	2.0	100.0%
Totals for Area of Intere	st		2.0	100.0%

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Condition" first groups like attribute values for the components in a map unit. For each group, percent composition is set to the sum of the percent composition of all components participating in that group. These groups now represent "conditions" rather than components. The attribute value associated with the group with the highest cumulative percent composition is returned. If more than one group shares the highest cumulative percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher group value should be returned in the case of a percent composition tie. The result returned by this aggregation method represents the dominant condition throughout the map unit only when no tie has occurred.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Higher

DATE: DECEMBER 2019

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

PROJ. No.: 2017 0390.D51 DATE: DECEMBER 2019

Figure 4
Pre-Development Watershed Map

AΜ FIG 4 Plotted: Mon, January 06, 2020 - 10:32 MG TO PDF.PC3 CTB File: FO.STB

	SCALE: HORZ: 1"- 30' VERT: DATUM: HORZ: VERT: VERT: SAPHIC SCALE
	FUSS & O'NEILL 150 MAIN STREFF, SUITE 40 13.452.0445 www.findo.com
OVERALL WATERSHED BOUNDARY WATERSHED BOUNDARY IMPERVIOUS SURFACE – HARDSCAPE PERVIOUS SURFACE – GRASS SURFACE RUNOFF FLOW DIRECTION	TOWN OF SPENCER PRE-DEVELOPMENT WATERSHED MAP MUNICIPAL PARKING LOT & GREEN INFRASTRUCTURE PROJECT ER MASSACHUSETTS
	PROJ. No.: 20170390.D51 DATE: JANUARY 2020
	FIGURE 4

Figure 5
Post-Development Watershed Map

Appendix A Soil Investigations

ALE:	HORZ.: 1" = 10'	VERT.:	TUM:	HORZ.:	VERT.:	с с	2		GRAFMIC SCALE
		I THE CONTRACT	「こののなつ」		1550 MAIN STREET, SUITE 400	SPKINGFHELD, MA 01105 412 452 0445	413/42 Zondo. com		
TOWN OF SPENCER			TECT DIT MAP			INICIPAL PARKING LOT & GREEN		INFRASTRUCTURE FRUIEUI	MADACHUDE1 10

PERMITTING PLANS

Test Pit # TP-1 Location: <u>Spencer, MA</u>

-

Project Name:	Mechanic Street Parking Lot			Contracto	r: Spencer Hi	ghway Dept.	-			
Project Numbe	r 20170390.D51			Operator:			-	FUS	S&O'NEI	LL
Date:	11/20/2019			Backfill:	original ma	terial]			
Time:	9:00									
Sample Prefix:										
Logged By:	Matthew Kissane									
LOGGING									SAMPLE	
DEPTH						USCS	FIELD	SAMPLE	DEPTH	
from to	SOIL D	ESCRIPTIC	0N			CODE	TESTING	NUMBER	from to	TIME
0' - 5'	Fn-Md SAND, some 1/4 - 1/2 Debris (FILL), light brown, mo	2" Gravel, sor pist.	ne 3 - 4' Col	bbles and C	Construction	SP	-	TP-1(4-5')	4' - 5'	
				General T	est pit Descr	iption				
		Clean Fill (i.e. bi	rick concrete.							

	Native Soil	Clean Fill (i.e. brick concrete, asphalt)	Dimension lumber	Metals	Tires	Other
Description						
Percentage						

APPROX. SURFACE ELE. (FT-MSL)	TEST PIT SKETCH:
DIMENSIONS OF PIT:	~ 3' x 10'	
TOTAL DEPTH	5'	
DEPTH TO BEDROCK	n/a	
DEPTH TO MOTTLING	n/a	
DEPTH TO ROOTS	n/a	
DEPTH TO WATER	n/a	
WERE PHOTOS TAKEN?	yes	Photo #s
SAMPLING METHOD	bucket of excavator	
FIELD INSTRUMENT	n/a	
COMMENTS:		
Infiltrometer Test #1 - 1.5"/1	5 mins	
Infiltrometer Test #1 - 1.7"/1	5 mins	
Infiltrometer Test #1 - 0.8"/1	5 mins	
Average = 1.33"/15 mins = 5.33	"/hour	

Test Pit # TP-2 Location: <u>Spencer, MA</u>

 Project Name:
 Mechanic Street Parking Lot

 Project Number 20170390.D51

 Date:
 11/20/2019

 Time:
 10:15

 Sample Prefix:

Logged By: Matthew Kissane

Contractor: Spencer Highway Dept. Operator: Backfill: original material

LOGGING							SAMPLE	
DEPTH				USCS	FIELD	SAMPLE	DEPTH	
from to	SOILE	DESCRIPTION		CODE	TESTING	NUMBER	from to	TIME
0' - 5'	Fn-Md SAND, some 1/2 - 1' Debris (FILL), dark brown, r	" Gravel, some 1 - 1.5' Co noist.	bbles and Construction	SP	-	TP-1(4-5')	4' - 5'	
			General Test pit Descri	ption				
	Native Soil	Clean Fill (i.e. brick concrete, asphalt)	Dimension lumber	Metals		Tires	Other	

	Native Soil	Clean Fill (i.e. brick concrete, asphalt)	Dimension lumber	Metals	Tires	Other
Description						
Percentage						

APPROX. SURFACE ELE. (FT-MSL)	TEST PIT SKETCH:
DIMENSIONS OF PIT: ~ 3' x 10'	
TOTAL DEPTH 5'	
DEPTH TO BEDROCK n/a	
DEPTH TO MOTTLING n/a	
DEPTH TO ROOTS n/a	
DEPTH TO WATER n/a	
WERE PHOTOS TAKEN? yes	Photo #s
SAMPLING METHOD bucket of exc	avator
FIELD INSTRUMENT n/a	
COMMENTS:	
Infiltrometer Test #1 - 1.8"/15 mins	
Infiltrometer Test #1 - 1.6"/15 mins	
Infiltrometer Test #1 - 1.6"/15 mins	
Average = 1.66"/15 mins = 6.66"/hour	

Test Pit # TP-3 Location:<u>Spencer, MA</u>

Project Name	e: Mechanic Street Park	ing Lot
Project Num	bei 20170390.D51	
Date:	11/20/2019	
Time:	11:20	
Sample Prefix	<:	
Logged By:	Matthew Kissane	

Contractor: Spencer Highway Dept. Operator: Backfill: original material

LOGGING					SAMPLE	
DEPTH		USCS	FIELD	SAMPLE	DEPTH	
from to	SOIL DESCRIPTION	CODE	TESTING	NUMBER	from to	TIME
0' - 7'	Fn-Md SAND, some 1/4 - 3/4" Gravel, some 1 - 3' Cobbles and Construction Debris (FILL), light-to-dark brown, moist.	SP	-	TP-1(6-7')	6' - 7'	
					-	
					-	

APPROX. SURFACE ELE. (FT-MSL)	TEST PIT SKETCH:
DIMENSIONS OF PIT: ~ 3' x 10'	
TOTAL DEPTH 7'	
DEPTH TO BEDROCK n/a	
DEPTH TO MOTTLING n/a	
DEPTH TO ROOTS n/a	
DEPTH TO WATER n/a	
WERE PHOTOS TAKEN? yes	Photo #s
SAMPLING METHOD bucket of excavator	
FIELD INSTRUMENT n/a	
COMMENTS:	
Infiltrometer Test #1 - 1.5"/15 mins	
Infiltrometer Test #1 - 1.6"/15 mins	
Infiltrometer Test #1 - 1.7"/15 mins	
Average = 1.60"/15 mins = 6.40"/hour	

Test Pit # TP-4 Location:<u>Spencer, MA</u>

Project Name:	Mechanic Street Pa	rking Lot
Project Numbe	ei 20170390.D51	
Date:	11/20/2019	
Time:	12:30	
Sample Prefix:		
Logged By:	Matthew Kissane	

Contractor: Spencer Highway Dept. Operator: Backfill: original material

LOGGING							SAMPLE	
DEPTH				USCS	FIELD	SAMPLE	DEPTH	
from to	soil d	DESCRIPTION		CODE	TESTING	NUMBER	from to	TIME
0' - 5'	Fn-Md SAND, some 1/4 - 3, Debris (FILL), dark brown, n	/4" Gravel, some 1 - 3' Co noist.	obbles and Construction	SP	-	TP-1(4-5')	4' - 5'	
			General Test pit Descri	ption				
	Native Coll	Clean Fill (i.e. brick concrete,					Other	

	Native Soil	Clean Fill (i.e. brick concrete, asphalt)	Dimension lumber	Metals	Tires	Other
Description						
Percentage						

APPROX. SURFACE ELE.	(FT-MSL)	TEST PIT SKETCH:					
DIMENSIONS OF PIT:	~ 3' x 10'						
TOTAL DEPTH	5'						
DEPTH TO BEDROCK	n/a						
DEPTH TO MOTTLING	n/a						
DEPTH TO ROOTS	n/a						
DEPTH TO WATER	n/a						
WERE PHOTOS TAKEN?	yes	Photo #s					
SAMPLING METHOD	bucket of excavator						
FIELD INSTRUMENT	n/a						
COMMENTS:							
Infiltrometer Test #1 - 2.6"/1	5 mins						
Infiltrometer Test #1 - 1.8"/15 mins							
Infiltrometer Test #1 - 2.2"/15 mins							
Average = 2.20"/15 mins = 8.80	"/hour						

Test Pit # TP-5 Location: <u>Spencer, MA</u>

 Project Name:
 Mechanic Street Parking Lot

 Project Number 20170390.D51

 Date:
 11/20/2019

 Time:
 13:20

 Sample Prefix:

Logged By: Matthew Kissane

Contractor: Spencer Highway Dept. Operator: Backfill: original material

LOGGING							SAMPLE	
DEPTH				USCS	FIELD	SAMPLE	DEPTH	
from to	SOILE	DESCRIPTION		CODE	TESTING	NUMBER	from to	TIME
0' - 6'	Fn-Md SAND, some 1/4 - 3. Debris (FILL), light-to-dark k	/4" Gravel, some 1 - 2' Co brown, moist.	obbles and Construction	SP	-	TP-1(5-6')	5' - 6'	
			General Test pit Descri	ption				
	Native Soil	Clean Fill (i.e. brick concrete, asphalt)	Dimension lumber	Metals		Tires	Other	

	Native Soil	Clean Fill (i.e. brick concrete, asphalt)	Dimension lumber	Metals	Tires	Other
Description						
Percentage						

APPROX. SURFACE ELE. (FT-MSL)	TEST PIT SKETCH:					
DIMENSIONS OF PIT: ~ 3' x 10'						
TOTAL DEPTH 6'						
DEPTH TO BEDROCK n/a						
DEPTH TO MOTTLING n/a						
DEPTH TO ROOTS n/a						
DEPTH TO WATER n/a						
WERE PHOTOS TAKEN? yes	Photo #s					
SAMPLING METHOD bucket of excavator						
FIELD INSTRUMENT n/a						
COMMENTS:						
Infiltrometer Test #1 - 2.8"/15 mins						
Infiltrometer Test #1 - 2.4"/15 mins						
Infiltrometer Test #1 - 2.5"/15 mins						
Average = 2.57"/15 mins = 10.27"/hour						

Appendix B Pre-Development Watershed Analysis

Area Listing (all nodes)

CN	Description
	(subcatchment-numbers)
86	<50% Grass cover, Poor, HSG C (10S, 20S)
98	Paved parking, HSG C (10S, 20S)
93	TOTAL AREA
	CN 86 98 93

20170390.D51_EXISTING

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.726	HSG C	10S, 20S
0.000	HSG D	
0.000	Other	
0.726		TOTAL AREA

20170390.D51_EXISTING

Prepared by Fuss a	and O'Nei					
HydroCAD® 10.00-21	s/n 10611	© 2018 H	ydroCAD	Software S	Solutions LLC	2

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.324	0.000	0.000	0.324	<50% Grass cover, Poor	10S, 20S
0.000	0.000	0.402	0.000	0.000	0.402	Paved parking	10S, 20S
0.000	0.000	0.726	0.000	0.000	0.726	TOTAL AREA	

20170390.D51_EXISTING	7	Type III 2	24-hr 2-Ye	ear Rainfa	ll=3.22"
Prepared by Fuss and O'Neill				Printed 2/2	20/2020
HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD	D Software Solutions LLC				Page 5
Time span=0.00-36 Runoff by SCS TR-2 Reach routing by Dyn-Stor-Ind m	5.00 hrs, dt=0.01 hrs, 36 0 method, UH=SCS, W nethod - Pond routing b	601 points eighted-C by Dyn-Ste	S CN or-Ind met	hod	
Subcatchment 10S: Sheet Flow to Mechanic	Runoff Area=17,581 sf Tc=6.	61.10% lr 0 min CN	mpervious I=93 Runc	Runoff Dep off=1.13 cfs	th=2.46" 0.083 af
Subcatchment 20S: Sheet Flow to West	Runoff Area=14,028 sf Tc=6.	48.27% lr 0 min CN	mpervious I=92 Runc	Runoff Dep off=0.87 cfs	th=2.37" 0.064 af
Link 10L: Mechanic Street			Inflo Prima	w=1.13 cfs ry=1.13 cfs	0.083 af 0.083 af
Link 20L: Off Site West			Inflo Prima	w=0.87 cfs ry=0.87 cfs	0.064 af 0.064 af
Total Runoff Area = 0.726 a	c Runoff Volume = 0.1 44.59% Pervious = 0.32	46 af Av 4 ac 55	verage Ru 5.41% Imp	noff Depth ervious = (= 2.42").402 ac

Summary for Subcatchment 10S: Sheet Flow to Mechanic

Runoff = 1.13 cfs @ 12.09 hrs, Volume= 0.083 af, Depth= 2.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.22"

A	rea (sf)	CN	Description			
	6,839	86	<50% Gras	s cover, Po	or, HSG C	
	10,742	98	Paved park	ing, HSG C		
	17,581	93	Weighted A	verage		
	6,839		38.90% Per	vious Area		
	10,742		61.10% Imp	pervious Are	a	
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry,	

Subcatchment 10S: Sheet Flow to Mechanic

Summary for Subcatchment 20S: Sheet Flow to West

Runoff = 0.87 cfs @ 12.09 hrs, Volume= 0.064 af, Depth= 2.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.22"

A	rea (sf)	CN	Description		
	7,257	86	<50% Gras	s cover, Po	oor, HSG C
	6,771	98	Paved park	ing, HSG C	C
	14,028	92	Weighted A	verage	
	7,257		51.73% Per	vious Area	a
	6,771		48.27% Imp	ervious Are	rea
_					
Tc	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0					Direct Entry,

Subcatchment 20S: Sheet Flow to West

Summary for Link 10L: Mechanic Street

Inflow Area	a =	0.404 ac, 6	1.10% Imp	ervious,	Inflow Dep	oth = 2.4	46" for 2-Y	'ear event
Inflow	=	1.13 cfs @	12.09 hrs,	Volume	= 0).083 af		
Primary	=	1.13 cfs @	12.09 hrs,	Volume	= 0).083 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 10L: Mechanic Street

Summary for Link 20L: Off Site West

Inflow Area	a =	0.322 ac, 4	8.27% Impe	ervious,	Inflow De	pth = 2	.37" for 2-1	lear event
Inflow	=	0.87 cfs @	12.09 hrs,	Volume	=	0.064 af		
Primary	=	0.87 cfs @	12.09 hrs,	Volume	=	0.064 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 20L: Off Site West

20170390.D51_EXISTING	Ty	/pe III 24-hr	10-Year Rainfall=4.83"
Prepared by Fuss and O'Neill			Printed 2/20/2020
HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAE	O Software Solutions LLC		Page 10
Time span=0.00-36 Runoff by SCS TR-20 Reach routing by Dyn-Stor-Ind m	nd method		
Subcatchment 10S: Sheet Flow to Mechanic	Runoff Area=17,581 sf Tc=6.	61.10% Impe 0 min CN=93	rvious Runoff Depth=4.03" Runoff=1.80 cfs 0.136 af
Subcatchment 20S: Sheet Flow to West	Runoff Area=14,028 sf Tc=6.	48.27% Impe 0 min CN=92	rvious Runoff Depth=3.92" Runoff=1.41 cfs 0.105 af
Link 10L: Mechanic Street			Inflow=1.80 cfs 0.136 af Primary=1.80 cfs 0.136 af
Link 20L: Off Site West			Inflow=1.41 cfs 0.105 af Primary=1.41 cfs 0.105 af
Total Runoff Area = 0.726 a	c Runoff Volume = 0.2 44.59% Pervious = 0.32	241 af Avera 24 ac 55.41	ge Runoff Depth = 3.98" % Impervious = 0.402 ac

Summary for Subcatchment 10S: Sheet Flow to Mechanic

Runoff = 1.80 cfs @ 12.08 hrs, Volume= 0.136 af, Depth= 4.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

A	rea (sf)	CN	Description				
	6,839	86	<50% Gras	s cover, Po	or, HSG C		
	10,742	98	Paved park	ing, HSG C			
	17,581	93	Weighted A	verage			
	6,839		38.90% Per	vious Area			
	10,742		61.10% Imp	pervious Are	ea		
Тс	Length	Slop	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft	t) (ft/sec)	(cfs)			
6.0					Direct Entry,		
			• • •				

Subcatchment 10S: Sheet Flow to Mechanic

Summary for Subcatchment 20S: Sheet Flow to West

Runoff = 1.41 cfs @ 12.08 hrs, Volume= 0.105 af, Depth= 3.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

Area (sf)	CN	Description		
7,257	86	<50% Grass	s cover, Po	or, HSG C
6,771	98	Paved parki	ing, HSG C	;
14,028	92	Weighted A	verage	
7,257		51.73% Per	vious Area	
6,771		48.27% Imp	ervious Are	ea
Tc Length	Slop	be Velocity	Capacity	Description
(min) (feet)	(ft/1	ft) (ft/sec)	(cfs)	
6.0				Direct Entry,
		Subc	atchment	20S: Sheet Flow to West
			Hydr	ograph

Summary for Link 10L: Mechanic Street

Inflow Area	a =	0.404 ac, 6	51.10% Imp	ervious,	Inflow	Depth =	4.0	03" for 10	-Year event
Inflow	=	1.80 cfs @	12.08 hrs,	Volume	=	0.136 a	af		
Primary	=	1.80 cfs @	12.08 hrs,	Volume	=	0.136 a	af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 10L: Mechanic Street

Summary for Link 20L: Off Site West

Inflow Area	a =	0.322 ac, 4	8.27% Imp	ervious,	Inflow	Depth =	3.9	92" for 10	-Year event
Inflow	=	1.41 cfs @	12.08 hrs,	Volume	=	0.105	af		
Primary	=	1.41 cfs @	12.08 hrs,	Volume	=	0.105	af,	Atten= 0%,	Lag= 0.0 mir

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 20L: Off Site West

20170390.D51_EXISTING	T	ype III	24-hr 2	25-Ye	ear Raii	nfall=	=6.08"
Prepared by Fuss and O'Neill				I	Printed	2/20	/2020
HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAE	O Software Solutions LLC					Pa	ge 15
Time span=0.00-36 Runoff by SCS TR-20 Reach routing by Dyn-Stor-Ind m	6.00 hrs, dt=0.01 hrs, 36 0 method, UH=SCS, W nethod - Pond routing b	601 poi eighteo by Dyn-	nts d-CN -Stor-Ine	d metł	hod		-
Subcatchment 10S: Sheet Flow to Mechanic	Runoff Area=17,581 sf Tc=6.	61.10% 0 min	% Imperv CN=93	vious Runof	Runoff [ff=2.31 (Depth cfs 0.	=5.26" 177 af
Subcatchment 20S: Sheet Flow to West	Runoff Area=14,028 sf Tc=6.	48.27% 0 min	% Imper CN=92	vious Runof	Runoff I ff=1.82 (Depth cfs 0.	=5.15" 138 af
Link 10L: Mechanic Street				Inflov Primar	w=2.31 (y=2.31 (cfs 0. cfs 0.	177 af 177 af
Link 20L: Off Site West				Inflov Primar	w=1.82 (y=1.82 (cfs 0. cfs 0.	138 af 138 af
Total Runoff Area = 0.726 a	c Runoff Volume = 0.3 44.59% Pervious = 0.32	315 af 24 ac	Averag 55.41%	ge Rur % Impe	noff Dep ervious	pth = = 0.4	5.21" 102 ac

Summary for Subcatchment 10S: Sheet Flow to Mechanic

Runoff = 2.31 cfs @ 12.08 hrs, Volume= 0.177 af, Depth= 5.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.08"

A	rea (sf)	CN	Description		
	6,839	86	<50% Gras	s cover, Po	bor, HSG C
	10,742	98	Paved park	ing, HSG C	
	17,581	93	Weighted A	verage	
	6,839		38.90% Per	vious Area	3
	10,742		61.10% Imp	pervious Are	rea
-				o ''	
IC	Length	Slop	e Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0					Direct Entry,

Subcatchment 10S: Sheet Flow to Mechanic

Summary for Subcatchment 20S: Sheet Flow to West

Runoff = 1.82 cfs @ 12.08 hrs, Volume= 0.138 af, Depth= 5.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.08"

Area (sf)	CN	Description	
7,257	86	<50% Grass cover, Poor, HSG C	
6,771	98	Paved parking, HSG C	
14,028	92	Weighted Average	
7,257		51.73% Pervious Area	
6,771		48.27% Impervious Area	
Tc Length	n Slop	pe Velocity Capacity Description	
(min) (feet)) (ft/i	/ft) (ft/sec) (cfs)	
6.0		Direct Entry,	
		Subcatchment 20S: Sheet Flow to West	
		Hydrograph	
2		1.82 cfs	L Runon

Summary for Link 10L: Mechanic Street

Inflow Area	a =	0.404 ac, 6	51.10% Imp	ervious,	Inflow	Depth =	5.2	6" for 25-	Year event
Inflow	=	2.31 cfs @	12.08 hrs,	Volume	=	0.177	af		
Primary	=	2.31 cfs @	12.08 hrs,	Volume	=	0.177	af, i	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 10L: Mechanic Street

Summary for Link 20L: Off Site West

Inflow Are	ea =	0.322 ac, 4	48.27% Imp	ervious,	Inflow	Depth =	5.1	15" for 25	-Year event
Inflow	=	1.82 cfs @	12.08 hrs,	Volume	=	0.138	af		
Primary	=	1.82 cfs @	12.08 hrs,	Volume	=	0.138	af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 20L: Off Site West

20170390.D51_EXISTING	be III 24-hr 1	00-Year Rainfall=8.64"							
Prepared by Fuss and O'Neill			Printed 2/20/2020						
HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD	O Software Solutions LLC		Page 20						
Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method									
Subcatchment 10S: Sheet Flow to Mechanic	Runoff Area=17,581 sf Tc=6.	61.10% Imper 0 min CN=93	vious Runoff Depth=7.80" Runoff=3.35 cfs 0.262 af						
Subcatchment 20S: Sheet Flow to West	Runoff Area=14,028 sf Tc=6.	48.27% Imper 0 min CN=92	vious Runoff Depth=7.68" Runoff=2.65 cfs 0.206 af						
Link 10L: Mechanic Street			Inflow=3.35 cfs 0.262 af Primary=3.35 cfs 0.262 af						
Link 20L: Off Site West			Inflow=2.65 cfs 0.206 af Primary=2.65 cfs 0.206 af						
Total Runoff Area = 0.726 a	c Runoff Volume = 0.4 44.59% Pervious = 0.32	68 af Averag 4 ac 55.419	ge Runoff Depth = 7.74" % Impervious = 0.402 ac						

Summary for Subcatchment 10S: Sheet Flow to Mechanic

Runoff = 3.35 cfs @ 12.08 hrs, Volume= 0.262 af, Depth= 7.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.64"

Area (sf) CN	Description			
6,8	39 86	<50% Grass	s cover, Po	or, HSG C	
10,7	42 98	Paved parki	ng, HSG C	,	
17,5	81 93	Weighted Av	verage		
6,8	39	38.90% Perv	vious Area		
10,7	42	61.10% lmp	ervious Are	ea	
Tc Ler	igth Slo	ope Velocity	Capacity	Description	
(min) (fe	eet) (f	ft/ft) (ft/sec)	(cfs)		
6.0				Direct Entry,	
				_	

Subcatchment 10S: Sheet Flow to Mechanic

Summary for Subcatchment 20S: Sheet Flow to West

Runoff = 2.65 cfs @ 12.08 hrs, Volume= 0.206 af, Depth= 7.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.64"

CN	Description			
86	<50% Grass	s cover, Po	bor, HSG C	
98	Paved park	ing, HSG C		
92	Weighted A	verage		
	51.73% Per	vious Area	1	
48.27% Impervious Area				
Slop	e Velocity	Capacity	Description	
(ft/1	ft) (ft/sec)	(cfs)		
			Direct Entry,	
	CN 86 98 92 Slop (ft/f	CNDescription86<50% Grass	CNDescription86<50% Grass cover, Po	

Subcatchment 20S: Sheet Flow to West

Summary for Link 10L: Mechanic Street

Inflow Are	a =	0.404 ac, 6	61.10% Imp	ervious,	Inflow	Depth =	7.8	80" for 1	00-Year event
Inflow	=	3.35 cfs @	12.08 hrs,	Volume	=	0.262 a	af		
Primary	=	3.35 cfs @	12.08 hrs,	Volume	=	0.262 a	af,	Atten= 0%	, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 10L: Mechanic Street

Summary for Link 20L: Off Site West

Inflow Area	a =	0.322 ac, 4	8.27% Imp	ervious,	Inflow	Depth =	7.6	68" for 1	00-Year event	
Inflow	=	2.65 cfs @	12.08 hrs,	Volume	=	0.206 a	af			
Primary	=	2.65 cfs @	12.08 hrs,	Volume	=	0.206 a	af,	Atten= 0%	o, Lag= 0.0 mi	n

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 20L: Off Site West

Appendix C

Post-Development Watershed Analysis

Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.139	74	>75% Grass cover, Good, HSG C (10S, 30S, 40S, 50S, 60S)
0.577	98	Paved parking, HSG C (10S, 20S, 30S, 50S, 60S)
0.017	98	Water Surface, HSG C (10S, 50S)
0.734	93	TOTAL AREA

20170390.D51_PROPOSED

Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area	Soil	Subcatchment
 (acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.734	HSG C	10S, 20S, 30S, 40S, 50S, 60S
0.000	HSG D	
0.000	Other	
0.734		TOTAL AREA

20170390.D51_PROPOSED

Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

Printed 2/21/2020 Page 4

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.000	0.000	0.139	0.000	0.000	0.139	>75% Grass cover, Good	10S, 30S,
							40S, 50S,
							60S
0.000	0.000	0.577	0.000	0.000	0.577	Paved parking	10S, 20S,
							30S, 50S,
							60S
0.000	0.000	0.017	0.000	0.000	0.017	Water Surface	10S, 50S
0.000	0.000	0.734	0.000	0.000	0.734	TOTAL AREA	

Ground Covers (all nodes)

20170390.D51_PROPOSED Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD	"Type III 24-hr 2-Year Rainfall=3.22 Printed 2/21/2020 Software Solutions LLC Page 5
Time span=0.00-36. Runoff by SCS TR-20 Reach routing by Dyn-Stor-Ind me	6.00 hrs, dt=0.01 hrs, 3601 points 0 method, UH=SCS, Weighted-CN ethod - Pond routing by Dyn-Stor-Ind method
Subcatchment 10S: Sheet Flow to Bioretention	Runoff Area=8,095 sf 72.23% Impervious Runoff Depth=2.28" Tc=6.0 min CN=91 Runoff=0.49 cfs 0.035 af
Subcatchment 20S: Sheet Flow Mechanic	Runoff Area=6,298 sf 100.00% Impervious Runoff Depth=2.99" Tc=6.0 min CN=98 Runoff=0.45 cfs 0.036 af
Subcatchment 30S: Sheet Flow to Bioretention	n Runoff Area=9,236 sf 96.10% Impervious Runoff Depth=2.88" Tc=6.0 min CN=97 Runoff=0.65 cfs 0.051 af
Subcatchment 40S: Sheet Flow to West	Runoff Area=2,802 sf 0.00% Impervious Runoff Depth=1.05" Tc=6.0 min CN=74 Runoff=0.08 cfs 0.006 af
Subcatchment 50S: Sheet Flow to Bioretention	n Runoff Area=2,559 sf 83.08% Impervious Runoff Depth=2.56" Tc=6.0 min CN=94 Runoff=0.17 cfs 0.013 af
Subcatchment 60S: Sheet Flow to Mechanic	Runoff Area=2,978 sf 92.21% Impervious Runoff Depth=2.77" Tc=6.0 min CN=96 Runoff=0.21 cfs 0.016 af
Pond 10P: Central Bioretention Area Discarded=0.05 cfs	Peak Elev=802.67' Storage=146 cf Inflow=0.94 cfs 0.071 af s 0.037 af Primary=0.88 cfs 0.034 af Outflow=0.93 cfs 0.071 af
Pond 30P: Subsurface Infiltrator Discarded=0.61 cfs	Peak Elev=798.96' Storage=658 cf Inflow=1.53 cfs 0.086 af s 0.086 af Primary=0.00 cfs 0.000 af Outflow=0.61 cfs 0.086 af
Pond 50P: Southeast Bioretention Area Discarded=0.05 cfs	Peak Elev=801.53' Storage=80 cf Inflow=0.17 cfs 0.013 af s 0.012 af Primary=0.09 cfs 0.001 af Outflow=0.14 cfs 0.013 af
Link 10L: Mechanic Street	Inflow=0.21 cfs 0.016 af Primary=0.21 cfs 0.016 af
Link 20L: Off Site West	Inflow=0.08 cfs 0.006 af Primary=0.08 cfs 0.006 af

Total Runoff Area = 0.734 acRunoff Volume = 0.156 af
19.00% Pervious = 0.139 acAverage Runoff Depth = 2.55"
81.00% Impervious = 0.594 ac

Summary for Subcatchment 10S: Sheet Flow to Bioretention

Runoff = 0.49 cfs @ 12.09 hrs, Volume= 0.035 af, Depth= 2.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.22"

rea (sf)	CN	Description	Description							
2,248	74	>75% Gras	s cover, Go	ood, HSG C						
5,388	98	Paved park	ing, HSG C	,						
459	98	Water Surfa	ace, HSG C	;						
8,095	3,095 91 Weighted Average									
2,248	248 27.77% Pervious Area									
5,847		72.23% lmp	pervious Are	ea						
Length	Slop	e Velocity	Capacity	Description						
(feet)	(ft/f	t) (ft/sec)	(cfs)							
				Direct Entry,						
	rea (sf) 2,248 5,388 459 8,095 2,248 5,847 Length (feet)	rea (sf) CN 2,248 74 5,388 98 459 98 8,095 91 2,248 5,847 Length Slop (feet) (ft/f	rea (sf) CN Description 2,248 74 >75% Gras 5,388 98 Paved park 459 98 Water Surfa 8,095 91 Weighted A 2,248 27.77% Per 5,847 72.23% Imp Length Slope Velocity (feet) (ft/ft) (ft/sec)	rea (sf)CNDescription2,24874>75% Grass cover, Go5,38898Paved parking, HSG C45998Water Surface, HSG C8,09591Weighted Average2,24827.77% Pervious Area5,84772.23% Impervious AreaLengthSlopeVelocity(feet)(ft/ft)(ft/sec)(cfs)	rea (sf)CNDescription2,24874>75% Grass cover, Good, HSG C5,38898Paved parking, HSG C45998Water Surface, HSG C8,09591Weighted Average2,24827.77% Pervious Area5,84772.23% Impervious AreaLengthSlopeVelocity(feet)(ft/ft)(ft/ft)(ft/sec)(cfs)					

Subcatchment 10S: Sheet Flow to Bioretention

Summary for Subcatchment 20S: Sheet Flow Mechanic Street

Runoff = 0.45 cfs @ 12.08 hrs, Volume= 0.036 af, Depth= 2.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.22"

A	rea (sf)	CN	Description								
	6,298	98	Paved parking, HSG C								
	6,298		100.00% Impervious Area								
Tc (min)	Length (feet)	Slop (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description						
6.0					Direct Entry,						

Subcatchment 20S: Sheet Flow Mechanic Street

Summary for Subcatchment 30S: Sheet Flow to Bioretention

Runoff = 0.65 cfs @ 12.08 hrs, Volume= 0.051 af, Depth= 2.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.22"

Α	rea (sf)	CN	Description	Description							
	360	74	>75% Gras	s cover, Go	od, HSG C						
	8,876	98	Paved park	ing, HSG C							
	9,236	97	Weighted Average								
	360		3.90% Pervious Area								
	8,876		96.10% Impervious Area								
Тс	Length	Slop	e Velocity	Capacity	Description						
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)							
6.0					Direct Entry,						
					-						

Subcatchment 30S: Sheet Flow to Bioretention

Summary for Subcatchment 40S: Sheet Flow to West

Runoff = 0.08 cfs @ 12.10 hrs, Volume= 0.006 af, Depth= 1.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.22"

A	rea (sf)	CN	Description								
	2,802	74	>75% Grass cover, Good, HSG C								
	2,802		100.00% Pervious Area								
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description						
6.0					Direct Entry,						

Subcatchment 40S: Sheet Flow to West

Summary for Subcatchment 50S: Sheet Flow to Bioretention Area

Runoff = 0.17 cfs @ 12.08 hrs, Volume= 0.013 af, Depth= 2.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.22"

Ar	ea (sf)	CN	Description	
	433	74	>75% Grass cover, Good, HSG C	
	1,832	98	Paved parking, HSG C	
	294	98	Water Surface, HSG C	
	2,559	94	Weighted Average	
	433		16.92% Pervious Area	
	2,126		83.08% Impervious Area	
_				
Tc	Length	Slop	pe Velocity Capacity Description	
<u>(min)</u>	(feet)	(ft/f	ft) (ft/sec) (cfs)	
6.0			Direct Entry,	

Subcatchment 50S: Sheet Flow to Bioretention Area

Summary for Subcatchment 60S: Sheet Flow to Mechanic Street

Runoff = 0.21 cfs @ 12.08 hrs, Volume= 0.016 af, Depth= 2.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.22"

A	rea (sf)	CN	Description						
	232	74	>75% Gras	s cover, Go	od, HSG C				
	2,746	98	Paved park	ing, HSG C	;				
	2,978	96	ک Weighted Average						
	232		7.79% Pervious Area						
	2,746		92.21% lmp	pervious Are	ea				
_		~		•	-				
Tc	Length	Slop	e Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/f	<u>t) (ft/sec)</u>	(cfs)					
6.0					Direct Entry,				

Subcatchment 60S: Sheet Flow to Mechanic Street

Summary for Pond 10P: Central Bioretention Area

Inflow Area	ι =	0.330 ac, 8	4.38% Imp	ervious,	Inflow	Depth =	2.59	" for 2-	Year event
Inflow	=	0.94 cfs @	12.08 hrs,	Volume=	=	0.071	af		
Outflow	=	0.93 cfs @	12.09 hrs,	Volume=	=	0.071	af, A	tten= 1%	, Lag= 0.6 min
Discarded	=	0.05 cfs @	12.09 hrs,	Volume=	=	0.037	af		
Primary	=	0.88 cfs @	12.09 hrs,	Volume=	=	0.034	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 802.67' @ 12.09 hrs Surf.Area= 366 sf Storage= 146 cf

Plug-Flow detention time= 15.9 min calculated for 0.071 af (100% of inflow) Center-of-Mass det. time= 15.9 min (794.9 - 779.0)

Volume	Inve	rt Avail.S	Storage	Storage Descripti	ion				
#1 802.00')'	296 cf	Custom Stage Data (Irregular) Listed below (Recalc)					
Elevation		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
	, ,,					<u>(54-11)</u>			
802.0 803.0	00	96 560	65.0 158.0	296	296	96 1,750			
Device	Routing	Inve	ert Outle	et Devices					
#1	Primary	799.4	0' 10.0 ' Inlet n= 0	Round Culvert / Outlet Invert= 79 .013 Corrugated F	L= 19.0' CPP, s 99.40' / 799.00' S PE. smooth interio	quare edge headw = 0.0211 '/' Cc= 0 or. Flow Area= 0.5	vall, Ke= 0.500 0.900 5 sf		
#2 #3	Device 1 Discarde	802.5 d 802.0	5' 24.0 ' 0' 5.00 Cond	Horiz. Orifice/Gr D in/hr Exfiltration ductivity to Ground	ate C= 0.600 L over Surface are lwater Elevation =	imited to weir flow a 800.00'	at low heads		

Discarded OutFlow Max=0.05 cfs @ 12.09 hrs HW=802.67' (Free Discharge) **-3=Exfiltration** (Controls 0.05 cfs)

Primary OutFlow Max=0.88 cfs @ 12.09 hrs HW=802.67' TW=798.73' (Dynamic Tailwater)

1=Culvert (Passes 0.88 cfs of 4.44 cfs potential flow)

1-2=Orifice/Grate (Weir Controls 0.88 cfs @ 1.14 fps)

Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

Pond 10P: Central Bioretention Area

Summary for Pond 30P: Subsurface Infiltrator

Inflow Area	a =	0.601 ac, 8	8.39% Imp	ervious,	Inflow D	epth =	1.71"	for 2-Ye	ear event	
Inflow	=	1.53 cfs @	12.09 hrs,	Volume=	=	0.086 a	af			
Outflow	=	0.61 cfs @	12.31 hrs,	Volume=	=	0.086 a	af, Atte	n= 60%,	Lag= 13.	1 min
Discarded	=	0.61 cfs @	12.31 hrs,	Volume=	=	0.086 a	af		-	
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	=	0.000 a	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 798.96' @ 12.31 hrs Surf.Area= 3,579 sf Storage= 658 cf

Plug-Flow detention time= 6.3 min calculated for 0.086 af (100% of inflow) Center-of-Mass det. time= 6.3 min (758.9 - 752.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	798.50'	2,544 cf	34.00'W x 105.25'L x 2.54'H Field A
			9,095 cf Overall - 2,735 cf Embedded = 6,360 cf x 40.0% Voids
#2A	799.00'	2,735 cf	Cultec R-150XLHD x 100 Inside #1
			Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf
			Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap
			Row Length Adjustment= +0.75' x 2.65 sf x 10 rows
		5 270 cf	Total Available Storage

5,279 cf I otal Available Storage

Storage Group A created with Chamber Wizard

0.900
-In= 0.01'
w at low heads
,- ^

Discarded OutFlow Max=0.61 cfs @ 12.31 hrs HW=798.96' (Free Discharge) **2=Exfiltration** (Controls 0.61 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=798.50' TW=0.00' (Dynamic Tailwater)

-3=Orifice/Grate (Controls 0.00 cfs) -1=Culvert (Controls 0.00 cfs)

Pond 30P: Subsurface Infiltrator - Chamber Wizard Field A

Chamber Model = Cultec R-150XLHD (Cultec Recharger® 150XLHD)

Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap Row Length Adjustment= +0.75' x 2.65 sf x 10 rows

33.0" Wide + 6.0" Spacing = 39.0" C-C Row Spacing

10 Chambers/Row x 10.25' Long +0.75' Row Adjustment = 103.25' Row Length +12.0" End Stone x 2 = 105.25' Base Length 10 Rows x 33.0" Wide + 6.0" Spacing x 9 + 12.0" Side Stone x 2 = 34.00' Base Width 6.0" Base + 18.5" Chamber Height + 6.0" Cover = 2.54' Field Height

100 Chambers x 27.2 cf +0.75' Row Adjustment x 2.65 sf x 10 Rows = 2,735.1 cf Chamber Storage

9,095.4 cf Field - 2,735.1 cf Chambers = 6,360.3 cf Stone x 40.0% Voids = 2,544.1 cf Stone Storage

Chamber Storage + Stone Storage = 5,279.2 cf = 0.121 af Overall Storage Efficiency = 58.0%Overall System Size = $105.25' \times 34.00' \times 2.54'$

100 Chambers 336.9 cy Field 235.6 cy Stone

Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

Pond 30P: Subsurface Infiltrator

Summary for Pond 50P: Southeast Bioretention Area

Inflow Area	a =	0.059 ac, 8	3.08% Impe	ervious, Inflo	w Depth =	2.56" fc	or 2-Ye	ear event
Inflow	=	0.17 cfs @	12.08 hrs,	Volume=	0.013 a	af		
Outflow	=	0.14 cfs @	12.14 hrs,	Volume=	0.013 a	af, Atten=	: 15%,	Lag= 3.0 min
Discarded	=	0.05 cfs @	12.14 hrs,	Volume=	0.012 a	af		
Primary	=	0.09 cfs @	12.14 hrs,	Volume=	0.001 a	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 801.53' @ 12.14 hrs Surf.Area= 197 sf Storage= 80 cf

Plug-Flow detention time= 9.1 min calculated for 0.013 af (100% of inflow) Center-of-Mass det. time= 9.1 min (796.0 - 786.9)

Volume	Invei	t Avail.St	orage	e Storage Description					
#1	801.00)'	196 cf	Custom Stage Dat	ta (Irregular) Liste	d below (Recalc)			
Elevatio	on S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
801.0 802.0)0)0)0	112 294	43.0 69.0	0 196	0 196	112 350			
Device	Routing	Inver	t Outle	et Devices					
#1	Primary	799.10	' 10.0 ' Inlet n= 0	 Round Culvert / Outlet Invert= 799 .013 Corrugated P 	L= 6.0' CPP, squ 9.10' / 799.00' S= E, smooth interior	are edge headwall, K 0.0167 '/' Cc= 0.900 , Flow Area= 0.55 sf	e= 0.500		
#2 #3	Device 1 Discarded	801.50 801.00	24.0 8.000 Cond	Horiz. Orifice/Gra D in/hr Exfiltration ductivity to Groundy	te C= 0.600 Lin over Surface area water Elevation = 2	mited to weir flow at lo 800.00' Phase-In= 0	w heads).01'		

Discarded OutFlow Max=0.05 cfs @ 12.14 hrs HW=801.53' (Free Discharge) **-3=Exfiltration** (Controls 0.05 cfs)

Primary OutFlow Max=0.09 cfs @ 12.14 hrs HW=801.53' TW=798.83' (Dynamic Tailwater)

1=Culvert (Passes 0.09 cfs of 3.72 cfs potential flow)

1–2=Orifice/Grate (Weir Controls 0.09 cfs @ 0.54 fps)

Hydrograph Inflow 0.17 cfs Outflow Discarded Primary Inflow Area=0.059 ac 0.18 Peak Elev=801.53' 0.14 cfs 0.17 0.16 Storage=80 cf 0.15 0.14 0.13 0.12 (cfs) 0.11 0.09 cfs 0.1 **b** 0.09 0.08 0.07 0 cfs 0.06 0.05 0.04 0.03 0.02 0.01 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Pond 50P: Southeast Bioretention Area

Summary for Link 10L: Mechanic Street

Inflow Area	a =	0.670 ac, 8	38.78% Impe	ervious,	Inflow	Depth =	0.2	8" for 2-Y	'ear event
Inflow	=	0.21 cfs @	12.08 hrs,	Volume	=	0.016 a	af		
Primary	=	0.21 cfs @	12.08 hrs,	Volume	=	0.016 a	af, <i>i</i>	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 10L: Mechanic Street

Summary for Link 20L: Off Site West

Inflow Area	a =	0.064 ac,	0.00% Impervious,	Inflow Depth = 1	.05" for 2-Year event
Inflow	=	0.08 cfs @	12.10 hrs, Volume	= 0.006 af	
Primary	=	0.08 cfs @	12.10 hrs, Volume	= 0.006 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 20L: Off Site West

20170390.D51_PROPOSED Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD	Software Solutions LLC	Type III 24-hr	10-Year Rainfall=4.83" Printed 2/21/2020 Page 21
Time span=0.00-36	.00 hrs, dt=0.01 hrs, 3	3601 points	nd method
Runoff by SCS TR-20) method, UH=SCS, V	Veighted-CN	
Reach routing by Dyn-Stor-Ind me	ethod - Pond routing	by Dyn-Stor-Ir	
Subcatchment 10S: Sheet Flow to Bioretention	Runoff Area=8,095 s	f 72.23% Impe	rvious Runoff Depth=3.82"
	Tc=	6.0 min CN=91	Runoff=0.80 cfs 0.059 af
Subcatchment 20S: Sheet Flow Mechanic	Runoff Area=6,298 sf	100.00% Impe	rvious Runoff Depth=4.59"
	Tc=	6.0 min CN=98	Runoff=0.68 cfs 0.055 af
Subcatchment 30S: Sheet Flow to Bioretention	Runoff Area=9,236 s	f 96.10% Impe	rvious Runoff Depth=4.48"
	Tc=	6.0 min CN=97	Runoff=0.99 cfs 0.079 af
Subcatchment 40S: Sheet Flow to West	Runoff Area=2,802	sf 0.00% Impe	rvious Runoff Depth=2.23"
	Tc=	6.0 min CN=74	Runoff=0.17 cfs 0.012 af
Subcatchment 50S: Sheet Flow to Bioretention	Runoff Area=2,559 s	f 83.08% Impe	rvious Runoff Depth=4.14"
	Tc=	6.0 min CN=94	Runoff=0.27 cfs 0.020 af
Subcatchment 60S: Sheet Flow to Mechanic	Runoff Area=2,978 s	f 92.21% Impe	rvious Runoff Depth=4.36"
	Tc=	6.0 min CN=96	Runoff=0.32 cfs 0.025 af
Pond 10P: Central Bioretention Area	Peak Elev=802.72	Storage=163 c	f Inflow=1.48 cfs 0.114 af
Discarded=0.05 cfs	s 0.049 af Primary=1.4	42 cfs 0.066 af	Outflow=1.47 cfs 0.114 af
Pond 30P: Subsurface Infiltrator	Peak Elev=799.33' \$	Storage=1,672 c	f Inflow=2.62 cfs 0.149 af
Discarded=0.70 cfs	s 0.149 af Primary=0.0	00 cfs 0.000 af	Outflow=0.70 cfs 0.149 af
Pond 50P: Southeast Bioretention Area	Peak Elev=801.5	5' Storage=84 c	f Inflow=0.27 cfs 0.020 af
Discarded=0.05 cfs	s 0.016 af Primary=0.2	21 cfs 0.004 af	Outflow=0.26 cfs 0.020 af
Link 10L: Mechanic Street			Inflow=0.32 cfs 0.025 af Primary=0.32 cfs 0.025 af
Link 20L: Off Site West			Inflow=0.17 cfs 0.012 af Primary=0.17 cfs 0.012 af

Total Runoff Area = 0.734 acRunoff Volume = 0.251 afAverage Runoff Depth = 4.10"19.00% Pervious = 0.139 ac81.00% Impervious = 0.594 ac

Summary for Subcatchment 10S: Sheet Flow to Bioretention

Runoff = 0.80 cfs @ 12.08 hrs, Volume= 0.059 af, Depth= 3.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

27.77% Pervious Area				
72.23% Impervious Area				
_				

Subcatchment 10S: Sheet Flow to Bioretention

Summary for Subcatchment 20S: Sheet Flow Mechanic Street

Runoff = 0.68 cfs @ 12.08 hrs, Volume= 0.055 af, Depth= 4.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

A	rea (sf)	CN	Description						
	6,298	98	Paved parking, HSG C						
	6,298		100.00% Impervious Area						
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Subcatchment 20S: Sheet Flow Mechanic Street

Summary for Subcatchment 30S: Sheet Flow to Bioretention

Runoff = 0.99 cfs @ 12.08 hrs, Volume= 0.079 af, Depth= 4.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

A	rea (sf)	CN	Description					
	360	74	>75% Gras	s cover, Go	ood, HSG C			
	8,876	98	Paved park	ing, HSG C				
	9,236	97	Weighted A	verage				
	360		3.90% Pervious Area					
	8,876		96.10% Impervious Area					
Tc	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Subcatchment 30S: Sheet Flow to Bioretention

Summary for Subcatchment 40S: Sheet Flow to West

Runoff = 0.17 cfs @ 12.09 hrs, Volume= 0.012 af, Depth= 2.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

Are	a (sf)	CN	Description					
	2,802	74	>75% Grass cover, Good, HSG C					
2	2,802		100.00% Pervious Area					
Tc l (min)	_ength (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 40S: Sheet Flow to West

Summary for Subcatchment 50S: Sheet Flow to Bioretention Area

Runoff = 0.27 cfs @ 12.08 hrs, Volume= 0.020 af, Depth= 4.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

ea (sf)	CN	Description	
433	74	>75% Grass cover, Good, H	SG C
1,832	98	Paved parking, HSG C	
294	98	Water Surface, HSG C	
2,559	94	Weighted Average	
433		16.92% Pervious Area	
2,126		83.08% Impervious Area	
Length	Slop	 Velocity Capacity Desc 	cription
(feet)	(ft/i) (ft/sec) (cfs)	
		Dire	ct Entry,
	rea (sf) 433 1,832 294 2,559 433 2,126 Length (feet)	rea (sf) CN 433 74 1,832 98 294 98 2,559 94 433 2,126 Length Slope (feet) (ft/ft	rea (sf)CNDescription43374>75% Grass cover, Good, H.1,83298Paved parking, HSG C29498Water Surface, HSG C2,55994Weighted Average43316.92% Pervious Area2,12683.08% Impervious AreaLengthSlopeVelocity(feet)(ft/ft)(ft/sec)(cfs)Direct

Subcatchment 50S: Sheet Flow to Bioretention Area

Summary for Subcatchment 60S: Sheet Flow to Mechanic Street

Runoff = 0.32 cfs @ 12.08 hrs, Volume= 0.025 af, Depth= 4.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.83"

A	rea (sf)	CN	Description					
	232	74	>75% Gras	s cover, Go	ood, HSG C			
	2,746	98	Paved park	ing, HSG C				
	2,978	96	Weighted A	verage				
	232		7.79% Pervious Area					
	2,746		92.21% Imp	pervious Are	ea			
_								
Тс	Length	Slop	e Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/f	t) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Subcatchment 60S: Sheet Flow to Mechanic Street

Summary for Pond 10P: Central Bioretention Area

Inflow Area	I =	0.330 ac, 8	4.38% Imp	ervious,	Inflow	Depth =	4.16	6" for	10-ነ	lear ever	nt
Inflow	=	1.48 cfs @	12.08 hrs,	Volume=	=	0.114	af				
Outflow	=	1.47 cfs @	12.09 hrs,	Volume=	=	0.114	af, A	tten= 1	%, l	_ag= 0.5	min
Discarded	=	0.05 cfs @	12.09 hrs,	Volume=	=	0.049	af				
Primary	=	1.42 cfs @	12.09 hrs,	Volume=	=	0.066	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 802.72' @ 12.09 hrs Surf.Area= 390 sf Storage= 163 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 14.8 min (783.7 - 768.9)

Volume	Invei	t Avail.St	orage	Storage Descripti	on		
#1	802.00)' 2	296 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)	
Elevatio	on S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(tee	et)	(sq-ft)	(feet)	(Cubic-feet)	(CUDIC-feet)	(sq-ft)	
802.0	00	96	65.0	0	0	96	
803.0	00	560	158.0	296	296	1,750	
Device	Routing	Inver	t Outle	et Devices			
#1	Primary	799.40	' 10.0'	Round Culvert	L= 19.0' CPP, s	quare edge headw	all, Ke= 0.500
			Inlet	/ Outlet Invert= 79	9.40' / 799.00' S	= 0.0211 '/' Cc= 0	.900
			n= 0	.013 Corrugated F	PE, smooth interic	or, Flow Area= 0.5	5 sf
#2	Device 1	802.55	24.0	" Horiz. Orifice/Gra	ate C= 0.600 L	imited to weir flow	at low heads
#3	Discardeo	802.00	5.00	0 in/hr Exfiltration	over Surface are	a	
			Cond	ductivity to Ground	water Elevation =	: 800.00'	

Discarded OutFlow Max=0.05 cfs @ 12.09 hrs HW=802.72' (Free Discharge) **-3=Exfiltration** (Controls 0.05 cfs)

Primary OutFlow Max=1.42 cfs @ 12.09 hrs HW=802.72' TW=799.05' (Dynamic Tailwater)

1=Culvert (Passes 1.42 cfs of 4.47 cfs potential flow)

1-2=Orifice/Grate (Weir Controls 1.42 cfs @ 1.34 fps)

Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

Pond 10P: Central Bioretention Area

Summary for Pond 30P: Subsurface Infiltrator

Inflow Area	=	0.601 ac, 8	88.39% Imp	ervious,	Inflow Depth =	2.97"	for 10-	Year ev	ent
Inflow	=	2.62 cfs @	12.09 hrs,	Volume	= 0.149	af			
Outflow	=	0.70 cfs @	12.42 hrs,	Volume	= 0.149	af, Atte	en= 73%,	Lag= 1	19.7 min
Discarded	=	0.70 cfs @	12.42 hrs,	Volume	= 0.149	af		-	
Primary	=	0.00 cfs @	0.00 hrs,	Volume	= 0.000	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 799.33' @ 12.42 hrs Surf.Area= 3,579 sf Storage= 1,672 cf

Plug-Flow detention time= 14.9 min calculated for 0.149 af (100% of inflow) Center-of-Mass det. time= 14.9 min (761.3 - 746.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	798.50'	2,544 cf	34.00'W x 105.25'L x 2.54'H Field A
			9,095 cf Overall - 2,735 cf Embedded = 6,360 cf x 40.0% Voids
#2A	799.00'	2,735 cf	Cultec R-150XLHD x 100 Inside #1
			Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf
			Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap
			Row Length Adjustment= +0.75' x 2.65 sf x 10 rows
		5 279 cf	Total Available Storage

5,279 cf I otal Available Storage

Storage Group A created with Chamber Wizard

0.900
e-In= 0.01'
w at low heads
۰ ۲

Discarded OutFlow Max=0.70 cfs @ 12.42 hrs HW=799.33' (Free Discharge) **2=Exfiltration** (Controls 0.70 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=798.50' TW=0.00' (Dynamic Tailwater)

-3=Orifice/Grate (Controls 0.00 cfs) -1=Culvert (Controls 0.00 cfs)

Pond 30P: Subsurface Infiltrator - Chamber Wizard Field A

Chamber Model = Cultec R-150XLHD (Cultec Recharger® 150XLHD)

Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap Row Length Adjustment= +0.75' x 2.65 sf x 10 rows

33.0" Wide + 6.0" Spacing = 39.0" C-C Row Spacing

10 Chambers/Row x 10.25' Long +0.75' Row Adjustment = 103.25' Row Length +12.0" End Stone x 2 = 105.25' Base Length 10 Rows x 33.0" Wide + 6.0" Spacing x 9 + 12.0" Side Stone x 2 = 34.00' Base Width 6.0" Base + 18.5" Chamber Height + 6.0" Cover = 2.54' Field Height

100 Chambers x 27.2 cf +0.75' Row Adjustment x 2.65 sf x 10 Rows = 2,735.1 cf Chamber Storage

9,095.4 cf Field - 2,735.1 cf Chambers = 6,360.3 cf Stone x 40.0% Voids = 2,544.1 cf Stone Storage

Chamber Storage + Stone Storage = 5,279.2 cf = 0.121 af Overall Storage Efficiency = 58.0%Overall System Size = $105.25' \times 34.00' \times 2.54'$

100 Chambers 336.9 cy Field 235.6 cy Stone

Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

Pond 30P: Subsurface Infiltrator

Summary for Pond 50P: Southeast Bioretention Area

Inflow Area	a =	0.059 ac, 8	3.08% Imp	ervious, Inflo	ow Depth = 4.	.14" for 1	0-Year event
Inflow	=	0.27 cfs @	12.08 hrs,	Volume=	0.020 af		
Outflow	=	0.26 cfs @	12.09 hrs,	Volume=	0.020 af,	Atten= 1%	6, Lag= 0.5 min
Discarded	=	0.05 cfs @	12.09 hrs,	Volume=	0.016 af		
Primary	=	0.21 cfs @	12.09 hrs,	Volume=	0.004 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 801.55' @ 12.09 hrs Surf.Area= 201 sf Storage= 84 cf

Plug-Flow detention time= 7.9 min calculated for 0.020 af (100% of inflow) Center-of-Mass det. time= 7.9 min (782.4 - 774.5)

Volume	Inver	t Avail.Ste	orage	Storage Description	n		
#1	801.00	' 1	96 cf	Custom Stage Dat	a (Irregular) Listed	d below (Recalc)	
Elevatio	on S	urf.Area F	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store	Wet.Area	
801.0 802.0)0)0	112 294	43.0 69.0	0 196	0 196	112 350	
Device	Routing	Invert	Outle	et Devices			
#1	Primary	799.10	10.0 Inlet n= 0	" Round Culvert I / Outlet Invert= 799 .013 Corrugated Pl	L= 6.0' CPP, squa 0.10' / 799.00' S= E, smooth interior,	are edge headwall, K 0.0167 '/' Cc= 0.900 Flow Area= 0.55 sf	e= 0.500
#2 #3	Device 1 Discarded	801.50' 801.00'	24.0 8.00 Cond	Horiz. Orifice/Gra in/hr Exfiltration of ductivity to Groundv	te C= 0.600 Lin over Surface area vater Elevation = 8	nited to weir flow at lo 300.00' Phase-In= 0	w heads 0.01'

Discarded OutFlow Max=0.05 cfs @ 12.09 hrs HW=801.55' (Free Discharge) **-3=Exfiltration** (Controls 0.05 cfs)

Primary OutFlow Max=0.21 cfs @ 12.09 hrs HW=801.55' TW=799.05' (Dynamic Tailwater)

1–2=Orifice/Grate (Weir Controls 0.21 cfs @ 0.71 fps)

Pond 50P: Southeast Bioretention Area

Summary for Link 10L: Mechanic Street

Inflow Area	a =	0.670 ac, 8	38.78% Imp	ervious,	Inflow	Depth =	0.4	45" for 10	-Year event
Inflow	=	0.32 cfs @	12.08 hrs,	Volume	=	0.025	af		
Primary	=	0.32 cfs @	12.08 hrs,	Volume	=	0.025	af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 10L: Mechanic Street

Summary for Link 20L: Off Site West

Inflow Are	ea =	0.064 ac,	0.00% Impervious,	Inflow Depth = 2.	23" for 10-Year event
Inflow	=	0.17 cfs @	12.09 hrs, Volume=	= 0.012 af	
Primary	=	0.17 cfs @	12.09 hrs, Volume=	= 0.012 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 20L: Off Site West
20170390.D51_PROPOSED Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD	Type III 24-hr 25-Year Rainfall=6 Printed 2/21/2 Software Solutions LLC Pag	2020 <u>2</u> 020 <u>e 37</u>
Time span=0.00-36.0 Runoff by SCS TR-20 Reach routing by Dyn-Stor-Ind me	.00 hrs, dt=0.01 hrs, 3601 points) method, UH=SCS, Weighted-CN ethod - Pond routing by Dyn-Stor-Ind method	
Subcatchment 10S: Sheet Flow to Bioretention	Runoff Area=8,095 sf 72.23% Impervious Runoff Depth=5 Tc=6.0 min CN=91 Runoff=1.04 cfs 0.07	5.04" 78 af
Subcatchment 20S: Sheet Flow Mechanic	Runoff Area=6,298 sf 100.00% Impervious Runoff Depth=5 Tc=6.0 min CN=98 Runoff=0.86 cfs 0.07	5.84" 70 af
Subcatchment 30S: Sheet Flow to Bioretention	Runoff Area=9,236 sf 96.10% Impervious Runoff Depth=5 Tc=6.0 min CN=97 Runoff=1.26 cfs 0.10	5.72" 01 af
Subcatchment 40S: Sheet Flow to West	Runoff Area=2,802 sf 0.00% Impervious Runoff Depth=3 Tc=6.0 min CN=74 Runoff=0.25 cfs 0.0	3.25" 17 af
Subcatchment 50S: Sheet Flow to Bioretention	Runoff Area=2,559 sf 83.08% Impervious Runoff Depth=5 Tc=6.0 min CN=94 Runoff=0.34 cfs 0.02	5.38" 26 af
Subcatchment 60S: Sheet Flow to Mechanic	Runoff Area=2,978 sf 92.21% Impervious Runoff Depth=5 Tc=6.0 min CN=96 Runoff=0.40 cfs 0.03	5.61" 32 af
Pond 10P: Central Bioretention Area Discarded=0.06 cfs	Peak Elev=802.75' Storage=175 cf Inflow=1.90 cfs 0.14 s 0.056 af Primary=1.83 cfs 0.092 af Outflow=1.89 cfs 0.14	48 af 48 af
Pond 30P: Subsurface Infiltrator Discarded=0.78 cfs	Peak Elev=799.64' Storage=2,552 cf Inflow=3.37 cfs 0.20 s 0.200 af Primary=0.00 cfs 0.000 af Outflow=0.78 cfs 0.20	00 af 00 af
Pond 50P: Southeast Bioretention Area Discarded=0.05 cfs	Peak Elev=801.56' Storage=87 cf Inflow=0.34 cfs 0.02 s 0.020 af Primary=0.29 cfs 0.006 af Outflow=0.34 cfs 0.02	26 af 26 af
Link 10L: Mechanic Street	Inflow=0.40 cfs 0.03 Primary=0.40 cfs 0.03	32 af 32 af
Link 20L: Off Site West	Inflow=0.25 cfs 0.0 ^o Primary=0.25 cfs 0.0 ^o	17 af 17 af

Total Runoff Area = 0.734 acRunoff Volume = 0.325 afAverage Runoff Depth = 5.32"19.00% Pervious = 0.139 ac81.00% Impervious = 0.594 ac

Summary for Subcatchment 10S: Sheet Flow to Bioretention

Runoff = 1.04 cfs @ 12.08 hrs, Volume= 0.078 af, Depth= 5.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.08"

A	rea (sf)	CN	Description					
	2,248	74	>75% Gras	s cover, Go	od, HSG C			
	5,388	98	Paved park	ing, HSG C	;			
	459	98	Water Surfa	ace, HSG C	;			
	8,095	91	Weighted A	verage				
	2,248		27.77% Per	27.77% Pervious Area				
	5,847		72.23% lmp	pervious Are	ea			
Tc	Length	Slop	e Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/i	t) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Subcatchment 10S: Sheet Flow to Bioretention

Summary for Subcatchment 20S: Sheet Flow Mechanic Street

Runoff = 0.86 cfs @ 12.08 hrs, Volume= 0.070 af, Depth= 5.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.08"

A	rea (sf)	CN	Description				
	6,298	98	Paved parking, HSG C				
	6,298		100.00% In	npervious A	Area		
Tc (min)	Length (feet)	Slop (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		

Subcatchment 20S: Sheet Flow Mechanic Street

Summary for Subcatchment 30S: Sheet Flow to Bioretention

Runoff = 1.26 cfs @ 12.08 hrs, Volume= 0.101 af, Depth= 5.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.08"

A	rea (sf)	CN	Description		
	360	74	>75% Gras	s cover, Go	ood, HSG C
	8,876	98	Paved park	ing, HSG C	C
	9,236	97	Weighted A	verage	
	360		3.90% Perv	ious Area	
	8,876		96.10% Imp	ervious Are	rea
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Subcatchment 30S: Sheet Flow to Bioretention

Summary for Subcatchment 40S: Sheet Flow to West

Runoff = 0.25 cfs @ 12.09 hrs, Volume= 0.017 af, Depth= 3.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.08"

A	rea (sf)	CN	Description					
	2,802	74	>75% Gras	>75% Grass cover, Good, HSG C				
	2,802		100.00% Pe	ervious Area	ea			
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	/ Description			
6.0					Direct Entry,			

Subcatchment 40S: Sheet Flow to West

Summary for Subcatchment 50S: Sheet Flow to Bioretention Area

0.34 cfs @ 12.08 hrs, Volume= Runoff 0.026 af, Depth= 5.38" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.08"

rea (sf)	CN	Description			
433	74	>75% Grass cover, Good, HSG C			
1,832	98	Paved parking, HSG C			
294	98	Water Surface, HSG C			
2,559	94	Weighted Average			
433		16.92% Pervious Area			
2,126		83.08% Impervious Area			
Length	Slop	pe Velocity Capacity Description			
(feet)	(ft/i	ft) (ft/sec) (cfs)			
		Direct Entry,			
	rea (sf) 433 1,832 294 2,559 433 2,126 Length (feet)	rea (sf) CN 433 74 1,832 98 294 98 2,559 94 433 2,126 Length Slop (feet) (ft/			

Subcatchment 50S: Sheet Flow to Bioretention Area

Summary for Subcatchment 60S: Sheet Flow to Mechanic Street

Runoff = 0.40 cfs @ 12.08 hrs, Volume= 0.032 af, Depth= 5.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.08"

A	rea (sf)	CN	Description				
	232	74	>75% Gras	s cover, Go	od, HSG C		
	2,746	98	Paved park	ing, HSG C	· ·		
	2,978	96	Weighted A	verage			
	232		7.79% Pervious Area				
	2,746		92.21% lmp	pervious Are	ea		
_		-		- ·			
Tc	Length	Slop	e Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/f	t) (ft/sec)	(cfs)			
6.0					Direct Entry,		

Subcatchment 60S: Sheet Flow to Mechanic Street

Summary for Pond 10P: Central Bioretention Area

Inflow Area	ι =	0.330 ac, 8	4.38% Imp	ervious,	Inflow	Depth =	5.39	" for 25	-Year event
Inflow	=	1.90 cfs @	12.08 hrs,	Volume	=	0.148	af		
Outflow	=	1.89 cfs @	12.09 hrs,	Volume	=	0.148	af, A ^r	tten= 1%,	Lag= 0.5 min
Discarded	=	0.06 cfs @	12.09 hrs,	Volume	=	0.056	af		
Primary	=	1.83 cfs @	12.09 hrs,	Volume	=	0.092	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 802.75' @ 12.09 hrs Surf.Area= 408 sf Storage= 175 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 13.8 min (777.5 - 763.7)

Volume	Invei	t Avail.St	orage	Storage Descripti	on		
#1	802.00)' 2	296 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)	
Elevatio	on S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
802.0	00	96	65.0	0	0	96	
803.0	00	560	158.0	296	296	1,750	
Device	Routing	Inver	t Outle	et Devices			
#1	Primary	799.40	' 10.0'	Round Culvert	L= 19.0' CPP, s	quare edge headw	all, Ke= 0.500
			Inlet	/ Outlet Invert= 79	9.40'/799.00' S	= 0.0211 '/' Cc= 0	.900
			n= 0	.013 Corrugated F	PE, smooth interic	or, Flow Area= 0.5	5 sf
#2	Device 1	802.55	' 24.0'	" Horiz. Orifice/Gra	ate C= 0.600 L	imited to weir flow	at low heads
#3	Discardeo	802.00	5.00	0 in/hr Exfiltration	over Surface are	a	
			Cond	ductivity to Ground	water Elevation =	= 800.00'	

Discarded OutFlow Max=0.06 cfs @ 12.09 hrs HW=802.75' (Free Discharge) **-3=Exfiltration** (Controls 0.06 cfs)

Primary OutFlow Max=1.83 cfs @ 12.09 hrs HW=802.75' TW=799.21' (Dynamic Tailwater)

1=Culvert (Passes 1.83 cfs of 4.50 cfs potential flow)

1–2=Orifice/Grate (Weir Controls 1.83 cfs @ 1.46 fps)

Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

Pond 10P: Central Bioretention Area

Summary for Pond 30P: Subsurface Infiltrator

0.601 ac, 88.39% Impervious, Inflow	Depth = 3.99" for 25-Year event
3.37 cfs @ 12.09 hrs, Volume=	0.200 af
0.78 cfs @ 12.46 hrs, Volume=	0.200 af, Atten= 77%, Lag= 22.3 min
0.78 cfs @ 12.46 hrs, Volume=	0.200 af
0.00 cfs @ 0.00 hrs, Volume=	0.000 af
	0.601 ac, 88.39% Impervious, Inflow 3.37 cfs @ 12.09 hrs, Volume= 0.78 cfs @ 12.46 hrs, Volume= 0.78 cfs @ 12.46 hrs, Volume= 0.00 cfs @ 0.00 hrs, Volume=

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 799.64' @ 12.46 hrs Surf.Area= 3,579 sf Storage= 2,552 cf

Plug-Flow detention time= 21.6 min calculated for 0.200 af (100% of inflow) Center-of-Mass det. time= 21.6 min (765.1 - 743.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	798.50'	2,544 cf	34.00'W x 105.25'L x 2.54'H Field A
			9,095 cf Overall - 2,735 cf Embedded = 6,360 cf x 40.0% Voids
#2A	799.00'	2,735 cf	Cultec R-150XLHD x 100 Inside #1
			Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf
			Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap
			Row Length Adjustment= +0.75' x 2.65 sf x 10 rows
		5,279 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 3	799.00'	12.0" Round Culvert
			L= 25.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 799.00' / 798.40' S= 0.0240 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf
#2	Discarded	798.50'	6.000 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 796.50' Phase-In= 0.01'
#3	Primary	801.00'	24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Discarded OutFlow Max=0.78 cfs @ 12.46 hrs HW=799.64' (Free Discharge) **2=Exfiltration** (Controls 0.78 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=798.50' TW=0.00' (Dynamic Tailwater)

-3=Orifice/Grate (Controls 0.00 cfs) -1=Culvert (Controls 0.00 cfs)

Pond 30P: Subsurface Infiltrator - Chamber Wizard Field A

Chamber Model = Cultec R-150XLHD (Cultec Recharger® 150XLHD)

Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap Row Length Adjustment= +0.75' x 2.65 sf x 10 rows

33.0" Wide + 6.0" Spacing = 39.0" C-C Row Spacing

10 Chambers/Row x 10.25' Long +0.75' Row Adjustment = 103.25' Row Length +12.0" End Stone x 2 = 105.25' Base Length 10 Rows x 33.0" Wide + 6.0" Spacing x 9 + 12.0" Side Stone x 2 = 34.00' Base Width 6.0" Base + 18.5" Chamber Height + 6.0" Cover = 2.54' Field Height

100 Chambers x 27.2 cf +0.75' Row Adjustment x 2.65 sf x 10 Rows = 2,735.1 cf Chamber Storage

9,095.4 cf Field - 2,735.1 cf Chambers = 6,360.3 cf Stone x 40.0% Voids = 2,544.1 cf Stone Storage

Chamber Storage + Stone Storage = 5,279.2 cf = 0.121 af Overall Storage Efficiency = 58.0%Overall System Size = $105.25' \times 34.00' \times 2.54'$

100 Chambers 336.9 cy Field 235.6 cy Stone

Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

Pond 30P: Subsurface Infiltrator

Summary for Pond 50P: Southeast Bioretention Area

Inflow Area	1 =	0.059 ac, 8	33.08% Imp	ervious,	Inflow	Depth =	5.38	" for 25-	Year event
Inflow	=	0.34 cfs @	12.08 hrs,	Volume	=	0.026	af		
Outflow	=	0.34 cfs @	12.09 hrs,	Volume	=	0.026	af, At	tten= 0%,	Lag= 0.5 min
Discarded	=	0.05 cfs @	12.09 hrs,	Volume	=	0.020 a	af		
Primary	=	0.29 cfs @	12.09 hrs,	Volume	=	0.006	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 801.56' @ 12.09 hrs Surf.Area= 203 sf Storage= 87 cf

Plug-Flow detention time= 7.6 min calculated for 0.026 af (100% of inflow) Center-of-Mass det. time= 7.6 min (775.8 - 768.2)

Volume	Inve	rt Avail.S	Storage	ge Storage Description							
#1	801.0	0'	196 cf	Custom Stage Data (Irregular) Listed below (Re		ed below (Recalc)					
Elevatio	on S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
801.0 802.0)0)0	<u>(sq-it)</u> 112 294	43.0 69.0	0 196	(<u>cubic-ieet)</u> 0 196	(<u>sq-ii)</u> 112 350					
Device	Routing	Inve	ert Outle	et Devices							
#1	Primary	799.1	0' 10.0 Inlet n= 0	" Round Culvert / Outlet Invert= 79 .013 Corrugated F	L= 6.0' CPP, sq 9.10' / 799.00' S PE, smooth interio	uare edge headwall = 0.0167 '/' Cc= 0.9 r, Flow Area= 0.55	, Ke= 0.500 900 sf				
#2 #3	Device 1 Discarde	801.5 d 801.0	50' 24.0)0' 8.00 Cone	" Horiz. Orifice/Gra 0 in/hr Exfiltration ductivity to Ground	ate C= 0.600 L over Surface are lwater Elevation =	imited to weir flow a a 800.00' Phase-Ir	t low heads = 0.01'				

Discarded OutFlow Max=0.05 cfs @ 12.09 hrs HW=801.56' (Free Discharge) **-3=Exfiltration** (Controls 0.05 cfs)

Primary OutFlow Max=0.29 cfs @ 12.09 hrs HW=801.56' TW=799.21' (Dynamic Tailwater)

1=Culvert (Passes 0.29 cfs of 3.75 cfs potential flow)

1–2=Orifice/Grate (Weir Controls 0.29 cfs @ 0.79 fps)

Pond 50P: Southeast Bioretention Area

Summary for Link 10L: Mechanic Street

Inflow Ar	ea =	0.670 ac, 8	38.78% Impe	ervious,	Inflow	Depth =	0.5	57" for 25-	Year ev	/ent
Inflow	=	0.40 cfs @	12.08 hrs,	Volume	=	0.032	af			
Primary	=	0.40 cfs @	12.08 hrs,	Volume	=	0.032	af,	Atten= 0%,	Lag= 0	.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 10L: Mechanic Street

Summary for Link 20L: Off Site West

Inflow Are	ea =	0.064 ac,	0.00% Impervious, I	nflow Depth = 3.	25" for 25-Year event
Inflow	=	0.25 cfs @	12.09 hrs, Volume=	0.017 af	
Primary	=	0.25 cfs @	12.09 hrs, Volume=	0.017 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 20L: Off Site West

20170390.D51_PROPOSED Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD	T Software Solutions LLC	iype III 24-hr C	100-Year Rainf Printed 2	all=8.64" 2/21/2020 Page 53
Time span=0.00-36. Runoff by SCS TR-20 Reach routing by Dyn-Stor-Ind me	.00 hrs, dt=0.01 hrs, 3 method, UH=SCS, \ ethod - Pond routing	3601 points Weighted-CN 9 by Dyn-Stor-	Ind method	
Subcatchment 10S: Sheet Flow to Bioretention	Runoff Area=8,095 s	af 72.23% lmp	ervious Runoff De	epth=7.56"
	Tc=	:6.0 min CN=9	1 Runoff=1.52 cfs	§ 0.117 af
Subcatchment 20S: Sheet Flow Mechanic	Runoff Area=6,298 sf	100.00% lmp	ervious Runoff De	epth=8.40"
	Tc=	6.0 min CN=9	8 Runoff=1.23 cfs	\$ 0.101 af
Subcatchment 30S: Sheet Flow to Bioretention	Runoff Area=9,236 s	sf 96.10% lmp	ervious Runoff De	epth=8.28"
	Tc=	:6.0 min CN=9	7 Runoff=1.79 cfs	§ 0.146 af
Subcatchment 40S: Sheet Flow to West	Runoff Area=2,802	sf 0.00% lmp	ervious Runoff De	epth=5.50"
	Tc=	6.0 min CN=7	4 Runoff=0.41 cfs	§ 0.029 af
Subcatchment 50S: Sheet Flow to Bioretention	Runoff Area=2,559 s	sf 83.08% Imp	ervious Runoff De	epth=7.92"
	Tc=	6.0 min CN=9	4 Runoff=0.49 cfs	s_0.039 af
Subcatchment 60S: Sheet Flow to Mechanic	Runoff Area=2,978 s	sf 92.21% Imp	ervious Runoff De	epth=8.16"
	Tc=	6.0 min CN=9	6 Runoff=0.58 cfs	s_0.046 af
Pond 10P: Central Bioretention Area	Peak Elev=802.81	' Storage=200	cf Inflow=2.75 cfs	s 0.218 af
Discarded=0.06 cfs	s 0.067 af Primary=2.	67 cfs 0.151 a	f Outflow=2.73 cfs	s 0.218 af
Pond 30P: Subsurface Infiltrator	Peak Elev=800.44'	Storage=4,417	cf Inflow=4.90 cfs	s 0.310 af
Discarded=0.98 cfs	s 0.310 af Primary=0.	00 cfs 0.000 at	f Outflow=0.98 cfs	s 0.310 af
Pond 50P: Southeast Bioretention Area	Peak Elev=801.5	8' Storage=90	cf Inflow=0.49 cfs	s 0.039 af
Discarded=0.05 cfs	s 0.027 af Primary=0.	43 cfs 0.012 a	f Outflow=0.49 cfs	s 0.039 af
Link 10L: Mechanic Street			Inflow=0.58 cfs Primary=0.58 cfs	s 0.046 af s 0.046 af
Link 20L: Off Site West			Inflow=0.41 cfs Primary=0.41 cfs	s 0.029 af s 0.029 af

Total Runoff Area = 0.734 acRunoff Volume = 0.479 afAverage Runoff Depth = 7.84"19.00% Pervious = 0.139 ac81.00% Impervious = 0.594 ac

Summary for Subcatchment 10S: Sheet Flow to Bioretention

Runoff = 1.52 cfs @ 12.08 hrs, Volume= 0.117 af, Depth= 7.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.64"

A	rea (sf)	CN	Description				
	2,248	74	>75% Grass cover, Good, HSG C				
	5,388	98	Paved parking, HSG C				
	459	98	Water Surface, HSG C				
	8,095	91	Weighted Average				
	2,248	27.77% Pervious Area					
	5,847	72.23% Impervious Area					
То	Longth	Slor	a Valacity Canacity Description				
IC (maine)	Lengin		the velocity capacity description				
(min)	(reet)	(11/1	II) (IVSEC) (CIS)				
6.0			Direct Entry,				

Subcatchment 10S: Sheet Flow to Bioretention

Summary for Subcatchment 20S: Sheet Flow Mechanic Street

Runoff = 1.23 cfs @ 12.08 hrs, Volume= 0.101 af, Depth= 8.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.64"

Ar	ea (sf)	CN	Description						
	6,298	98	Paved park	Paved parking, HSG C					
	6,298		100.00% Im	npervious A	Area				
Tc (min)	Length (feet)	Slop (ft/f	e Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Subcatchment 20S: Sheet Flow Mechanic Street

Summary for Subcatchment 30S: Sheet Flow to Bioretention

Runoff = 1.79 cfs @ 12.08 hrs, Volume= 0.146 af, Depth= 8.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.64"

A	rea (sf)	CN	Description					
	360	74	>75% Grass cover, Good, HSG C					
	8,876	98	Paved park	Paved parking, HSG C				
	9,236	97	Weighted A	verage				
	360	3.90% Pervious Area						
	8,876	96.10% Impervious Area						
Тс	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
6.0					Direct Entry,			
			_					

Subcatchment 30S: Sheet Flow to Bioretention

Summary for Subcatchment 40S: Sheet Flow to West

Runoff = 0.41 cfs @ 12.09 hrs, Volume= 0.029 af, Depth= 5.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.64"

Ai	rea (sf)	CN	Description					
	2,802	74	>75% Grass cover, Good, HSG C					
	2,802		100.00% Pervious Area					
Tc (min)	Length (feet)	Slop (ft/f	e Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 40S: Sheet Flow to West

Summary for Subcatchment 50S: Sheet Flow to Bioretention Area

Runoff 0.49 cfs @ 12.08 hrs, Volume= 0.039 af, Depth= 7.92" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.64"

rea (sf)	CN	Description				
433	74	>75% Gras	s cover, Go	ood, HSG C		
1,832	98	Paved park	ing, HSG C	;		
294	98	Water Surfa	ace, HSG C	;		
2,559	94	Weighted A	verage			
433	433 16.92% Pervious Area					
2,126	2,126 83.08% Impervious Area					
Length	Slop	e Velocity	Capacity	Description		
(feet)	(ft/f	t) (ft/sec)	(cfs)			
				Direct Entry,		
	rea (sf) 433 1,832 294 2,559 433 2,126 Length (feet)	rea (sf) CN 433 74 1,832 98 294 98 2,559 94 433 2,126 Length Slop (feet)	rea (sf) CN Description 433 74 >75% Gras 1,832 98 Paved park 294 98 Water Surfa 2,559 94 Weighted A 433 16.92% Per 2,126 83.08% Imp Length Slope Velocity (feet) (ft/ft) (ft/sec)	rea (sf)CNDescription43374>75% Grass cover, Go1,83298Paved parking, HSG C29498Water Surface, HSG C2,55994Weighted Average43316.92% Pervious Area2,12683.08% Impervious AreaLengthSlopeVelocityLengthSlopeVelocityConstruction(ft/ft)(ft/sec)Construction(cfs)	rea (sf)CNDescription43374>75% Grass cover, Good, HSG C1,83298Paved parking, HSG C29498Water Surface, HSG C2,55994Weighted Average43316.92% Pervious Area2,12683.08% Impervious AreaLengthSlopeVelocity(feet)(ft/ft)(ft/sec)(cfs)Direct Entry,	

Subcatchment 50S: Sheet Flow to Bioretention Area

Summary for Subcatchment 60S: Sheet Flow to Mechanic Street

Runoff = 0.58 cfs @ 12.08 hrs, Volume= 0.046 af, Depth= 8.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=8.64"

A	rea (sf)	CN	Description						
	232	74	>75% Gras	s cover, Go	od, HSG C				
	2,746	98	Paved park	aved parking, HSG C					
	2,978	96	Weighted A	verage					
	232	7.79% Pervious Area							
	2,746	92.21% Impervious Area							
_		-		- ·					
Tc	Length	Slop	e Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/f	t) (ft/sec)	(cfs)					
6.0					Direct Entry,				

Subcatchment 60S: Sheet Flow to Mechanic Street

Summary for Pond 10P: Central Bioretention Area

Inflow Area	a =	0.330 ac, 8	4.38% Imp	ervious,	Inflow	Depth =	7.93	" for 1	00-Year e	vent
Inflow	=	2.75 cfs @	12.08 hrs,	Volume	=	0.218 a	af			
Outflow	=	2.73 cfs @	12.09 hrs,	Volume	=	0.218 a	af, A	tten= 0%	, Lag= 0.	5 min
Discarded	=	0.06 cfs @	12.09 hrs,	Volume	=	0.067 a	af			
Primary	=	2.67 cfs @	12.09 hrs,	Volume	=	0.151 a	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 802.81' @ 12.09 hrs Surf.Area= 440 sf Storage= 200 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 12.1 min (768.6 - 756.5)

Volume	Inver	t Avail.Ste	orage	Storage Descripti	on				
#1	802.00	' 2	296 cf	6 cf Custom Stage Data (Irregul		ed below (Recalc)			
Elevatio	on S	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
802.0 803.0)0)0	<u>96</u> 560	65.0 158.0	0 296	0 296	96 1,750			
Device	Routing	Invert	Outle	et Devices					
#1	Primary	799.40'	10.0 Inlet n= 0	" Round Culvert / Outlet Invert= 79 .013 Corrugated F	L= 19.0' CPP, s 9.40' / 799.00' S PE. smooth interio	quare edge headw = 0.0211 '/' Cc= 0 or. Flow Area= 0.55	all, Ke= 0.500 .900 5 sf		
#2 #3	Device 1 Discarded	802.55' 802.00'	24.0 5.00 Cond	24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads 5.000 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 800.00'					

Discarded OutFlow Max=0.06 cfs @ 12.09 hrs HW=802.81' (Free Discharge) **1**-3=Exfiltration (Controls 0.06 cfs)

Primary OutFlow Max=2.67 cfs @ 12.09 hrs HW=802.81' TW=799.58' (Dynamic Tailwater) **1**=**Culvert** (Passes 2.67 cfs of 4.54 cfs potential flow)

1-2=Orifice/Grate (Weir Controls 2.67 cfs @ 1.66 fps)

Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

Pond 10P: Central Bioretention Area

Summary for Pond 30P: Subsurface Infiltrator

Inflow Area	a =	0.601 ac, 8	38.39% Imp	ervious,	Inflow Depth =	6.18	" for ´	100-Y	ear event	
Inflow	=	4.90 cfs @	12.09 hrs,	Volume=	= 0.310	af				
Outflow	=	0.98 cfs @	12.50 hrs,	Volume=	= 0.310	af, At	tten= 80)%, La	ag= 24.6 r	min
Discarded	=	0.98 cfs @	12.50 hrs,	Volume=	= 0.310	af			-	
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	= 0.000	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 800.44' @ 12.50 hrs Surf.Area= 3,579 sf Storage= 4,417 cf

Plug-Flow detention time= 33.4 min calculated for 0.310 af (100% of inflow) Center-of-Mass det. time= 33.4 min (773.5 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	798.50'	2,544 cf	34.00'W x 105.25'L x 2.54'H Field A
			9,095 cf Overall - 2,735 cf Embedded = 6,360 cf x 40.0% Voids
#2A	799.00'	2,735 cf	Cultec R-150XLHD x 100 Inside #1
			Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf
			Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap
			Row Length Adjustment= +0.75' x 2.65 sf x 10 rows
		5 270 cf	Total Available Storage

5,279 cf I otal Available Storage

Storage Group A created with Chamber Wizard

0.900
e-In= 0.01'
w at low heads
۰ ۲

Discarded OutFlow Max=0.98 cfs @ 12.50 hrs HW=800.44' (Free Discharge) **2=Exfiltration** (Controls 0.98 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=798.50' TW=0.00' (Dynamic Tailwater)

-3=Orifice/Grate (Controls 0.00 cfs) -1=Culvert (Controls 0.00 cfs)

Pond 30P: Subsurface Infiltrator - Chamber Wizard Field A

Chamber Model = Cultec R-150XLHD (Cultec Recharger® 150XLHD)

Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap Row Length Adjustment= +0.75' x 2.65 sf x 10 rows

33.0" Wide + 6.0" Spacing = 39.0" C-C Row Spacing

10 Chambers/Row x 10.25' Long +0.75' Row Adjustment = 103.25' Row Length +12.0" End Stone x 2 = 105.25' Base Length 10 Rows x 33.0" Wide + 6.0" Spacing x 9 + 12.0" Side Stone x 2 = 34.00' Base Width 6.0" Base + 18.5" Chamber Height + 6.0" Cover = 2.54' Field Height

100 Chambers x 27.2 cf +0.75' Row Adjustment x 2.65 sf x 10 Rows = 2,735.1 cf Chamber Storage

9,095.4 cf Field - 2,735.1 cf Chambers = 6,360.3 cf Stone x 40.0% Voids = 2,544.1 cf Stone Storage

Chamber Storage + Stone Storage = 5,279.2 cf = 0.121 af Overall Storage Efficiency = 58.0%Overall System Size = $105.25' \times 34.00' \times 2.54'$

100 Chambers 336.9 cy Field 235.6 cy Stone

Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

Pond 30P: Subsurface Infiltrator

Summary for Pond 50P: Southeast Bioretention Area

Inflow Area	a =	0.059 ac, 8	3.08% Imp	ervious,	Inflow	Depth =	7.92	" for 1	00-Year event
Inflow	=	0.49 cfs @	12.08 hrs,	Volume	=	0.039	af		
Outflow	=	0.49 cfs @	12.09 hrs,	Volume	=	0.039 a	af, A	tten= 0%	, Lag= 0.4 min
Discarded	=	0.05 cfs @	12.09 hrs,	Volume	=	0.027 a	af		
Primary	=	0.43 cfs @	12.09 hrs,	Volume	=	0.012 a	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 801.58' @ 12.09 hrs Surf.Area= 206 sf Storage= 90 cf

Plug-Flow detention time= 7.9 min calculated for 0.039 af (100% of inflow) Center-of-Mass det. time= 7.9 min (767.5 - 759.6)

Volume	Inver	t Avail.Sto	orage	Storage Description	on				
#1	801.00)' 1	196 cf	cf Custom Stage Data (Irregular) Listed below (F					
Elevatio	on S	Surf.Area F	Perim.	Inc.Store (cubic-feet)	Cum.Store	Wet.Area (sg-ft)			
801.0 802.0)0)0	112 294	43.0 69.0	0 196	0 196	112 350			
Device	Routing	Invert	Outle	et Devices					
#1	Primary	799.10'	10.0 Inlet n= 0	10.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 799.10' / 799.00' S= 0.0167 '/' Cc= 0.900 n= 0.013 Corrugated PE smooth interior Flow Area= 0.55 sf					
#2 #3	Device 1 Discardec	801.50' 801.00'	24.0 8.00 Cond	24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads 8.000 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 800.00' Phase-In= 0.01'					

Discarded OutFlow Max=0.05 cfs @ 12.09 hrs HW=801.58' (Free Discharge) **-3=Exfiltration** (Controls 0.05 cfs)

Primary OutFlow Max=0.43 cfs @ 12.09 hrs HW=801.58' TW=799.57' (Dynamic Tailwater)

1=Culvert (Passes 0.43 cfs of 3.72 cfs potential flow)

1–2=Orifice/Grate (Weir Controls 0.43 cfs @ 0.90 fps)

Pond 50P: Southeast Bioretention Area

Summary for Link 10L: Mechanic Street

Inflow Area	a =	0.670 ac, 8	38.78% Imp	ervious,	Inflow	Depth =	0.8	33" for ⁻	100-Year e	event
Inflow	=	0.58 cfs @	12.08 hrs,	Volume	=	0.046	af			
Primary	=	0.58 cfs @	12.08 hrs,	Volume	=	0.046	af,	Atten= 0%	6, Lag= 0	.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 10L: Mechanic Street

Summary for Link 20L: Off Site West

Inflow Are	a =	0.064 ac,	0.00% Impervious,	Inflow Depth = \$	5.50" for 100-Year event
Inflow	=	0.41 cfs @	12.09 hrs, Volume	= 0.029 at	F
Primary	=	0.41 cfs @	12.09 hrs, Volume	= 0.029 at	f, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 20L: Off Site West

Appendix D Storm Sewer Pipe Sizing Calculations

Scenario: 25-YR

b Bing

©2017 HERE © 2017 Microsoft Corporation

2017390.D51.stsw 2/20/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 StormCAD CONNECT Edition [10.02.00.55] Page 1 of 1
FlexTable: Catchment Table

Label	Area (User Defined) (ft ²)	Runoff Coefficient (Rational)	Time of Concentration (min)	Outflow Element	Catchment Intensity (in/h)	Catchment Rational Flow (cfs)
CM-1	14,382.928	0.768	5.000	YD-1	8.240	2.11
CM-2	9,236.000	0.873	5.000	CB-2	8.240	1.54
CM-3	2,559.000	0.730	5.000	YD-3	8.240	0.36

2017390.D51.stsw 2/20/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Catch Basin Table

Label	Elevation (Rim) (ft)	Inlet Drainage Area (ft²)	Inlet C	Local Flow Time (min)	Flow (Captured) (cfs)	Inlet Location	Elevation (Invert) (ft)	Elevation (Invert Out) (ft)
CB-2	801.90	9,236.000	0.873	5.000	1.54	In Sag	795.30	799.30
YD-1	802.55	14,382.928	0.768	5.000	2.11	In Sag	799.40	799.40
YD-3	801.50	2,559.000	0.730	5.000	0.36	In Sag	799.10	799.10

2017390.D51.stsw 2/20/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Conduit Table

Label	Start Node	Stop Node	Invert (Start) (ft)	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Material	System CA (ft²)	System Intensity (in/h)	Flow (cfs)	Velocity (ft/s)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
CO-1	YD-1	MH-1	799.40	799.00	19.0	0.021	10.0	0.012	Corrugated HDPE (Smooth Interior)	11,051.653	8.240	2.11	6.63	800.05	799.85
CO-2	CB-2	MH-2	799.30	799.15	13.0	0.012	12.0	0.012	Corrugated HDPE (Smooth Interior)	8,060.257	8.240	1.54	4.89	799.83	799.84
CO-3	MH-2	MH-1	799.05	799.00	3.0	0.017	12.0	0.012	Corrugated HDPE (Smooth Interior)	8,060.257	8.219	1.53	5.59	799.84	799.85
CO-4	YD-3	MH-1	799.10	799.00	6.0	0.017	10.0	0.012	Corrugated HDPE (Smooth Interior)	1,867.046	8.240	0.36	3.75	799.85	799.85
CO-5	MH-1	MH-2	799.00	798.90	5.0	0.020	12.0	0.012	Corrugated HDPE (Smooth Interior)	20,978.956	8.214	3.99	7.58	799.85	799.64
CO-6	MH-2	O-1	798.90	798.50	20.0	0.020	12.0	0.012	Corrugated HDPE (Smooth Interior)	20,978.956	8.209	3.99	7.58	799.75	799.18
Capaci (Desigi (cfs)	ty Flow / C 1) (Desi (%	apacity ign) o)													
	3.44	61.2													

4.15

4.98

3.06

5.46

5.46

37.1

30.8

11.6

73.1

73.0

Label	Elevation (Rim) (ft)	Flow (Total Out) (cfs)	Local Flow Time (min)	Elevation (Invert) (ft)	Elevation (Invert Out) (ft)
MH-1	803.00	3.99	5.000	799.00	799.00
MH-2	802.10	1.53	5.000	799.05	799.05
MH-2	802.70	3.99	5.000	798.90	798.90

FlexTable: Manhole Table

2017390.D51.stsw 2/20/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Appendix E Stormwater Management Checklist

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

No disturbance to any Wetland Resource Areas Site Design Practices (e.g. clustered development, reduced frontage setbacks) Reduced Impervious Area (Redevelopment Only) Minimizing disturbance to existing trees and shrubs LID Site Design Credit Requested: Credit 1 Credit 2 Credit 3 Use of "country drainage" versus curb and gutter conveyance and pipe Bioretention Cells (includes Rain Gardens) Constructed Stormwater Wetlands (includes Gravel Wetlands designs) Treebox Filter Water Quality Swale Grass Channel Green Roof Subsurface Infiltration System Other (describe):

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

X

- Soil Analysis provided.
- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static	🗌 Simple Dynamic
--------	------------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- **X** Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.

Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:

is within the Zone II or Interim Wellhead Protection Area

- is near or to other critical areas
- is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)

involves runoff from land uses with higher potential pollutant loads.

- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Standard 4: Water Quality (continued)

	The BMP	is sized	(and	calculations	provided)	based	on:
--	---------	----------	------	--------------	-----------	-------	-----

- X The ½" or 1" Water Quality Volume or
- The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- ☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

- The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
 - Limited Project
 - Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
 - Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
 - Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
 - Bike Path and/or Foot Path
 - **Kedevelopment Project**
 - Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- X The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - X Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- X The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

Appendix F BMP Sizing Calculations

Objective: Size Best Management Practice (BMP) in accordance with Standards 3 and 4 of the MA Stormwater Handbook. BMP shall be sized to infiltrate the required recharge volume (Standard 3) and provide treatment for the required water quality volume (Standard 4).

1) Calculate Drawdown Time (Standard 3) T _d =Storage Volume / (K*(1'/12")*Bottom Area)= 49	49 <	hours 72 hrs	Storage Volume K (sat. hydraulic conductivity) Bottom Area	105 0.27 96	cf (from HydroCAD, lowest orifice ele. 802.55) in/hr (Rawls Rate C Table 2.3.3 of MA Stormwater Handbook) sf (from HydroCAD)
2) Calculate Pretreatment Water Quality Volume (WC)v) (Sta	andard (1)			
$V_{\rm WO} = (D_{\rm WO}/12)^*(A_{\rm IMP}) =$	97	cf			
		01	D _{wo} (water quality depth)	01	in (0.1" for pretreatment BMP)
			A _{IMP} (impervious area)	11 686	sf
				11,000	5
3) Size BMP to store required volume					
V _{WQ} =	97	cf			
$R_{V}=$	0	cf			
Actual Storage=	105	cf			
105	>	97			

20170390.D51 Page 1 of 3

Objective: Size Best Management Practice (BMP) in accordance with Standards 3 and 4 of the MA Stormwater Handbook. BMP shall be sized to infiltrate the required recharge volume (Standard 3) and provide treatment for the required water quality volume (Standard 4).

1) Calculate Drawdown Time (Standard 3) T _d =Storage Volume / (K*(1'/12'')*Bottom Area)=	30	hours	Storage Volume K (sat. hydraulic conductivity) Bottom Area	75 0.27 112	cf (from HydroCAD, lowest orifice ele. 801.50) in/hr (Rawls Rate C Table 2.3.3 of MA Stormwater Handbook) sf (from HydroCAD)
30	<	72 hrs			
2) Calculate Pretreatment Water Quality Volume (WC $V_{WQ} = (D_{WQ} / 12)^* (A_{IMP}) =$	2v) (Sta 15	andard 4) cf	D _{wQ} (water quality depth)	0.1	in (0.1" for pretreatment BMP)
			A _{IMP} (impervious area)	1,832	sf
3) Size BMP to store required volume					
V _{WQ} =	15	cf			
R _V =	0	cf			
Actual Storage=	75	cf			
75	>	15			

20170390.D51 Page 2 of 3

Subsurface Infiltration System 50P

Objective: Size Best Management Practice (BMP) in accordance with Standards 3 and 4 of the MA Stormwater Handbook. BMP shall be sized to infiltrate the required recharge volume (Standard 3) and provide treatment for the required water quality volume (Standard 4).

1) Calculate Required Recharge Volume (Standard 3) $P_{1}(-(E/12)^{*}(A_{1},a_{2}))$	167	cf			
	407	CI	F (target depth factor)	0 25	in (soil group C. Table 2.3.2 of MA Stormwater Handbook)
			A_{IMP} (impervious area)	22,394	sf
				,	
2) Calculate Drawdown Time (Standard 3)	<i>.</i> –				
I_d =Storage Volume / (K^(1/12 ⁻)^Bottom Area)=	65	hours			
			Storage Volume	5,136	cf (from HydroCAD ele. 801.00)
			K (sat. hydraulic conductivity)	0.27	in/hr (Rawls Rate C, Table 2.3.3 of MA Stormwater Handbook)
/F		70 1	Bottom Area	3,534	sf (from HydroCAD)
65	<	12 nrs			
3) Calculate Water Quality Volume (WQv) (Standard	4)				
$V_{WQ} = (D_{WQ} / 12)^* (A_{IMP}) =$	933	cf			
			D_{WO} (water quality depth)	0.5	in (1" for LUHPPL, Zone II, or critical area, 0.5" other)
			A _{IMP} (impervious area)	22.394	sf (double contributing area, equivalent of 1" of water guality der
				;;;;	
4) Size BMP to store greater of V_{WQ} and R_{V}					
V _{WQ} =	933	cf			
R _v =	467	cf			
Actual Storage=	5,136	cf			
5,136	>	933			

20170390.D51 Page 3 of 3

epth)

Stage-Area-Storage for Pond 10P: Central Bioretention Area

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Elevation	Surface	Storage	Elevation	Surface	Storage
802.01991 802.55 304 105 802.02 102 2 802.56 308 108 802.03 104 3 802.57 313 111 802.04 107 4 802.58 318 114 802.05 110 5 802.59 323 117 802.06 113 6 802.60 328 120 802.07 116 7 802.61 333 127 802.09 122 10 802.63 344 130 802.11 128 12 802.65 354 137 802.12 11 802.65 354 137 802.12 131 14 802.66 359 141 802.13 135 15 802.67 364 145 802.14 138 16 802.68 370 148 802.15 141 18 802.69 375 152 802.17 148 802.69 375 152 802.17 148 802.69 375 152 802.17 148 802.70 380 156 802.17 148 802.77 391 163 802.21 162 27 802.75 408 175 802.22 165 28 802.76 414 800 802.21 162 27 802.77 419 84 802.22 165 802.77 414	802.00	96	0	802 54	299	102
Box Box <td>802.00</td> <td>99</td> <td>1</td> <td>802.55</td> <td>304</td> <td>102</td>	802.00	99	1	802.55	304	102
802.03 104 3 802.57 313 111 802.04 107 4 802.58 318 114 802.05 110 5 802.59 323 117 802.06 113 6 802.60 328 120 802.07 116 7 802.61 333 124 802.08 119 9 802.62 338 127 802.09 122 10 802.63 344 130 802.11 125 11 802.66 359 141 802.13 135 15 802.66 359 141 802.13 135 15 802.66 359 141 802.13 135 15 802.67 364 145 802.14 138 16 802.68 370 148 802.15 141 18 802.69 375 152 802.16 144 19 802.70 380 156 802.17 148 21 802.71 386 160 802.19 155 24 802.75 408 175 802.21 165 28 802.76 414 180 802.22 165 28 802.76 414 180 802.22 165 28 802.76 414 180 802.21 165 28 802.76 414 180 802.22 165 28 802.77 419	802.02	102	2	802.56	308	108
802.04 107 4 802.58 318 114 802.05 110 5 802.59 323 117 802.06 113 6 802.60 328 120 802.07 116 7 802.61 333 124 802.08 119 9 802.62 338 127 802.09 122 10 802.63 3444 130 802.10 125 11 802.64 349 134 802.11 128 12 802.66 359 141 802.12 131 14 802.66 359 141 802.13 135 15 802.67 364 145 802.16 144 19 802.70 380 156 802.16 144 19 802.70 380 156 802.17 148 21 802.71 386 160 802.18 151 22 802.72 391 163 802.21 162 27 802.75 408 175 802.22 165 28 802.76 414 180 802.23 169 30 802.77 419 84 802.25 176 33 802.79 431 192 802.26 180 35 802.80 436 197 802.26 180 35 802.81 442 201 802.25 176 438 802.86 472 <t< td=""><td>802.02</td><td>104</td><td>3</td><td>802.57</td><td>313</td><td>111</td></t<>	802.02	104	3	802.57	313	111
802.05 110 5 802.59 323 117 802.06 113 6 802.60 328 120 802.06 119 9 802.62 333 124 802.08 119 9 802.62 333 124 802.09 122 10 802.63 344 130 802.10 125 11 802.65 354 137 802.12 133 15 802.66 359 141 802.13 135 15 802.67 364 445 802.14 138 16 802.68 370 148 802.15 141 18 802.69 375 152 802.16 1441 19 802.70 380 166 802.17 148 802.69 375 152 802.16 1441 18 802.71 386 160 802.19 155 24 802.73 397 167 802.20 158 25 802.76 414 180 802.23 169 30 802.77 419 184 802.24 172 32 802.78 425 188 802.25 176 33 802.77 419 184 802.25 176 33 802.77 419 184 802.24 172 32 802.77 419 184 802.25 165 38 802.86 472 248 <td>802.00</td> <td>107</td> <td>4</td> <td>802.58</td> <td>318</td> <td>114</td>	802.00	107	4	802.58	318	114
B02.06 113 6 B02.60 328 120 B02.07 116 7 802.61 333 124 B02.08 119 9 802.62 338 127 802.09 122 10 802.63 344 130 802.10 125 11 802.66 354 137 802.11 128 12 802.66 359 141 802.12 131 14 802.66 359 141 802.15 141 18 802.69 375 152 802.16 144 19 802.70 380 156 802.17 148 21 802.71 386 160 802.18 151 22 802.75 408 175 802.220 158 25 802.77 408 175 802.23 169 30 802.77 419 184 802.25 176 33 802.79 <td>802.04</td> <td>110</td> <td>5</td> <td>802.59</td> <td>323</td> <td>117</td>	802.04	110	5	802.59	323	117
802.071167 802.61 333 124 802.08 1199 802.62 333 127 802.09 12210 802.63 344 130 802.10 12511 802.65 354 137 802.11 12812 802.65 354 137 802.12 13114 802.66 359 141 802.13 13515 802.67 364 145 802.14 13816 802.68 370 148 802.15 14118 802.69 375 152 802.16 144119 802.70 386 160 802.18 15122 802.71 397 167 802.20 15825 802.74 402171 802.21 16524 802.75 408175 802.22 16528 802.76 414180 802.23 16930 802.77 419184 802.24 17232 802.76 414180 802.25 17633 802.80 436197 802.26 18035 802.80 436197 802.26 18035 802.81 448205 802.26 18035 802.85 466219 802.26 18739802.85466219 802.26 18739 802.87 478224 802.33 2074	802.06	113	6	802.60	328	120
802.081199802.62338127802.0912210802.63344130802.1012511802.64349134802.1112812802.65354137802.1213114802.66359141802.1313515802.67364145802.1413816802.69375152802.1514118802.69375152802.16144419802.70380156802.1714821802.71386160802.1815122802.74402171802.2116227802.75408175802.2216528802.76414180802.2316930802.77419184802.2517633802.79431192802.2618035802.80436197802.2718337802.81442201802.2818739802.82448205802.2919141802.86472224802.3119945802.86472224802.3220347802.86472224802.3320749802.87478229802.3421151802.86472224802.33203515258	802.07	116	7	802.61	333	124
802.09 122 10 802.63 344 130 802.10 125 11 802.63 344 130 802.10 125 11 802.64 349 134 802.11 128 12 802.65 354 137 802.12 131 14 802.66 359 141 802.13 135 15 802.67 364 145 802.14 138 16 802.68 370 148 802.15 141 18 802.69 375 152 802.16 144 19 802.70 380 156 802.17 148 21 802.71 386 160 802.18 151 22 802.73 397 167 802.20 158 25 802.74 402 171 802.21 165 28 802.76 414 180 802.23 169 30 802.77 419 184 802.24 172 32 802.77 419 184 802.25 176 33 802.77 419 184 802.26 180 35 802.80 436 197 802.25 176 33 802.77 419 184 802.26 180 35 802.80 436 197 802.24 172 324 442 201 802.25 181 39 802.82 448 214	802.08	119	9	802.62	338	127
802.10 125 11 802.64 349 134 802.11 128 12 802.65 354 137 802.12 131 14 802.66 359 141 802.13 135 15 802.66 370 148 802.15 141 138 16 802.68 370 148 802.15 141 18 802.69 375 152 802.16 144 19 802.70 380 156 802.16 144 19 802.70 380 156 802.17 148 21 802.72 391 163 802.18 151 22 802.75 402 177 802.20 158 25 802.74 402 177 802.21 165 28 802.76 414 180 802.23 169 30 802.77 419 184 802.24 172 32 802.78 425 188 802.25 176 33 802.78 425 188 802.26 180 35 802.80 436 197 802.27 183 37 802.81 442 201 802.26 180 35 802.80 436 197 802.26 180 35 802.80 436 197 802.25 195 43 802.87 478 220 802.30 195 43 802.87 <td>802.09</td> <td>122</td> <td>10</td> <td>802.63</td> <td>344</td> <td>130</td>	802.09	122	10	802.63	344	130
802.1112812 802.65 354 137 802.12 13114 802.65 359141 802.13 13515 802.67 364145 802.14 13816 802.68 370148 802.15 14118 802.69 375152 802.16 14419 802.70 380156 802.17 14821 802.71 386160 802.18 15122 802.72 391163 802.19 15524 802.73 397167 802.20 15825 802.74 402171 802.21 16227 802.75 408175 802.22 16528 802.76 414180 802.23 16930 802.77 419184 802.24 17232 802.79 431192 802.26 18035 802.80 436197 802.27 18337 802.81 442201 802.28 18739802.82448205 802.29 19141 802.85 466219 802.30 19543 802.87 478229 802.33 20749 802.87 478299 802.34 21151 802.80 436197 802.35 21553 802.90 436214 802.33 20749 802.87 <	802.10	125	11	802.64	349	134
802.12 131 14 802.66 359 141 802.13 135 15 802.67 364 145 802.14 138 16 802.68 370 148 802.15 141 18 802.69 375 152 802.17 148 21 802.70 380 166 802.18 151 22 802.73 397 167 802.21 165 24 802.75 408 175 802.22 165 28 802.76 414 180 802.23 169 30 802.77 419 184 802.24 172 32 802.80 436 197 802.25 176 33 802.79 431 192 802.26 180 35 802.80 442 201 802.26 180 35 802.86 460 214 802.30 195 43 802.87 </td <td>802.11</td> <td>128</td> <td>12</td> <td>802.65</td> <td>354</td> <td>137</td>	802.11	128	12	802.65	354	137
802.13 135 15 802.67 364 145 802.14 138 16 802.68 370 148 802.15 141 18 802.69 375 152 802.16 144 19 802.70 380 156 802.17 148 21 802.71 386 160 802.18 151 22 802.72 391 163 802.19 155 24 802.73 397 167 802.20 158 25 802.76 414 180 802.21 162 27 802.76 414 180 802.22 165 28 802.77 419 184 802.25 176 33 802.79 431 192 802.26 180 35 802.80 436 197 802.26 180 35 802.81 442 201 802.30 195 43 802.84 </td <td>802.12</td> <td>131</td> <td>14</td> <td>802.66</td> <td>359</td> <td>141</td>	802.12	131	14	802.66	359	141
802.14 138 16 802.68 370 148 802.15 141 18 802.69 375 152 802.16 144 19 802.70 380 156 802.17 148 21 802.71 386 160 802.18 151 22 802.72 391 163 802.19 155 24 802.73 397 167 802.20 158 25 802.74 402 171 802.21 162 27 802.76 414 180 802.22 165 28 802.77 408 175 802.24 172 32 802.80 436 197 802.25 176 33 802.81 442 201 802.26 180 35 802.86 454 210 802.28 187 39 802.82 448 205 802.30 195 43 802.84 </td <td>802.13</td> <td>135</td> <td>15</td> <td>802.67</td> <td>364</td> <td>145</td>	802.13	135	15	802.67	364	145
802.15 141 18 802.69 375 152 802.16 144 19 802.70 380 156 802.17 148 21 802.72 391 163 802.19 155 24 802.73 397 167 802.20 158 25 802.74 402 171 802.21 162 27 802.75 408 175 802.22 165 28 802.76 414 180 802.23 169 30 802.77 419 184 802.24 172 32 802.78 425 188 802.25 176 33 802.80 436 197 802.26 180 35 802.81 442 201 802.28 187 39 802.82 448 205 802.29 191 41 802.83 454 210 802.31 199 45 802.85 </td <td>802.14</td> <td>138</td> <td>16</td> <td>802.68</td> <td>370</td> <td>148</td>	802.14	138	16	802.68	370	148
802.1614419 802.70 380 156 802.17 14821 802.71 386160 802.18 15122 802.72 391163 802.19 15524 802.73 397167 802.20 15825 802.74 402171 802.21 16227 802.75 408175 802.22 16528 802.76 414180 802.23 16930 802.77 419184 802.24 17232 802.78 425188 802.25 17633 802.79 431192 802.26 18035 802.80 436197 802.27 18337 802.81 442201 802.29 19141 802.83 454210 802.30 19543 802.85 466214 802.31 19945 802.86 472224 802.33 20749 802.87 478229 802.34 21553 802.89 490238 802.35 21553 802.89 490238 802.36 21955 802.90 496243 802.37 22357 802.91 502248 802.37 233515258269253 802.36 21955 802.94 521264 802.44 25777 802.96 <td>802.15</td> <td>141</td> <td>18</td> <td>802.69</td> <td>375</td> <td>152</td>	802.15	141	18	802.69	375	152
802.17 148 21 802.71 386 160 802.18 151 22 802.72 391 163 802.19 155 24 802.73 397 167 802.20 158 25 802.74 402 171 802.21 162 27 802.75 408 175 802.22 165 28 802.76 414 180 802.23 169 30 802.77 419 184 802.24 172 32 802.78 425 188 802.25 176 33 802.79 431 192 802.26 180 35 802.80 436 197 802.27 183 37 802.81 442 201 802.29 191 41 802.83 454 210 802.29 191 41 802.85 466 214 802.30 195 43 802.84 460 214 802.31 199 45 802.85 466 219 802.32 203 47 802.86 472 224 802.33 207 49 802.87 478 229 802.34 211 51 802.89 490 238 802.35 215 53 802.90 496 243 802.35 219 55 802.90 496 243 802.33 207 49 802.94 521 <td>802.16</td> <td>144</td> <td>19</td> <td>802.70</td> <td>380</td> <td>156</td>	802.16	144	19	802.70	380	156
802.1815122 802.72 391163 802.19 15524 802.73 397167 802.20 15825 802.74 402171 802.21 16227 802.75 408175 802.22 16528 802.76 4114180 802.23 16930 802.77 419184 802.24 17232 802.78 425188 802.25 17633 802.79 431192 802.26 18035 802.80 436197 802.27 18337 802.81 442201 802.28 18739 802.82 448205 802.29 19141 802.83 454210 802.30 19543 802.84 460214 802.31 19945 802.85 466219 802.32 20347 802.86 472224 802.33 20749 802.87 478229 802.34 21151 802.86 472224 802.35 21553 802.90 496243 802.36 21955 802.90 496243 802.36 21955 802.93 515258 802.36 21955 802.93 515258 802.40 23564 802.97 540279 802.41 24067 802.95	802.17	148	21	802.71	386	160
802.1915524 802.73 397 167 802.20 15825 802.74 402 171 802.21 16227 802.75 408 175 802.22 16528 802.76 414180 802.23 16930 802.77 419184 802.24 17232 802.77 419184 802.25 17633 802.77 413192 802.26 18035 802.80 436197 802.27 18337 802.81 442201 802.28 18739 802.82 448205 802.29 19141 802.83 454210 802.30 19543 802.84 460214 802.31 19945 802.85 466219 802.32 20347 802.86 472224 802.33 20749 802.87 478229 802.34 21151 802.89 490238 802.35 21553 802.90 496243 802.37 22357 802.91 502248 802.38 22760 802.92 509253 802.39 23162 802.93 515258 802.44 24469 802.97 553290 802.45 25777 802.96 534274 802.44 25374 80	802.18	151	22	802.72	391	163
802.2015825 802.74 402 171 802.21 16227 802.75 408175 802.22 16528 802.76 414180 802.23 16930 802.77 419184 802.24 17232 802.78 425188 802.25 17633 802.79 431192 802.26 18035 802.80 436197 802.27 18337 802.81 442201 802.28 18739 802.82 448205 802.29 19141 802.83 454210 802.30 19543 802.84 460214 802.31 19945 802.85 466219 802.32 20347 802.87 478229 802.33 20749 802.87 478229 802.34 21151 802.87 478229 802.35 21553 802.99 490238 802.37 22357 802.91 502248 802.38 22760 802.92 509253 802.39 23162 802.93 515258 802.44 24469 802.97 540279 802.44 25777 802.98 547285 802.45 25777 802.99 553290 802.44 26279 803.00	802.19	155	24	802.73	397	167
802.21 162 27 802.75 408 175 802.22 165 28 802.76 414 180 802.23 169 30 802.77 419 184 802.24 172 32 802.78 425 188 802.25 176 33 802.79 431 192 802.26 180 35 802.80 436 197 802.27 183 37 802.81 442 201 802.28 187 39 802.82 448 205 802.29 191 41 802.83 454 210 802.30 195 43 802.84 460 214 802.31 199 45 802.85 466 219 802.32 203 47 802.86 472 224 802.33 207 49 802.87 478 229 802.34 211 51 802.88 484 233 802.36 219 55 802.90 496 243 802.36 219 55 802.90 496 243 802.36 219 55 802.94 521 264 802.38 227 60 802.92 509 253 802.39 231 62 802.93 515 258 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 <td>802.20</td> <td>158</td> <td>25</td> <td>802.74</td> <td>402</td> <td>171</td>	802.20	158	25	802.74	402	171
802.2216528 802.76 414180 802.23 16930 802.77 419184 802.24 17232 802.78 425188 802.25 17633 802.79 431192 802.26 18035 802.80 436197 802.27 18337 802.81 442201 802.29 19141 802.83 454210 802.30 19543 802.84 460214 802.31 19945 802.85 466219 802.32 20347 802.85 466219 802.32 20347 802.86 472224 802.33 20749 802.87 478229 802.34 21151802.86484233 802.35 21553 802.90 496243 802.36 21955 802.90 496243 802.36 21955 802.92 509253 802.38 22760 802.92 509253 802.40 23564 802.94 521264 802.41 24067 802.95 528269 802.42 24469 802.97 540279 802.44 25374 802.98 547285 802.43 24871 802.97 540279 802.44 25374 802.99 <td>802.21</td> <td>162</td> <td>27</td> <td>802.75</td> <td>408</td> <td>175</td>	802.21	162	27	802.75	408	175
802.23 169 30 802.77 419 184 802.24 172 32 802.78 425 188 802.25 176 33 802.79 431 192 802.26 180 35 802.80 436 197 802.27 183 37 802.81 442 201 802.28 187 39 802.82 448 205 802.29 191 41 802.83 454 210 802.30 195 43 802.84 460 214 802.31 199 45 802.85 466 219 802.32 203 47 802.86 472 224 802.33 207 49 802.87 478 229 802.35 215 53 802.88 484 233 802.35 215 53 802.90 496 243 802.36 219 55 802.90 496 243 802.37 223 57 802.91 50	802.22	165	28	802.76	414	180
802.24 172 32 802.78 425 188 802.25 176 33 802.79 431 192 802.26 180 35 802.80 436 197 802.27 183 37 802.81 442 201 802.28 187 39 802.82 448 205 802.29 191 41 802.83 454 210 802.30 195 43 802.84 460 214 802.31 199 45 802.85 466 219 802.32 203 47 802.86 472 224 802.33 207 49 802.87 478 229 802.34 211 51 802.88 484 233 802.35 215 53 802.90 496 243 802.37 223 57 802.91 502 248 802.38 227 60 802.92 509 253 802.43 244 62 802.93 51	802.23	169	30	802.77	419	184
802.25 176 33 802.79 431 192 802.26 180 35 802.80 436 197 802.27 183 37 802.81 442 201 802.28 187 39 802.82 448 205 802.29 191 41 802.83 454 210 802.30 195 43 802.85 466 214 802.31 199 45 802.85 466 219 802.32 203 47 802.86 472 224 802.33 207 49 802.87 478 229 802.35 215 53 802.87 478 229 802.36 219 55 802.90 490 238 802.37 223 57 802.91 502 248 802.38 227 60 802.92 509 253 802.40 235 64 802.93 515 258 802.41 240 67 802.95 52	802.24	172	32	802.78	425	188
802.26 180 35 802.80 436 197 802.27 183 37 802.81 442 201 802.28 187 39 802.82 448 205 802.29 191 41 802.83 454 210 802.30 195 43 802.84 460 214 802.31 199 45 802.85 466 219 802.32 203 47 802.86 472 224 802.33 207 49 802.87 478 229 802.34 211 51 802.88 484 233 802.35 215 53 802.89 490 238 802.36 219 55 802.90 496 243 802.37 223 57 802.91 502 248 802.38 227 60 802.92 509 253 802.40 235 64 802.94 521 264 802.41 240 67 802.95 52	802.25	176	33	802.79	431	192
802.27 183 37 802.81 442 201 802.28 187 39 802.82 448 205 802.29 191 41 802.83 454 210 802.30 195 43 802.84 460 214 802.31 199 45 802.85 466 219 802.32 203 47 802.86 472 224 802.33 207 49 802.87 478 229 802.34 211 51 802.88 484 233 802.35 215 53 802.89 490 238 802.36 219 55 802.90 496 243 802.37 223 57 802.91 502 248 802.38 227 60 802.92 509 253 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 269 802.42 244 69 802.96 53	802.26	180	35	802.80	436	197
802.28 187 39 802.82 448 205 802.29 191 41 802.83 454 210 802.30 195 43 802.84 460 214 802.31 199 45 802.85 466 219 802.32 203 47 802.86 472 224 802.33 207 49 802.87 478 229 802.34 211 51 802.88 484 233 802.35 215 53 802.89 490 238 802.36 219 55 802.90 496 243 802.37 223 57 802.91 502 248 802.38 227 60 802.92 509 253 802.39 231 62 802.93 515 258 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 269 802.42 244 69 802.96 53	802.27	183	37	802.81	442	201
802.29 191 41 802.83 454 210 802.30 195 43 802.84 460 214 802.31 199 45 802.85 466 219 802.32 203 47 802.86 472 224 802.33 207 49 802.87 478 229 802.34 211 51 802.88 484 233 802.35 215 53 802.89 490 238 802.36 219 55 802.90 496 243 802.37 223 57 802.91 502 248 802.38 227 60 802.92 509 253 802.39 231 62 802.93 515 258 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 269 802.42 244 69 802.96 534 274 802.43 248 71 802.97 54	802.28	187	39	802.82	448	205
802.30 195 43 802.84 460 214 802.31 199 45 802.85 466 219 802.32 203 47 802.86 472 224 802.33 207 49 802.87 478 229 802.34 211 51 802.88 484 233 802.35 215 53 802.89 490 238 802.36 219 55 802.90 496 243 802.37 223 57 802.91 502 248 802.38 227 60 802.92 509 253 802.39 231 62 802.93 515 258 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 269 802.42 244 69 802.96 534 274 802.43 248 71 802.97 540 279 802.44 253 74 802.98 54	802.29	191	41	802.83	454	210
802.31 199 45 802.85 466 219 802.32 203 47 802.86 472 224 802.33 207 49 802.87 478 229 802.34 211 51 802.88 484 233 802.35 215 53 802.89 490 238 802.36 219 55 802.90 496 243 802.37 223 57 802.91 502 248 802.38 227 60 802.92 509 253 802.39 231 62 802.93 515 258 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 269 802.42 244 69 802.96 534 274 802.43 248 71 802.97 540 279 802.43 248 71 802.99 553 290 802.44 253 74 802.99 55	802.30	195	43	802.84	460	214
802.32 203 47 802.86 47/2 224 802.33 207 49 802.87 478 229 802.34 211 51 802.88 484 233 802.35 215 53 802.89 490 238 802.36 219 55 802.90 496 243 802.37 223 57 802.91 502 248 802.38 227 60 802.92 509 253 802.39 231 62 802.93 515 258 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 269 802.42 244 69 802.96 534 274 802.43 248 71 802.97 540 279 802.44 253 74 802.98 547 285 802.45 257 77 802.99 553 290 802.46 262 79 803.00 5	802.31	199	45	802.85	466	219
802.33 207 49 802.87 478 229 802.34 211 51 802.88 484 233 802.35 215 53 802.89 490 238 802.36 219 55 802.90 496 243 802.37 223 57 802.91 502 248 802.38 227 60 802.92 509 253 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 269 802.42 244 69 802.95 528 269 802.43 248 71 802.97 540 279 802.44 253 74 802.98 547 285 802.45 257 77 802.99 553 290 802.46 262 79 803.00 560 296 802.45 257 77 802.99 553 290 802.45 257 87 803.00 56	802.32	203	47	802.86	472	224
802.34 211 51 802.88 484 233 802.35 215 53 802.89 490 238 802.36 219 55 802.90 496 243 802.37 223 57 802.91 502 248 802.38 227 60 802.92 509 253 802.39 231 62 802.93 515 258 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 269 802.42 244 69 802.96 534 274 802.43 248 71 802.97 540 279 802.44 253 74 802.98 547 285 802.45 257 77 802.99 553 290 802.46 262 79 803.00 560 296 802.47 266 82 803.00 560 296 802.48 271 84 802.93 56	802.33	207	49	802.87	478	229
802.35 213 53 802.89 490 238 802.36 219 55 802.90 496 243 802.37 223 57 802.91 502 248 802.38 227 60 802.92 509 253 802.39 231 62 802.93 515 258 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 269 802.42 244 69 802.96 534 274 802.43 248 71 802.97 540 279 802.44 253 74 802.98 547 285 802.45 257 77 802.99 553 290 802.46 262 79 803.00 560 296 802.47 266 82 82 82 82 82 802.48 271 84 80 84 80 84 802.50 280 90	802.34	211	51	802.88	484	233
802.36 219 55 802.90 496 243 802.37 223 57 802.91 502 248 802.38 227 60 802.92 509 253 802.39 231 62 802.93 515 258 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 269 802.42 244 69 802.96 534 274 802.43 248 71 802.97 540 279 802.44 253 74 802.98 547 285 802.45 257 77 802.99 553 290 802.46 262 79 803.00 560 296 802.47 266 82 803.00 560 296 802.48 271 84 803.00 560 296 802.50 280 90 803.00 560 296 802.51 285 93 802.53 29	002.30	210	03 55	002.09	490	230
602.37 223 57 602.91 502 248 802.38 227 60 802.92 509 253 802.39 231 62 802.93 515 258 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 269 802.42 244 69 802.95 528 269 802.42 244 69 802.96 534 274 802.43 248 71 802.97 540 279 802.44 253 74 802.98 547 285 802.45 257 77 802.99 553 290 802.46 262 79 803.00 560 296 802.47 266 82 82 80 90 803.00 560 296 802.50 280 90 90 802.51 285 93 802.52 289 96 802.53 294 99 99 99	002.30	219	00 57	802.90	490	243
802.36 227 60 802.32 509 233 802.39 231 62 802.93 515 258 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 269 802.42 244 69 802.96 534 274 802.43 248 71 802.97 540 279 802.44 253 74 802.98 547 285 802.45 257 77 802.99 553 290 802.46 262 79 803.00 560 296 802.47 266 82 82 802.47 266 82 802.48 271 84 80 80 90 802.50 280 90 802.51 285 93 802.52 289 96 802.53 294 99	002.37	223	57	002.91 902.02	502	240
802.39 231 62 802.33 513 236 802.40 235 64 802.94 521 264 802.41 240 67 802.95 528 269 802.42 244 69 802.96 534 274 802.43 248 71 802.96 534 279 802.44 253 74 802.97 540 279 802.45 257 77 802.98 547 285 802.46 262 79 803.00 560 296 802.47 266 82 803.00 560 296 802.48 271 84 802.99 553 296 802.50 280 90 803.00 560 296 802.51 285 93 802.52 289 96 802.53 294 99 99 99 99	802.30	227	60 62	802.92	509	203
802.40 233 64 602.94 521 204 802.41 240 67 802.95 528 269 802.42 244 69 802.96 534 274 802.43 248 71 802.97 540 279 802.44 253 74 802.98 547 285 802.45 257 77 802.99 553 290 802.46 262 79 803.00 560 296 802.47 266 82 803.00 560 296 802.48 271 84 802.50 280 90 802.50 280 90 802.51 285 93 802.52 289 96 802.53 294 99	802.39	231	64	802.93	515	200
802.41 240 67 602.35 520 203 802.42 244 69 802.96 534 274 802.43 248 71 802.97 540 279 802.44 253 74 802.98 547 285 802.45 257 77 802.99 553 290 802.46 262 79 803.00 560 296 802.47 266 82 803.00 560 296 802.48 271 84 802.50 280 90 90 802.51 285 93 802.52 289 96 802.53 294 99	802.40	200	67	802.94	528	204
802.42 244 00 502.50 504 214 802.43 248 71 802.97 540 279 802.44 253 74 802.98 547 285 802.45 257 77 802.99 553 290 802.46 262 79 803.00 560 296 802.47 266 82 803.00 560 296 802.48 271 84 802.50 280 90 802.51 285 93 802.52 289 96 802.53 294 99 99 99	802.41	240	69	802.95	520	203
802.45 240 11 502.57 540 213 802.44 253 74 802.98 547 285 802.45 257 77 802.99 553 290 802.46 262 79 803.00 560 296 802.47 266 82 803.00 560 296 802.48 271 84 802.50 280 90 802.50 280 90 802.51 285 93 802.52 289 96 802.53 294 99	802.42	244	71	802.00	540	274
802.45 257 77 802.99 553 290 802.46 262 79 803.00 560 296 802.47 266 82 803.00 560 296 802.48 271 84 802.49 275 87 802.50 280 90 90 802.51 285 93 802.52 289 96 802.53 294 99	802.40	253	74	802.98	547	285
802.46 262 79 803.00 560 296 802.47 266 82 802.48 271 84 802.49 275 87 802.50 280 90 802.51 285 93 802.52 289 96 802.53 294 99	802.45	257	77	802.99	553	290
802.47 266 82 802.48 271 84 802.49 275 87 802.50 280 90 802.51 285 93 802.52 289 96 802.53 294 99	802.46	262	79	803.00	560	296
802.48 271 84 802.49 275 87 802.50 280 90 802.51 285 93 802.52 289 96 802.53 294 99	802.47	266	82	000100		200
802.49 275 87 802.50 280 90 802.51 285 93 802.52 289 96 802.53 294 99	802.48	271	84			
802.50 280 90 802.51 285 93 802.52 289 96 802.53 294 99	802.49	275	87			
802.51 285 93 802.52 289 96 802.53 294 99	802.50	280	90			
802.52 289 96 802.53 294 99	802.51	285	93			
802.53 294 99	802.52	289	96			
	802.53	294	99			

20170390.D51_PROPOSED

Prepared by Fuss and O'Neill HydroCAD® 10.00-21 s/n 10611 © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 30P: Subsurface Infiltrator

Elevation	Surface	Storage	Elevation	Surface	Storage
798.50	3 534	0	799.04	3 534	823
798.51	3 534	14	799.05	3 534	852
798 52	3 534	28	799.06	3 534	881
798 53	3 534	42	700.00	3 534	910
708.53	3,534	42 57	700.08	3 534	030
790.04	2,534	57	799.00	2,534	939
790.55	2,534	71	799.09	2 524	900
790.00	3,334	00	799.10	3,004	1 025
790.07	3,334	99	799.11	3,334	1,023
796.00	3,334	113	799.12	3,334	1,004
798.59	3,534	127	799.13	3,534	1,082
798.60	3,534	141	799.14	3,534	1,111
798.61	3,534	156	799.15	3,534	1,139
798.62	3,534	170	799.16	3,534	1,168
798.63	3,534	184	799.17	3,534	1,196
798.64	3,534	198	799.18	3,534	1,224
798.65	3,534	212	799.19	3,534	1,253
798.66	3,534	226	799.20	3,534	1,281
798.67	3,534	240	799.21	3,534	1,309
798.68	3,534	254	799.22	3,534	1,338
798.69	3,534	269	799.23	3,534	1,366
798.70	3,534	283	799.24	3,534	1,394
798.71	3,534	297	799.25	3,534	1,422
798.72	3,534	311	799.26	3,534	1,450
798.73	3,534	325	799.27	3,534	1,479
798.74	3,534	339	799.28	3,534	1,507
798.75	3,534	353	799.29	3,534	1,535
798.76	3,534	368	799.30	3,534	1,563
798.77	3,534	382	799.31	3,534	1,591
798.78	3,534	396	799.32	3,534	1,619
798.79	3,534	410	799.33	3,534	1,647
798.80	3,534	424	799.34	3,534	1,675
798.81	3,534	438	799.35	3,534	1,704
798.82	3,534	452	799.36	3,534	1,732
798.83	3,534	467	799.37	3,534	1,760
798.84	3,534	481	799.38	3,534	1,788
798.85	3,534	495	799.39	3,534	1,816
798.86	3,534	509	799.40	3,534	1,843
798.87	3,534	523	799.41	3,534	1,871
798.88	3.534	537	799.42	3.534	1.899
798.89	3.534	551	799.43	3.534	1.927
798.90	3,534	565	799.44	3.534	1.955
798.91	3.534	580	799.45	3.534	1.983
798 92	3 534	594	799 46	3 534	2 011
798 93	3 534	608	799 47	3 534	2,038
798 94	3 534	622	799 48	3 534	2,066
798.95	3 534	636	799 49	3 534	2,000
798.96	3 534	650	799.50	3 534	2,001
798.97	3 534	664	799 51	3 534	2,121
798 98	3 534	670	799 52	3 534	2,143
798 00	2 521	613	700 53	2,534	2,177
790.00	3,33 4 2 52 <u>4</u>	707	700 54	2,534	2,204
700.00	2 521	726	700 55	2,534	2,232
700 02	2,004	765	700 56	2,554	2,209
700 02	0,004 0 E01	705	700 57	0,004 2 521	2,200
199.00	5,554	1 94	199.01	3,004	2,314

Stage-Area-Storage for Pond 30P: Subsurface Infiltrator (continued)

Elevation	Surface	Storage	Elevation	Surface	Storage
	(Sq-II)			(SQ-II)	
799.00	3,534	2,341	800.12	3,534	3,710
799.59	3,534	2,368	800.13	3,534	3,739
799.60	3,534	2,396	800.14	3,534	3,761
799.61	3,534	2,423	800.15	3,534	3,784
799.62	3,534	2,450	800.16	3,534	3,806
799.63	3,534	2,477	800.17	3,534	3,828
799.64	3,534	2,504	800.18	3,534	3,850
799.65	3,534	2,531	800.19	3,534	3,872
799.66	3,534	2,558	800.20	3,534	3,894
799.67	3,534	2,585	800.21	3,534	3,915
799.68	3,534	2,612	800.22	3,534	3,936
799.69	3,534	2,639	800.23	3,534	3,957
799.70	3,534	2,665	800.24	3,534	3,978
799.71	3,534	2,692	800.25	3,534	3,999
799.72	3,534	2,718	800.26	3,534	4,020
799.73	3,534	2,745	800.27	3,534	4,040
799.74	3,534	2,771	800.28	3,534	4,060
799.75	3,534	2,798	800.29	3,534	4,079
799.76	3,534	2,824	800.30	3,534	4,098
799.77	3,534	2,850	800.31	3,534	4,117
799.78	3,534	2,877	800.32	3,534	4,136
799.79	3.534	2,903	800.33	3,534	4.154
799.80	3.534	2,929	800.34	3.534	4,172
799.81	3,534	2,955	800.35	3,534	4,190
799.82	3 534	2,981	800.36	3 534	4 208
799.83	3,534	3.007	800.37	3,534	4,225
799.84	3,534	3.032	800.38	3,534	4,242
799.85	3 534	3 058	800.39	3 534	4 259
799.86	3 534	3 084	800.00	3 534	4 275
799.87	3 534	3 109	800.41	3 534	4 291
799.88	3 534	3 135	800.42	3 534	4,201
799.89	3 534	3 160	800.42	3 534	4 323
799.00	3 534	3 185	800.40	3 534	4,020
700.01	3 53/	3 210	800.45	3 53/	4,354
700.02	3 534	3 236	800.45	3,534	4,334
700 03	3 53/	3 261	800.40	3,534	4,370
700.04	3 534	3 285	800.47	3,534	4,000
799.94	3,534	3,200	800.40	3,534	4,400
799.95	2 524	2 225	800.49 800.50	2,534	4,413
799.90	2 524	3,355	800.50	2,534	4,430
799.97	3,004	3,300	800.51	3,004	4,444
799.90	3,004	3,304	000.0Z	3,004	4,400
799.99	3,334	3,409	000.00	3,334	4,472
800.00	3,534	3,433	800.54	3,534	4,400
800.01	3,534	3,437	800.55	3,534	4,500
800.02	3,534	3,481	800.56	3,534	4,514
800.03	3,534	3,505	800.57	3,534	4,528
800.04	3,534	3,529	800.58	3,534	4,543
800.05	3,534	3,553	800.59	3,534	4,557
800.06	3,534	3,577	800.60	3,534	4,571
800.07	3,534	3,600	800.61	3,534	4,585
800.08	3,534	3,624	800.62	3,534	4,599
800.09	3,534	3,647	800.63	3,534	4,613
800.10	3,534	3,670	800.64	3,534	4,627
800.11	3,534	3,693	800.65	3,534	4,642

Stage-Area-Storage for Pond 30P: Subsurface Infiltrator (continued)

Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)
800.66	3,534	4,656
800.67	3,534	4,670
800.68	3,534	4,684
800.69	3,534	4,698
800.70	3,534	4,712
800.71	3,534	4,726
800.72	3,534	4,741
800.73	3,534	4,755
800.74	3,534	4,769
800.75	3,534	4,783
800.76	3,534	4,797
800.77	3,534	4,811
800.78	3,534	4,825
800.79	3,534	4,839
800.80	3,534	4,854
800.81	3,534	4,868
800.82	3,534	4,882
800.83	3,534	4,890
000.04	3,334	4,910
CO.000	3,334	4,924
800.80 800.87	2,534	4,930
000.07 900.99	2,534	4,955
800.80	3,534	4,907
800.09	3,534	4,901
800.90	3,534	4,995
800.92	3 534	5 023
800.93	3 534	5 037
800.94	3 534	5 052
800.95	3 534	5,066
800.96	3,534	5,080
800.97	3,534	5,094
800.98	3,534	5,108
800.99	3.534	5.122
801.00	3.534	5.136
801.01	3,534	5,151
801.02	3,534	5,165
801.03	3,534	5,179
801.04	3,534	5,193

Stage-Area-Storage for Pond 50P: Southeast Bioretention Area

		-	I		-
Elevation	Surface	Storage	Elevation	Surface	Storage
	(34-11)			(34-11)	
801.00	112	0	801.54	200	83
901.01	115	1	001.55	201	05
001.02	G11 440	2	001.00	203	07
801.03	116	3	801.57	205	89
801.04	118	5	801.58	207	91
801.05	119	6	801.59	209	93
801.06	120	7	801.60	211	95
801.07	122	8	801.61	213	97
801.08	123	9	801.62	215	100
801.09	125	11	801.63	217	102
801 10	126	12	801 64	219	104
801.10	128	13	801.65	220	106
901.11	120	14	901.66	220	100
001.12	129	14	001.00	222	100
801.13	131	16	801.67	224	111
801.14	132	1/	801.68	226	113
801.15	134	18	801.69	228	115
801.16	135	20	801.70	230	117
801.17	137	21	801.71	232	120
801.18	138	22	801.72	234	122
801.19	140	24	801.73	236	124
801.20	142	25	801.74	238	127
801.21	143	27	801.75	240	129
801.22	145	28	801.76	242	132
801.23	146	30	801.77	245	134
801 24	148	31	801 78	247	136
801.25	149	33	801 79	249	139
801.26	151	34	801.80	251	141
801.20	153	36	801.80	253	1//
201.27 201.29	155	27	001.01	255	144
001.20	104	37	001.02	200	140
001.29	100	39	001.03	207	149
801.30	100	40	001.04	259	152
801.31	159	42	801.85	261	154
801.32	161	43	801.86	263	157
801.33	163	45	801.87	265	159
801.34	164	47	801.88	268	162
801.35	166	48	801.89	270	165
801.36	168	50	801.90	272	168
801.37	169	52	801.91	274	170
801.38	171	53	801.92	276	173
801.39	173	55	801.93	278	176
801.40	174	57	801.94	281	179
801.41	176	59	801.95	283	181
801 42	178	60	801.96	285	184
801.43	180	62	801.97	287	187
801.40	181	64	801.08	207	107
801.44	183	+0 66	801.00	200	103
201.45 201.46	105	69	802.00	204	100
001.40 001.47	100	00	002.00	234	190
001.47	10/	09			
001.40	189	/1			
801.49	190	/3			
801.50	192	/5			
801.51	194	11			
801.52	196	79			

81

198

801.53

Sizing VortSentryHS Water Quality Volume to Discharge Rate

$Q_1 = (qu)(A)(WQV)$

 $Q_1 =$ flow rate associated with first 1/2-inch of runoff

qu = the unit peak discharge, in csm/in

A = impervious surface drainage area (in square miles)

WQV = water quality volume in watershed inches (1/2 or 1 inch)

Flow Rate			
Equations			
CN		98	
WQV	inch	0.5	
Area	sq ft	8,876	
	acres	0.20	
	sq miles	0.00	
Tc	min.	6	
Tc	hours	0.100	
qu	csm/in	773	from Figure 2 of t
]
Q ₁	cfs	0.12	Per C

from Figure 2 of the Mass DEP Q Rate - Sept. 10, 2013

Per Contech VortSentryHS Specifications Model HS36 is required

Appendix G TSS Removal Calculations

INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

must be used if Proprietary BMP Proposed

1. From MassDEP Stormwater Handbook Vol. 1

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

	Location: Subsurface infiltration System					
	В	С	D	E	F	
	,	ISS Removal	Starting ISS	Amount	Remaining	
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)	
TSS Removal Calculation Worksheet	Subsurface Infiltration Structure	0.80	1.00	0.80	0.20	
		0.00	0.20	0.00	0.20	
		0.00	0.20	0.00	0.20	
		0.00	0.20	0.00	0.20	
		0.00	0.20	0.00	0.20	
Total TSS Removal			SS Removal =	80%	Separate Form Needs to be Completed for Each Outlet or BMP Train	
Project: Spencer Municipal Parking Lot					-	
Prepared By: Fuss & O'Neill				*Equals remaining load from previous BMP (E)		
Date: 2/21/2020				which enters the BMP		
Non-automated TSS Calculation Sheet						

Version 1, Automated: Mar. 4, 2008

Mass. Dept. of Environmental Protection

INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location:	Basin 10P to subsurface infi			
В	C TSS Removal	D Starting TSS	E	F
BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
Sediment Forebay	0.25	1.00	0.25	0.75
	0.00	0.75	0.00	0.75
	0.00	0.75	0.00	0.75
	0.00	0.75	0.00	0.75
	0.00	0.75	0.00	0.75
Total TSS Removal = Project: Spencer Municipal Parking Lot Prepared By: Fuss & O'Neill Date: 2/21/2020			25%	Separate Form Needs to be Completed for Each Outlet or BMP Train
			*Equals remaining load from previous BMP (E) which enters the BMP	
	Elocation: B BMP ¹ Sediment Forebay	Location: Basin 10P to subsurface infi B C TSS Removal BMP ¹ Rate ¹ 0.25 Sediment Forebay 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Date: 2/21/2020	Basin 10P to subsurface infiltration system B C D TSS Removal Starting TSS BMP ¹ Rate ¹ Load* Sediment Forebay 0.25 1.00 0.00 0.75	B C D E TSS Removal BMP ¹ TSS Removal Rate ¹ Starting TSS Load* Arnount Removed (C*D) Sediment Forebay 0.25 1.00 0.25 0.00 0.75 0.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00 0.75 0.00 Dot 0.75 0.00 Dot 0.75 0.00 Dot 0.00 0.75 0.00 Dot 0.75 0.00 0.75 Dot 0.75 0.00 0.75 0.00 Dot 0.75 0.00 0.75 0.00 Dot 0.75 0.00 0.75 0.00 Project: Sterroer Municipal Parking Lot Project: Project: Sterroer Municipal Parking Lot *Equals remaining load from which enters the BMP

Version 1, Automated: Mar. 4, 2008

Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1
INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

surface infiltration system		
D Otention TOO	E	F
ioval Starting 155	Amount	Remaining
Load*	Removed (C*D)	Load (D-E)
1.00	0.25	0.75
0.75	0.00	0.75
0.75	0.00	0.75
0.75	0.00	0.75
0.75	0.00	0.75
otal TSS Removal =	25%	Separate Form Needs to be Completed for Each Outlet or BMP Train
ng Lot		
	*Equals remaining load from	n previous BMP (E)
	which enters the BMP	
	Surface infiltration system Ioval D Ioval Starting TSS Load* 1.00 0.75 0.75 0.75 0.75 Octal TSS Removal = 0.75	surface infiltration system ioval D E ioval Starting TSS Amount Load* Removed (C*D) 1.00 0.25 0.75 0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.75 0.00

V

Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

Mass. Dept. of Environmental Protection

INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

	Location:	Deep sump catch basin to s					
	В	С	D	E	F		
		TSS Removal	Starting TSS	Amount	Remaining		
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)		
neet	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75		
oval orksł	Proprietary Treatment Practice	0.00	0.75	0.00	0.75		
Rem on W		0.00	0.75	0.00	0.75		
TSS culati		0.00	0.75	0.00	0.75		
Cal		0.00	0.75	0.00	0.75		
		Total T	25%	Separate Form Needs to be Completed for Each Outlet or BMP Train			
	Project:	Spencer Municipal Parking Lot		-			
	Prepared By:	Fuss & O'Neill		*Equals remaining load from previous BMP (E)			
	Date:	2/21/2020		which enters the BMP			
Non-automate	ed TSS Calculation Sheet						

Version 1, Automated: Mar. 4, 2008

V

Mass. Dept. of Environmental Protection

must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

Appendix H Long-Term Operation and Maintenance Plan

Long Term Operation & Maintenance Plan Municipal Parking Lot & Green infrastructure Project

Mechanic Street Spencer, MA

Owner: Town of Spencer

January 6, 2019

Revised February 21, 2020

PREPARED BY

1550 Main Street, Suite 400 Springfield, MA 01103

Table of Contents

Long-Term Operation and Maintenance Plan **Mechanic Street**

1	Intro	duction	2
2	Pollu	ition Prevention	2
	2.1	Good Housekeeping	2
	2.2	Chemical and Petroleum Products	3
		2.2.1 Spill Control Practices	. 3
	2.3	Landscaped Areas	. 3
	2.4	Pet Waste Management	. 3
	2.5	Snow Management	3
3	Inspe	ection and Maintenance Requirements for Permanent	
	Storr	nwater Controls	4
	3.1	Bioretention Basins	. 4
		3.1.1 Post-Construction Inspections	. 4
		3.1.2 Monthly Periodic Inspections	. 4
		3.1.3 Annual Inspection	. 5
	3.2	Drainage Structures	. 5
		3.2.1 Post-Construction Inspections	. 5
		3.2.2 Quarterly Inspections	. 5
	3.3	Subsurface Infiltration System	. 6
	3.4	Proprietary water quality unit	. 6
	3.5	Anticipated Costs	. 6

Figures

- 1 Site Location Map
- 2 **BMP** Location Map
- 3 Snow Storage Map

Appendices

- Operation, Maintenance, and Management Inspection Checklists А
- В Proprietary Systems O&M Manual
- Annual O&M Budgetary Opinion of Cost С

End of Report

End of Report

1 Introduction

This Long Term Operation and Maintenance Plan (O&M) is for the Municipal Parking Lot and Site Improvements located on Mechanic Street in Spencer, Massachusetts. A Site Location Map is provided in Figure 1.

The project consist of constructions of a new parking with associate driveway and sidewalks. The overall drainage patterns of the site will be unchanged by the project.

One Subsurface infiltration system, two Bioretention Basins and a proprietary water quality unit are proposed to improve the quality of the water leaving the site. A map depicting the location of the BMPs is provided in Figure 2.

The long-term requirements include following proper site operation procedures and implementing an inspection and maintenance program to ensure the success and minimize the deterioration of the stormwater system over time. The Contractor is responsible for implementing this O&M Plan during construction. The Owner is responsible thereafter. Maintenance operations shall be funded by the Owner. In the event the facility becomes owned by different entities, this Long-Term Operation and Maintenance Plan shall be transferred to the future owners/operators. Checklists to assist with the inspection and maintenance activities are provided in Appendix A.

This plan has been prepared in accordance with the requirements set forth in Standard 9 of the Massachusetts Stormwater Handbook.

2 Pollution Prevention

The following pollution prevention activities shall be conducted to minimize potential impacts on stormwater runoff quality. The Contractor is responsible for all activities during construction. The Owner is responsible thereafter.

2.1 Good Housekeeping

Good housekeeping shall be implemented to minimize the impacts to protected areas by pollutants, soil, and fugitive sediment. The site shall be kept in good working order. Trash shall be kept in covered containers (i.e., dumpsters) to prevent waste from escaping. Fugitive litter that is deposited on the site shall be removed and placed in a proper enclosed container.

2.2 Chemical and Petroleum Products

No chemical or petroleum products are expected to be stored on site.

2.2.1 Spill Control Practices

Any discharge of waste oil or other pollutant to the stormwater system will be reported immediately to the Massachusetts Department of Environmental Protection (MassDEP). The Owner will be responsible for any incident of groundwater contamination resulting from the improper discharge of pollutants to the stormwater system, and may be required by MassDEP to remediate incidents that may impact groundwater quality. Should property ownership be transferred, the subsequent owner/operator will be informed of the legal responsibilities associated with operation of the stormwater system, as indicated above.

The following practices shall be implemented to mitigate spills of material and prevent their release to the waters of the Commonwealth:

- Manufacturers' recommended methods for spill cleanup shall be clearly posted and site personnel will be made aware of the procedures and the location of the information and cleanup supplies.
- Spills will be cleaned up immediately after discovery.
- Spills of toxic or hazardous material will be reported to the appropriate State and local government agency, regardless of size.

2.3 Landscaped Areas

Lawn areas will be mowed during the growing seasons as required to maintain a health stand of vegetation. This is typically once a week but can vary depending on weather conditions. If bagged, grass clippings are to be removed from the site and legally disposed of at an off-site location.

Fertilizers, if required for the maintenance of lawn areas, will be applied only in the amounts recommended by the manufacturer. If kept on site, fertilizers will be stored in a covered area. The contents of any partially used bags of fertilizer will be transferred to a sealable plastic bin to avoid spills.

2.4 Pet Waste Management

There are no provisions for accommodating pets as part of the site's operation.

2.5 Snow Management

Stormwater runoff caused by snow melt must be properly managed to prevent erosion and pollution. Therefore, a snow management plan has been developed to identify storage areas throughout the site.

Snow management operations can vary depending on current weather patterns, available equipment, and previous storm events. Below is a general description of how snow will be managed on the site.

- Keep pedestrian and emergency routes cleared. Ensure stockpiles do not obstruct sight lines at driveway or road intersections.
- Snow removed from the parking lot and drive aisles will be stockpiled in the marked location on the grassed area next to parking lot.
- Snow removed from the sidewalks be stored in the adjacent lawn areas.
- Snow will be stockpiled onsite until the available capacity is exceed at which point it will be loaded into trucks and properly disposed of at an off-site location.

A Snow Storage Plan is provided as Figure 3.

3 Inspection and Maintenance Requirements for Permanent Stormwater Controls

The following inspection and maintenance activities shall be conducted to ensure the success and minimize the deterioration of the stormwater system over time. A map depicting the location of the components of the stormwater management system is provided in Figure 2. Checklists to assist with the inspection and maintenance activities are provided in Appendix A.

3.1 Bioretention Basins

3.1.1 Post-Construction Inspections

Following construction, the bioretention basins shall be inspected after every storm event larger than one-inch in the first six months.

Vegetation shall be watered once every two to three days for first two months, then sporadically after establishment during the first year after installation. If droughty, watering after the initial year may be required.

If at least 25 percent vegetation coverage is not established after the first growing season, reinforcement planting should be installed. If the surface of the basins becomes clogged to the point that standing water is observed on the surface 72 hours after precipitation events, remove accumulated sediment or till the surface to breakup any hard-packed soil and then vegetate.

3.1.2 Monthly Periodic Inspections

The bioretention basin shall be inspected monthly for evidence for vegetation health and the presence of trash (e.g., litter, debris, etc.). Trash deposited on the surface of the basins shall be removed manually and shall be disposed of in accordance with applicable local, state, and federal guidelines and regulations.

Mowing shall occur when vegetation reaches a height at which it cannot support its own weight (typically two (2) to twelve (12) times per year). Inspect soil and repair erode areas monthly. Sediment should be disposed of in accordance with applicable guidelines and regulations.

3.1.3 Annual Inspection

The annual inspection of the basin should include checking for standing water or other evidence of clogging by accumulated sediments, checking inlets and outlets for signs of erosion and damage, checking the overflow structures for blockage and structural integrity, and checking the slopes of the basins for erosion or gullying.

Sediment shall be removed from the basins when the accumulation exceeds one inch or when there is evidence that the infiltration capacity has been significantly reduced. Sediment and debris must be removed manually with rakes rather than heavy equipment to avoid compacting. Removed sediments shall be dewatered (if necessary) and disposed of in an acceptable manner.

The top six (6) inches of the bioretention basin soil shall be removed and replaced when the filtering capacity of the filter diminishes substantially (i.e., when water ponds on the surface of the filter bed for more than 72 hours). If discolored material is found below this removed surface then that material should also be removed and replaced until all discolored material has been removed.

Any areas within the extents of the basins that are subject to erosion or gullying shall be replenished with the original design material and re-vegetated according to design drawings. Prune vegetated areas and remove any dead materials. Separation of herbaceous vegetation rootstock should occur when over-crowding is observed, or approximately once every three years. If required, apply fertilizer to areas where vegetation is not fully established.

3.2 Drainage Structures

3.2.1 Post-Construction Inspections

Immediately prior to the end of construction and acceptance by the Owner, the Contractor shall clean all drainage structures.

3.2.2 Quarterly Inspections

Drainage structures shall be inspected at minimum of four times per year. Sediment shall be removed at least twice per year, or when the depth reaches half the height between the bottom of the structure and the lowest pipe invert elevation. Inspections shall include checking for debris, sediment, and hydrocarbons, and structural integrity or damage. Deficiencies must be corrected immediately. Disposal of the accumulated sediment and hydrocarbons must be in accordance with applicable local, state, and federal guidelines and regulations. Grates shall not be welded to the frame so the structures can be easily inspected and maintained.

3.3 Subsurface Infiltration System

Manufacturers operation and maintenance guidelines for specifications on inspection and maintenance are attached in Appendix B.

3.4 Proprietary water quality unit

Manufacturers operation and maintenance guidelines for specifications on inspection and maintenance are attached in Appendix B.

3.5 Anticipated Costs

The annual cost for the inspections and maintenance for the property is estimated to be from \$9,000 to \$14,000 per year, if performed by an independent third party. A budgetary opinion of cost for the maintenance is included in Appendix C.

Figure 1 Site Location Map

File Path. J.DWGIP2017/0390/D51/C/wilPlan/20170390.D51 LOC01 dvg Layout: FIGURE 1 Plotted: Mon, December 02, 2019 - 9:29 AM User: jdeninger [MS VIEW:] [LAYER STATE:] [LAYER STATE:]] Plotten: DWG TO PDF.PC3 CTB File: FO.STB

Figure 2 BMP Location Map

TOWN OF SPENCER
BMP LOCATION MAP
3KING LOT & GREEN INFRASTRUCTU

Figure 3 Snow Storage Map

	PI D.			SCALE:
	RO	IOWN OF SFENCEN		HORZ.: 1" - 20'
	J. N E: C			VERT.:
F	lo.:	SNOW STOPAGE MAD	FUDD&CONELL	DATUM:
10	20	ISM TOPOLO MONO		HORZ.:
3.	170		108 MYRTLE STREET, SUITE 502	VERT.:
3)390	MUNICIPAL PARKING LOT & GREEN INFRASTRUCTURE PROJECT	QUINCY, MA 02171 617.282.4675	0 10 20
	.51		www.fando.com	
	SPENCER	MASSACHUSETTS		GRAPHIC SCALE

Appendix A

Operation, Maintenance and Management Inspection Checklist

Operation, Maintenance, and Management Inspection Checklists Master Checklist Mechanic Street Parking Lot

Inspection Year: _____

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Bioretention Basins												
Inspect for and Remove Trash (monthly)												
Mow (as required)												
Annual Inspection												
Drainage Structures												
Quarterly Inspection												

Operation, Maintenance, and Management Inspection Checklists Bioretention Basins Mechanic Street Parking Lot

Inspector Name:	Type of Inspection (Circle One):
Inspection Date:	Monthly Annual
Reviewed By:	BMP Name:
Review Date:	

No	Monthly	Annual	Item	Criteria	Satisfactory	Unsatisfactory	Notes
1			Trash/Debris	Basin is free of debris, litter, and waste.			
2			Turf	Grass has not reached a height at which it cannot support its own weight			
3			Sediment	Depth of Sediment is less than one inch.			

\\private\dfs\ProjectData\P2017\0390\D51\Drainage\Report\O&M Plan\Appendices\O&M Checklist Spencer.xlsxO&M Checklist Spencer.xlsx

Operation, Maintenance, and Management Inspection Checklists Bioretention Basins Mechanic Street Parking Lot

4		Clogging	Basins appears to be draining freely and not clogged.		
5		Overflow Structures	Overflow structures are free of blockage and are structurally sound		
6		Erosion	There are no signs of erosion and scouring.		
7		Vegetation	Vegetation is satisfactorily pruned to remove any dead material. Rootstocks are not overcrowded.		

Operation, Maintenance, and Management Inspection Checklists Drainage Structures Mechanic Street Parking Lot

Unsatisfactory Satisfactory

2	Sediment	Depth of sediment is less than half the height between the bottom of the structure and the lowest pipe invert elevation and has been removed within the last six months.		
3	Concrete Surfaces	Concrete surfaces are structurally sound and have negligible spalling and cracking.		

Inspector Name: _____

Reviewed By:	
1	

Review Date:

Structure is free of debris, litter, and waste.

Criteria

Quarterly

No.

1

Item

Trash/Debris

Inspection Date: _____ ____

Type of Inspection (Circle One):

Quarterly

Structure Name:

Notes

Page 4 of 4

Appendix B Proprietary Systems O&M Manual

CONTACTOR® & RECHARGER®

STORMWATER MANAGEMENT SOLUTIONS

OPERATION & MAINTENANCE GUIDELINES

FOR CULTEC STORMWATER MANAGEMENT SYSTEMS

STORMWATER MANAGEMENT SOLUTIONS

Published by

CULTEC, Inc. P.O. Box 280 878 Federal Road Brookfield, Connecticut 06804 USA www.cultec.com

Copyright Notice

© 2019 CULTEC, Inc. All rights reserved. Printed in the USA.

This document and any accompanying CULTEC products are copyrighted by CULTEC, Inc. Any reproduction and/or distribution without prior written consent from CULTEC, Inc. is strictly prohibited.

Disclaimers:

The drawings, photographs and illustrations shown in this document are for illustrative purposes only and are not necessarily to scale. Actual designs may vary.

CULTEC reserves the right to make design and/or specification changes at any time without notice at CULTEC's sole discretion.

CULTEC, the CULTEC logo, RECHARGER, CONTACTOR, HVLV, PAC, STORMFILTER, STORMGENIE and The Chamber with The Stripe are registered trademarks of CULTEC, Inc. Chamber of Choice, HD, 100, 125, 150, 150XL, 180, 280, 330, 330XL, 360, V8, 902, Field Drain Panel, C-1, C-2, C-3, C-4, EZ-24, Landscape Series are trademarks of CULTEC, Inc. © Copyright on all drawings, illustrations, photos, charts - CULTEC, Inc. All rights reserved.

Protected by one or more of the following patents owned by Cultec, Inc.:

U.S. Patents 6,129,482; 6,322,288; 6,854,925; 7,226,241; 7,806,627; 8,366,346; 8,425,148; U.S. Designs D613,819; D638,095; D668,318; Canadian Patent 2,450,565; 2,591,255; Canadian Designs 129144; 135983; 159073; 160977; and/or other U.S. or Foreign Patent(s) or Patent(s) Pending.

Contact Information:

For general information on our other products and services, please contact our offices within the United States at (800)428-5832, (203)775-4416 ext. 202, or e-mail us at custservice@cultec.com.

For technical support, please call (203)775-4416 ext. 203 or e-mail tech@cultec.com.

Visit www.cultec.com/downloads.html for Product Downloads and CAD details.

Doc ID: CLT057 01-20 January 2020

These instructions are for single-layer traffic applications only. For multi-layer applications, contact CULTEC. All illustrations and photos shown herein are examples of typical situations. Be sure to follow the engineer's drawings. Actual designs may vary.

This manual contains guidelines recommended by CULTEC, Inc. and may be used in conjunction with, but not to supersede, local regulations or regulatory authorities. OSHA Guidelines must be followed when inspecting or cleaning any structure.

Introduction

The CULTEC Subsurface Stormwater Management System is a high-density polyethylene (HDPE) chamber system arranged in parallel rows surrounded by washed stone. The CULTEC chambers create arch-shaped voids within the washed stone to provide stormwater detention, retention, infiltration, and reclamation. Filter fabric is placed between the native soil and stone interface to prevent the intrusion of fines into the system. In order to minimize the amount of sediment which may enter the CULTEC system, a sediment collection device (stormwater pretreatment device) is recommended upstream from the CULTEC chamber system. Examples of pretreatment devices include, but are not limited to, an appropriately sized catch basin with sump, pretreatment catchment device, oil grit separator, or baffled distribution box. Manufactured pretreatment devices may also be used in accordance with CULTEC chambers. Installation, operation, and maintenance of these devices shall be in accordance with manufacturer's recommendations. Almost all of the sediment entering the stormwater management system will be collected within the pretreatment device.

Best Management Practices allow for the maintenance of the preliminary collection systems prior to feeding the CULTEC chambers. The pretreatment structures shall be inspected for any debris that will restrict inlet flow rates. Outfall structures, if any, such as outlet control must also be inspected for any obstructions that would restrict outlet flow rates. OSHA Guidelines must be followed when inspecting or cleaning any structure.

Operation and Maintenance Requirements

I. Operation

CULTEC stormwater management systems shall be operated to receive only stormwater run-off in accordance with applicable local regulations. CULTEC subsurface stormwater management chambers operate at peak performance when installed in series with pretreatment. Pretreatment of suspended solids is superior to treatment of solids once they have been introduced into the system. The use of pretreatment is adequate as long as the structure is maintained and the site remains stable with finished impervious surfaces such as parking lots, walkways, and pervious areas are properly maintained. If there is to be an unstable condition, such as improvements to buildings or parking areas, all proper silt control measures shall be implemented according to local regulations.

II. Inspection and Maintenance Options

- **A.** The CULTEC system may be equipped with an inspection port located on the inlet row. The inspection port is a circular cast box placed in a rectangular concrete collar. When the lid is removed, a 6-inch (150 mm) pipe with a screw-in plug will be exposed. Remove the plug. This will provide access to the CULTEC Chamber row below. From the surface, through this access, the sediment may be measured at this location. A stadia rod may be used to measure the depth of sediment if any in this row. If the depth of sediment is in excess of 3 inches (76 mm), then this row should be cleaned with high pressure water through a culvert cleaning nozzle. This would be carried out through an upstream manhole or through the CULTEC StormFilter Unit (or other pretreatment device). CCTV inspection of this row can be deployed through this access port to deter mine if any sediment has accumulated in the inlet row.
- **B.** If the CULTEC bed is not equipped with an inspection port, then access to the inlet row will be through an upstream manhole or the CULTEC StormFilter.

1. Manhole Access

This inspection should only be carried out by persons trained in confined space entry and sewer inspection services. After the manhole cover has been removed a gas detector must be lowered into the manhole to ensure that there are not high concentrations of toxic gases present. The inspector should be lowered into the manhole with the proper safety equipment as per OSHA requirements. The inspector may be able to observe sediment from this location. If this is not possible, the inspector will need to deploy a CCTV robot to permit viewing of the sediment.

2. StormFilter Access

Remove the manhole cover to allow access to the unit. Typically a 30-inch (750 mm) pipe is used as a riser from the StormFilter to the surface. As in the case with manhole access, this access point requires a technician trained in confined space entry with proper gas detection equipment. This individual must be equipped with the proper safety equipment for entry into the StormFilter. The technician will be lowered onto the StormFilter unit. The hatch on the unit must be removed. Inside the unit are two filters which may be removed according to StormFilter maintenance guidelines. Once these filters are removed the inspector can enter the StormFilter unit to launch the CCTV camera robot.

C. The inlet row of the CULTEC system is placed on a polyethylene liner to prevent scouring of the washed stone beneath this row. This also facilitates the flushing of this row with high pressure water through a culvert cleaning nozzle. The nozzle is deployed through a manhole or the StormFilter and extended to the end of the row. The water is turned on and the inlet row is back-flushed into the manhole or StormFilter. This water is to be removed from the manhole or StormFilter using a vacuum truck.

III. Maintenance Guidelines

The following guidelines shall be adhered to for the operation and maintenance of the CULTEC stormwater management system:

- **A.** The owner shall keep a maintenance log which shall include details of any events which would have an effect on the system's operational capacity.
- **B.** The operation and maintenance procedure shall be reviewed periodically and changed to meet site conditions.
- **C.** Maintenance of the stormwater management system shall be performed by qualified workers and shall follow applicable occupational health and safety requirements.
- **D.** Debris removed from the stormwater management system shall be disposed of in accordance with applicable laws and regulations.

IV. Suggested Maintenance Schedules

A. Minor Maintenance

The following suggested schedule shall be followed for routine maintenance during the regular operation of the stormwater system:

Frequency	Action
Monthly in first year	Check inlets and outlets for clogging and remove any debris, as required.
Spring and Fall	Check inlets and outlets for clogging and remove any debris, as required.
One year after commissioning and every third year following	Check inlets and outlets for clogging and remove any debris, as required.

B. Major Maintenance

The following suggested maintenance schedule shall be followed to maintain the performance of the CULTEC stormwater management chambers. Additional work may be necessary due to insufficient performance and other issues that might be found during the inspection of the stormwater management chambers. (See table on next page)

	Frequency	Action
Inlets and Outlets	Every 3 years	 Obtain documentation that the inlets, outlets and vents have been cleaned and will function as intended.
	Spring and Fall	 Check inlet and outlets for clogging and remove any debris as re- quired.
CULTEC Stormwater Chambers	2 years after commis- sioning	 Inspect the interior of the stormwater management chambers through inspection port for deficiencies using CCTV or comparable technique.
		• Obtain documentation that the stormwater management chambers and feed connectors will function as anticipated.
	9 years after commis- sioning every 9 years following	 Clean stormwater management chambers and feed connectors of any debris.
		 Inspect the interior of the stormwater management structures for deficiencies using CCTV or comparable technique.
		 Obtain documentation that the stormwater management chambers and feed connectors have been cleaned and will function as intend- ed.
	45 years after com- missioning	 Clean stormwater management chambers and feed connectors of any debris.
		• Determine the remaining life expectancy of the stormwater man- agement chambers and recommended schedule and actions to reha- bilitate the stormwater management chambers as required.
		 Inspect the interior of the stormwater management chambers for deficiencies using CCTV or comparable technique.
		• Replace or restore the stormwater management chambers in accor- dance with the schedule determined at the 45-year inspection.
		Attain the appropriate approvals as required.
		Establish a new operation and maintenance schedule.
Surrounding Site	Monthly in 1 st year	Check for depressions in areas over and surrounding the stormwater management system.
	Spring and Fall	Check for depressions in areas over and surrounding the stormwater management system.
	Yearly	Confirm that no unauthorized modifications have been performed to the site.

For additional information concerning the maintenance of CULTEC Subsurface Stormwater Management Chambers, please contact CULTEC, Inc. at 1-800-428-5832.

5

WQMP Operation & Maintenance (O&M) Plan

Project Name:_____

Prepared for:

Project Name: _____

Address:_____

City, State Zip:_____

Prepared on:

Date:_____

For more information, contact CULTEC at (203) 775-4416 or visit www.cultec.com.

This O&M Plan describes the designated responsible party for implementation of this WQMP, including: operation and maintenance of all the structural BMP(s), conducting the training/educational program and duties, and any other necessary activities. The O&M Plan includes detailed inspection and maintenance requirements for all structural BMPs, including copies of any maintenance contract agreements, manufacturer's maintenance requirements, permits, etc.

8.1.1 **Project Information**

Project name	
Address	
City, State Zip	
Site size	
List of structural BMPs, number of each	
Other notes	

8.1.2 Responsible Party

The responsible party for implementation of this WQMP is:

Name of Person or HOA Property Manager	
Address	
City, State Zip	
Phone number	
24-Hour Emergency Contact number	
Email	

8.1.3 Record Keeping

Parties responsible for the O&M plan shall retain records for at least 5 years.

All training and educational activities and BMP operation and maintenance shall be documented to verify compliance with this O&M Plan. A sample Training Log and Inspection and Maintenance Log are included in this document.

8.1.4 Electronic Data Submittal

This document along with the Site Plan and Attachments shall be provided in PDF format. AutoCAD files and/or GIS coordinates of BMPs shall also be submitted to the City.

Appendix ____

BMP SITE PLAN

Site plan is preferred on minimum 11" by 17" colored sheets, as long as legible.

Project Name:	
Today's Date:	
Name of Person Performing Activity (Printed):	
Signature:	

BMP Name (As Shown in O&M Plan)	Brief Description of Implementation, Maintenance, and Inspection Activity Performed

ULTEC

Minor Maintenance

Frequency		Action			
Monthly in first year		Check inlets and outlets for clogging and remove any debris, as required.			
	1	Notes			
🗆 Month 1	Date:				
🗆 Month 2	Date:				
🗆 Month 3	Date:				
🗆 Month 4	Date				
🗆 Month 5	Date:				
🗆 Month 6	Date:				
🗆 Month 7	Date:				
🗆 Month 8	Date:				
🗆 Month 9	Date:				
🗆 Month 10	Date:				
🗆 Month 11	Date:				
🗆 Month 12	Date:				
Spring and Fa	all	Check inlets and outlets for clogging and remove any debris, as required.			
		Notes			
Spring	Date:				
🗆 Fall	Date:				
Spring	Date:				
🗆 Fall	Date:				
Spring	Date:				
🗆 Fall	Date:				
Spring	Date:				
Fall	Date:				
Spring	Date:				
🗆 Fall	Date:				
Spring	Date:				
🗆 Fall	Date:				
One year afte	r commissioning	Check inlets and outlets for clogging and remove any debris, as required.			
and every thi	rd year following	Notes			
🗆 Year 1	Date:				
🗆 Year 4	Date:				
🗆 Year 7	Date:				
🗆 Year 10	Date:				
🗆 Year 13	Date:				
🗆 Year 16	Date:				
🗆 Year 19	Date:				
🗆 Year 22	Date:				

CULTEC STORMWATER CHAMBERS

Major Maintenance

	Frequency		Action			
	Every 3 years		Obtain documentation that the inlets, outlets and vents have been cleaned and will function as intended.			
			Notes			
	🗆 Year 1	Date:				
	□ Year 4	Date:				
	🗆 Year 7	Date:				
	🗆 Year 10	Date:				
	🗆 Year 13	Date:				
(0	🗆 Year 16	Date:				
lets	🗆 Year 19	Date:				
Dut	🗆 Year 22	Date:				
s and C	Spring and Fall		Check inlet and outlets for clogging and remove any debris, as required.			
et			Notes			
In		Date:				
		Date:				
	□ Spring	Date:				
	🗆 Fall	Date:				
	□ Spring	Date:				
	🗆 Fall	Date:				
	Spring	Date:				
	🗆 Fall	Date:				
	Spring	Date:				
	🗆 Fall	Date:				
	Spring	Date:				
	🗆 Fall	Date:				
r Chambers	2 years after con	nmissioning	 Inspect the interior of the stormwater management chambers through inspection port for deficiencies using CCTV or comparable technique. Obtain documentation that the stormwater manage- ment chambers and feed connectors will function as anticipated. 			
atei			Notes			
CULTEC Stormwa	□ Year 2	Date:				

Major Maintenance

Action			
 Clean stormwater management chambers and feed connectors of any debris. 			
 Inspect the interior of the stormwater management structures for deficiencies using CCTV or comparable technique. 			
 Obtain documentation that the stormwater man- agement chambers and feed connectors have been cleaned and will function as intended. 			
Notes			
nt chambers and feed			
 Determine the remaining life expectancy of the stormwater management chambers and recommended schedule and actions to rehabilitate the stormwater management chambers as required. 			
mwater management CCTV or comparable			
ater management e schedule determined			
als as required.			
maintenance sched-			
nt e : als n			

For more information, contact CULTEC at (203) 775-4416 or visit www.cultec.com.

CULTEC STORMWATER CHAMBERS

Major Maintenance

	Frequency		Action			
	Monthly in 1 st yea	ar	 Check for depressions in areas over and surrounding the stormwater management system. 			
		1	Notes			
	🗆 Month 1	Date:				
	🗆 Month 2	Date:				
	🗆 Month 3	Date:				
	🗆 Month 4	Date:				
	🗆 Month 5	Date:				
	🛛 Month 6	Date:				
	🗆 Month 7	Date:				
	🗆 Month 8	Date:				
	🗆 Month 9	Date:				
	🗆 Month 10	Date:				
	🗆 Month 11	Date:				
	🗆 Month 12	Date:				
	Spring and Fall	1	 Check for depressions in areas over and surrounding the stormwater management system. 			
te			Notes			
j Si	🗆 Spring	Date:				
ing	🗆 Fall	Date:				
pu	□ Spring	Date:				
rol	🗆 Fall	Date:				
Jur .	□ Spring	Date:				
0,	🗆 Fall	Date:				
	Spring	Date:				
	🗆 Fall	Date:				
	Spring	Date:				
	🗆 Fall	Date:				
	□ Spring	Date:				
	🗆 Fall	Date:				
	Yearly		 Confirm that no unauthorized modifications have been performed to the site. 			
		1	Notes			
	🗆 Year 1	Date:				
	🗆 Year 2	Date:				
	🗆 Year 3	Date:				
	🗆 Year 4	Date:				
	🗆 Year 5	Date:				
	🗆 Year 6	Date:				
	🗆 Year 7	Date:				

CULTEC, Inc. 878 Federal Road • P.O. Box 280 • Brookfield, CT 06804 USA P: (203) 775-4416 • Toll Free: 1(800) 4-CULTEC • www.cultec.com

RETENTION • DETENTION • INFILTRATION • WATER QUALITY

VortSentry[®] HS Guide Operation, Design, Performance and Maintenance

VortSentry[®] HS

The VortSentry HS is a compact, below grade stormwater treatment system that employs helical flow technology to enhance gravitational separation of floating and settling pollutants from stormwater flows. With the ability to accept a wide range of pipe sizes, the VortSentry HS can treat and convey flows from small to large sites. A unique internal bypass design means higher flows can be diverted without the use of external bypass structures. The VortSentry HS is also available in a grate inlet configuration, which is ideal for retrofit installations.

Operation Overview

Low, frequently occurring storm flows are directed into the treatment chamber through the primary inlet. The tangentially oriented downward pipe induces a swirling motion in the treatment chamber that increases capture and containment abilities. Moderate storm flows are directed into the treatment chamber through the secondary inlet, which allows for capture of floating trash and debris. The secondary inlet also provides for treatment of higher flows without significantly increasing the velocity or turbulence in the treatment chamber. This allows for a more quiescent separation environment. Settleable solids and floating pollutants are captured and contained in the treatment chamber.

Flow exits the treatment chamber through the outlet flow control, which manages the amount of flow that is treated and helps maintain the helical flow patterns developed within the treatment chamber.

Flows exceeding the system's rated treatment flow are diverted away from the treatment chamber by the flow partition. Internal diversion of high flows eliminates the need for external bypass structures. During bypass, the head equalizing baffle applies head on the outlet flow control to limit the flow through the treatment chamber. This helps prevent re-suspension of previously captured pollutants.

Design Basics

There are two primary methods of sizing a VortSentry HS system. The Water Quality Flow Rate Method determines which model size provides the desired removal efficiency at a given flow for a defined particle size. The summation process of the Rational Rainfall Method is used when a specific removal efficiency of the net annual sediment load is required.

Typically, VortSentry HS systems are designed to achieve an 80% annual solids load reduction based on lab generated performance curves for a particle gradation with an average particle size (d_{50}) of 240-microns (μ m).

Water Quality Flow Rate Method

In many cases, regulations require that a specific flow rate, often referred to as the water quality design flow (WQQ), be treated. This WQQ represents the peak flow rate from either an event with a specific recurrence interval (i.e. the six-month storm) or a water quality depth (i.e. 1/2-inch of rainfall).

The VortSentry HS is designed to treat all flows up to the WQQ. Due to its internal bypass weir configuration, flow rates in the treatment chamber only increase minimally once the WQQ is surpassed. At influent rates higher than the WQQ, the flow partition will allow most flow exceeding the treatment flow rate to bypass the treatment chamber. This allows removal efficiency to remain relatively constant in the treatment chamber and reduces the risk of washout during bypass flows regardless of influent flow rates.

Treatment flow rates are defined as the rate at which the VortSentry HS will remove a specific gradation of sediment at a specific removal efficiency. Therefore they are variable based on the gradation and removal efficiency specified by the design engineer and the unit size is scaled according to the project goal.

Rational Rainfall Method™

Differences in local climate, topography and scale make every site hydraulically unique. The Rational Rainfall Method is a sizing program Contech uses to estimate a net annual sediment load reduction for a particular VortSentry HS model based on site size, site runoff coefficient, regional rainfall intensity distribution, and anticipated pollutant characteristics. For more information on the Rational Rainfall Method, see *Vortechs Technical Bulletin 4: Modeling Long Term Load Reduction: The Rational Rainfall Method*, available at www.ContechES.com/stormwater

Treatment Flow Rate

The outlet flow control is sized to allow the WQQ to pass entirely through the treatment chamber at a water surface elevation equal to the crest of the flow partition. The head equalizing baffle applies head on the outlet flow control to limit the flow through the treatment chamber when bypass occurs, thus helping to prevent re-suspension or re-entrainment of previously captured particles.

Hydraulic Capacity

The VortSentry HS is available in three standard configurations: inline (with inlet and outlet pipes at 180° to each other), grated inlet, and a combination of grate and pipe inlets. All three configurations are available in 36-inch (900-mm) through 96-inch (2400-mm) diameter manholes. The configuration of the system is determined by the suffix of the model name:

- A model name without a suffix denotes a standard pipe inlet (Example HS48).
- A "G" at the end of the model designation denotes a grate inlet (Example HS48G).
- A "GP" at the end of the model designation denotes a combination of grate and pipe inlets (Example HS48GP).

Performance

Full-Scale Laboratory Test Results

Laboratory testing of the VortSentry HS was conducted using F-55 Silica, a commercially available sand product with an average particle size of 240- μ m (Table 1). This material was metered into a model HS48 VortSentry HS at an average concentration of between 250-mg/L and 300-mg/L at flow rates ranging from 0.50-cfs to 1.5-cfs (14-L/s to 56-L/s).

US Standard Sieve Size	Particle Size Micron (µm)	Cumulative Passing %
30	600	99.7%
40	425	95.7%
50	300	74.7%
70	212	33.7%
100	150	6.7%
140	106	0.7%

Table 1 : US Silica F-55 Particle Size Distribution

Removal efficiencies at each flow rate were calculated based on net sediment loads passing the influent and effluent sampling points. Results are illustrated in Figure 1.

Assuming that sediment in the inlet chamber is ideally mixed, removal rates through the system will decay according to the percentage of flow bypassed. This effect has been observed in the laboratory where the test system is designed to produce a

Figure 1: VortSentry HS Removal Efficiencies for 240- $\!\mu m$ Particle Gradation

thoroughly mixed inlet stream. All VortSentry HS models have the same aspect ratio regardless of system diameter (i.e. an increase in diameter results in a corresponding increase in depth). Operating rates are expressed volumetrically.

Removal efficiency at each operating rate is calculated according to the average of volumetric and Froude scaling methods and is described by Equation 1.

Equation 1 and actual laboratory test results were used to determine the flow rate which would be required for the various VortSentry HS models to remove 80% of solids.

View report at www.ContechES.com/stormwater

Maintenance

The VortSentry HS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit, i.e., unstable soils or heavy winter sanding will cause the treatment chamber to fill more quickly, but regular sweeping will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant deposition and transport may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (i.e. spring and fall) however more frequent inspections may be necessary in equipment washdown areas and in climates where winter sanding operations may lead to rapid accumulations of a large volume of sediment. It is useful and often required as part of a permit to keep a record of each inspection. A simple inspection and maintenance log form for doing so is available for download at **www.ContechES.com/stormwater**

The VortSentry HS should be cleaned when the sediment has accumulated to a depth of two feet in the treatment chamber. This determination can be made by taking two measurements with a stadia rod or similar measuring device; one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the distance given in Table 2, the VortSentry HS should be maintained to ensure effective treatment.

Cleaning

Cleaning of the VortSentry HS should be done during dry weather conditions when no flow is entering the system. Cleanout of the VortSentry HS with a vacuum truck is generally the most effective and convenient method of excavating pollutants from the system. Simply remove the manhole cover and insert the vacuum hose into the sump. All pollutants can be removed from this one access point from the surface with no requirements for Confined Space Entry.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, an oil or gasoline spill should be cleaned out immediately. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use adsorbent pads, which solidify the oils. These are usually much easier to remove from the unit individually, and less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Floating trash can be netted out if you wish to separate it from the other pollutants.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure proper safety precautions. If anyone physically enters the unit, Confined Space Entry procedures need to be followed.

Disposal of all material removed from the VortSentry HS should be done is accordance with local regulations. In many locations, disposal of evacuated sediments may be handled in the same manner as disposal of sediments removed from catch basins or deep sump manholes. Check your local regulations for specific requirements on disposal.

VortSentry HS Model	Diameter		Distance Between Water Surface and Top of Storage Sump		Sedi Stoi	ment rage	Oil Sto	Spi ll rage
	in.	m	ft.	m	уd³	m³	gal.	liter
HS36	36	0.9	3.6	1.1	0.5	0.4	83	314
HS48	48	1.2	4.7	1.4	0.9	0.7	158	598
HS60	60	1.5	6.0	1.8	1.5	1.1	258	978
HS72	72	1.8	7.1	2.2	2.1	1.6	372	1409
HS84	84	2.1	8.4	2.6	2.9	2.2	649	2458
HS96	96	2.4	9.5	2.9	3.7	2.8	845	3199

Table 2: VortSentry HS Maintenance Indicators and Sediment Storage Capacities.

Logon to **www.ContechES.com/stormwater** to download the VortSentry HS Inspection and Maintenance Log.

For assistance with maintaining your VortSentry HS, contact us regarding the Contech Maintenance compliance certification program. Note: To avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile. Finer, silty particles at the top of the pile may be more difficult to feel with the measuring stick. These finer particles typically offer less resistance to the end of the rod than larger particles toward the bottom of the pile.

©2014 CONTECH ENGINEERED SOLUTIONS, LLC. 800-338-1122 www.ContechES.com

All Rights Reserved. Printed in the USA.

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS AN EXPRESSED WARRANTY OR AN IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. SEE THE CONTECH STANDARD CONDITIONS OF SALE (VIEWABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater and earth stabilization products. For information on other Contech division offerings, visit ContechES.com or call 800.338.1122

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; related foreign patents or other patents pending.

The Stormwater Management StormFilter, MFS and CDS are trademarks, registered trademarks, or licensed trademarks of Contech Engineered Solutions LLC. LEED is a registered trademark of the U.S. Green Building Council.

Support

- Drawings and specifications are available at contechstormwater.com.
- Site-specific design support is available from our engineers.

Appendix C

Annual O&M Budgetary Opinion of Cost

FUSS & O'NEILL, INC.

108 Myrtle Street, Suite 502 Quincy, MA 02171

BUDGETA	RY OPINION OF COST	DATE PREPARED	02/21/20	SHEET	1	OF	1
PROJECT :	Municipal Parking Lot and Green Infrastructure	BASIS :					
LOCATION :	Spencer, MA						
DESCRIPTION:	Long Term Stormwater O&M Costs	ESTIMATOR :	JEV	CHECKEI	OBY:	DD	

Since Fuss & O'Neill has no control over the cost of labor, materials, equipment or services furnished by others, or over the Contractor(s)' methods of determining prices, or over competitive bidding or market conditions, Fuss & O'Neill's opinion of probable Total Project Costs and Construction Cost are made on the basis of Fuss & O'Neill's experience and qualifications and represent Fuss & O'Neill's best judgment as an experienced and qualified professional engineer, familiar with the construction industry; but Fuss & O'Neill cannot and does not guarantee that proposals, bids or actual Total Project or Construction Costs will not vary from opinions of probable cost prepared by Fuss & O'Neill. If prior to the bidding or negotiating Phase the Owner wishes greater assurance as to Total Project or Construction Costs, the Owner shall employ an independent cost estimator.

ITEM	ITEM	UNIT	NO.		PER		TOTAL	
NO.	DESCRIPTION	MEAS.	UNITS		UNIT		COST	
1	Site Inspections ⁽²⁾	EA	12	\$	250.00	\$	3,000.00	
2	Monthly Removal of Trash ⁽³⁾	EA	12	\$	125.00	\$	1,500.00	
3	Mowing of Bio-Retention Basins ⁽⁴⁾	EA	6	\$	300.00	\$	1,800.00	
5	Sediment Removal ⁽⁶⁾	EA	4	\$	500.00	\$	2,000.00	
6	Bioretention Basin Maintenance ⁽⁷⁾	EA	1	\$	1,000.00	\$	1,000.00	
7	Vacuum Truck - Drainage Structures ⁽⁸⁾	DAY	2	\$	700.00	\$	1,400.00	
						\$	10,700.00	
TOTAL COST (-15% TO +30% ROUNDED) \$9,000								

Notes

1. The following equipment and labor rates were used for this estimate: Site Inspector - \$1,000/day; Laborer - \$500/day; Skidsteer & Operator - \$1,000/day; Dump Truck - \$500/day; Vacum Truck - \$1800/day

2. Assume a Site Inspector is required for 1/4 day per inspection.

3. Assumes 1 Laborer for a 1/4 day.

4. Assumes 1 Laborer for a 1/2 day and an additional \$50 for a weedwacker.

5. Assumes mowing is done as part of normal landscaping maintenance.

6. Assumes 1 Laborer, 1 Skidsteer & Operator, and 1 Dump Truck for 1/4 day.

7. Assumes 1 Laborer, 1 Skidsteer & Operator, and 1 Dump Truck for 1/2 day.

8. Assumes 2 Laborers and 1 Vaccum Truck for 1/4 Day.