

WORKSHOP ON MANAGING STORMWATER FOR WATER SUPPLY PROTECTION

BMP RETROFITS FOR THE TOWN OF CANTON, MA

Presented by David Nyman Comprehensive Environmental Inc.
December 3, 2013

Stormwater BMP Retrofits Canton, MA

- Ongoing effort to manage stormwater runoff in the Neponset River Watershed
 - Sediments
 - Phosphorus
 - Pathogens (TMDL)
- Identify and prioritize sites and a suite of BMPs for implementation as funding/project opportunities become available
- Study under 604(b) grant

Stormwater BMP Retrofits Canton, MA

PL Neponset River

Watershed Association

□Ian Cooke

Executive Director

□William Guenther

Environmental Scientist

Town of Canton

□Michael Trotta

DPW Superintendent

□James Donovan

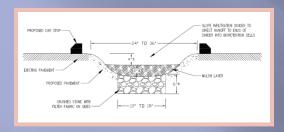
Town Engineer

Technical Support

Comprehensive Environmental Inc.

Stormwater BMP Retrofits Canton, MA

- Screen BMP types, working with Town staff
 - Address the pollutants of concern
 - Meet the technical and maintenance resources available for sustainable management
- Search available database for candidate sites
 - GIS data base
 - Public records
- Field assessments to develop short list of sites and BMP options
- Conceptual designs for priority sites

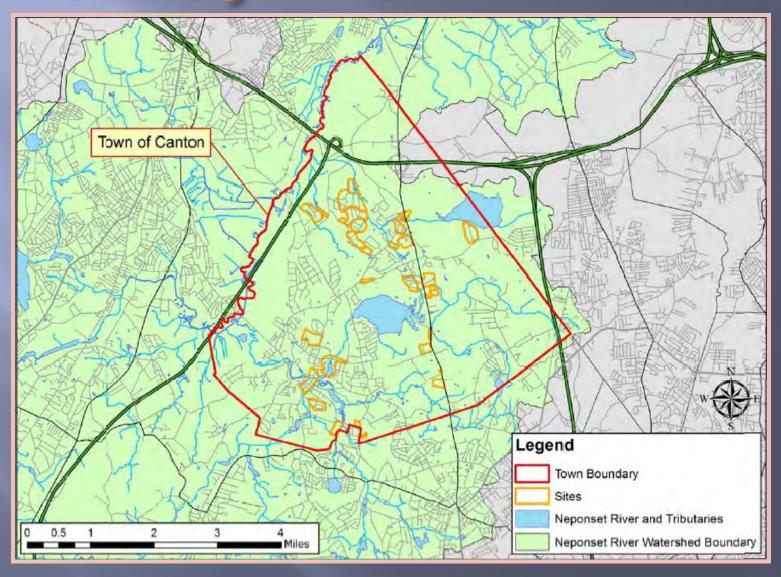

BMP Selection

- Early interaction with Town staff:
 - BMPs must meet pollutant removal objectives
 - BMPs must also be feasible to implement and maintain, within the technical resources of the community
- Preference for:
 - Low Impact Development practices
 - Surface vs. subsurface
 - Simple to inspect and maintain

BMP Selection

Table 2: List of Prioritized BMPs used for the field BMP survey in Canton, MA.

BMP Name Abbreviated	BMP Name Full	Sizing Method	Low % DA Size & 1.2"	High % DA Size @ 1.21		Treat Meth	Maint Difficulty	Fall Risk	Cost	Bacteria Remova
PaveDiscon	Unstructured disconnection of payed areas	per VT, disconnected length = paved length, slope <5%	100.00%	200.00%		Filtration/Infiltration	Low	Low	Low	Good
miteasin	Infiltration Basin	Per VT. 1-2 ponding 0.5-2.01hr	5,00%	10,00%	A.B	infiltration	Low	Low	Medium	Excelen
WetBasin	Wet Basin or Large Wetland	3' ponding for wetland with 1x/WQv. 6' ponding for wet pond with 2x/WQv	1.50%	3.50%	C D	Setting	Low	Low	Low	Fair
BioCell	Bioretention Cell Infiltrating	Per VT. 30" media. 5-12" ponding. 6"/day k	5.00%	10.00%	A.B	Filtration/Infiltration	Medium	Low	Medium	Excellent
CompostFilter	Compost Amended Filter Strip	assume same as blocell	5,00%	40,00%	Ami	Filtration/Infiltration	Low	LOW	Medium	Good
BioCeiUnder	Bioretention Cell with Underdrain	6" ponding + 24" media voids, could be deeper	5.00%	10.00%	CD	Filtration/Infiltration	Medium	Low	Medium	Excellent
PocketWet	Pocket Wetland	Low is per VT. high per 30" ponding	1.50%	4.00%	C.D	Settling	Medium	Low	Medium	Fair
sandFitersurface	Sand/Organic Filter Surface	Per VT. 2' filter depth. 1' ponding 3.5'- 6.7/day k	0.55%	1.14%	Апу	Fitration	Low	Low	Medium	Good
rrftTrench	Infiltration Trenchi	Per VT, 3-5' stone, 0.5-2.0"/hr	5.00%	8,00%	A.B	Infibration	Low	Medium	Medium	Excellent
Grave/Wet	Gravel Wetland	Per CWP. f 3 fiter depth and 2' ponding, need to check this!	3.00%	5,00%	Апу	Fitration	Medium	Medium	Medium	Good
Тгеевох	Tree Filter Box	Per filterra. 1 per 0.25 acre. may be a bit low for 1.2"	0.36%	0.36%	Апу	Filtration	Medium	Low	High	Good
SandFiterStructured	Sand/Organic Filter Surface Structured or Perimeter	Per VT. 1-2 filter depth. 6-12* ponding. 3.5-8.7/day k	0.55%	0.86%		Filtration	Low	Low	High	Good
PortousPerint	Perimeter only Porous Pavement or Pavers	1 to 5	20.00%	33.00%	Any	Filtration/Infiltration	High	High	High	Excellent
PorousPave	Porous Pavement or Pavers	1 to 1	100.00%	100,00%	Attv	Filtration/Infiltration	High	High	Very High	Excelen
infit.Inder	Underground Infiltration Structures	Per VT 2-4' deep chambers, 0.5-	2.50%	5.00%	A.B	Infiltration	High	High	High	Excellent
SandFilterUnder	Sand/Organic Filter Underground		0.55%	1.14%		Fitration	High	Medium	High	Good
LeachCB	Leaching Calch Basin	Derived from VT. 50 CF each, need 20-22/Ac	2.50%	2.50%	A.B	infitration	Medium	High	High	Excellent
BMPs for Rooftop Flows										1
DryWel	Structured downspount disconnect to Dry Well or French Drain or Stormwater Planter	50 cf storage / 4'x4', 500-1200 BF per unit, 36-87 units per acre	2.50%	2,50%	Апу	infiltration	Low	Medium	Medium	Excellent
RoofDiscon	Unstructured downspount disconnect to lawn or rain barrel	per VT. disconnection length should equal roof length, slope <5%.	100,00%	200.00%	Алу	Filtration/Infiltration	Low	Low	Low	Good
RainGarden	Rain Garden	Per VT. 6" ponding. 0.5-2.0"/hr	15.00%	20.00%	A.B	Infitration	Medium	Low	Medium	Excelent
Pre Treatment BMPs										
GrassStrip										
GraveiDlaphragm							-			
GrassChannel	11						11			
Forebay	11						11			
GritChamber										
MulchLaver										
Other										
None										



BMP Candidates (examples)

- Infiltration Basin
- Infiltration Trench
- Leaching Catch Basin
- Porous Pavement
- PavementDisconnection
- CAVFS
- Wet Basin

- Bioretention
 - Infiltrating
 - Underdrained
- Pocket Wetland
- Gravel Wetland
- Tree Box Filter
- Sand/Organic Filter
- Various Pretreatment measures

GIS Analysis: Candidate Sites

Initial Screening of Candidate Sites

- Desktop analysis of available data:
 - Identified 33 sites based on desktop analysis
 - Identified potential for 63 individual BMPs
- Initial site reconnaissance with Town staff:
 - Site feasibility based on qualitative assessment of available space and site conditions
 - Site availability (public, easement, private)
- Short list of sites with qualitative ratings
- Top 10 locations advanced to conceptual evaluation

Conceptual Assessment of Candidate Sites

- Site reconnaissance with engineering team
- Rating of the site/BMP options
- Prioritization of the top 10 sets advanced from the initial analysis

Conceptual Assessment of Candidate Sites

Canton BMP Ranking Prioritization

BMP ID II	Catchment Name	Sediment ation	Proximity to Waterbody	Potential BN	MP.	Maintenance Requirements	Ease of Implementation	Land Use	Available Land	Pri	ority
4	Galvin Middle School	5	1	Infiltration	5	3	3	5	5	27	HIGH
27	Hansen Elementary School	3	1	Infiltration	5	5	3	5	5	27	HIGH
	Ponkapoag Parking Lot	5	3	Infiltration	5	3	3	5	3	27	HIGH
24	High School	3	3	Infiltration	5	3	3	5	5	27	HIGH
23	Crowells Market	5	3	Wetland	3	3	3	5	1	23	MED
10	Pequot Way	1	3	Infiltration	5	5	3	5	1	23	MED
20	Walnut Knolls	3	1	Wetland	3	3	3	3	5	21	MED
32	Dan Road	1	1	Infiltration	5	5	3	5	1	21	LOW
25	99 Restaurant	1	1	Infiltration	5	1	5	5	1	19	LOW
29	Town Center	1	1	Infiltration	5	5	1	5	1	19	LOW

Explanation of Ranking:

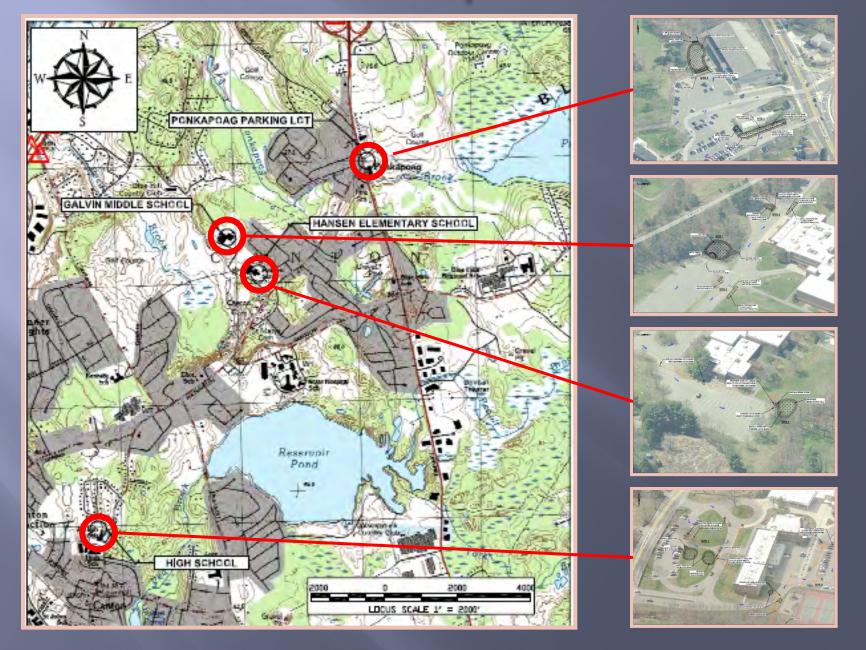
Sedimentation (from field observations): Severe Sedimentation = 5; Moderate Sedimentation = 3; Mild Sedimentation = 1

Proximity to Waterbody: Outlets directly = 5; Within 100' = 3; >100' = 1

Potential BMP: Infiltration/Filtering Practice = 5; Extended Detention/Wetland Treatment = 3; Peak Discharge Control = 1

Maint enance Requirements (CEI estimate): Low frequency, easy access, easy tasks = 5; Moderate frequency, several tasks = 3; High frequency, difficult access with equipment = 1

Ease of Implementation (CEI estimate): Easy, low number of issues = 5; Moderate, possible equipment maneuvering and landscape issues = 3;

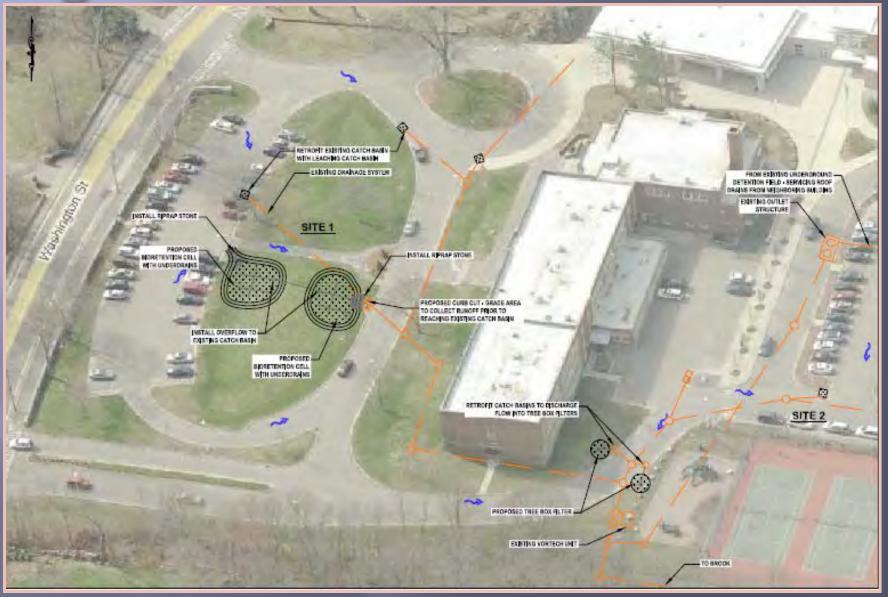

Difficult, possible property/right-of-way (ROW) issues and road closures = 1

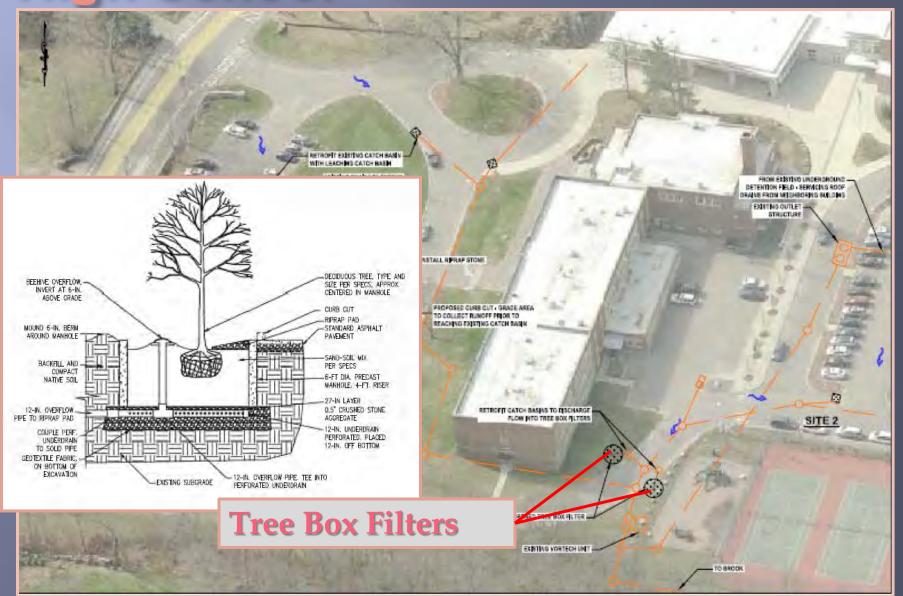
Land Use (from MassGIS): Majority Commercial = 5; Majority Residential = 3; Majority Forest = 1

Available Land (from project research): Within Town ROW or on Town owned I and = 5 ; On available I and that will not require easements = 3 ; Private property or easements = 1

Characterize Top Four Sites

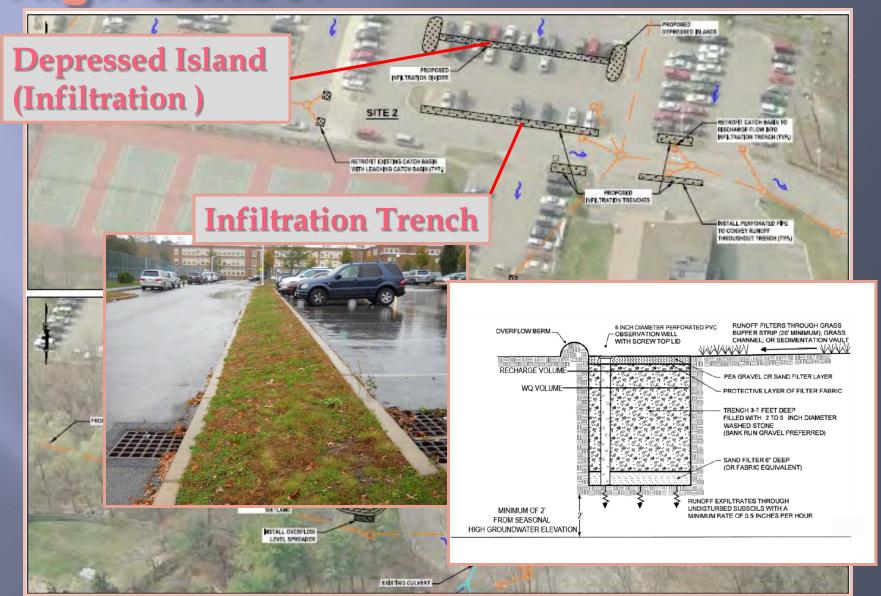
Characterize Top 4 Sites



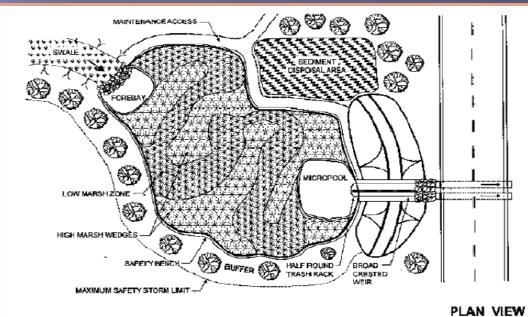




Top 4	ID#	Catchment Name	Address	Location	Drainage Area (Acres)	Proposed BMP Type	WQ1	WQv Provided	Workable Available Land (sf)	Soils Type	Rydrologic Seils Group	Approximate Dept to Groundwater
				Site 1 - Parking Lot	2.3	Pocket Wetland System	4,574	6,000	3,000	Urbaniand	+	< 5 Feet
X	4	Galvin Middle School	55 Pecunit St.	Site 2 - Fast Enfrance Road	0.5	Infiltration Trenches	741	780	650	Urbanland		>5 Feet
				Site 3 - Entrance Circle	0.1	Bitoretention Cell	791	960	600	Urbunland	_	> 5 Feet
		Danier Blancaton		Site 1 - East Parking Lot	1.3	Biorelention Cell	2,472	2,400	1,500	Urbaniand	-0+0	> 5 Feet
X	27	Hansen Elementary School	25 Pecunit St.	Site 2 - Bus Circle	2.2	Bioretention Cell	4,748	4,900	3,500	Urbaniand	14 °	> 5 Feet
		SCHOOL		Site 3 - Baseball Field Parking Lot	0,4	Biorefention Cell	762	1,100	1,000	Urbanland	-	> 5 Feet
×		Ponkapong Parking	Size to care do as	Site 1 - Parking Lot Enterance	13	Bioreiention Cell with Underdmins	3,808	2,720	1,600	Udorthents, loamy	-40	>5 Feet
^		Lot	2173 Washington St. S	Site 2 - Back Grass Area	2.8	Treatment Wetland System	7,795	8,000	4,000	Udorthents, loamy		< 5 Feet
		7 - 1		Site 1 – Washington St. Entrance	2.4	Biorefention Cell with Underdrains	5,082	4,560	2,400	Charlton-Hollis- Urban Land Complex	c	> 5 Feet
	24	High School	900 Washington St.	Site 2 - Back Parking Lot	3.2	Infiliration Trenches / Tree Boxes / Leaching Structures	1,859	1,200	1,000	Udorthents, loamy		> 5 Feet
^	24	riigii school	Washington St.	Site 3 - Back Access Road	1.0	Pocket Wetland System	1,955	1,875	1,250	Woodbridge Fine Sandy Loam	В	<3 Feet
			Site 4 - Field Parking Lot	3.6	Pocket Wetland System	3,899	3,900	2,600	Udorthenis, loumy	-37	< I Poot	



High School CURB STOPS STONE DIAPHRAGM WATER QUALITY VOLUME RETROPT EXISTING C WITH LEACHING CATC EXISTING DOM **Bioretention Areas** DRANS FROM NEIGHBORING BUILDING EXPLING OUTLET -STRUCTURE INSTALL RIPRAP STONE PROPOSED-MORETEVITOR CELL INSTALL RIPRAP STOME MITH UNDERDRAMS PROPOSED CURB CUT - GRADE AREA TO COLLECT BUNGEF PRIOR TO **ВЕАСИЛЬ ЕХІЗТИВ САТЕН ВАЗІН** INSTALL OVERFLOW TO A EXECUTIVE CATCH BASIN PROPOSED 4 BIORETENTON COLL. WITH UNDERGRAINS RETROFF CATCH BASINS TO DISCHARGE PLOW INTO TREE BOX FLTERS PROPOSED TREE BOX FILTER A EXISTING VORTECH UNIT TO BROOK



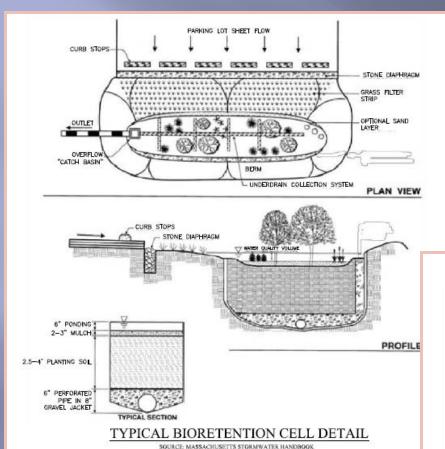
Galvin Middle School

Galvin Middle School

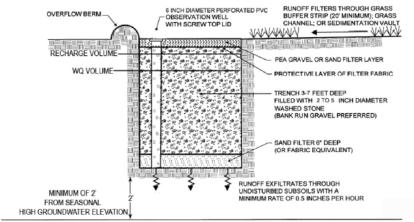
Hansen Elementary School

Hansen Elementary School

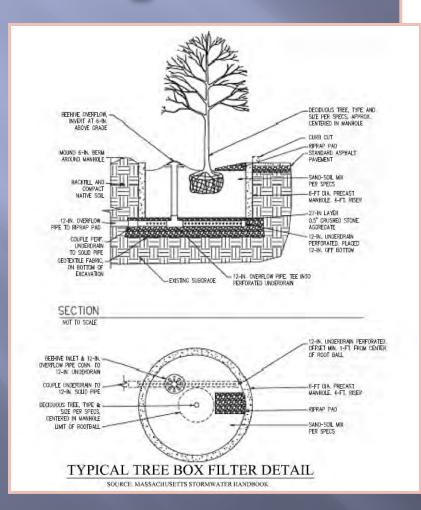
Hansen Elementary School

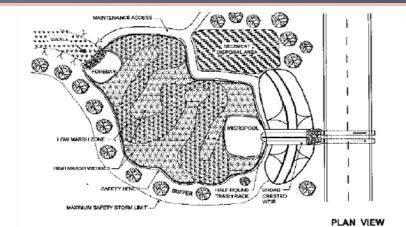


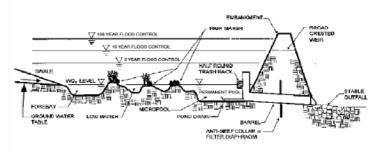
Ponkapoag Parking Lot



Ponkapoag Parking Lot


Conceptual Design




TYPICAL INFILTRATION TRENCH DETAIL

SOURCE: MASSACHUSETTS STORMWATER HANDBOOK

Conceptual Design

PROFILE

TYPICAL POCKET WETLAND DETAIL

SOURCE: MASSACHUSETTS STORMWATER HANDBOOK

Conceptual Design

Conceptual Design

Conceptual Design

Conceptual Design Performance Evaluation

CEI Spreadsheet Model: Using the "Simple Method"

Galvin Middle School - Pollutant Load Calculations

Runoff and Pollutant Load Calculations

No.	Catchment Name	Landuse ID	Landuse	(A) Area (acres)	Sanded?	Sanded Area (acres)	(Ia) % Impervious	(R) Runoff (in)	Annual Runoff (cf)	(L) Annual TSS (lbs)	(L) Annual TP (lbs)	(L) Annual TN (lbs)	(L) Annual FC (billion colonies)
1	Galyin Middle - Site 1		S Forested	0.04	No	0.000	5	4.0	577	2	0.00	0.1	0.0
2	Galvin Middle - Site 1		4 Institution	2.11	Yes	0.844	60	24.7	189,120	5,400	2.71	24.7	187.8
3	Galvin Middle - Site 1		9 Recreational Park	0.13	No	0.000	15	7.7	3,654	11	0.02	0.5	0.0
6	Galvin Middle - Site 2		4 Institution	0.28	Yes	0.112	60	24.7	25,096	717	0.36	3.3	249
7	Galvin Middle - Site 2		9 Recreational Park	0.24	No	0.000	15	7.7	6,745	21	0.04	0.9	0.0
11	Galvin Middle - Site 3		5 Forested	0,62	No	0.000	5	4.0	8,948	28	0.06	1.0	0.8
12	Galvin Middle - Site 3		4 Institution	0.30	Yes	0.120	60	24.7	26,889	768	0.39	3.5	26.7
13	Galvin Middle - Site 3		7 Residential-Low Density	0.07	Yes	0.004	10	5.9	1,489	21	0.03	0.3	1.2
Total				3.79		1.080			262,518	6,967	3.6	34.2	241.5

Pollutant Loading

Coefficients for Use in Pollutant Load Calculations

Landuse ¹	Landuse (D (used for v-lookup)	% Impervious	(C) TSS (mg/l)	(C) TP (mg/l)	(C) TN (mg/l)	(colonies/100 mL)
Commercial	1	85	44	0.15	1.85	9306
Industrial	2	75	42	0.11	4.01	1467
Multifamily	3	60	100	0.4	2.2	10000
Institution	4	60	100	0.23	2.1	3500
Fore sted	5	5	51	0.11	1.74	300
Residential-High Density	6	40	102	0.64	3.81	16901
Residential-Low Density	7	10	34	0.27	3.18	2950
Residential Med Density	- 8	30	49	0.41	3.5	12360
Recreational Park	9	15	50	0.1	2.1	
Roadway/Parking Lot	10	98	150	0.25	2.3	1700
Urban Open	11	11	51	0.11	1.74	5000

P - Annual Rainfall	46.5	inches; user specified
P _i	90%	%; default
Sanding Rate	500	lts/acre; default
Sanding Applications	10	times/year; default

Galvin Middle School - Pollutant Removal Calculations

Pollutant Removal Calculations					BMF	Removal Efficien	cy**	Quantity of Poliutant Removed				
No.	Catchment Name	BMP ID	ВМР Туре	BMP Drainage Area (acres)	TSS Removal (%)	TP Removal (%)	TN Removal (%)	Fecal Coliform Removal (%)	Annual TSS Removed (IDS)	Annual TP Removed (lbs)	Annual TN Removed (lbs)	Annual Fecal Coliform Removed (billion colonies)
1	Gaivin Middle - Site 1		9 Constructed Wedlands	0.040	80%	50%	36%	60%	1.5	0.0	0.0	0.0
2	Galvin Middle - Site 1		9 Constructed We tlands	2.110	80%	50%	38%	60%	4,320	1.4	9.4	113
3	Galvin Middle - Site 1		9 Constructed We tands	0.130	80%	50%	38%	60%	9.1	0.0	0.2	0.0
Total			11						4,330	1.4	10	113
6	Galvin Middle - Site 2		7 Infiltration Trench	0.280	80%	55%	55%	90%	573	0.2	1.8	22.4
7	Galvin Middle - Site 2		7 Infiltration Trench	0.240	80%	55%	55%	90%	16.8	0.0	0.5	0.0
Total			The state of the s			1 77	_ 107		590	0.2	2	22.4
11	Galvin Middle - Site 3		1 Bioretention Cell	0.620	90%	60%	40%	70%	26	0.0	0.4	0.5
12	Galvin Middle - Site 3		1 Biaretentian Cell	0.300	90%	60%	40%	70%	691	0.2	1.4	18.7
13	Galvin Middle - Site 3		1 Bioretention Cell	0.070	90%	60%	40%	70%	19	0.0	0.1	0.9
Total									735	0.3	1.9	20.1

BMP Removal Efficiencies"

вмР Туре	BMP ID (used for v-lookup)	TSS Removal (%)	TP Removal (%)	TN Removal	Fecal Collform Removal	вмР туре	Poliutant Removal of BMPs in Series Equation:
Bioretention Cell	1	90%	60%	40%	70%	Bigretention Cell	If removal from the 1st BMP is >80%, the 2nd BMP efficiency
Fore bay**	2	25%	8%	3%	12%	Forebay**	shall be 50% of its normal efficiency.
Sand Filter	3	80%	30%	30%	70%	Sand Filter	If removal from the 1st BMP is <80%, the 2nd BMP efficiency
Dry Weil**	4	90%	55%	40%	90%	Dry Well**	shall be 75% of its normal efficiency.
Permeable Pavers**	5	90%	40%	40%	95%	Permeable Pavers**	
Vegetated Swale**	6	85%	48%	30%	60%	Vegetated Swale**	Example: TSS load of 100lbs. 1 st BMP removal 85%, 2nd
Infiltration Trench	7	80%	55%	55%	90%	Infiltration Trench	BMP removal 40%.
Infiltration Basin	9	80%	6590	65%	90%	Infiltration Basin	TSS Removal = 100lbs * 85% = 85 lbs in 1st BMP

Total Removal = 5,655

Removal = 100lbs * 85% = 85 lbs in 1st BMP TSS Removal = (100lb-85lb) * (40% * .5) = 3 bs in 2nd BMP Net TSS Removal = 88 bs

Pollutant Removal

Conceptual Design Performance Evaluation

Site	ВМР	An	nual Removal	Rates
		TSS (lbs)	TP (lbs)	Bacteria (col's)
Galvin Middle School	Site 1 – Pocket wetland Site 2 – Infiltration trenches Site 3 – Bioretention cell	5,655	1.9	155x10 ⁹
Hansen Elementary School	Site 1 – Bioretention cell Site 2 – Bioretention cell Site 3 – Bioretention cell	8,267	3.0	262x10 ⁹
Canton High School	Site 1 – Bioretention cell Site 2 – Infiltration trenches, tree boxes, leaching structures Site 3 – Pocket wetland Site 4 – Pocket wetland	10,967	3.9	287x10 ⁹
Ponkapoag Lot	Site 1 – Bioretention cell Site 2 – Treatment wetland	10,550	2.5	826x10 ⁹

Conceptual Design Cost Evaluation

Hansen Elementary School				
Site 1 - Bioretention Cell				
Site Preparation	1.0	Lump	\$2,000.00	\$2,000
Leaching Catch Basin	2.0	Each	\$6,500.00	\$13,000
Convert Catch Basin Grate to Manhole Cover	1.0	Each	\$2,500.00	\$2,500
Bioretention Cell	1,500.0	sf	\$30.00	\$45,000
Outlet Piping	20.0	- If	\$25.00	\$500
Engineering	1.0	Lump	\$6,500.00	\$6,500
BMP Total	-			\$69,500
Operation & Maintenance per Year		- 11		\$1,000

Conceptual Design Cost Evaluation

Table 5: Summary table of data produced for this project by CEI.

Town Canton, MA

Site	ВМР	Area of BMP (ft²)	1" WQv (cf)	WQv Treated (cf)	% 1" WQv treated	Construction Cost	Annual O/M Cost
Galvin Middle							
School							
Site 1	Pocket Wetland	3000	4,671	6,000	128.45%	\$102,400	\$985
Site 2	Infiltration Trenches	650	741	780	105.26%	\$34,300	\$550
Site 3	Bioretention Cell	600	791	960	121.37%	\$35,050	\$1,550
Hansen Elementary							
School							
Site 1	Bioretention Cell	1500	2,472	2,400	97.09%	\$69,500	\$1,000
Site 2	Bioretention Cell	3500	4,748	4,900	103.20%	\$129,750	\$1,000
Site 3	Bioretention Cell	1000	762	1,100	144.36%	\$34,000	\$1,000
Ponkapoag Lot							
	Bioretention Cell with						
Site 1	underdrains	1600	3,808	2,720	71.43%	\$71,900	\$1,000
Site 2	Treatment Wetland System	4000	7,795	8,000	102.63%	\$124,900	\$985
Canton High School							
	Bioretention Cell with						
Site 1	underdrains	2400	5,082	4,560	89.73%	\$106,500	\$1,000
	Infiltration Trenches/ Tree						4
Site 2	Boxes/ Leaching Structures	1000	1,859	1,200	64.55%	\$113,700	\$1,325
Site 3	Pocket Wetland System	1250	1,955	1,875	95.91%	\$58,400	\$985
Site 4	Pocket Wetland System	2600	3,899	3,900	100.03%	\$104,700	\$985

Next Steps:

- Status: Design and Implementation Pending
 - Depends on funding opportunities (changing)
 - May depend on terms of MS4 permit
- Partnership opportunities with source water protection?
- Potential opportunities with other surface water protection?
 - Pending regulations under SWMI Framework?

