

Taunton Justice Center Taunton, MA

HVAC SYSTEM EVALUATIONS COVID-19

Office of Court Management

June 22, 2021

Tighe&Bond

100% Recyclable

Section 1 Existing Conditions & Site Observations

Tighe & Bond visited the Taunton Trial Court on February 9, 2021. While on site we inspected the air handling equipment located in various mechanical rooms and toured the facility to determine if the spaces generally matched usages noted on the architectural plans.

Site Visit Attendees:

- Office of Court Management:

 Doug Loud and Tim Sampaio, Trial Court Facilities Staff
- Tighe & Bond
 - Todd Holland, PE, Senior Mechanical Engineer
 - Matt Mancini, Staff Mechanical Engineer

1.1 Existing Ventilation System

The Taunton Trial Court was constructed in 2011, has a full basement and four abovegrade stories, and is approximately 147,000 square feet in size. There have been no significant changes or additions to the building or its systems since construction.

Ventilation air is provided by nine variable air volume (VAV) air handling units. Seven of these units serve occupied areas. Each unit consists of a mixing box with outdoor air (OA) dampers and return air (RA) dampers, 2" MERV-8 prefilters, 12" MERV-14 final filters, hot water preheat coil, chilled water cooling coil, variable-speed supply fan, and discharge damper. Differential pressure sensors monitor pressure drop across each bank of filters. Each unit has a pair of OA dampers, one opens to provide the minimum OA, and the other opens for economizer cooling or ventilation override. A dedicated variable-speed return fan serves each air handling system. Supply air is distributed to each zone via VAV boxes, with fan speed controlled by static pressure in the distribution duct. Two air handlers are constant-volume, 100% OA units, dedicated to the boiler and chiller rooms.

All units are from the original construction and appear to be in very good condition. The OA and RA dampers and actuators have airfoil-shaped blades with edge seals, appear to be in very good condition, and all were observed to at the position they were supposed to be. The heating and cooling coils also appear to be in very good condition, with a small amount of visible dirt and debris on some of them. The hot and chilled water control valves and actuators appear to be in very good condition, with all heating valves observed to be at the position controlled by the building management system (BMS). Airflow stations measure the velocity and volume of the OA, RA, and supply air (SA).

Several of the mixing boxes have baffles that were installed during commissioning to address low temperature alarms triggered by the averaging-type temperature sensors on the faces of the preheat coils. These were intended to promote turbulent mixing of the outdoor and return air streams, and also create a substantial pressure drop. They also may contribute to inaccurate readings from the OA and RA airflow stations, as several do not add up to what the SA is reading. On one of the units, the differential pressure sensor for the final filters may have been affected by the baffle as well.

Photo 1 – Representative Air Handler

According to the plans, there are 31 exhaust fans serving various areas, including the holding cells and toilet rooms. We were able to verify that all fans were operating as commanded by the BMS during our site visit.

A pair of Fulton gas-fired hydronic boilers, rated at 3.6 million Btu/hr output each, provide hot water to perimeter radiation, unit heaters, VAV reheat coils, and two heat exchangers that serve a glycol loop for the preheat coils in the air handlers. Two gas-fired 100-gallon Rheem-Ruud water heaters, rated at 199,000 Btu/hr each, provide domestic hot water to the facility.

A pair of 200-ton, water-cooled centrifugal chillers provide chilled water to all air handlers. The cooling coils are drained down in winter for freeze protection.

Table 1 summarizes the air handling units' designed airflow rates, the MERV rating of the installed filters, and the condition.

	Original Design	Original Design		
Unit	Airflow (CFM)	Min. O.A. (CFM)	Pre/Final Filters	Condition
AHU-1	33,000	7,500	2″ MERV-8, 12″ MERV-14	Very Good
AHU-2	4,500	4,500	2" MERV-8	Very Good
AHU-3	14,500	4,500	2″ MERV-8, 12″ MERV-14	Very Good
AHU-4	20,500	9,500	2″ MERV-8, 12″ MERV-14	Very Good
AHU-5	13,000	4,000	2″ MERV-8, 12″ MERV-14	Very Good
AHU-6	20,000	7,000	2″ MERV-8, 12″ MERV-14	Very Good
AHU-7	17,500	6,500	2″ MERV-8, 12″ MERV-14	Very Good
AHU-8	10,000	2,500	2″ MERV-8, 12″ MERV-14	Very Good
AHU-9	4,000	4,000	2" MERV-8	Very Good

TABLE 1

Existing Air Handling Units

1.2 Existing Control System

The systems are controlled by a Siemens building management system (BMS), with a typical control screen shown below.

The BMS is tied to the existing boiler & chiller systems, AHUs, VAVs, fan coils, perimeter heating, and exhaust fans. While on site, Tighe & Bond was able to observe various control system screens and setpoints.

The two air handlers that serve the courtrooms, AHU-6 and AHU-7, have demand control ventilation (DCV) sequences that will maximize ventilation air if measured CO2 levels in any of the spaces are exceeded. At the time of our visit, CO2 levels were 801 and 818 parts per million (ppm), with the threshold set at 1,000 ppm.

Photo 2 - Representative BMS Screen

Section 2 Recommendations

Below is a list of recommendations that we propose for the Taunton Trial Court. Please refer to the "Master Recommendation List" for further explanation and requirements of the stated recommendations.

2.1 Filtration Efficiency Recommendations

We recommend the following measures be implemented for the existing air handling units that serve occupied areas:

RF-1: Replace filters.

We recommend the continued use of MERV-14 final filters which meet the ASHRAE recommendation of MERV-13 minimum. Existing pre-filters and final filters should be checked to ensure they are within their service lives and installed properly. The filter racks should be inspected to ensure that filters fit tightly and that end spacers are in place to minimize filter bypass.

RF-3: Check differential pressure sensors across the filter banks.

There are existing differential pressure sensors installed for each bank of filters in each of the air handlers. We recommend reviewing the location of the pressure taps and the resulting pressure readings. We found one instance where a tap may have been relocated improperly after a baffle was installed in the mixed air plenum.

RF-3a: Check the pressure sensors' alarms on the BMS.

Alarm setpoints for each bank of filters should be reviewed, to ensure they are consistent with the filter manufacturer's recommendation.

2.2 Testing & Balancing Recommendations

The air handling units are approximately 10 years old and have not been tested and balanced since construction. Some of the modifications made to the OA intakes during commissioning may have affected the accuracy of the airflow measuring stations. It is not known by Tighe & Bond if these units were rebalanced after the modifications were installed.

We recommend the following testing and balancing measures be implemented:

RTB-1: Test and balance air handling unit supply air and minimum outside air flow rates.

We recommend testing and balancing the outdoor air flow rates for all air handling units to the recommended minimum O.A. rates listed in Table 2.

Unit	Original Supply Airflow (CFM)	Original Design Min. O.A. (CFM)	Current Code Min. O.A. Requirements (CFM)	Recommended Minimum O.A. (CFM)
AHU-1	33,000	7,500	1,900	7,500
AHU-2	4,500	4,500	N/A	4,500
AHU-3	14,500	4,500	4,300	4,500
AHU-4	20,500	9,500	9,300	9,500
AHU-5	13,000	4,000	3,700	4,300
AHU-6	20,000	7,000	7,500	7,600
AHU-7	17,500	6,500	6,900	6,900
AHU-8	10,000	2,500	2,300	2,500
AHU-9	4,000	4,000	N/A	4,000

TABLE 2

Recommended Air Handler O.A. Flow Rates

Note: Although the ASHRAE Position Document on Infectious Aerosols recommends using the latest published standards and codes as a baseline for minimum ventilation, the mechanical code in effect at the time the HVAC systems were designed and constructed is what governs the required outdoor air flowrate for the HVAC equipment, if there have been no additions, renovations, alterations or changes in occupancy to the building. The 2015 International Mechanical Code does not prevent the continued use of existing systems.

Our ventilation air analysis discovered a few spaces that are not receiving the correct quantity of outdoor air based on today's code requirements at full occupancy. These include courtrooms and conference rooms served by AHU-5, AHU-6, and AHU-7. Our calculations showed that the additional outdoor air required to handle full code occupancy would exceed the capacity of the heating and cooling coils. We recommend temporarily reducing the occupancy of the spaces that are not receiving the code required ventilation air. Table 3 lists the spaces that would require a reduced occupancy. The recommended outdoor air flow rates listed in Table 2 reflect the outdoor air requirements based on a reduced occupancy shown in Table 3.

Section 2 Recommendations

TABLE 3

Recommended Occupancy During COVID-19 Pandemic

	2015 IMC Default Occupancy	Recommended Occupancy
Room & Associated AHU	(# of People)	(# of People)
<u>AHU-5</u>		
Library Conference Room	8	4
Victim Witness Conference 0202	5	3
Public Conference Room 0202	7	5
<u>AHU-6</u>		
Pre-Trial Conference Room 3302	8	4
Pre-Trial Conference Room 3303	8	4
Pre-Trial Conference Room 3402	8	4
Pre-Trial Conference Room 3403	8	4
Pre-Trial Conference Room 3505	6	3
Pre-Trial Conference Room 3506	6	3
Off-Bench Judges Conference 1519	9	6
Juvenile Courtroom 1500	123	60
Housing Courtroom 1 3300	138	62
Probate/Family Courtroom 1 3400	139	67
Probate/Family Courtroom 2 3500	115	50
AHU-7		
Pre-Trial Conference Room 1004	5	2
Interpreter Services Room 3004	7	4
Pre-Trial Conference Room 3005	5	3
Pre-Trial Conference Room 3006	5	4
Pre-Trial Conference Room 3118	6	3
Conference Room 3122	5	2
Pre-Trial Conference Room 3202	7	3
Pre-Trial Conference Room 3203	7	3
Off-Bench Conference 3206	9	5
District Courtroom 1 1000	175	88
District Courtroom 2 3200	116	50
District Courtroom 3 3100	116	50
District Courtroom 4 3000	187	94

During the pandemic, we recommend maintaining the outdoor airflows at the original designed values where they exceed the code minimums calculated by Tighe & Bond. Supplying more outdoor than required by code will provide better indoor air quality.

Where we recommend increasing the outdoor air beyond the original design (as with AHU-5, AHU-6, and AHU-7), it appears the cooling and heating coils should be able to provide leaving air conditions similar to the original design under peak outdoor air conditions, assuming the coils are clean and their performance has not degraded over time. Supply air temperatures during the heating and cooling season should be monitored to ensure they do not significantly deviate from design values. If the supply air temperature cannot be maintained, the outdoor airflow rate should be reduced, but not below the originally designed outdoor air flow rates.

Where we do not recommend increasing outdoor air to the current code requirements, as with AHU-7, it appears the cooling and heating coils would not be able to maintain the proper leaving air temperature under peak outdoor air conditions if outdoor air were increased beyond the amount recommended.

The average airflow rate per person is shown below in Table 4. These values are based on the original full design supply airflow rate and the recommended outdoor airflow rates shown in Table 2. The airflow rate per person assumes a diversity factor of 70%, meaning the maximum number of occupants assumed to be in all zones at all times equates to 70% of the code default occupancy.

	All Spaces	Courtrooms	Non- Courtroom Spaces
Total Occupancy (People)	1,509	776	733
Total Supply Air (CFM/Person)	85	27	147
Outdoor Air (CFM/Person)	28	10	47

TABLE 4

Average Airflow Rate per Person

The airflow rate per person for each Courtroom is shown below in Table 5. These values are based on full occupancy without taking diversity into account, the original full design supply airflow rate, and the recommended outdoor airflow rate. The airflow rate per person assumes the full supply airflow is being delivered to the room. At times when the supply airflow is reduced due to the space temperature being satisfied, the airflow rate per person will also be reduced.

TABLE 5

Airflow Rate per Person (Full Occupancy)

		Τα	otal Air	Outdoor Air		
Courtroom	Total People	Supply Airflow (CFM)	Airflow Rate (CFM/Person)	Outdoor Airflow (CFM)	Airflow Rate (CFM/Person)	
Juvenile Courtroom 1500	123	2,400	20	912	7	
Housing Courtroom 1 3300	138	2,500	18	950	7	
Probate/Family Courtroom 1 3400	139	2,500	18	950	7	
Probate/Family Courtroom 2 3500	115	2,000	17	760	7	
Jury Deliberation 3115	22	1,000	45	394	18	
District Courtroom 1 1000	175	3,700	21	1,459	8	
District Courtroom 2 3200	116	2,000	17	789	7	
District Courtroom 3 3100	116	2,000	17	789	7	
District Courtroom 4 4000	187	3,900	21	1,538	8	
Jury Waiting Room 3525	82	3,300	40	1,254	15	

Note: Courtroom occupant density is based on 70 people/1,000 square feet, per the 2015 International Mechanical Code

The airflow rate per person for each Courtroom, based on a reduced occupancy schedule determined by the Office of Court Management, is shown below in Table 5a. The airflow rate per person assumes the full supply airflow is being delivered to the room. At times when the supply airflow is reduced due to the space temperature being satisfied, the airflow rate per person will also be reduced.

TABLE 5a

Airflow Rate per Person (Reduced Occupancy)

		Τα	otal Air	Outdoor Air		
Courtroom	Total People	Supply Airflow (CFM)	Airflow Rate (CFM/Person)	Outdoor Airflow (CFM)	Airflow Rate (CFM/Person)	
Juvenile Courtroom 1500	28	2,400	86	912	33	
Housing Courtroom 1 3300	28	2,500	89	950	34	
Probate/Family Courtroom 1 3400	29	2,500	86	950	33	
Probate/Family Courtroom 2 3500	23	2,000	87	760	33	
Jury Deliberation 3115	6	1,000	167	394	66	
District Courtroom 1 1000	35	3,700	106	1,459	42	
District Courtroom 2 3200	28	2,000	71	789	28	
District Courtroom 3 3100	28	2,000	71	789	28	
District Courtroom 4 4000	42	3,900	93	1,538	37	
Jury Waiting Room	27	3,300	122	1,254	46	

Note: If occupancy is further reduced, the airflow rate per person will increase, assuming full airflow is being delivered to the space.

RTB-2: Rebalance system return air flow rates.

We recommend rebalancing the return fan airflow rates to ensure the correct quantities of return air are being delivered to the air handlers.

RTB-3: Increase outside air flow rate beyond minimum under non-peak conditions.

We recommend increasing the outdoor air flow rate to the values in Table 6 <u>during</u> <u>non-peak outdoor air conditions</u> during the pandemic only. This may require additional controls to implement. We do not believe this create the potential for a coil to freeze given the amount of outside air as a percentage of total supply air,

however cold spots on the coil may develop due to poor mixing. This may cause nuisance freeze stat trips via the existing freeze stats.

T/	٩BL	.Е	6
_			

Unit	Original Supply Airflow (CFM)	Recommended Min. O.A. (CFM)	Recommended Min. O.A. Under Non- Peak O.A. Conditions (CFM)
AHU-5	13,000	4,300	4,500
AHU-6	20,000	7,600	10,000
AHU-7	17,500	6,900	8,800

Recommended Air Handler O.A. Flow Rates During Non-Peak Conditions

The return air to each air handler will also have to be adjusted to accommodate the additional outdoor air during the operation of this sequence.

RTB-6: Test and balance all air handler chilled and hot water coils.

Testing and balancing the air handler hot and chilled water coils will help ensure the coils are receiving the proper water flow rates. Due to the age of the coils, the coils may not perform as required to properly temper the supply air. Coils become fouled over time, which degrades the performance.

2.3 Equipment Maintenance & Upgrades

We recommend the following equipment maintenance and upgrades:

RE-2: Clean air handler coils and drain pans.

According to facilities personnel, the heating and cooling coils in the air handlers have not been cleaned since they were installed. While they are in generally good condition, there was visible dirt and debris on some of the coils. These should be cleaned to maximize heat transfer and minimize pressure loss.

RE-4: Inspect VAV boxes and controllers.

Section 2 Recommendations

VAV boxes regulate the supply air delivered to each space. At a minimum, we recommend cycling the damper positions and testing the airflow to verify the maximum and minimum airflow rates are being delivered as designed to the Courtrooms in Tables 4 and 4a and other spaced with multiple occupants such as the Jury Deliberation rooms. Any boxes not delivering the expected airflow rates should be repaired and rebalanced as required.

2.4 Control System Recommendations

We recommend the following for the control system:

RC-1: Implement a pre-occupancy flush sequence.

This sequence should start all air handlers and exhaust fans before the building is occupied, with the start time calculated to provide three air changes per hour (ACH) of ventilation air, or for two hours before people arrive. Systems should be run in occupied mode while cleaning staff are in the building.

RC-2: Install controls required to introduce outside air beyond the minimum requirements.

The existing BMS appears to be sophisticated enough to implement this type of sequence, however new control sequences must be defined.

RC-4: Confirm the economizer control sequence is operational.

RC-5: Disable demand control ventilation sequences.

For the duration of the COVID-19 pandemic, we recommend disabling any DCV sequences that may reduce the volume of outdoor air into spaces with reduced occupancy.

2.5 Additional Filtration and Air Cleaning

We recommend the installation of the following air cleaning devices:

RFC-1: Install portable HEPA filters.

If the Taunton Trial Court is to operate at a high capacity (i.e. 50% occupancy or greater), we recommend installing portable HEPA filters in high traffic areas, such as entrance lobbies or where people congregate outside courtrooms. They should also be considered for courtrooms, depending on the occupancy of the room and how much noise is generated from the filters. The noise levels will vary depending on the manufacturer.

2.6 Humidity Control

Installing duct mounted or portable humidifiers can help maintain the relative humidity levels recommended by ASHRAE. The feasibility of adding active humidification is determined by the building envelope. Buildings that were not designed to operate with active humidification can potentially be damaged due to a lack of a vapor barrier, adequate insulation, and air tightness.

Duct mounted humidifiers must be engineered, integrated into the building control system, tested, and commissioned. They are available in many configurations but require substantial maintenance and additional controls. They also run the risk of adversely affecting IAQ from growing microorganisms, or leaking water through poorly sealed ductwork damaging insulation and ceilings. Portable humidifiers are easier to install and require less maintenance, but still have the potential to damage the building envelope.

While active humidification is not recommended as a whole building solution due to high installation costs, operational costs, potential to damage the building envelope and adversely affect poor IAQ, it may be warranted as a temporary solution in some areas.

2.7 Other Recommendations

2.7.1 Repair Screens in Outdoor Air Louvers

Court personnel regularly clean the OA louvers by washing from the inside to remove leaves and other debris. The louvers are installed sufficiently above the roof level so they

do not accumulate excessive debris. There are insect screens inside the fixed louver blades, and in some cases we noted a significant number of holes. We recommend removing the louvers and replacing the screens, to prevent debris from fouling the filters and coils.

Photo 4 – Damaged Insect Screen Inside OA Louver

2.7.2 Repair, Reconfigure, Adjust, and Rebalance Airflow Stations

The Taunton Trial Court has airflow measuring stations on the supply, return, and outdoor air ducts of systems that serve occupied areas. If these are reporting accurately, the supply airflow should equal the sum of the return and outdoor airflows added together. These flow stations should be checked and repaired as needed. It is our opinion that units with a variance greater than 10% should be addressed.

The airflow readings observed while on site and deviations are tabulated below. These readings, flow stations, and sequences should be checked, adjusted, and repaired as needed to get the airflows to more closely match, within 10%.

_

_

 Airtiow Static	n Measurements	at time of visit			
 Unit	Outdoor Airflow (OA CFM)	Return Airflow (RA CFM)	Sum of Airflows (CFM)	Supply Airflow (SA CFM)	Difference
AHU-1	8,554	6,487	15,041	19,599	-23%
AHU-3	2,376	6,278	8,654	13,521	-36%
AHU-4	5,420	2,939	8,359	9,061	-8%
AHU-5	5,898	3,643	9,541	10,490	-9%
AHU-6	5,259	7,897	13,156	11,324	+16%
AHU-7	4,565	3,815	8,380	9,215	-9%
AHU-8	1,607	2,735	4,342	4,701	-8%

TABLE 7 Airflow Station Measurements at Time of Visit

2.8 Taunton Trial Court Recommendations Checklist

Recommended Immediate Actions

1.
□ 2.7.2: Repair, Reconfigure, Adjust, and Rebalance Airflow Stations

Recommended Actions

- 2. □ RF-1: Continue to use MERV-8 prefilters and MERV-14 final filters
- 3. \Box RF-3: Check differential pressure sensors across the filter banks
- 4. □ RF-3a: Check filter pressure sensor alarms on the BMS
- 5.
 □ RTB-1: Test and balance air handling unit airflow rates
- 6.
 □ RTB-2: Rebalance system return air flow rates
- 7.
 □ RTB-3: Increase OA rate beyond minimum under non-peak conditions
- 8. □ RTB-4: Test and balance zone damper airflow rates
- 9.
 □ RTB-6: Test and balance all air handler chilled and hot water coils
- 10. \Box RE-2: Clean air handler coils and drain pans
- 11.
 □ RE-4: Inspect VAV boxes and controllers
- 12. □ RC-1: Implement pre-occupancy flush sequence
- 13. \square RC-2: Install controls to provide OA beyond code-required minimum
- 14. \square RC-4: Confirm the economizer control sequence is operational
- 15. RC-5: Disable demand control ventilation sequences
- 16. □ RFC-1: Install portable HEPA filters

Other Actions

17.

2.7.1: Repair Screens in Outdoor Air Louvers

Disclaimer

Tighe and Bond cannot in any way guarantee the effectiveness of the proposed recommendations to reduce the presence or transmission of viral infection. Our scope of work is intended to inform the Office of Court Management on recommendations for best practices based on the guidelines published by ASHRAE and the CDC. Please note that these recommendations are measures that may help reduce the risk of airborne exposure to COVID-19 but cannot eliminate the exposure or the threat of the virus. Implementing the proposed recommendations will not guarantee the safety of building occupants. Tighe & Bond will not be held responsible should building occupants contract the virus. The Office of Court Management should refer to other guidelines, published by the CDC and other governing entities, such as social distancing, wearing face masks, cleaning and disinfecting surfaces, etc. to help reduce the risk of exposure of COVID-19 to building occupants.

J:\M\M1671 Comm. of MA Court System\011 - COVID-19 Courthouse Evaluations\Report_Evaluation\Draft Reports\Taunton Justice Center\Taunton Justice Center Report - Draft.docx

Section 3 Testing & Balancing Results

TABLE 8

Wing's Testing & Balancing Co. visited the Taunton Trial Courthouse on May 6, 2021 to test the airflow rates of the air handling units and the exhaust fans. Summaries of the tested airflow rates versus the design airflow rates are shown below in Tables 8 and 9. The full testing and balancing report is attached. The balancing report also contains the water flow rate testing results of the air handler hot and chilled water coils.

Air Handler Test	Air Handler Testing & Balancing Results						
		Design		Actual			
Unit	Total Supply Fan Airflow (CFM)	Recommended Outdoor Airflow (CFM)	Return Airflow (CFM)	Supply Fan Airflow (CFM)	Outdoor Airflow (CFM)	Return Airflow (CFM)	
AHU-1	33,000	7,500	25,500	34,577	7,176	27,401	
F-19/AHU-1 RF	N/A	N/A	27,500	N/A	N/A	22,698	
AHU-2	4,500	4,500	N/A	4,153	4,153	N/A	
AHU-3	14,500	4,500	10,000	17,308	4,576	12,832	
F-20/AHU-3 RF	N/A	N/A	12,500	N/A	N/A	13,408	
AHU-4	20,500	9,500	11,000	24,969	13,987	10,982	
F-21/AHU-4 RF	N/A	N/A	11,000	N/A	N/A	10,655	
AHU-5	13,000	4,300	9,000	13,680	6,280	7,400	
F-22/AHU-5 RF	N/A	N/A	10,500	N/A	N/A	11,223	
AHU-6	20,000	7,600	13,000	19,888	6,983	12,905	
F-23/AHU-6 RF	N/A	N/A	16,500	N/A	N/A	17,502	
AHU-7	17,500	6,900	11,000	16,042	6,240	9,802	
F-24/AHU-7 RF	N/A	N/A	15,000	N/A	N/A	17,498	
AHU-8	10,000	2,500	7,500	10,380	2,636	7,744	
F-25/AHU-8 RF	N/A	N/A	8,000	N/A	N/A	9,428	
AHU-9	4,000	4,000	N/A	4,256	4,256	N/A	

Taunton Trial Courthouse HVAC System Evaluation COVID-19

Exhaust Fan Testing & Balancing Results

	Ĩ	Design Exhaust Airflow	Actual Exhaust Airflow
Unit	Serving	(CFM)	(CFM)
EF-9	Cells	600	643
EF-10	Cells	350	374
EF-11	Cells	600	620
EF-13	Toilets	2,900	2,924
EF-14	Toilets	4,300	4,581
EF-15	Toilets	3,525	3,802
EF-29	Toilets	4,500	4,851

TABLE 9

Typical balancing tolerance for air systems is $\pm 10\%$ of the design airflow. In VAV systems, airflow issues may reside in downstream VAV boxes resulting in a total supply airflow reading at the air handler less than the designed value. Further investigation is required to determine the cause of a low airflow reading at the air handling unit.

Based on our review the TAB report, the following should be noted:

- 1. The AHU-1 supply fan is performing within the acceptable range, however the return fan is significantly underperforming. The return fan (F-19/AHU-1 RF) is returning approximately 5,000 CFM less airflow than specified, possibly over-pressurizing the spaces this air handler serves. We recommend that the controls contractor further investigate the operation of the return fan and make corrections to provide a return airflow rate of 27,500 CFM.
- 2. AHUs 2, 3, 6, 7, 8, and 9 are performing within the acceptable airflow range.
- 3. It appears the filters in AHU-2 and AHU-9 can be upgraded to MERV 13.
- 4. AHU-4 and AHU-5 have outside airflow rates that are much higher than the specified design airflow rates. The TAB contractor has noted that these units have two outdoor air dampers, the first is a two-position minimum damper and the second is a modulating min/max damper. The two-position minimum damper was open and the min/max damper was shut at the time of the testing. We recommend investigating whether these dampers are operating in accordance with the sequence of operations specified for these units, or if the two-position damper can have its maximum open position adjusted.
- 5. According to the TAB contractor, the Siemens hot water control valve for AHU-9 appears to be physically damaged and should be replaced. Due to the damage it is only able to open 50% of the way.
- 6. All tested exhaust fans are performing within acceptable range.

- 7. The flow rates on 6 of 9 hot water coils were adjusted to bring them within tolerance, including three AHUs that initially had flow rates as high as 2-3 times design. These units (AHU-2, AHU-3, and AHU-5) should now provide better control of supply air temperature in winter.
- 8. The flow rates on 3 of 6 chilled water coils were adjusted to bring them within tolerance, including one AHU that initially had only 13% of the design flow rate. We expect this unit, AHU-4, to better cool and dehumidify outdoor air in summer.
- 9. The TAB contractor noted a pulsation at the AHU-7 chilled water coil and could not get a reading on its flow rate. They also noted that the Nexus circuit setter for this valve does not open or close and should be replaced.

Taunton Justice Center HVAC/Ventilation Survey

* * * *

Tighe & Bond Attn: Jason Urso 53 Southampton Road Westfield, MA 01085

May 6, 2021

May 6, 2021

Tighe & Bond Attn: Jason Urso 53 Southampton Road Westfield, MA 01085

Re: Taunton Justice Cener/HVAC Ventilation Survey

Dear Jason,

We have completed our HVAC/Fresh-Air survey for the above-mentioned project. Through our testing we found:

- AHU 4 & 5 are over design on their outside air.
 - The outside air louvers have a min/min and a min/max damper. The min/min dampers are only open/close. With the min/min dampers open and the min/max closed we are still achieving above design.
- The Siemens control value for the hot water is damaged and does not open more than 50%. This value should be replaced.
- The chilled water circuit setter for AHU-7 is not functioning properly and does not move. There is a huge pulsation of water at this unit, which needs to be investigated. This may be due to the circuit setter which is not functional.

This report includes Brake Horsepower (BHP) calculations. When a motor has a VFD, we take the amperage measurements from there. When we calculate from volts and amps, it means there has to be a nameplate on the motor. Many times, these are missing or illegible. If BHP is not listed for an individual motor, this is because we do not have enough information to calculate it. It should be noted that that the older a motor is, the less likely it is to follow the affinity laws for BHP- since the efficiency degrades over time. We have used accepted constants for efficiency and the power factor, which should result in fairly close calculations, but are not as accurate for older motors.

Taunton Justice Center May 6, 2021

The following pages are your record of current operating conditions. If you have any questions, or if we can be of further service, please do not hesitate to call.

Very truly yours, **Wing's Testing & Balancing Co., Inc**. *ICB Certified Contractor for:* TABB—Commissioning—Fire/Life Safety L1&L2—Sound & Vibration

my Situh

Barry Stratos Certified TABB Technician

PER THE DESIGN DOCUMENTS THIS VALUE IS 27,500

PROJECT: Taunton Just	ice Center			DATE: 5/6/2	1	*****	
AREA SERVED: Various				TECH: BS			
		FAN D	ATA				
FAN NUMBER	AH	AHU-1		HU-1 RF	AH	U-2	
LOCATION	Base	ement	Base	ment	Boiler	Room	
AREA SERVED	Lo	bby	Lol	oby	Boiler	Room	
MANUFACTURER	Mc	McQuay		ok	Mc	Quay	
MODEL OR SIZE	FB0U10	0100732	490	CAS	FB0U10	0100714	
	DESIGN	ACTUAL	DESIGN	ACTUAL	DESIGN	ACTUAL	
TOTAL CFM	33,000	34,577	ND	22,698	4500	4153	
RETURN AIR	25,500	27,401			0	0	
OUTSIDE AIR	7500	7176			4500	4153	
DISCH. STATIC		+2.04"		+1.22"		0.19	
SUCTION STATIC		-2.23"		-0.94"		-1.17	
TOTAL STATIC		4.27		1.16		1.36	
FAN RPM	NA	1302	NA	NA		2914	
PULLEY O.D.	15 1/2"	x 2 7/16"	NA		4" x 1 7/16"		
ESP	-					0.57	
VFD SPEED	56	56 Hz		60 Hz		No VFD	
O.A.D. MIN POS	3!	35%					
		MOTOR	DATA				
MANUFACTURER	Ba	Baldor V		'eg	Baldor		
MODEL OR FR.	32	6 T	254 T		213 T		
HORSEPOWER	50	50	15	15	7.5	7.5	
MOTOR RPM	1775	1775	1725	1775	1770	1770	
VOLTAGE / PH.	460/3	460/3	460/3	460/3	460/3	460/3	
LEG 1	. 57.0	48.0	18.6	14.6	9.6	6.0	
AMPS LEG 2		48.9		14.7		6.1	
LEG 3		48.2		14.8		6.2	
SHEAVE O.D.	12 1/2"	x 2 1/8"	N	A	7" x 1	1 3/8"	
BELTS - QTY / SIZE	2/5	/X950	2/B	x124	2/R¥22		
SHEAVE POSITION	Fi	ked	N	IA	100%	Open	
ВНР	42	2.3	11.0		4	8	
						.0	
	I	REMA	RKS				

PER THE DESIGN DOCUMENTS THIS VALUE IS 12,500

J

PROJECT: Taur	nton Justice (Center			DATE: 5/6/2	1			
AREA SERVED:	Various			TECH: BS					
			FAN D	ATA					
FAN NUMBER		AH	U-3	F-20/A	HU-3 RF				
LOCATION		4th Fl Med	chanical Rm	4th Fl Med	hanical Rm				
AREA SERVED		Admi	n Area	AH	U-3		(51) (51)		
MANUFACTUR	ER	Mc	Quay	Co	ok				
MODEL OR SIZ	E	FB0U10	0100710	300	QMX				
		DESIGN	ACTUAL	DESIGN	ACTUAL	DESIGN	ACTUAI		
TOTAL CFM		14,500	17,308	ND	13,408				
RETURN AIR		10,000	12,832						
OUTSIDE AIR		4500	4576						
DISCH. STATIC			+1.26"		+0.48"				
SUCTION STAT	IC		-3.93"		-1.18"				
TOTAL STATIC		NA	5.19		1.66				
FAN RPM		NA	1699	NA	NA				
PULLEY O.D.		6" x 2	3/16"	N	IA				
ESP		3.	.31	-					
VFD SPEED		60) Hz	60	Hz				
O.A.D. MIN PO	S	30	0%	-					
			MOTOR	DATA					
MANUFACTUR	ER	Ba	ldor	Bal	dor				
MODEL OR FR.		28	86 T	21	3 T				
HORSEPOWER		30	30	7.5	7.5				
MOTOR RPM		1770	1770	1770	1770				
VOLTAGE / PH.		460/3	460/3	460/3	460/3				
	LEG 1	35.0	25.0	9.7	7.7				
AMPS	LEG 2		25.1		7.6				
	LEG 3		25.4		7.7				
SHEAVE O	.D.	6 1/4"	x 1 7/8"	N	IA				
BELTS - QTY / S	IZE	3/5\	/X560	N	IA				
SHEAVE POSITI	ON	Fix	ked	N	IA				
ВНР		2:	1.5	6.0					
		<u> </u>	DEMA	DVC					
			REIVIA	nn3					

PER THE DESIGN DOCUMENTS ΤI

HIS V/	ALUE	IS 11	000, 1
--------	------	-------	--------

PROJECT: Ta	aunton Justice (Center			DATE: 4/26/	21		
AREA SERVE	D: Various				TECH: BS			
			FAN D	ATA				
FAN NUMBE	R	AH	IU-4	F-21/AI	HU-4 RF	AHU-5		
LOCATION		Basemen	t Mech Rm	Basement	Mech Rm	Base	ment	
AREA SERVE	D	Baseme	ent Level	Baseme	nt Level	Admi	n Area	
MANUFACT	URER	Mc	Quay	Co	ok	McC	Quay	
MODEL OR S	SIZE	FB0U10	0100707	270-	QMX	FB0U10	0100719	
		DESIGN	ACTUAL	DESIGN	ACTUAL	DESIGN	ACTUAL	
TOTAL CFM		20,500	24,969	ND	10,655	13,000	13,680	
RETURN AIF	8	11,000	10,982			9000	7400	
OUTSIDE AIF	2	9500	13,987 (1)			4000	6280 (1)	
DISCH. STAT	IC		+2.57"		+0.29"		+1.84"	
SUCTION ST	ATIC		-2.42"		-0.72"		-3.35	
TOTAL STAT	IC		4.99		1.01			
FAN RPM			1241		NA		2022	
PULLEY O.D.		13 1/2" >	x 1 15/16"	N	A	7" x 2	3/16"	
ESP		3.	.84			3.54		
VFD SPEED		60) Hz	60	Hz	58	Hz	
O.A.D. MIN POS		(1)	3.=		(:	1)	
			MOTOR	DATA				
MANUFACT	URER	Ba	ldor	Te	со	Bal	dor	
MODEL OR F	R.	32	24 T	21	3 T	284 T		
HORSEPOW	ER	40	40	7.5	7.5	25	25	
MOTOR RPN	1	1775	1775	1775	1775	1770	1770	
VOLTAGE / F	РН.	460/3	460/3	460/3	460/3	460/3	460/3	
	LEG 1	46	32.2	9.55	5.8	30	24.6	
AMPS	LEG 2		32.5		5.8		23.6	
	LEG 3		32.8		5.9		24.9	
SHEAVE	O.D.	9 1/2"	x 2 1/8"	N	A	8" x 1	L 7/8"	
BELTS - QTY	/ SIZE	2/5V	X1230	N	A	2/5V	X490	
SHEAVE POS	ITION	Fix	ked	N	A	Fix	ed	
ВНР		28	8.3	4.6		10.7		
		1	REMA	RKS				
(1) This unit	has two OA dar	mpers. One is a	a min/min and	the other is	a min/max O/	Adamper		

ND-No Design DD-Direct Drive

PER THE DESIGN DOCUMENTS THIS VALUE IS 16,500

PER THE DESIGN DOCUMENTS
THIS VALUE IS 10,500

DROIECT. T	unton lustico (Contor			DATE: E/C/2	1		
AREA SERVE	D. Various	Lenter			DATE: 5/6/2	1		
				ATA				
FAN NUMBE	8	E-22 (A						
		Base	mont		Mach Pm	F-25 (Ar	10-0 KF)	
AREA SERVE			II-5	4th Floor	Officer	401 FIOOF		
			o-s	Court	Onces	АН	0-0	
MODEL OR S	175	270		EPOLIIO				
MODEL ON 3		DESIGN	ΑΓΤΙΙΑΙ	DESIGN		DESIGN		
TOTAL CEM		ND	11 223	20.000	10 999		17 E03	
RETURN AIR			11,225	13,000	13,000		17,502	
OUTSIDE AIR				7000	6983			
DISCH STAT	C		+0.34"	7000	2.25"			
SUCTION ST			-0.82"		-1.66"		1.06"	
TOTAL STATI	<u>C</u>		1.16	ΝΔ	3.91		-1.00	
FAN RPM	-		NA	NA	1010		2.04	
PULLEY O.D.	ULLEY O.D.			13 1/2" \	(1 15/16"	N	A NA	
ESP	SP			2	99	14	<u>A</u>	
VFD SPEED	FD SPEED		Hz	2. 	H7	60		
				55%		00	112	
			MOTOR	DATA	570			
MANUFACTU	JRER	Te	0.0	Bal	ldor	\W/att	Saver	
MODEL OR F	R.	21	3 T	32	4 T	215 T		
HORSEPOWE	R	7.5	7.5	40 40		10	10	
MOTOR RPM	1	1775	1775	1775	1775	1765	1765	
VOLTAGE / P	н	460/3	460/3	460/3	460/2	460/2	400/2	
VOLINGL/I	LEG 1	9 55	5.9	400/3	400/5	400/5	460/3	
AMPS	LEG 1		5.6	40.0	20.0	15.4	9.7	
	LEG 2		5.0		20.7		9.4	
SHEAVE	0.0	N	Δ	<u> </u>			<u>٥.٥</u>	
BELTS - OTY	/ SIZE		Δ	2/5//	x1230	N	A	
SHEAVE POS	TION		Δ	2/ 3 V/	ved	IN	<u>^</u>	
ВНР			6	 	2.2		0	
DIT		4	4.6		5.2	/.	0	
		1	DENA					
			REIVIA	nn3				

PER THE DESIGN DOCUMENTS THIS VALUE IS 15,000

DROIECT. T-	unton lustice (Contor			DATE FICIO	1		
PROJECT: Ta	unton Justice (Lenter			DATE: 5/6/2	1		
AREA SERVE	D: Various				TECH: BS			
		T	FAN D	ΑΤΑ				
FAN NUMBE	K	AH	0-7	F-24 (Al	HU-7 RF)	AH	U-8	
LOCATION		4th Floor	Mech Rm	4th Floor	Mech Rm	4th Floor	Mech Rm	
AREA SERVE)	Court	Rooms	AH	U-7	4th	Floor	
MANUFACTL	IRER	Mc	Quay	Co	ok	Mc	Quay	
MODEL OR SIZE		FB0U10	0100706	365	QMX	FB0U10	0100720	
		DESIGN	ACTUAL	DESIGN	ACTUAL	DESIGN	ACTUAL	
TOTAL CFM		17,500	16,042	ND	17,498	10,000	10,380	
RETURN AIR		11,000	9802			7500	7744	
OUTSIDE AIR		6500	6240			2500	2636	
DISCH. STATI	С		+1.98"		+0.88"		1.91"	
SUCTION STA	TIC		-0.99"		-0.99"		-2.21"	
TOTAL STATI	C	NA	2.97		1.87	NA	4.12	
FAN RPM		NA	1272	NA	NA	NA	1972	
PULLEY O.D.		14"x 1	15/16"	N	IA	5" x 1	11/16"	
ESP		2.	15	-		2.	13	
VFD SPEED		39	Hz	60	Hz	60	Hz	
O.A.D. MIN POS		4	5%			1!	5%	
			MOTOR	DATA				
MANUFACTL	IRER	Ba	ldor	Te	200	Ba	ldor	
MODEL OR F	R	32	4 T	21	3 T	256 T		
HORSEPOWE	R	40	40	7.5	7.5	20	20	
MOTOR RPM		1770	1770	1750	1750	1765	1765	
VOLTAGE / P	Н.	460/3	460/3	460/3	460/3	460/3	460/3	
	LEG 1	46.0	25.2	8.97	6.3	23.5	16.1	
AMPS	LEG 2		25.1		6.6		16.0	
	LEG 3		25.5		6.7		16.2	
SHEAVE	O.D.	12 1/2"	x 2 1/8"	N	IA	5 1/2"	x 1 5/8"	
BELTS - QTY	' SIZE	2/B	X115	N	IA	3/5V	/X780	
SHEAVE POS	TION	Fix	ked	N	A	Fix	(ed	
ВНР		21	1.8	5.5		13.6		
			REMA	RKS				

ND-No Design DD-Direct Drive

PER THE DESIGN DOCUMENTS

THIS VALUE IS 8,000

		SUI	PPLY FA	N REPOI	RT /		
PROJECT: Ta	aunton Justice C	Center			DATE: 5/6/2	1	
AREA SERVE	D: Various				TECH: BS		CARL COMMENTS
			FAN D	ΑΤΑ			
FAN NUMBE	R	F-25 (Ał	HU-8 RF)	AH	U-9		
LOCATION		4th Floor	Mech Rm	Pump	Room		
AREA SERVE	D	AH	U-8	Pump	Room		
MANUFACTU	JRER	Co	ok	Mc	Quay		
MODEL OR S	SIZE	N	A	FB0U10	0100709		
		DESIGN	ACTUAL	DESIGN	ACTUAL	DESIGN	ACTUAL
TOTAL CFM		ND	9428	4000	4256		
RETURN AIR	ł			0	0		
OUTSIDE AIF	{			4000	4256		
DISCH. STAT	IC		+0.18"		+0.20"		
SUCTION ST	ATIC		-1.06"		-1.04"		
TOTAL STAT	IC		1.24		1.24		
FAN RPM			NA	NA	2802		
PULLEY O.D.		N	A	3" x 1	7/16"		
ESP		1.	24	0.	51		n na statu sa statu
VFD SPEED		No	VFD	No	VFD		
O.A.D. MIN I	POS	-		10	0%		
			MOTOR	DATA			
MANUFACT	JRER	Те	co	Ba	ldor		******
MODEL OR F	R.	18	4 T	18	4 T		
HORSEPOWI	ER	5	5	5 5			
MOTOR RPM	1	1750	1750	1750	1750		
VOLTAGE / P	ΥН.	460/3	460/3	460/3	460/3		
	LEG 1	6.8	5.0	6.6	4.8		
AMPS	LEG 2		5.0		4.9		
an described data in estili	LEG 3		5.1		4.8		
SHEAVE	0.D.	N	A	6" x 3	1 1/8"	the second s	
BELTS - QTY	/ SIZE	N	A	2/A	X32		
SHEAVE POS	ITION	N	A	100%	Open		
BHP		3	.7	3	3.6		
		<u> </u>	DEAA				
NA-Not Avai	lable	ivo					
ND-NO Desig	gi DD-Direct Dr	ive					

		EXHA	UST FAN	REPORT		
PROJECT:	Taunton Justice Ce	nter			DATE: 5/6/21	
AREA SERV	ED: Various				TECH: BS	
			FAN DATA			
FAN NUMB	ER	EF-9	EF-10	EF-11	EF-13	EF-14
LOCATION		Roof	Roof	Roof	Roof	Roof
AREA SERV	ED	Cells	Cells	Cells	Toilets	Toilets
MANUFAC	TURER	Cook	Cook	Cook	Cook	Cook
MODEL OR	SIZE	100 CPS	70 CPS	100 CPS	180 CPS	210 CPS
TOTAL	DESIGN	600	350	600	2900	4300
CFM	ACTUAL	643	374	620	2924	4581
FAN	DESIGN	1750	1482	1750	1157	948
RPM	ACTUAL	1916	2020	1901	1202	1124
PULLEY	O.D.	3" x 1"	3" x 1"	3" x 1"	4" x 1 3/16"	6" x 1 7/16"
SERVICE		1.25	1.25	1.25	1.15	1.15
		T	MOTOR DATA	<u> </u>		
MANUFAC	IURER	Marathon	Marathon	Marathon	Baldor	Baldor
MODEL NU	MBER	48 2	48 Y	48 Z	145 T	145 T
MOTOR	DESIGN	1/3	1/4	1/3	1.5	2
HP		1/2	1/2	1/2	1.5	2
MOTOR RP	M	1725	1725	1725	1740	1755
VOLTAGE/F	PHASE	115/1	115/1	115/1	460/3	460/3
	DESIGN	7.5	7.5	7.5	2.1	2.75
MOTOR	ACT. LEG 1				1.9	2.2
AMPS	ACT. LEG 2	7.3	6.7	7.1	1.8	2.3
	ACT. LEG 3				1.9	2.5
SHEAVE		3 1/2" x 5/8"	4" x 5/8"	3 1/2" x 5/8"	3 1/4" x 7/8"	4" x 7/8"
BELTS-QTY/	SIZE	1/4L360	1/4L350	1/4L360	1/A44	1/4L530H
SHEAVE PO	SITION	50% Closed	50% Open	50% Closed	100% Open	100% Open
BHP		0.5	0.4	0.5	1.3	1.6
			REMARKS			

PROJECT:	Taunton Justice Ce	nter		DATE: 5/6/21	
AREA SERV	/ED: Various			TFCH· BS	
			FAN DATA		
FAN NUME	JER	EF-15	EF-29		
LOCATION		Roof	Roof		
AREA SERV	ED	Toilet	Cells		
MANUFAC	TURER	Cook	Cook		
MODEL OR	SIZE	195 CPS	245 CPS		
TOTAL	DESIGN	3525	4500		
CFM	ACTUAL	3802	4851		
FAN	DESIGN	1061	815		
RPM	ACTUAL	1291	874		
PULLEY	O.D.	5" x 1 3/16"	7" x 1 1/16"		
SERVICE		1.15	1.15		
			MOTOR DATA		
MANUFAC	<u>rurer</u>	Baldor	Baldor		
MODEL NU	MBER	145 T	145 T		
MOTOR	DESIGN	1.5	2		
HP	ACTUAL	1.5	2		
MOTOR RP	M	1755	1755		
VOLTAGE/H	PHASE	460/3	460/3		
	DESIGN	2.2	2.75		
MOTOR	ACT. LEG 1	1.9	2.5		
AMPS	ACT. LEG 2	1.9	2.4		
	ACT. LEG 3	1.9	2.5		
SHEAVE		4" x 7/8"	3 1/4" x 7/8"		
BELTS-QTY,	/SIZE	1/4L470	1/AX60		
SHEAVE PO	SITION	75% Open	100% Closed		
BHP		1.3	1.7		
			REMARKS		

JECT: Taunton Just	ice Center					DATE: 5/6/2	1	No.
A SERVED: Various						TECH: BS		
TRAVERSE	DUCT	AREA	DE	SIGN	CENTERLINE	T/	EST	NOTI
LOCATIONS	SIZE	SQ.FT.	FPM	CFM	STATIC PRES."	FPM	CFM	
AHU-1 Total	120" x 82"	68.33		33,000	w/velgrid	506	34,577	
AHU-1 Return				25,500	Calc		27,401	
AHU-1 O.A.	72" x 48"	24.0		7500	w/velgrid	299	7176	
AHU-2 Total	28" x 20" ID	3.89		4500	+0.18	1068	4153	<u> </u>
AHU-3 Total	82" x 49"	27.9		14,500	w/velgrid	621	17,328	+
AHU-3 Return				10,000	Calc		12,852	
AHU-3 O.A.	36" x 48"	12.0		4500	-0.14	373	4476	<u> </u>
AHU-4 Total	104" x 67"	48.39		20,500	w/velgrid	516	24,969	+
AHU-4 Return				11,000	Calc		10,982	1
AHU-4 O.A.	84" x 26"	15.17		9500	-0.45	922	13,987	(1
AHU-5 Total	48" x 20" ID	6.67		13.000	1.81	2051	13 680	
AHU-5 Return				9000	Calc		7400	<u> </u>
AHU-5 O.A.	48" x 30"	10.0		4000	w/velgrid	628	6280	(1
AHU-6 Total	104" x 67"	48.36		20,000	w/velgrid	411	19,888	
AHU-6 Return				13,000	Calc		12,905	
AHU-6 O.A.	84" x 26"	16.3		7000	w/velgrid	428	6983	
				ļ]				
AHU-7 Total	100" x 55"	38.2		17,500	w/velgrid	420	16,042	
AHU-7 Return				11,000	Calc		9802	
AHU-7 O.A.	62.5" x 48"	20.8		6500	w/velgrid	300	6240	
			R	EMARKS			L	I

	V	ELOCI	TY PRE	SSURE	READINGS	· · · · · · · · · · · · · · · · · · ·		
PROJECT: Taunton Jus	tice Center					DATE: 5/6/21	L	
AREA SERVED: Various	DUCT	4054	DE		CENTER INTE	TECH: BS		1
LOCATIONS	SIZE "	SO.FT.	FPM	CFM	CENTERLINE STATIC PRES "	EPM	ST CEM	NOTES
				C. M	STATICTILS.			
AHU-8 Total	40" x 18" ID	5.0		10,000	+1.91	2076	10,380	
AHU-8 Return				7500	Calc		7744	
AHU-8 O.A.	86" x 59"	35.24		2500	w/velgrid	77	2636	
AHU-9 Total	36" x 14" ID	3.5		4000	+0.18	1216	4256	
EF-9	15 1/2" x 7 1/2"	0.58		600	Anomometer	1109	643	
EF-10	15 1/2" x 7 1/2"	0.56		350	Anomometer	668	374	
EF-11	15 1/2" x 7 1/2"	0.58		600	Anomometer	1069	620	
EF-13	20" x 14"	1.94		2900	w/velgrid	1504	2924	
EF-14	16" x 32 1/5" ID	3.61		4300	w/velgrid	1269	4581	
EF-15	14" x 30"	2.92		3525	w/velgrid	1302	3802	
EF-29	18 1/2" x 38"	4.88		4500	w/velgrid	994	4851	
	<u>1</u>		R	EMARKS		I		I

								115	· · · · · ·			
PROJECT: Tauntor	1 Justice	e Center		1000					DATE:	5/6/21		
AREA SERVED: Va	rious	1			DECION				TECH: BS			1
		FLEARAT	NATO	CIPE	DESIGN	DOC	IESI I	0.004		FINAL		
LOCATION	NO.	ELEIVIENI	WIFG.	SIZE	GPIVI	POS.	PR.DIF	GPIM	POS.	PR.DIF	GPIM	NOTES
Hot Water												
AHU-1	1		Nexus	6A	54	Open	36.9	58.0				
AHU-2	2		Nexus	6B	30	Open	50.5	82.0	60	29.8	30.0	
AHU-3	3		Nexus	6B	31	80	57.0	46.0	70	30.1	31.0	
AHU-4	4		Nexus	6A	71	Open	62.3	90	80	51.6	72.0	
AHU-5	5		Nexus	6B	25	Open	68.3	80.0	60	26.9	26.0	
AHU-6	6		Nexus	6A	46	Open	34.9	55.0	80	21.4	46.0	
AHU-7	7		Nexus	6A	45	Open	51.4	60.0	80	22.1	47.0	
AHU-8	8		Nexus	4A	19	Open	42.1	20.0				
AHU-9	9		Nexus	6B	27	Open	23.2	28.0				(1)
and the second sec						· · ·						
Chilled Water												
AHU-1	1		Nexus	4"	220	Open	13.1	230				
AHU-3	2		Nexus	3"	105	Open	10.1	105				
AHU-4	3		Nexus	4"	171	Open	13.0	23.0	80	9.1	170.0	
AHU-5	4		Nexus	3"	97	Open	10.2	105				
AHU-6	5		Nexus	4"	157	Open	9.9	180	80	8.0	160.0	
AHU-7	6		Nexus	4"	140	Open						(2)
AHU-8	7		Nexus	3"	72	Open	9.4	100	70	6.4	75.0	
					REMAR	RKS						

a hammer & now only opens 50%.

(2) There is huge pulsation of chilled water at this unit making it unreadable. The Nexus curcuit setter does not open or close & should be replaced.