
Technical Memorandum:
Methodology for Developing Default Dispersion Factors for

MassDEP’s Air Toxics Risk Screening Tool

Submitted to:
Air and Climate Programs Division

Attn: Joanne Morin
Massachusetts Department of Environmental Protection

1 Winter Street
Boston, MA 02108

Submitted by:
Abt Associates Inc.

6130 Executive Boulevard
Rockville, MD 20852

Contact(s):
Ambrish Sharma

Jonathan Dorn
Lisa McDonald

June 2023

Table of Contents

Introduction .. 1

Model Specifications and Input/Output Options .. 1

AERMOD Batch Runs – Setup and Automation ... 3

Model Output Analysis and Dispersion Factor Table Generation ... 6

R Code and Additional Statistical Analysis ..13

 1

Introduction

To assist the Massachusetts Department of Environmental Protection (MassDEP) in the
evaluation of cumulative cancer and non-cancer risks from toxic air pollutants associated with
new facilities or modifications at existing facilities, Abt Associates (Abt) supported the
development of the Massachusetts Air Toxics Risk Screening Tool (MATRiST). The tool is
based on the Minnesota Pollution Control Agency’s (MPCA) Risk Assessment Screening
Spreadsheet (RASS) with appropriate modifications to support MassDEP CIA Rule objectives.
One modification was to update the default dispersion factor table incorporated into the RASS
tool. Two methodologies were evaluated for developing the default dispersion factors – the one
developed by MPCA and the other developed by Oregon Department of Environmental Quality
to create lookup dispersion tables for the Cleaner Air Oregon Rule. The approach used by MPCA
utilized AERSCREEN and MAKEMET to create meteorological data files that were then used in
AERMOD screening mode to loop through various combinations of stack parameter inputs. The
MPCA approach created worst case meteorology and potentially produced overly conservative
results. In contrast, the Oregon approach used site-specific meteorological data collected in-state
and utilized AERMOD in refined mode to model ten combinations of stack parameters each
keyed to stack heights. Abt, under the direction of MassDEP adopted a hybrid approach that
utilized the basic MPCA processing scheme but incorporated Massachusetts-specific
meteorological data and ran AERMOD in refined mode. This approach simulated thousands of
hypothetical input scenarios and generated a lookup table of conservative default dispersion
factors.

As a first step in understanding risks from air toxic emissions, facilities can apply these
dispersion factors to various combinations of stack height, receptor distance, and pollutant
emission rates to generate screening level estimates of toxic air pollutant concentrations and
associated risk values. Default dispersion factors were modeled for three averaging periods, 1-hr,
24-hr and annual, during the development of dispersion factor lookup tables. Dispersion factors
for all three averaging periods were evaluated while deciding on the most appropriate averaging
periods for dispersion factors to be used in the risk screening tool. This document provides the
details of the batch processing scheme and inputs used to generate the default dispersion factor
table included in MATRiST.

Model Specifications and Input/Output Options

This section describes the dispersion model and input/output options used to develop the default
dispersion factors.

Dispersion model. AERMOD version 22112 was used for the dispersion modeling as it was the
latest U.S. Environmental Protection Agency (EPA) approved version at the time the modeling
was conducted in 2022. The model was run using EPA default regulatory options, including use
of ADJ_U* (an option in AERMET for adjusting surface friction velocity for low wind/stable
conditions), and assuming flat terrain and rural dispersion.

Receptor grid. A polar grid array was used for receptor location definition. The grid comprised
of 36 radials at 10-degree increments with rings of receptors at the following distances from the
stack:

 2

• 10 to 100 meters (10-meter increments)
• 120 to 200 meters (20-meter increments)
• 250 to 400 meters (50-meter increments)
• 500 to 1,000 meters (100-meter increments)
• 1,500 meters
• 2,500 to 10,000 meters (2,500-meter increments)

The receptor distances are the same as those used by MPCA; however, instead
of a linear cartesian grid, the receptors were placed in a polar grid
arrangement. All receptor heights were kept at ground level, consistent with flat
terrain.

Figure 1 shows the polar array, with modeling receptors located at each modeled distance and
radial for a total of 1,080 (36 × 30) receptors.

Figure 1. Representation of modeled receptors in polar grid arrangement.

Meteorological data. Meteorological data for calendar year 2018 for two representative
Automated Surface Observing System (ASOS) sites in Massachusetts — Boston and Worcester
– were used in the modeling. Boston Logan Airport (KBOS) surface data were coupled with
Gray, Maine upper air data and Worcester Airport (KORH) surface data were coupled with
Albany, New York upper air data and processed through AERMET to derive the AERMOD-
ready datasets. Meteorological data collected at KBOS represents eastern Massachusetts while
data collected at KORH represents central and western Massachusetts.

U-Star option. The modeling used meteorological datasets created using AERMET
(meteorological preprocessor for AERMOD) with the ADJ_U* option turned on.

Surface type (e.g., urban vs. forested). This information was incorporated in the
meteorological data processing step, so no input options were necessary in the hybrid scheme.

Building preprocessor. Building Profile Input Program for PRIME (BPIPPRM) inputs:

• Building height: 2 inputs: 90% stack height and 70% stack height

 3

• Building distance: 2 inputs: 0 meters from stack and 25 meters from stack
• Maximum and minimum horizontal building dimension: 50 meters
• Maximum building dimension angle to true north (0°−179°): Set to 0
• Direction of stack from building center (0°−360°): Set to 0.

Dispersion Type. All scenarios were modeled with both rural and urban dispersion.

Emission Rate. Unit emission rate of 1 gram per second (g/s) was used to achieve the objective
of producing dispersion factors in units of µg/m3 per g/s.

Stack Height. Abt modeled a range of 1 to 60 meters (~3 to 200 feet) at 1-meter (~3 feet)
increments for a total of 60 stack heights.

Stack Diameter. Abt modeled seven inputs (0.1 to 1.52 meters) representative of the process
and combustion equipment typically found in Massachusetts.

Stack Exit Velocity. Abt modeled seven inputs (0.91 to 38.11 meters per second) representative
of the process and combustion equipment typically found in Massachusetts.

Stack Temperature. Abt modeled five inputs (293 to 700°K) representative of the process and
combustion equipment typically found in Massachusetts.

Terrain Height. Flat terrain was assumed. In AERMOD, base elevation (Zs) was set to 0 meters
for LOCATION keyword.

Averaging Period for Modeled Dispersion Factors. 1-hour, 24-hour, and annual.

Final Dispersion Factor Matrices (lookup tables). Two final lookup tables were generated,
one each for rural and urban dispersion type. Each table consisted of 1800 data points (60 stack
heights × 30 receptor distances) for each averaging period. For input to the risk tool, average
results at each distance over the two site-specific meteorological locations was used.

Executing this modeling scheme required 235,200 AERMOD runs. 117,600 runs (58,800
each for rural and urban dispersion) per meteorological location times the two meteorological
locations (KBOS and KORH).

AERMOD Batch Runs – Setup and Automation

Since the development of the default dispersion table required simulation of thousands of air
dispersion scenarios, Abt used a prebuilt AERMOD package in R programming language to
execute AERMOD batch runs. The package was developed by MPCA and is publicly available
through a Github code repository (GitHub - dKvale/aermod). The R based AERMOD package
provides a data frame interface for performing AERMOD batch runs from R and contains
libraries of various functions utilized in AERMOD simulations. Abt modified the MPCA base
code to perform the intended dispersion modeling with the Massachusetts-specific inputs and
parameterization described in the section above.

The major modifications to the MPCA base code included:

https://github.com/dKvale/aermod

 4

• Removed AERSCREEN module from MPCA base code. MPCA utilized
AERSCREEN to create land surface and building specific MAKEMET meteorological
data files that were then used in AERMOD (in screening mode) to loop through various
combinations of stack parameter inputs. However, MAKEMET uses default
meteorological data and does not allow the user to define site-specific meteorological
data. To generate 1-hour, 24-hour and annual dispersion factors using site-specific
meteorology and a polar receptor grid, Abt modified the MPCA base code to use
AERMOD ready site-specific meteorology with integrated surface characteristic
information.

• Utilized R modules to run BPIPPRM. The AERMOD preprocessor BPIPPRM includes
an algorithm for calculating a matrix of five unique building downwash parameters (input
direction specific building heights (BUILDHGT), widths (BUILDWID), lengths
(BUILDLEN), and XBADJ and YBADJ - the input direction-specific along-flow and
across-flow distances from the stack to the center of the upwind face of the projected
building respectively) for input into the PRIME algorithm contained in AERMOD for
plume rise calculations. Since AERSCREEN (which runs BPIPPRM) was removed from
the code, Abt used an R sub-package contained in the AERMOD package from MPCA to
run BPIPPRM. This sub-package was installed, and specific functions were written into
the MassDEP code to (1) run BPIPPRM; (2) read and extract the BPIPPRM outputs; and
(3) input the BPIPPRM output values into AERMOD before looping through stack
variations. An example of the BPIPPRM output is provided in Figure 2. The information
contained in the red box is needed by AERMOD for PRIME calculations. The MassDEP
code extracts this portion from the BPIPPRM output file and pastes it into the AERMOD
input file.

Figure 2. Snippet from a BPIPPRM output file generated using R-based BPIPPRM module during
AERMOD batch simulations.

 5

• Linking building heights with stack heights in BPIPPRM. The R-based BPIPPRM
module provides an option to supply user defined inputs to BPIPPRM such as building
height, maximum and minimum building horizontal dimension, distance between stack
and building center, etc. One important consideration was to ensure the accurate linkage
between modeled stack heights and building heights. This was achieved by adding a FOR
loop in the MassDEP code encompassing all stack height variations before the
BPIPPRIM code and linking the building height input parameter required by BPIPRIM to
the current stack height in the loop using predefined fractions of 70% and 90%.

• Polar grid receptors. Instead of linear cartesian grid receptors used in the MPCA base
code, Abt used polar grid receptors with the receptor locations described above in
Figure 1. Since the receptor definition remains static across all simulations in the batch
run, the definition was added to the default AERMOD input file. This file is read by the
MassDEP code when creating an AERMOD input object. This object is later used to
modify building parameters and stack variations. The receptor definition is shown below:

RE STARTING
RE GRIDPOLR UPOL1 STA
 ORIG STACK
 DIST 10 20 30 40 50 60 70 80 90 100 120 140 160 180 200
 DIST 250 300 350 400 500 600 700 800 900 1000 1500 2500 5000
 DIST 7500 10000
 GDIR 36 0.00 10.00
 GRIDPOLR UPOL1 END
RE FINISHED

• Utilized MA-specific meteorological data instead of MAKEMET. Instead of
MAKEMET, Abt used site-specific real-world meteorology when developing the default
air dispersion factors. Two AERMOD batch simulations were run, one using Worcester
surface meteorology and the other using Boston surface meteorology. Since the
meteorological inputs are static across all simulations, meteorological input definitions
were added to the respective default AERMOD input files. An example of the
meteorological input definition is shown below:

ME STARTING
 SURFFILE WORALB_2018.sfc
 PROFFILE WORALB_2018.pfl
 SURFDATA 94746 2018 WORCESTER,MA
 UAIRDATA 54775 2018 ALBANY,NY
 PROFBASE 0.0 METERS
ME FINISHED

• Modeled 1-hour, 24-hr and annual concentrations. The MPCA base code ran
AERMOD in screening mode which only allows modeling of a 1-hour averaging period.
The 24-hour and annual dispersion values used in the MPCA approach are based on
scaling factors applied to modeled 1-hour values. In contrast, Abt used AERMOD in
refined mode which allows the calculation of 24-hour and annual averages for modeled
concentrations, in addition to 1-hour values. In the refined mode, this was accomplished
using the AVERTIME card in the control option of the AERMOD input file.

 6

• Generated unique output file for each scenario. A total of 235,200 scenarios were
modeled using AERMOD, corresponding to variations in the following input parameters:

o 60 stack heights: [1 to 60 in 1m increments] m
o 7 stack diameters: [0.10, 0.20, 0.30, 0.46, 0.61, 0.91, 1.52] m
o 5 stack exit temperatures: [293, 311, 366, 450, 700] Kelvin
o 7 stack exit velocities: [0.91, 3.05, 9.15, 15.24, 22.87, 30.49, 38.11] m/s
o 2 building distances: [0, 25] m
o 2 building height fractions: [70%, 90%] of stack height
o 2 dispersion types: rural and urban
o 2 meteorological sites: Boston, MA (KBOS) and Worcester, MA (KORH)

The MPCA base code did not store the output of each scenario modeled; instead, it read
the output of each modeled scenario and extracted information to update the final lookup
table as part of code execution. Abt added a unique capability to the code to store the
AERMOD output of each modeled scenario. This enables future quality assurance /
quality control (QA/QC) analysis and detailed accuracy checks of the modeling outputs.
The naming convention of each output file is explained in Figure 3:

Figure 3. Output file naming convention.

• Developed code for extracting data from output files and creating dispersion tables.
Due to significant modification to the MPCA base code, and multiple differences in
output files (e.g., three averaging periods, modeled concentrations in polar grid format),
an output analysis code in R was developed for parsing out relevant data from the output
files and storing values in the dispersion factor table. The details of the code are
discussed below.

Model Output Analysis and Dispersion Factor Table Generation

Abt developed an R module for analyzing the AERMOD batch run outputs and generating the
final dispersion factor lookup table to be used in the MATRiST. Two blocks of AERMOD batch
runs were performed – one each for the two meteorological stations with each block comprising
117,600 (58,800 rural and 58,800 urban dispersion) model runs.

Each model output file contained the 438th highest 1-hour average (95th percentile of 1-hr
concentrations), 18th highest 24-hour average (95th percentile of 24-hr concentrations) values,
and annual average values at each modeled receptor location in the polar grid format. The R code
contains the following steps for generating the final dispersion factor lookup tables by processing
the AERMOD outputs generated by the two blocks of AERMOD batch runs.

 7

Step 1: Reading model output for each scenario

• From each output file that was processed, a single value (from 36 corresponding modeled
directions) was extracted at each receptor distance for each averaging period.

• For the 1-hour and 24-hour modeled concentrations, the maximum of the 36 95th
percentile values were extracted at each receptor distance (see Figure 4 for a
representative output)

• For the annual modeled concentrations, and the maximum of the 36 annual average
values was extracted at each receptor distance

Figure 4 shows the extraction of the maximum 95th percentile (18th highest) 24-hour
concentration value from a representative AERMOD output. The highest of the 36 values shown
in the red box was extracted for the receptor distance of 10 meters from this specific AERMOD
output file. The process was repeated for all remaining 29 receptor distances to get the maximum
value of the 18th highest 24-hour average concentrations across all modeled distances and
directions.

 8

Figure 4. Extraction of the maximum of the 95th percentile (18th highest) 24-hr concentration values
at one of the receptor distances from a representative AERMOD output.

Step 2: Storing values calculated in step 1 in extended dispersion lookup tables

• Separate extended format lookup tables were generated for each of the three averaging
periods, employing the methodology described in step 1, first using the Boston output
datasets (rural and urban), and then using the Worcester output datasets (rural and urban).

• Each extended table stored the extracted output information from step 1 and included the
corresponding input parameter information.

• As a result, each extended format table contained 58,800 rows (58,800 scenarios were
modeled for each meteorological site-dispersion type combination).

• For better processing efficiency, the analysis code was broken down into 12 modules to
handle a unique combination of averaging period (three values), meteorological sites used
(two values), and dispersion type (two values).

 9

• 12 extended dispersion tables were generated at the end of step 2, six for rural dispersion
type (1-hour Boston, 1-hour Worcester, 24-hour Boston, 24-hour Worcester, Annual
Boston, Annual Worcester) and similar six combinations for urban dispersion. See
Figure 5 for a subset of the 24-hour Boston rural dispersion table.

Figure 5 shows a preview of the extended format lookup table generated for 24-hour
values extracted from the 58,800 scenarios modeled with Boston meteorology and rural
dispersion. Each of the 58,800 rows in the table have information on the input parameters
of the modeled scenario and the maximum of the modeled 18th highest 24-hour average
dispersion factors across the 36 directions at each receptor distance for that scenario.

Figure 5. Preview of extended format lookup table generated for the 24-hour values extracted from
the 58,800 scenarios modeled with Boston meteorology and rural dispersion.

Step 3: Creating two-dimensional dispersion tables with statistical analyses

• Each extended table generated in step 2 gave 980 dispersion factor options (from 7 stack
diameters x 5 stack exit temperatures x 7 stack exit velocities x 2 building distances x 2
building height fractions modeled) for each stack height- boundary distance combination.

• Statistical analyses were conducted on each block of such 980 factors to calculate the
maximum, minimum, average, 25th, 50th, 75th, and 90th percentile values for each stack
height boundary distance combination from the 12 extended format tables

 10

• This produced 12 two-dimensional tables representing the statistical information for each
block analyzed in step 3 from the 12 respective extended tables from step 2. See Figure 6
for a preview of the two-dimensional dispersion factor table of summary statistics for the
modeled 24-hour dispersion factors using Boston meteorological data and rural
dispersion. Figure 7 shows a box plot of the minimum, maximum, average, 25th, 50th,
and 75th percentile of the modeled 24-hour maximum dispersion factors for the Boston
meteorological station using rural dispersion for eight receptor distances using a stack
height of 3 meters.

Figure 6. Preview of the two-dimensional dispersion factor table of summary statistics for the
modeled 24-hr dispersion factors using Boston meteorological data and rural dispersion.

 11

Figure 7. Box plot showing min, max, 25th, 50th and 75th percentile of the modeled 24-hour max
dispersion factors (from Boston station rural output) for a stack height of 3 meters.

 12

Step 4: Creating a consolidated lookup table with maximum dispersion factors for each
station

• Maximum dispersion factors calculated in step 3, that represent the highest estimated
pollutant concentration for each receptor distance-stack height combination, were then
extracted from the 12 statistical tables from step 3 for further processing. By grouping all
three averaging periods for a given meteorological station and dispersion type
combination in one table, the 12 tables from step 3 were consolidated into four tables in
step 4 - Boston rural (maximum dispersion), Boston urban (maximum dispersion),
Worcester rural (maximum dispersion) and Worcester urban (maximum dispersion). Each
of the newly generated four consolidated tables contain dispersion factors for all three
averaging periods (see Figure 8).

Figure 8. Preview of consolidated Boston station rural dispersion factor table with 1-hr, 24-hr and
annual dispersion factors stored in a 2-D format for all stack-heights and receptor distance

combinations.

 13

Step 5: Using the average of consolidated max dispersion lookup tables for final dispersion
look-up tables

• The final rural dispersion table was created by averaging the dispersion factors from the
two rural tables generated in step 4 (i.e., Boston rural and Worcester rural tables). Figure
9 shows the preview of the final rural dispersion table. Similarly, the final urban
dispersion table was created by averaging the dispersion factors from the two urban
tables generated in step 4.

• For averaging the two rural and two urban tables from step 4, all dispersion factors were
grouped by specific receptor distance, stack height, and averaging period combination.

Figure 9. Preview of the final 1-hr, 24-hour and annual rural dispersion factor lookup values
evaluated for inclusion in the Air Toxics Risk Screening Tool.

R Code and Additional Statistical Analysis

The R code used to generate the final dispersion factor table and additional statistical analyses
are included in Appendix 1 and Appendix 2, respectively.

Appendix 1

R Codes Used to Develop Default Dispersion
Factors for the Massachusetts Air Toxics Risk

Screening Tool (MATRiST)

Description

This document contains a series of R codes used for performing batch runs of the air dispersion
model AERMOD, analysis of AERMOD output and generation of dispersion factor tables for
MassDEP’s air toxics risk screening tool, MATRiST v2.0.

A1.1 is used for performing AERMOD batch runs using MA specific input parameters. The code
shown here executes simulation of 58,800 scenarios run with Worcester 2018 Meteorology and
urban dispersion.

A1.2-A1.4 are used for reading model output and generating extended lookup tables for 1-hr, 24-
hr and annual concentrations respectively (execute step 1 and step 2 of model output analysis
described in the technical memorandum). The codes shown here were used to process the model
output generated using Worcester 2018 meteorology with urban dispersion. The same codes with
minimal modifications could be applied to process the Worcester rural dispersion output and the
counterpart rural and urban dispersion output sets generated using Boston 2018 meteorology.

A1.5 is used for creating two-dimensional dispersion tables with statistical analyses, then
creating a consolidated lookup table with maximum dispersion factors for each averaging period
for each station, and finally generating a final dispersion factor look-up table to be used in the
risk screening tool (executes step 3, 4 and 5 of model output analysis described in the technical
memorandum). This code was used to generate the final urban dispersion table used in the risk
screening tool, MATRiST v2.0, same code could be applied to the extended rural dispersion
tables to generate the final rural dispersion table.

A1.1 MADEP AERMOD batch runs code
Author: Ambrish Sharma, Abt Associates Inc.
Modified from base code developed by Dorian Kvale for MPCA, 2017
Purpose: Executing AERMOD batch runs with MA specific inputs and storing output of each
unique scenario
Year: 2023

#Install AERMOD R packages from Github and load libraries

install.packages("remotes")

remotes::install_github(c("dKvale/installEPA",
"dKvale/bpip",
"dKvale/receptors",
"dKvale/aermod"))
library(installEPA)
library(bpip)
library(aermod)
library(knitr)
library(dplyr)
library(stringr)

Define input parameter variables
sk_heights <- c((1:60)
sk_diameters <- c(0.10, 0.20, 0.30, 0.46, 0.61, 0.91, 1.52)
sk_velocity <- c(0.91, 3.05, 9.15, 15.24, 22.87, 30.49, 38.11)
tempsK <- c(293, 311, 366, 450, 700)
build_distance <- c(0, 25)
build_ht_frx <- c(0.70, 0.90)

n_scenarios <- length(sk_heights) *
length(sk_diameters) *
length(sk_velocity) *
length(tempsK) *
length(build_distance) *
length(build_ht_frx)

Set up receptor distances for final output dataframe

boundary_distances <- c(seq(10, 100, 10),
seq(120, 200, 20),
seq(250, 400, 50),
seq(500, 1000, 100),
seq(1500, 1500, 0),
seq(2500, 2500, 0),
seq(5000, 10000, 2500))

results_table=
expand.grid(stack_height=sk_heights,boundary_distance=boundary_distances,
stack_diameters=sk_diameters, exit_velocity=sk_velocity, exit_temp=tempsK,
disp_1hr = NA,
disp_24hr = NA,

disp_annual = NA)

print(results_table)

Begin loops for batch runs

for(bld_dist in build_distance) {

for(bld_ht_frx in build_ht_frx) {

for(height in sk_heights) {

BPIP module section begins

test_build <- new_bpip()
test_build

Update inputs of hypothetical building before bpip run
test_build$bld_rotation <- 0
test_build$length_y <- 50
test_build$width_x <- 50
test_build$angle_from_source <- 0
test_build$dist_from_source <- bld_dist
test_build$bld_height <- height * bld_ht_frx #link stack height with
building height
test_build$source_height <- height
test_build$source_name <- "STACK"

test_build

Run BPIP

plot_bpip(test_build)
write_bpip(test_build,"bpip.inp")
run_bpip("bpip.inp", "building_results", exe_folder = "/user defined
directory with bpip executable/")

Extract required section from bpip output
out <- readLines("building_results.out")
so_start <-min(grep("BUILDHGT", out))
out <- out[so_start:length(out)]
out<-str_trim(out, side = c("left"))

Paste bpip output to AERMOD input object
aermod_inp <- readLines("aermod_test.inp")
source_line_bld <-min(grep("SO BUILDHGT stack ", aermod_inp))
aermod_inp[source_line_bld:(source_line_bld+length(out)-1)]<-paste0(out)

aermod_inp

BPIP module section ends

Set loop counter
count <- 1

Loop through remaining stack parameter variations

for(diam in sk_diameters) {

for(velocity in sk_velocity) {

for(tempk in tempsK) {

Print iteration count
print(count)
count <- count + 1

Update AERMOD input with stack parameters in loop
source_line <- grep(" SRCPARAM STACK 1.00 ", aermod_inp)

aermod_inp[source_line] <- paste0(" SRCPARAM STACK 1.00 ",
height, " ",

tempk, " ",

velocity, " ",

diam, " ")

Run AERMOD on input file and store unique output

results <- run_aermod(aermod_inp,
out_file = paste0("aermod_wor_out_hgt_", height, "vel_", velocity,
"dia_", diam, "temp_", tempk,"bld_dist_",bld_dist,"bld_ht_frx_",
bld_ht_frx),
exe_folder = "/user defined directory with aermod executable/")

}}}
}}
}

A1.2, A1.3, A1.4 AERMOD Output Analysis Codes
Authors: Ambrish Sharma and Caroline Watson, Abt Associates Inc.
Purpose: AERMOD output analysis – Reads model output and creates extended dispersion table
for specific averaging period
Year: 2023

A1.2: Processes 1-hr output – uses output files from AERMOD batch runs using Worcester
2018 meteorology and urban dispersion.

library(dplyr)
library(stringr)
library(readr)
library(tidyr)
library(tidyverse)

setwd("/user defined working directory/")

Read filenames of output files
filenames <- list.files(path = "/directory where output files are
stored/")

Replace variable expressions in filenames for constant vector length
names_2 <- gsub("dia_0.1", "dia_0.10",
gsub("dia_0.2", "dia_0.20",
gsub("dia_0.3", "dia_0.30",
gsub("dist_0", "dist_00",
gsub("hgt_3vel", "hgt_03vel",
gsub("hgt_6vel", "hgt_06vel",
gsub("hgt_9vel", "hgt_09vel",
gsub("vel_0.91", "vel_00.91",
gsub("vel_9.15", "vel_09.15",
gsub("vel_3.05", "vel_03.05",filenames))))))))))

Create dataframe for storing input parameter information from filenames
results_table <- tibble(stack_height = vector(mode = "numeric", length =
length(filenames)),
stack_exit_velocity = NA,
stack_diameter = NA,
stack_exit_temp = NA,
building_dist = NA,
building_ht_frx = NA)

Create dataframe for extracted output information
df <- data.frame(matrix(ncol = 31, nrow = length(filenames)))

colnames(df) <- c("Aver_Period",
seq(10,100,10),
seq(120,200, 20),
seq(250,400,50),
seq(500,1000,100),
seq(1500,1500,0),
seq(2500,2500,0),
seq(5000,10000,2500))

Start loop to extract input information from each filename and read
output
for(i in 1:length(filenames)){

results_table$stack_height[i] <- as.numeric(substr(names_2[i],20,21))
results_table$stack_exit_velocity[i] <-
as.numeric(substr(names_2[i],26,30))
results_table$stack_diameter[i] <- as.numeric(substr(names_2[i], 35,38))
results_table$stack_exit_temp[i] <- as.numeric(substr(names_2[i],44,46))
results_table$building_dist[i] <- as.numeric(substr(names_2[i],56,57))
results_table$building_ht_frx[i] <- as.numeric(substr(names_2[i],69,71))

print(i)

output <- readLines(paste0("directory with output files/", filenames[i]))

1-hour max extraction – Total 6 blocks for 1-hr output in model output

#block 1

onehr_output_blk1 <- output[576:611]
onehr_output_blk1 <- str_trim(onehr_output_blk1, side = c("both"))

onehr_output_blk1_final<-str_split_fixed(onehr_output_blk1," \\s+",6)
onehr_output_blk1_final <- as.data.frame(onehr_output_blk1_final)
column_names <- c("Direction", "10.00", "20.00", "30.00", "40.00",
"50.00")
names(onehr_output_blk1_final) <- column_names

onehr_output_blk1_final <- onehr_output_blk1_final %>%
mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%
pivot_longer(cols = c(2:6), names_to = "distance", values_to =
"one_hour_avg") %>%
mutate(one_hour_avg = str_replace(one_hour_avg, " \\s*\\([^\\)]+\\)", ""))
%>%
pivot_wider(names_from = distance, values_from = one_hour_avg) %>%
mutate_all(as.numeric)

#block 2
onehr_output_blk2 <- output[628:663]
onehr_output_blk2 <- str_trim(onehr_output_blk2, side = c("both"))

onehr_output_blk2_final<-str_split_fixed(onehr_output_blk2," \\s+",6)
onehr_output_blk2_final <- as.data.frame(onehr_output_blk2_final)
column_names <- c("Direction", "60.00", "70.00", "80.00", "90.00",
"100.00")
names(onehr_output_blk2_final) <- column_names

onehr_output_blk2_final <- onehr_output_blk2_final %>%

mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%
pivot_longer(cols = c(2:6), names_to = "distance", values_to =
"one_hour_avg") %>%
mutate(one_hour_avg = str_replace(one_hour_avg, " \\s*\\([^\\)]+\\)", ""))
%>%
pivot_wider(names_from = distance, values_from = one_hour_avg) %>%
mutate_all(as.numeric)

#block 3
onehr_output_blk3 <- output[680:715]
onehr_output_blk3 <- str_trim(onehr_output_blk3, side = c("both"))
onehr_output_blk3_final<-str_split_fixed(onehr_output_blk3," \\s+",6)

onehr_output_blk3_final <- as.data.frame(onehr_output_blk3_final)
column_names <- c("Direction", "120.00", "140.00", "160.00", "180.00",
"200.00")
names(onehr_output_blk3_final) <- column_names

onehr_output_blk3_final <- onehr_output_blk3_final %>%
mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%
pivot_longer(cols = c(2:6), names_to = "distance", values_to =
"one_hour_avg") %>%
mutate(one_hour_avg = str_replace(one_hour_avg, " \\s*\\([^\\)]+\\)", ""))
%>%
pivot_wider(names_from = distance, values_from = one_hour_avg) %>%
mutate_all(as.numeric)

#block 4
onehr_output_blk4 <- output[732:767]
onehr_output_blk4 <- str_trim(onehr_output_blk4, side = c("both"))
onehr_output_blk4_final<-str_split_fixed(onehr_output_blk4," \\s+",6)

onehr_output_blk4_final <- as.data.frame(onehr_output_blk4_final)
column_names <- c("Direction", "250.00", "300.00", "350.00", "400.00",
"500.00")
names(onehr_output_blk4_final) <- column_names

onehr_output_blk4_final <- onehr_output_blk4_final %>%
mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%
pivot_longer(cols = c(2:6), names_to = "distance", values_to =
"one_hour_avg") %>%
mutate(one_hour_avg = str_replace(one_hour_avg, " \\s*\\([^\\)]+\\)", ""))
%>%
pivot_wider(names_from = distance, values_from = one_hour_avg) %>%
mutate_all(as.numeric)

#block 5
onehr_output_blk5 <- output[784:819]

onehr_output_blk5 <- str_trim(onehr_output_blk5, side = c("both"))
onehr_output_blk5_final<-str_split_fixed(onehr_output_blk5," \\s+",6)

onehr_output_blk5_final <- as.data.frame(onehr_output_blk5_final)
column_names <- c("Direction", "600.00", "700.00", "800.00", "900.00",
"1000.00")
names(onehr_output_blk5_final) <- column_names

onehr_output_blk5_final <- onehr_output_blk5_final %>%
mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%
pivot_longer(cols = c(2:6), names_to = "distance", values_to =
"one_hour_avg") %>%
mutate(one_hour_avg = str_replace(one_hour_avg, "[a-z]", " "),
one_hour_avg = str_replace(one_hour_avg, " \\s*\\([^\\)]+\\)", "")) %>%
pivot_wider(names_from = distance, values_from = one_hour_avg) %>%
mutate_all(as.numeric)

#block 6
onehr_output_blk6 <- output[836:871]
onehr_output_blk6 <- str_trim(onehr_output_blk6, side = c("both"))
onehr_output_blk6_final<-str_split_fixed(onehr_output_blk6," \\s+",6)

onehr_output_blk6_final <- as.data.frame(onehr_output_blk6_final)

column_names <- c("Direction", "1500.00", "2500.00", "5000.00", "7500.00",
"10000.00")
names(onehr_output_blk6_final) <- column_names

onehr_output_blk6_final <- onehr_output_blk6_final %>%
mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%
pivot_longer(cols = c(2:6), names_to = "distance", values_to =
"one_hour_avg") %>%
mutate(one_hour_avg = str_replace(one_hour_avg, "[a-z]", " "),
one_hour_avg = str_replace(one_hour_avg, " \\s*\\([^\\)]+\\)", "")) %>%
pivot_wider(names_from = distance, values_from = one_hour_avg) %>%
mutate_all(as.numeric)

#Create data frame combining individual blocks and find max at each
distance
onehour_df <- left_join(onehr_output_blk1_final,
onehr_output_blk2_final, by = "Direction") %>%
left_join(onehr_output_blk3_final, by = "Direction") %>%
left_join(onehr_output_blk4_final, by = "Direction") %>%
left_join(onehr_output_blk5_final, by = "Direction") %>%
left_join(onehr_output_blk6_final, by = "Direction") %>%
pivot_longer(names_to = "distance", values_to = "one_hr_avg", cols =
c(2:31)) %>%
group_by(distance) %>%
summarize(one_hr_max = max(one_hr_avg)) %>%
mutate(distance = as.numeric(distance)) %>%

arrange(distance) %>%
pivot_wider(names_from = distance, values_from = one_hr_max) %>%
mutate(Aver_Period = "1-hr max") %>%
relocate(Aver_Period, .before = "10")

df[i,] <- onehour_df
}

#create final data frame with the stack parameter information
final_df <- cbind(results_table, df)

#write file to csv
write.csv(final_df, "user defined directory to store output dispersion
table/dispersion_table_wor_1hr_urban.csv", row.names = FALSE)

A1.3: Processes 24-hr output – uses output files from AERMOD batch runs using Worcester
2018 meteorology and urban dispersion.

library(dplyr)
library(stringr)
library(readr)
library(tidyr)
library(tidyverse)

setwd("/user defined working directory/")

read filenames of output files
filenames <- list.files(path = "/directory where output files are
stored/")

Replace variable expressions in filenames for constant vector length

names_2 <- gsub("dia_0.1", "dia_0.10",
 gsub("dia_0.2", "dia_0.20",
 gsub("dia_0.3", "dia_0.30",
 gsub("dist_0", "dist_00",
 gsub("hgt_3vel", "hgt_03vel",
 gsub("hgt_6vel", "hgt_06vel",
 gsub("hgt_9vel", "hgt_09vel",
 gsub("vel_0.91", "vel_00.91",
 gsub("vel_9.15", "vel_09.15",
 gsub("vel_3.05", "vel_03.05",filenames))))))))))

Create dataframe for input parameter information
results_table <- tibble(stack_height = vector(mode = "numeric", length =
length(filenames)),
 stack_exit_velocity = NA,
 stack_diameter = NA,
 stack_exit_temp = NA,
 building_dist = NA,

 building_ht_frx = NA)

Create dataframe for extracted output information

df <- data.frame(matrix(ncol = 31, nrow = length(filenames)))
#df[1:length(names)] <- NA
colnames(df) <- c("Aver_Period",
 seq(10,100,10),
 seq(120,200, 20),
 seq(250,400,50),
 seq(500,1000,100),
 seq(1500,1500,0),
 seq(2500,2500,0),
 seq(5000,10000,2500))

Start loop to extract input information from each filename and read
output

for(i in 1:length(filenames)) {

 results_table$stack_height[i] <- as.numeric(substr(names_2[i],20,21))
 results_table$stack_exit_velocity[i] <-
as.numeric(substr(names_2[i],26,30))
 results_table$stack_diameter[i] <- as.numeric(substr(names_2[i],
35,38))
 results_table$stack_exit_temp[i] <-
as.numeric(substr(names_2[i],44,46))
 results_table$building_dist[i] <- as.numeric(substr(names_2[i],56,57))
 results_table$building_ht_frx[i] <-
as.numeric(substr(names_2[i],69,71))

 print(i)

 output <- readLines(paste0("directory with output files”/filenames[i]))

24-hour max extraction – Total 6 blocks for 24-hr output in model output

#block 1

twentyfourhr_output_blk1 <- output[888:923]
twentyfourhr_output_blk1 <- str_trim(twentyfourhr_output_blk1, side =
c("both"))
twentyfourhr_output_blk1_final<-str_split_fixed(twentyfourhr_output_blk1,"
\\s+",6)

twentyfourhr_output_blk1_final <-
as.data.frame(twentyfourhr_output_blk1_final)
column_names <- c("Direction", "10.00", "20.00", "30.00", "40.00",
"50.00")
names(twentyfourhr_output_blk1_final) <- column_names

twentyfourhr_output_blk1_final <- twentyfourhr_output_blk1_final %>%
mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%

pivot_longer(cols = c(2:6), names_to = "distance", values_to =
"twentyfour_hour") %>%
mutate(twentyfour_hour = str_replace(twentyfour_hour, "[a-z]", " "),
twentyfour_hour = str_replace(twentyfour_hour, " \\s*\\([^\\)]+\\)", ""))
%>%
pivot_wider(names_from = distance, values_from = twentyfour_hour) %>%
mutate_all(as.numeric)

#block 2
twentyfourhr_output_blk2 <- output[940:975]
twentyfourhr_output_blk2 <- str_trim(twentyfourhr_output_blk2, side =
c("both"))

twentyfourhr_output_blk2_final<-str_split_fixed(twentyfourhr_output_blk2,"
\\s+",6)
twentyfourhr_output_blk2_final <-
as.data.frame(twentyfourhr_output_blk2_final)

column_names <- c("Direction", "60.00", "70.00", "80.00", "90.00",
"100.00")
names(twentyfourhr_output_blk2_final) <- column_names

twentyfourhr_output_blk2_final <- twentyfourhr_output_blk2_final %>%
mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%
pivot_longer(cols = c(2:6), names_to = "distance", values_to =
"twentyfour_hour") %>%
mutate(twentyfour_hour = str_replace(twentyfour_hour, "[a-z]", " "),
twentyfour_hour = str_replace(twentyfour_hour, " \\s*\\([^\\)]+\\)", ""))
%>%
pivot_wider(names_from = distance, values_from = twentyfour_hour) %>%
mutate_all(as.numeric)

#block 3
twentyfourhr_output_blk3 <- output[992:1027]
twentyfourhr_output_blk3 <- str_trim(twentyfourhr_output_blk3, side =
c("both"))

twentyfourhr_output_blk3_final<-str_split_fixed(twentyfourhr_output_blk3,"
\\s+",6)

twentyfourhr_output_blk3_final <-
as.data.frame(twentyfourhr_output_blk3_final)

column_names <- c("Direction", "120.00", "140.00", "160.00", "180.00",
"200.00")
names(twentyfourhr_output_blk3_final) <- column_names

twentyfourhr_output_blk3_final <- twentyfourhr_output_blk3_final %>%
mutate(Direction = str_trim(Direction, side = "right"),

Direction = sub("\\|", "", Direction)) %>%
pivot_longer(cols = c(2:6), names_to = "distance", values_to =
"twentyfour_hour") %>%
mutate(twentyfour_hour = str_replace(twentyfour_hour, "[a-z]", " "),
twentyfour_hour = str_replace(twentyfour_hour, " \\s*\\([^\\)]+\\)", ""))
%>%
pivot_wider(names_from = distance, values_from = twentyfour_hour) %>%
mutate_all(as.numeric)

#block 4
twentyfourhr_output_blk4 <- output[1044:1079]
twentyfourhr_output_blk4 <- str_trim(twentyfourhr_output_blk4, side =
c(“both”))
twentyfourhr_output_blk4_final<-str_split_fixed(twentyfourhr_output_blk4,”
\\s+”,6)

twentyfourhr_output_blk4_final <-
as.data.frame(twentyfourhr_output_blk4_final)

column_names <- c(“Direction”, “250.00”, “300.00”, “350.00”, “400.00”,
“500.00”)
names(twentyfourhr_output_blk4_final) <- column_names

twentyfourhr_output_blk4_final <- twentyfourhr_output_blk4_final %>%
mutate(Direction = str_trim(Direction, side = “right”),
Direction = sub(“\\|”, “”, Direction)) %>%
pivot_longer(cols = c(2:6), names_to = “distance”, values_to =
“twentyfour_hour”) %>%
mutate(twentyfour_hour = str_replace(twentyfour_hour, “[a-z]”, “ “),
twentyfour_hour = str_replace(twentyfour_hour, “ \\s*\\([^\\)]+\\)”, “”))
%>%
pivot_wider(names_from = distance, values_from = twentyfour_hour) %>%
mutate_all(as.numeric)

#block 5
Twentyfourhr_output_blk5 <- output[1096:1131]
twentyfourhr_output_blk5 <- str_trim(twentyfourhr_output_blk5, side =
c("both"))

twentyfourhr_output_blk5_final<-str_split_fixed(twentyfourhr_output_blk5,"
\\s+",6)

twentyfourhr_output_blk5_final <-
as.data.frame(twentyfourhr_output_blk5_final)

column_names <- c("Direction", "600.00", "700.00", "800.00", "900.00",
"1000.00")
names(twentyfourhr_output_blk5_final) <- column_names

twentyfourhr_output_blk5_final <- twentyfourhr_output_blk5_final %>%
mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%

file://s
file://s

pivot_longer(cols = c(2:6), names_to = "distance", values_to =
"twentyfour_hour") %>%
mutate(twentyfour_hour = str_replace(twentyfour_hour, "[a-z]", " "),
twentyfour_hour = str_replace(twentyfour_hour, " \\s*\\([^\\)]+\\)", ""))
%>%
pivot_wider(names_from = distance, values_from = twentyfour_hour) %>%
mutate_all(as.numeric)

#block 6
twentyfourhr_output_blk6 <- output[1148:1183]
twentyfourhr_output_blk6 <- str_trim(twentyfourhr_output_blk6, side =
c("both"))

twentyfourhr_output_blk6_final<-str_split_fixed(twentyfourhr_output_blk6,"
\\s+",6)

twentyfourhr_output_blk6_final <-
as.data.frame(twentyfourhr_output_blk6_final)

column_names <- c("Direction", "1500.00", "2500.00", "5000.00", "7500.00",
"10000.00")
names(twentyfourhr_output_blk6_final) <- column_names

twentyfourhr_output_blk6_final <- twentyfourhr_output_blk6_final %>%
mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%
pivot_longer(cols = c(2:6), names_to = "distance", values_to =
"twentyfour_hour") %>%
mutate(twentyfour_hour = str_replace(twentyfour_hour, "[a-z]", " "),
twentyfour_hour = str_replace(twentyfour_hour, " \\s*\\([^\\)]+\\)", ""))
%>%
pivot_wider(names_from = distance, values_from = twentyfour_hour) %>%
mutate_all(as.numeric)

 #create data frame combining individual blocks and find max at each
distance

 twentyfourhour_df <- left_join(twentyfourhr_output_blk1_final,
twentyfourhr_output_blk2_final, by = "Direction") %>%
 left_join(twentyfourhr_output_blk3_final, by = "Direction") %>%
 left_join(twentyfourhr_output_blk4_final, by = "Direction") %>%
 left_join(twentyfourhr_output_blk5_final, by = "Direction") %>%
 left_join(twentyfourhr_output_blk6_final, by = "Direction") %>%
 pivot_longer(names_to = "distance", values_to = "twentyfour_hr_avg",
cols = c(2:31)) %>%
 group_by(distance) %>%
 summarize(twentyfour_hr_max = max(twentyfour_hr_avg)) %>%
 mutate(distance = as.numeric(distance)) %>%
 arrange(distance) %>%
 pivot_wider(names_from = distance, values_from = twentyfour_hr_max)
%>%
 mutate(Aver_Period = "24-hr max") %>%

 relocate(Aver_Period, .before = "10")

 df[i,] <- twentyfourhour_df

}
#create final data frame with the stack parameter information

final_df <- cbind(results_table, df)

#write file to csv
write.csv(final_df, "user defined directory to store output dispersion
table/dispersion_table_wor_24hr_urban.csv", row.names = FALSE)

A1.4: Processes annual average output – uses output files from AERMOD batch runs using
Worcester 2018 meteorology and urban dispersion.

library(dplyr)
library(stringr)
library(readr)
library(tidyr)
library(tidyverse)

setwd("/user defined working directory/")

read filenames of output files
filenames <- list.files(path = "/directory where output files are
stored/")

Replace variable expressions in filenames for constant vector length
names_2 <- gsub("dia_0.1", "dia_0.10",
gsub("dia_0.2", "dia_0.20",
gsub("dia_0.3", "dia_0.30",
gsub("dist_0", "dist_00",
gsub("hgt_3vel", "hgt_03vel",
gsub("hgt_6vel", "hgt_06vel",
gsub("hgt_9vel", "hgt_09vel",
gsub("vel_0.91", "vel_00.91",
gsub("vel_9.15", "vel_09.15",
gsub("vel_3.05", "vel_03.05",filenames))))))))))

Create dataframe for input parameter information
results_table <- tibble(stack_height = vector(mode = "numeric", length =
length(filenames)),
stack_exit_velocity = NA,
stack_diameter = NA,
stack_exit_temp = NA,
building_dist = NA,
building_ht_frx = NA)

Create dataframe for extracted output information

df <- data.frame(matrix(ncol = 31, nrow = length(filenames)))
#df[1:length(names)] <- NA
colnames(df) <- c("Aver_Period",
seq(10,100,10),
seq(120,200, 20),
seq(250,400,50),
seq(500,1000,100),
seq(1500,1500,0),
seq(2500,2500,0),
seq(5000,10000,2500))

Start loop to extract input information from each filename and read
output

for(i in 1:length(filenames)){

results_table$stack_height[i] <- as.numeric(substr(names_2[i],20,21))
results_table$stack_exit_velocity[i] <-
as.numeric(substr(names_2[i],26,30))
results_table$stack_diameter[i] <- as.numeric(substr(names_2[i], 35,38))
results_table$stack_exit_temp[i] <- as.numeric(substr(names_2[i],44,46))
results_table$building_dist[i] <- as.numeric(substr(names_2[i],56,57))
results_table$building_ht_frx[i] <- as.numeric(substr(names_2[i],69,71))

print(i)

output <- readLines(paste0("directory where output files are stored/",
filenames[i]))

Annual average extraction – Total 4 blocks for annual output in model
output

#block 1

annualoutput_blk1 <- output[368:403]
annualoutput_blk1 <- str_trim(annualoutput_blk1, side = c("both"))
annualoutput_blk1_final<-str_split_fixed(annualoutput_blk1," \\s+",10)

annualoutput_blk1_final <- as.data.frame(annualoutput_blk1_final)
column_names <- c("Direction", "10.00", "20.00", "30.00", "40.00",
"50.00", "60.00", "70.00", "80.00", "90.00")
names(annualoutput_blk1_final) <- column_names

annualoutput_blk1_final <- annualoutput_blk1_final %>%
mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%
mutate_all(as.numeric)

#block 2
annualoutput_blk2 <- output[420:455]
annualoutput_blk2 <- str_trim(annualoutput_blk2, side = c("both"))

annualoutput_blk2_final<-str_split_fixed(annualoutput_blk2," \\s+",10)
annualoutput_blk2_final <- as.data.frame(annualoutput_blk2_final)

column_names <- c("Direction", "100.00", "120.00", "140.00", "160.00",
"180.00", "200.00", "250.00", "300.00", "350.00")
names(annualoutput_blk2_final) <- column_names

annualoutput_blk2_final <- annualoutput_blk2_final %>%
mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%
mutate_all(as.numeric)

#block 3
annualoutput_blk3 <- output[472:507]
annualoutput_blk3 <- str_trim(annualoutput_blk3, side = c("both"))
annualoutput_blk3_final<-str_split_fixed(annualoutput_blk3," \\s+",10)

annualoutput_blk3_final <- as.data.frame(annualoutput_blk3_final)

column_names <- c("Direction", "400.00", "500.00", "600.00", "700.00",
"800.00", "900.00", "1000.00", "1500.00", "2500.00")
names(annualoutput_blk3_final) <- column_names

annualoutput_blk3_final <- annualoutput_blk3_final %>%
mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%
mutate_all(as.numeric)

#block 4
annualoutput_blk4 <- output[524:559]
annualoutput_blk4 <- str_trim(annualoutput_blk4, side = c("both"))

annualoutput_blk4_final<-str_split_fixed(annualoutput_blk4," \\s+",4)

annualoutput_blk4_final <- as.data.frame(annualoutput_blk4_final)
column_names <- c("Direction", "5000.00", "7500.00", "10000.00")
names(annualoutput_blk4_final) <- column_names

annualoutput_blk4_final <- annualoutput_blk4_final %>%
mutate(Direction = str_trim(Direction, side = "right"),
Direction = sub("\\|", "", Direction)) %>%
mutate_all(as.numeric)

#create data frame combining individual blocks and find maximum value at
each distance across all 36 directions

annual_df <- left_join(annualoutput_blk1_final, annualoutput_blk2_final,
by = "Direction") %>%

 left_join(annualoutput_blk3_final, by = "Direction") %>%
 left_join(annualoutput_blk4_final, by = "Direction") %>%
 pivot_longer(names_to = "distance", values_to = "annual_avg", cols =
c(2:31)) %>%
 group_by(distance) %>%
 summarize(annual_max = max(annual_avg)) %>%
 mutate(distance = as.numeric(distance)) %>%
 arrange(distance) %>%
 pivot_wider(names_from = distance, values_from = annual_max) %>%
 mutate(Aver_Period = "Annual") %>%
 relocate(Aver_Period, .before = "10")

 df[i,] <- annual_df

}

#create final data frame with the stack parameter information

final_df <- cbind(results_table, df)

#write file to csv
write.csv(final_df, "user defined directory to store output dispersion
table/dispersion_table_wor_annual_urban.csv", row.names = FALSE)

A1.5 MADEP Final Dispersion Tables Generation
Author: Caroline Watson and Ambrish Sharma, Abt Associates Inc,
Purpose: Script that reads in extended dispersion lookup tables, generates short format tables
with computed statistics, and generates final consolidated table(s) to be used in risk screening
ready tool
Year: 2023

library(dplyr)
library(stringr)
library(readr)
library(tidyr)

#read in data
setwd("/user defined working directory/")
dir <- "/directory with extended output dispersion tables/"

files <- list.files(path = paste0(dir, "/Output Tables/"), "*.csv")

dispersion_df <- fs::dir_ls(dir, regexp = "\\.csv$") %>%
map_dfr(read_csv, .id = "filename") %>%

mutate(file_name = gsub(".*Output Tables/", "", filename),
file_name = str_remove(file_name, ".csv"),
city = substr(file_name, 18, 20)) %>%
select(-filename, -file_name)

#create vectors for For loop
aver_period <- c("1-hr", "24-hr", "Annual average")
city_name <- c("bos", "wor")

#Create short format tables for all 6 met station-averaging period
combinations – each table has the max, min, quantile 25, quantile 50,
quantile 75, quantile 90, and average of dispersion factors calculated for
each stack-height, boundary distance combination

for(i in 1:length(city_name)){
for(j in 1:length(aver_period)){

df <- dispersion_df %>%
filter(city == city_name[i],
Aver_Period == aver_period[j])%>%
pivot_longer(cols = c(8:37), names_to = "distance", values_to = "amount")
%>%
group_by(stack_height, distance, Aver_Period) %>%
summarise(max = max(amount),
min = min(amount),
quant25 = quantile(amount, 0.25),
quant50 = quantile(amount, 0.5),
quant75 = quantile(amount, 0.75),
quant90 = quantile(amount, 0.9),
avg = mean(amount)) %>%
mutate(distance = as.numeric(distance)) %>%
arrange(stack_height, distance) %>%
select(-Aver_Period)

write.csv(df, paste0("/user defined directory for short format tables
output/stats_df_", city_name[i], "_", aver_period[j],".csv"), row.names =
F)

}
}

Produce consolidated tables using max dispersion values from short
format tables with each consolidated table to have info for all three
averaging periods, generate final dispersion lookup table(s) using average
of two stations data

for(i in 1:length(city_name)){

max_df <- dispersion_df %>%
filter(city == city_name[i]) %>%
pivot_longer(cols = c(8:37), names_to = "distance", values_to = "amount")
%>%
group_by(stack_height, distance, Aver_Period) %>%
summarise(max = max(amount)) %>%

mutate(distance = as.numeric(distance)) %>%
arrange(stack_height, distance) %>%
pivot_wider(names_from = "distance", values_from = "max") %>%
relocate(Aver_Period, .before = stack_height) %>%
arrange(factor(Aver_Period, levels = c("1-hr", "24-hr", "Annual
average")))

write.csv(max_df, paste0("/user defined directory for storing dispersion
table/output_files/max_df_", city_name[i],".csv"), row.names = F)

quant75_df <- dispersion_df %>%
filter(city == city_name[i]) %>%
pivot_longer(cols = c(8:37), names_to = "distance", values_to = "amount")
%>%
group_by(stack_height, distance, Aver_Period) %>%
summarise(quant75 = quantile(amount, 0.75)) %>%
mutate(distance = as.numeric(distance)) %>%
arrange(stack_height, distance) %>%
pivot_wider(names_from = "distance", values_from = "quant75") %>%
relocate(Aver_Period, .before = stack_height) %>%
arrange(factor(Aver_Period, levels = c("1-hr", "24-hr", "Annual
average")))

write.csv(quant75_df, paste0("/user defined directory for storing
dispersion table/output_files/quant75_df_", city_name[i],".csv"),
row.names = F)

quant90_df <- dispersion_df %>%
filter(city == city_name[i]) %>%
pivot_longer(cols = c(8:37), names_to = "distance", values_to = "amount")
%>%
group_by(stack_height, distance, Aver_Period) %>%
summarise(quant90 = quantile(amount, 0.9)) %>%
mutate(distance = as.numeric(distance)) %>%
arrange(stack_height, distance) %>%
pivot_wider(names_from = "distance", values_from = "quant90") %>%
relocate(Aver_Period, .before = stack_height) %>%
arrange(factor(Aver_Period, levels = c("1-hr", "24-hr", "Annual
average")))

write.csv(quant90_df, paste0("/user defined directory for storing
dispersion table/output_files/quant90_df_", city_name[i],".csv"),
row.names = F)

}

#Create Boston and Worcester consolidated max dispersion tables

bos_max_df <- read_csv("/user defined directory for storing dispersion
table/output_files/max_df_bos.csv")
wor_max_df <- read_csv("/user defined directory for storing dispersion
table/output_files/max_df_wor.csv")

#Calculate average of Boston and Worcester consolidated max dispersion
tables

average_df <- rbind(bos_max_df, wor_max_df) %>%
pivot_longer(cols = c(3:32), names_to = "distance", values_to = "amount")
%>%
group_by(Aver_Period, stack_height, distance) %>%
summarize(average = mean(amount)) %>%
mutate(distance = as.numeric(distance)) %>%
arrange(stack_height, distance) %>%
pivot_wider(names_from = "distance", values_from = "average") %>%
relocate(Aver_Period, .before = stack_height) %>%
arrange(factor(Aver_Period, levels = c("1-hr", "24-hr", "Annual
average")))

#Create final table to be used in screening tool
write.csv(average_df, "/user defined directory for storing dispersion
table/output_files/average_df.csv", row.names = F)

Create other consolidated tables- other options for risk screening tool-
#Boston 75th and 90th percentile tables, Worcester 75th and 90th
#percentile tables, Average bos-wor 75th and 90th percentile tables

bos_quant75_df <- read_csv("/user defined directory for storing dispersion
table/output_files/quant75_df_bos.csv")
wor_quant75_df <- read_csv("/user defined directory for storing dispersion
table/output_files/quant75_df_wor.csv")

average_quant75_df <- rbind(bos_quant75_df, wor_quant75_df) %>%
pivot_longer(cols = c(3:32), names_to = "distance", values_to = "amount")
%>%
group_by(Aver_Period, stack_height, distance) %>%
summarize(average_quant75 = mean(amount)) %>%
mutate(distance = as.numeric(distance)) %>%
arrange(stack_height, distance) %>%
pivot_wider(names_from = "distance", values_from = "average_quant75") %>%
relocate(Aver_Period, .before = stack_height) %>%
arrange(factor(Aver_Period, levels = c("1-hr", "24-hr", "Annual
average")))

write.csv(average_quant75_df, "/ user defined directory for storing
dispersion table/output_files/average_quant75_df.csv", row.names = F)

bos_quant90_df <- read_csv("/user defined directory for storing dispersion
table/output_files/quant90_df_bos.csv")
wor_quant90_df <- read_csv("/user defined directory for storing dispersion
table /output_files/quant90_df_wor.csv")

average_quant90_df <- rbind(bos_quant90_df, wor_quant90_df) %>%
pivot_longer(cols = c(3:32), names_to = "distance", values_to = "amount")
%>%
group_by(Aver_Period, stack_height, distance) %>%

summarize(average_quant90 = mean(amount)) %>%
mutate(distance = as.numeric(distance)) %>%
arrange(stack_height, distance) %>%
pivot_wider(names_from = "distance", values_from = "average_quant90") %>%
relocate(Aver_Period, .before = stack_height) %>%
arrange(factor(Aver_Period, levels = c("1-hr", "24-hr", "Annual
average")))

write.csv(average_quant90_df, "/user defined directory for storing
dispersion table /output_files/average_quant90_df.csv", row.names = F)

Appendix 2

Supplemental Figures and
Statistical Analysis Plots

Appendix 2 contains graphs comparing the final dispersion values used in the Massachusetts Air
Toxics Risk Screening Tool (MATRiST) with those used by MPCA in its air emissions Risk
Assessment Screening Spreadsheet (RASS) tool. Additionally, statistical plots showing results
from the analysis of the MassDEP AERMOD batch runs are included. It should be noted that the
underlying parameterization in the MPCA and MassDEP modeling contains differences.
Therefore, the plots included here are a comparison of final dispersion values used in the risk
screening tools. For comparison, the dispersion values from the final dispersion lookup tables
from MassDEP and MPCA are grouped by averaging period, stack height, and receptor distance.

Figure 1. Variation of 1-hour dispersion factors (rural dispersion), used by MassDEP (top) and
MPCA (below) in their air emissions risk screening tools, with select modeled stack heights and
receptor distances. Dispersion factors are log10 transformed to capture the wide range of values.

Figure 2. Fold change in 1-hr dispersion factors. Fold change is calculated by dividing
MassDEP dispersion factors (rural dispersion) by MPCA dispersion factors for each stack
height-receptor distance combination. Red areas indicate higher dispersion factor values for
MassDEP than MPCA and blue areas indicate lower dispersion factor values for MassDEP than
MPCA for a particular stack height-receptor distance combination.

Figure 3. Variation of 24-hour dispersion factors (rural dispersion), used by MassDEP (top) and
MPCA (below) in their air emissions risk screening tools, with select modeled stack heights and
receptor distances. Dispersion factors are log10 transformed to capture the wide range of values.

Figure 4. Fold change in 24-hr dispersion factors. Fold change is calculated by dividing
MassDEP dispersion factors (rural dispersion) by MPCA dispersion factors for each stack
height-receptor distance combination. Red areas indicate higher dispersion factor values for
MassDEP than MPCA and blue areas indicate lower dispersion factor values for MassDEP than
MPCA for a particular stack height-receptor distance combination.

Figure 5. Variation of annual dispersion factors (rural dispersion), used by MassDEP (top) and
MPCA (below) in their air emissions risk screening tools, with select modeled stack heights and
receptor distances. Dispersion factors are log2 transformed to capture the wide range of values. Areas
in dark blue depict 0 or near 0 values. Fold change was not plotted for annual dispersion factors due
to the large number of 0 values in the data.

Figure 6. Scatterplot showing the relationship between 1-hr dispersion factors used by MassDEP
(rural dispersion) and by MPCA in their respective air emissions risk screening tools. Root mean
square error (RMSE), correlation coefficient (R) and mean absolute error (MAE) are shown.

Figure 7. Scatterplot showing relationship between 24-hr dispersion factors used by MassDEP
(rural dispersion) and by MPCA in their respective air emissions risk screening tools. Root mean
square error (RMSE), correlation coefficient (R) and mean absolute error (MAE) are shown.

Figure 8. Scatterplot showing relationship between annual dispersion factors used by MassDEP
(rural dispersion) and by MPCA in their respective air emissions risk screening tools. Root mean
square error (RMSE), correlation coefficient (R) and mean absolute error (MAE) are shown.

Figure 9. Boxplots showing minimum, maximum, median, 25th and 75th percentile values of 24-hour
dispersion factors (rural dispersion) for a 3-meter stack height at select receptor distances. The dispersion
factors represent the MassDEP risk screening dispersion modeling output using Boston meteorology
(above) and Worcester meteorology (below). The averages of the maximum Boston and Worcester values
shown here at each distance are used in the MassDEP Air Toxics Risk Screening Tool rural dispersion
factor table.

Figure 10. Boxplots showing minimum, maximum, median, 25th and 75th percentile values of 24-hour
dispersion factors (rural dispersion) for a 15-meter stack height at select receptor distances. The
dispersion factors represent the MassDEP risk screening dispersion modeling output using Boston
meteorology (above) and Worcester meteorology (below). The averages of the maximum Boston and
Worcester values shown here at each distance are used in the MassDEP Air Toxics Risk Screening Tool
rural dispersion factor table.

Figure 11. Boxplots showing minimum, maximum, median, 25th and 75th percentile values of 24-hour
dispersion factors (rural dispersion) for a 30-meter stack height at select receptor distances. The
dispersion factors represent the MassDEP risk screening dispersion modeling output using Boston
meteorology (above) and Worcester meteorology (below). The averages of the maximum Boston and
Worcester values shown here at each distance are used in the MassDEP Air Toxics Risk Screening Tool
rural dispersion factor table.

Figure 12. Boxplots showing minimum, maximum, median, 25th and 75th percentile values of 24-hour
dispersion factors (rural dispersion) for a 45-meter stack height at select receptor distances. The
dispersion factors represent the MassDEP risk screening dispersion modeling output using Boston
meteorology (above) and Worcester meteorology (below). The averages of the maximum Boston and
Worcester values shown here at each distance are used in the MassDEP Air Toxics Risk Screening Tool
rural dispersion factor table.

Figure 13 Boxplots showing minimum, maximum, median, 25th and 75th percentile values of 24-hour
(rural dispersion) dispersion factors for a 60-meter stack height at selected receptor distances. The
dispersion factors represent the MassDEP risk screening dispersion modeling output using Boston
meteorology (above) and Worcester meteorology (below). The averages of the maximum Boston and
Worcester values shown here at each distance are used in the MassDEP Air Toxics Risk Screening Tool
rural dispersion factor table.

	TechMemo_Dispersion_Modeling_23_06_27_v2_Final.pdf
	Introduction
	Model Specifications and Input/Output Options
	AERMOD Batch Runs – Setup and Automation
	Model Output Analysis and Dispersion Factor Table Generation
	R Code and Additional Statistical Analysis

	Appendix_1_23_6_29_v2_Final.pdf
	Appendix_2_23_6_29_v2_Final.pdf

