Attachment A: Tisbury MVP Workshop Participants October 17, 2018

COUNT	FIRST NAME	LAST NAME	AFFILIATION
1	Brittany	Baron	Martha's Vineyard Hospital
2	Dawn	Bellante-Holand	Planning Board
3	Pam	Bennett	Human Resource
4	Malcolm	Boyd	Tisbury Board of Health
5	Suzanne	Cioffi	Martha's Vineyard Transit Authority
6	Christina	Colarusso	Tisbury Wastewater Planning Committee
7	John	Crocker	Harbormaster
8	Ann Marie	Cywinski	Red Cross
9	Cheryl	Doble	Planning Board
10	Greg	Endicott	Steamship Authority
11	Danielle	Ewart	Shellfish
12	John	Grande	Town Adminstration
13	Phil	Hale	Martha's Vineyard Shipyard
14	Patricia	Harris	Planning Board
15	Gerry	Hokanson	Tisbury Waterways
16	Tracey	Jones	Ambulatory Services
17	James	Lengyel	Martha's Vineyard Landbank Commission
18	Kirk	Metell	Facilities Manager
19	Elaine	Miller	Planning Board
20	Roger	Moffat	Tisbury Waterways and Harbor Management Committee
21	Greg	Monka	Island Elderly Housing
22	Adam	Moore	Sheriff's Meadow Foundation
23	Janet	Packer	Tisbury School Committee
24	Doug	Reece	Lagoon Pond Association
25	Ben	Robinson	Planning Board
26	Michael	Sawyer	Real Estate Development
27	John	Schilling	Fire Department
28	Christopher	Scott	Prime Marina Group
29	Joyce	Stiles-Tucker	Council On Aging
30	Bill	Straw	Energy Committee

COUNT	FIRST NAME	LAST NAME	AFFILIATION
31	Ray	Tattersall	Department of Public Works
32	Bernadette	Thomas	Martha's Vineyard Hospital
33	Maura	Valley	Board of Health
34	Jane	Varkonda	Conservation Agent
35	David	Vigneault	Dukes County Housing Authority
36	Phil	Wallis	Martha's Vineyard Museum

Attachment B: Workshop Handouts

- Workshop Agenda
- Tisbury MVP Workshop Overview Presentation Handout
- Climate Change Projections
- Selected Demographic Data
- Example Vulnerabilities and Strengths
- Key Recommendations from the 2015 Hazard Mitigation Plan

This page is intentionally left blank.

Attachment B: Workshop Handouts

Horsley Witten Group

Tisbury Municipal Vulnerability Preparedness (MVP) Workshop Agenda

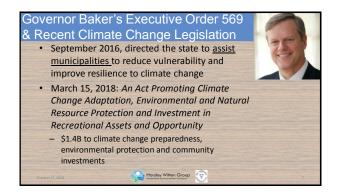
Wednesday, October 17, 2018

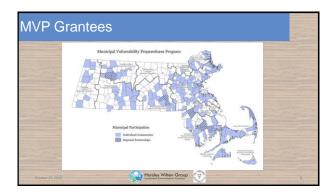
St. Augustine's Church \cdot 56 Franklin Street \cdot Vineyard Haven

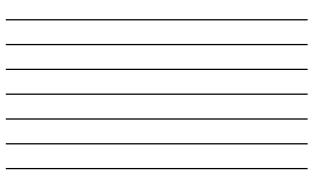
TIME	ACTIVITIES
8:30 AM	Arrival and Refreshments
9:00 AM	Welcoming Remarks
	Jay Grande, Town Administrator
9:10 AM	Introductions and Overview of the Workshop
	Will Keefer, Horsley Witten Group
9:20 AM	Overview Presentation on Science, Past Planning Efforts and Outcomes, and Data
	Resources
	Review recent climate related events.
	Present summary of anticipated climate changes.
	Present summary of recent/existing planning efforts
9:45 AM	Discussion #1: Large Group
	Identify top 4 Climate Change Hazards facing Tisbury
10:00 AM	15 Minute Break
10:15 AM	Discussion #2: Small Group
	Identify Features that are Vulnerabilities and Strengths
11:30 AM	2 Hour Midday Break
1:30 PM	Discussion #3: Small Group
	Identify Actions to address Vulnerabilities or protect Strengths.
	Discuss timeframe, responsibility, funding, as time allows.
	Prioritize top 5-6 Actions
3:00 PM	15 Minute Break
3:15 PM	Discussion #4: Small Groups Report Out
	Each group reports out top 5-6 Priority Actions
3:45 PM	Final Discussion: Large Group
	Select top 5-6 Priority Actions for Municipal Climate Resilience
	Discuss timeframe, responsibility, funding
4:15 PM	Wrap Up and Closing Remarks
	Jay Grande, Town Administrator
	Will Keefer, Horsley Witten Group
4:30 PM	Adjourn

Attachment B: Workshop Handouts

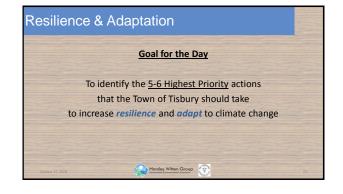
This page has been intentionally left blank

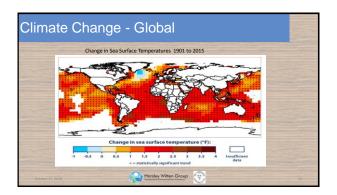

	e Planning Team
Name	Representing
Roger Moffat	Tisbury Waterways and Harbor Planning Committee
Cheryl Doble	Chair of Planning Board
Patricia Harris	Assistant to the Planning Board
Doug Reece	Tisbury Wastewater Planning Committee/ Lagoon Pond Association
hristina Colarusso	Tisbury Wastewater Planning Committee / DPW Advisory Board
Jay Grande	Town Administrator
John Schilling	Fire Chief
Gerard Hokanson	Tisbury Waterways Inc.
Alexandra Kral	Executive Assistant to the Town Administrator & Board of Selectmen
Pam Bennett	Administrative Assistant to the Town Administrator & Board of Selectmen
Will Keefer	Horsley Witten Group (HW)




Vulnerabil	ity, Resilience & Adaptation
Vulnerability:	the degree to which a system is susceptible to, or unable to cope with, adverse effects of climate change, including climate variability and extremes
Resilience:	the ability of a system and its component parts to anticipate, absorb, accommodate, or recover from the effects of a hazardous event in a timely and efficient manner, including through ensuring the preservation, restoration, or improvement of its essential basic structures and functions
Adaptation:	the process of adjustment to actual or expected climate and its effects, in order to moderate harm or exploit beneficial opportunities.

The Plan for Today – vibrant discussion


- Presentation to set the stage for our discussion
- Determine which climate change hazards to focus on
- Identify the most vulnerable features in Tisbury
- Identify the features that provide strength
- Develop actions what can the Town do to address vulnerabilities and protect/enhance strengths?
- · Prioritize the most important actions for Tisbury


Horsley Witten Group

SO, who's in the room today? Who....

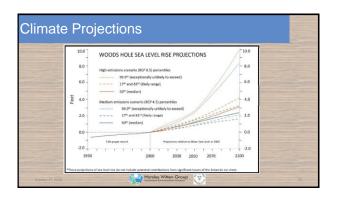
- Has had a conversation in the past week about weird weather?
- Has had to respond to a weather-related emergency on the job? At home?
- Has ever been diverted on their way to work/home by flooded roads?
- Is employed by the Town of Tisbury?
- · Volunteers your time on a Town board or committee?
- Participated in the development of the Dukes County Hazard Mitigation Plan?

Horsley Witten Group

Climat		imilar to Maryland Cel	Similar to North Carolina
Table 1: T Martha's \ Parameter	Mid-Century (2050s)	End of Century (2090s)	
Average Ar Maximum Minimum	53.0 - 55.8 61.0 - 63.9	53.6 - 59.7 61.6 - 67.7 45.6 - 51.4	
Annual Day	<u>44.9 - 47.6</u> 3 - 11 80 - 94	4-32	
32°F Annual Her (Base 65°F Annual Cor	4,481 - 5,116	3,703 - 5,003	
(Base 55°F Annual Grc (Base 50°F	753 - 1,075 3,046 - 3,622	848 - 1628 3,201 - 4,574	
October 17, 201	ley Witten Group)	

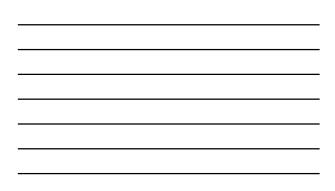
te Projections			
Table 1: TEMPERATURE PROJECTIONS Martha's Vineyard Basin Climate Parameter	Baseline (1971-2000)	Mid-Century (2050s)	End of Century (2090s)
Average Annual Temperature (°F)	50.6	53.0 - 55.8	53.6 - 59.7
Maximum Annual Temperature (°F)	58.8	61.0-63.9	616-67.7
Minimum Annual Temperature (°F)	42.3	44.9 - 47.6	45.6 - 51.4
Annual Days with Max Temp over 90°F	1	3-11	4-32
Annual Days with Min Temp below 32°F	105	80 - 94	42 - 82
Annual Heating Degree-Days (Base 65°F)	5772	4,481 - 5,116	3,703 - 5,003
Annual Cooling Degree-Days (Base 65°F)	486	753 - 1,075	848 - 1628
Annual Growing Degree-Days (Base 50°F)	2,553	3,046 - 3,622	3,201 - 4,574

te Projection	5	freezing d	lays freezing
Table 1: TEMPERATURE PROJECTIONS Martha's Vineyard Basin Climate Parameter	Baseline (1971-2000)	Mid-Century (2050s)	End of Century (2090s)
Average Annual Temperature (°F)	50.6	53.0-55.8	53.6 - 59.7
Maximum Annual Temperature (°F)	58.8	61.0 - 63.9	61.6 - 67.7
Minimum Annual Temperature (°F)	42.3	44.9 - 47.6	45.6 - 51.4
Annual Days with Max Temp over 90°F	1	3-11	4 - 32
Annual Days with Min Temp below 32°F	105	80 - 94	42 - 82
Annual Heating Degree-Days (Base 65°F)	5772	4,481-5,116	3,703 - 5,003
Annual Cooling Degree-Days (Base 65°F)	486	753 - 1,075	848 - 1628
Annual Growing Degree-Days (Base 50°F)	2,553	3,046 - 3,622	3,201 – 4,574


-		

ate Projections		Less energy required for indoor heating	More energy required for cooling
Table 1: TEMPERATURE PROJECTIONS			
Martha's Vineyard Basin Climate Parameter	Baseline (1971-2000)	Mid-Century (2050s)	End of Century (2090s)
Average Annual Temperature (°F)	50.6	53.0 - 55.8	53.6 - 59.7
Maximum Annual Temperature (°F)	58.8	61.0 - 63.9	61.6 - 67.7
Minimum Annual Temperature (°F)	42.3	44.9 - 47.6	45.6 - 51.4
Annual Days with Max Temp over 90°F	1	3-11	4 - 32
Annual Days with Min Temp below 32°F	105	80 - 94	42 - 82
Annual Heating Degree-Days (Base 65°F)	5772	4,481 - 5,116	3,703 - 5,003
Annual Cooling Degree-Days (Base 65°F)	486	753 - 1,075	848 - 1628
Annual Growing Degree-Days	2,553	3,046 - 3,622	3,201 - 4,574

ate Projectio	ns		rowing season almost ibles by end of century
Table 1: TEMPERATURE PROJECTIONS Martha's Vineyard Basin Climate	Baseline	Mid-Century	End of Century
Parameter	(1971-2000)	(2050s)	(2090s)
Average Annual Temperature (°F)	50.6	53.0 - 55.8	53.6 - 59.7
Maximum Annual Temperature (°F)	58.8	61.0 - 63.9	61.6 - 67.7
Minimum Annual Temperature (°F)	42.3	44.9 - 47.6	45.6 - 51.4
Annual Days with Max Temp over 90°F	1	3-11	4 - 32
Annual Days with Min Temp below 32°F	105	80 - 94	42 - 82
Annual Heating Degree-Days (Base 65°F)	5772	4,481 - 5,116	3,703 - 5,003
Annual Cooling Degree-Days (Base 65°F)	486	753 - 1,075	848 - 1628
Annual Growing Degree-Days (Base 50°F)	2,553	3,046 - 3,622	3,201 - 4,574



Climate Projections		er # of significant rain nts and longer dry periods	Largest increase expected in wi	
en 2 ¹¹⁷ an 2 ¹¹⁷ an 2 ¹¹⁷ an				/
Martha's Vineyard Basin Climate Parameter	Baseline (1971-2000)	Mid-Century (2050s)	End of Century (2090s)	/
Total Precipitation (inches):				1
Annual	46.0	45.0-49.8	45.3 - 50.9	1
Winter	11.9	11.5 - 13.5	11.7 - 14.7	
Spring	12.1	11.6-13.9	11.9-14.3	
Summer	10.4	9.3-11.9	8.5 - 12.0	and the second second
Fall	11 7	10.5 - 12.6	9.8-12.9	Contraction of the local division of the loc
Annual Days with Precipitation over 1 inch	7	8-11	8-11	
Annual Days with Precipitation Over 2 inches	1	1 - 2	1 - 2	
Annual Days with Precipitation Over 4 inches	<1	<1	<1	
Annual Consecutive Dry Days	18	18-20	17 - 22	
October 17, 2018	rsley Witten Group	0		22

Demographics		Significantly lower than statewide	Significantly higher than statewide	
Demographic Parameter	1	Result	/	
Population	1	3,949 people	/	
Age		0-19 = 20%, 20-34 = 25%, 35-64 = 41%, 65+ = 14%	/	
Income		<\$40K = 42%, \$40-60K = 18%, \$60K+ = 40%		
% Below Poverty Line		10%		
Race		White = 87%, Black = 7%, Asian = 1%, Other = 5%		
Ethnicity		Hispanic = 0%, Not Hispanic = 100%		
Percent of Population over 65 Living Alone	1	4.8		
Environmental Justice		17.6%		-
Heart Attack Hospitalizations	1	48.8(age-adjusted rate per 10,000 people)	Similar to	
Asthma Emergency Department Visits		128.8 (age-adjusted rate per 10,000 people)	statewide	5
Pediatric Asthma Prevalence		12.9% of all children enrolled in grades K-8	and the second second	
Heat Stress Emergency Department Visits		0.0 (age-adjusted rate per 10,000 people)		
October 17, 2018		Horsley Witten Group		24

_			

lealth Im	pacts of Climate Change
Extreme Heat	Rising temperatures will lead to an increase in heat-related deaths and illnesses
Dutdoor Air Quality	Rising temperatures and wildfires and decreasing precipitation will lead to increases in ozone and particulate matter, elevating the risks of cardiovascular and respiratory illnesses and death.
C	Increased coastal and inland flooding exposes populations to a range of negative health impacts before, during, and after events
Vector-Borne Infection (Lyme Disease)	Ticks will show earlier seasonal activity and a generally northward range expansion, increasing risk of human exposure to Lyme and disease-causing bacteria.
Water-Related Infection (Vitrio valinitious)	Increases in water temperatures will alter timing and location of Vibrio vulnificus growth, increasing exposure and risk of water-borne illness.
Food-Related Infection (Satronerila)	Rising temperatures increase Salmonella prevalence in food, longer seasons and warming waters increase risk of exposure and infection.
Mental Health and Well-Being	Changes in exposure to climate- or weather-related disasters cause or exacerbate stress and mental health consequences, with greater risk for certain populations.

Hazards	Exacerbated I	bv I	Climate	Change	ļ.
Tiazarus		U y	Unnate	Change	-

Intense Rain/Flooding	Heat Waves/Extreme Heat
Wind Events	Fire
Hurricanes or Nor'Easters	Drought
Winter Storms (Snow/Wind/Cold) Extreme Cold	Coastal Flooding/Storm Surge Sea Level Rise
	y Witten Group

xample	pilities to the Hazards – a few	
and the second se	5	
JFRASTRUCTURE	Main road floods during storms, blocking emergency response.	
RUCIO	Power outages during heat waves lead to health concerns.	
CRAST.	Wildfire and high winds resulting in supply chain interruptions.	
	Sewer pump stations become submerged and inoperable.	
	Senior housing without backup generators during heat waves.	
OCIETAL	Residents without access to transportation during hurricane evacuation.	
,00	Household contamination and sewage mobilization during flooding.	
	Limited areas of refuge in elementary schools during severe weather.	
INVIRONMAENTAL		
NIMEN	Beachfront development reducing protection provided by dunes.	
WIROI	Proliferation of subdivisions in wildfire and flood prone areas.	
in .	Lack of urban tree canopy increasing heat island effect.	
	Horsley Witten Group	
	Sandandar Environmental Saldisma	
