

Performance Mechanisms

Expert Presentation Series | November 11, 2025

This expert level presentation series session will provide the Massachusetts Electric Rate Task Force an opportunity to learn from experts and/or other jurisdictions on the above topic.

Note: The contents of this presentation do not necessarily reflect the views or positions of the Massachusetts Department of Energy Resources.

Contact Information

Austin Dawson
Deputy Director of Energy Supply and Rates
austin.dawson@mass.gov
617.875.6856

Massachusetts Electric Rate Task Force Goals

The Rate Task Force brings together diverse stakeholders to reimagine how electric rates and the regulatory framework can drive an affordable, equitable, and decarbonized energy future.

Through targeted conversations, expert presentations, and thoughtful exploration of complex issues, the Task Force aims to deepen understanding, surface critical questions, clarify challenges, and build the foundation for durable regulatory reform and action.

The Rate Task Force will use the Massachusetts Interagency Rates Working Group's Long-Term Ratemaking Study and Recommendations as a starting point for discussion and knowledge building on rate designs, ratemaking, and regulatory mechanisms.

Facilitate open, inclusive dialogue

Engage in **open, inclusive dialogue** about complex ratemaking and regulatory issues outside of a regulatory proceeding

Frame critical questions and opportunities

Empower stakeholders to identify **critical questions and opportunities** for the advancement of rate design and ratemaking reform

Ground Rules & Engagement

This work is complex – and your insight matters; let's focus on learning, listening, and shaping together!

Participation, Engagement, & Respect

- Everyone's perspective is valuable this space works best when all voices are heard
- Respect differences in background, experience, and priorities
- Bring curiosity ask questions and offer potential answers
- Focus on understanding others' goals and values, not just their positions
- <u>It's okay not to have a solution help us shape the right questions</u>

Collaboration, Not Consensus

- This body is deliberative, it is not a decision-making space
- We don't need to agree on everything, but we should work toward shared understanding
- Where we disagree, help clarify what the tension is and why it matters

Transparency & Trust

- We'll be clear about how input is used
- Share what you can; identify when you're speaking on behalf of your organization or personally
- Materials, summaries, and key findings will be shared openly to support accountability

Focus & Productivity

- Stay on topic and honor the scope of the Task Force
- Raise related concerns, but help us stay anchored in the rate design and regulatory issues at hand
- Use the structures provided (i.e., expert sessions, targeted conversations, office hours) to deepen discussion
- Avoid discussion about open and ongoing proceedings at the DPU

Expert Presentations

I. Performance Mechanisms in Massachusetts

Massachusetts Electric Distribution Companies

Present on the current use of performance Mechanisms, including PBR metrics, service quality standards, and timeline enforcement mechanisms

II. Performance Mechanisms in Other Jurisdictions

Synapse Energy Economics, Melissa Whited

Present on performance mechanisms utilized in other jurisdictions (e.g., load factor PIM, DER interconnection PIM, shared savings mechanisms)

III. PIMs: From Design to Evaluation

RMI, Carina Rosenbach

Present on the PIM lifecycle and design approaches

IV. Performance Mechanisms on Load Management

Massachusetts Department of Energy Resources, Charles Dawson

Present on forthcoming analysis and policy recommendations of DOER's <u>Peak Potential Study</u>, exploring load management strategies for an affordable net-zero grid.

Reminder

Expert presentation sessions are not for substantive deliberation amongst participants. Questions for each speaker will be taken as time allows.

EVERSURCE

PBR and Service Quality Metrics

What is PBR?

Performance-Based Regulation (PBR)

PBR is a regulatory approach that seeks to align utility incentives with the interests of customers and society. It does this by compensating utilities based on their performance against target outcomes rather than just costs—and by removing perverse incentives. It is a collection of tools, not a single thing.

- PBR aligns revenue recovery with performance outcomes
 - The PBR mechanism provides gradual revenue recovery increases without the need for frequent rate cases
 - PBR framework motivates and enables high service quality levels and strong cost control
 - Performance Incentive Mechanisms (PIMs) provide incentives/penalties based on performance metrics.
 PIMs are expected to be implemented in the third generation PBR plan.
 - Benchmarking and other external productivity studies are used to set and measure performance metrics

Reporting Metrics

 Standard of unit of measurement used to track EDC performance against identified outcomes

Scorecards

Reported Metric + benchmark/target

- Characterized by a metric or a set of metrics with a point of comparison – baseline or peer performance to provide clarity to understand EDC performance and the need for course correction
- Scorecards can support the outcomes of Reliable and Resilient Electric Service, Business Operations and Investment Efficiency, Quality Customer Service, and GHG Reduction

Performance Incentive Mechanism (PIMs)

Reported Metric + benchmark/target + financial incentive/penalty

 Adds a financial incentive and/or penalty to the EDC's achievement of a specific benchmark or target as measure by a reported metric

Different Types of Performance Metrics

to achieve the identified PIM objective; and (3) and include

appropriate marginal incentives.

Reporting	Financial consequences		
	Financial incentives schemes		
Tracking only Scorecard Reward only	Reward and penalty	Penalty only	
Design Principle	Metrics	Scorecards	PIMS
Reflect desired outcomes	Х	Х	Х
Be quantifiable through reasonably available data with a clearly defined calculation methodology	Х	Х	Х
Be easily verified	Х	Х	Х
Provide certainty in the short-term while adapting as-needed in the public interest	Х	Х	Х
Have a clear benchmark or target for comparison		Х	Х
Be comparable across peer EDCs, as applicable		Х	Х
Be inclusive of indirect and/or direct EDC control			Χ
ncentivize exemplary performance			Х
Include a clearly stated PIM objective			Х
Include incentive structures that are: (1) cost effective; (2) sized			

- Not all performance metrics need to evolve to the point of reward or penalty some are best kept as static measures!
- Balance on metrics is essential so that financial rewards or penalties do not create unintended consequences!

Χ

Eversource MA Performance Based Ratemaking (PBR)

	NSTAR Electric	NSTAR Gas	EGMA
PBR Metrics	22 Metrics 10 Metric Categories	19 Metrics 3 Metric Categories	11 Metrics 3 Metric Categories
Filing Date (Annual)	Sept 15 th	June 15 th	Provided as appendix to ASQR March 1st (Tracking Only)
Terms	Second Generation Term: 2023- 2027 Option to extend 5 years	1 st 5-year term (2020-2024) 2 nd 5-year term (2025-2029)	Tracking only through 2026

Massachusetts Service Quality Plan

Purpose of Service Quality:

 To ensure that companies provide adequate and reliable services to Massachusetts customers in accordance with the Service Quality Guidelines issued by the Department of Public Utilities (DPU).

Company Requirements:

- Meet Performance Benchmarks: Companies must meet the benchmarks establish in Service Quality Guidelines or face potential penalties.
- Report Non-Penalty Data: Submit data as defined in the guidelines.
- Reporting: Report service quality performance on an annual basis.

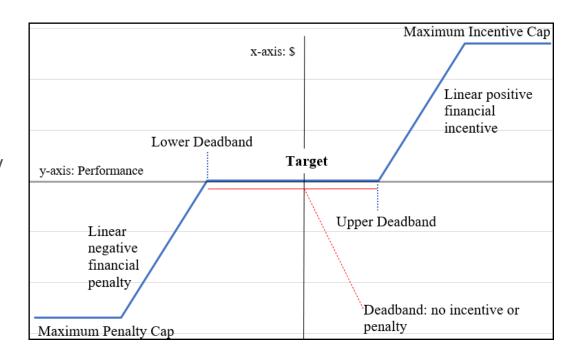
DPU 24-53 – Ongoing Investigation:

- Objective: The DPU is currently investigating Service Quality Standards for electric and gas companies.
- Purpose: To assess and determine whether changes are needed to improve service quality across the industry.

Massachusetts Service Quality Penalty and Non-Penalty Reporting

Penalty/Non-Penalty	NSTAR Electric	NSTAR Gas	EGMA
Penalty Metrics	SAIDI SAIFI Consumer Complaints Consumer Credit Cases Service Appointments Kept CKAIDI CKAIFI	Odor Calls Consumer Complaints Consumer Credit Cases Service Appointments Kept	Odor Calls Consumer Complaints Consumer Credit Cases Service Appointments Kept
Non-Penalty	Customer Surveys	Customer Surveys	Customer Surveys
Non-Penalty	Lost Work Time Accident Rate and Restricted Workday Rate	Lost Work Time Accident Rate and Restricted Workday Rate	Lost Work Time Accident Rate and Restricted Workday Rate
Non-Penalty	Line Losses	Unaccounted For Gas	Unaccounted For Gas
Non-Penalty	Service Appts. Exclusions due to Emergencies	Service Appts. Exclusions due to Emergencies	Service Appts. Exclusions due to Emergencies
Non-Penalty	Excludable Major Event Events	Grade 1,2 and 3 Natural Gas Leaks	Grade 1,2 and 3 Natural Gas Leaks
Non-Penalty	Poor Performing Circuits and Poor Circuit Remediation	Customer Service Guarantees	Customer Service Guarantees
Non-Penalty	IEEE 1366-2003 Electric Reliability	Service Quality Benchmark	Service Quality Benchmark
Non-Penalty	MAIFI, CEMI,CELID	PBR Performance Benchmark	PBR Measures for Target Setting
Non-Penalty	Emergency Response Times	Emergency Response Times	Emergency Response Times
Non-Penalty	Down Wire Response		Leak Rate Performance
Non-Penalty	CAIDI		
Non-Penalty	FERC Form 1 Pages 300 and 301 (Revenues)		
Non-Penalty	T&D Revenue (440 Accounts)		
Non-Penalty	Feeder and Circuit Reliability		
Non-Penalty	Customer Service Guarantee Payment Report		
Non-Penalty	Performance Benchmarks		

Performance Incentive Mechanisms

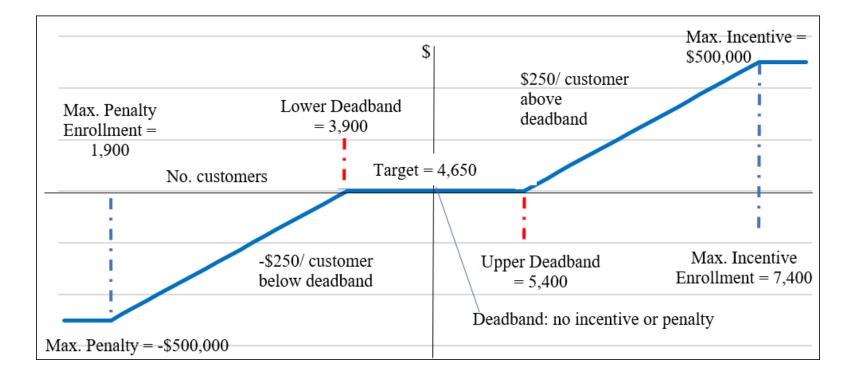

Performance Incentive Mechanisms (PIMs) can support utility innovation to create value for customers and facilitate achievement of public policy goals.

Mass Electric's current rate plan contains two symmetrical performance incentives.

- Low Income Discount Enrollment
- DER Interconnection

Current PIMs design includes

- Performance Target informed by historical performance
- Dead band around target where incentive/penalty does not apply to mitigate variability in performance
- Symmetrical Incentive/Penalty based on performance
- Maximum Incentive or Penalty Cap

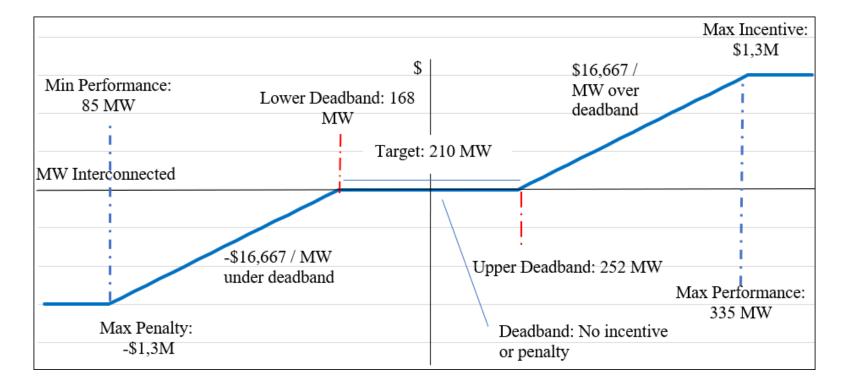


Low-Income Discount PIM

Objective: Advance the Department's goal to lower energy burden to our low-income customers.

Description: Increased outreach and targeted enrollment of Low-Income customers in the Company's tiered bill discount program (R-2).

Annual Target: 4,650 additional customers enrolled in R-2 rate each year.


National Grid

DER Interconnection PIM

Objective: Accelerate Commonwealth's decarbonization progress through increased deployment of DERs.

Description: Support and provide increasing opportunity for our customers to install solar PV and energy storage projects interconnected to the distribution system to support Company's and Commonwealth's energy transition goals.

Annual Target: 210 MW of incremental DER capacity each year.

National Grid

MECO Rate Plan Metrics

Category	Metric	Description	
	Customer Satisfaction Survey	J.D. Power Residential Customer Satisfaction annual raking for 1) Power Quality and Reliability 2) Price 3) Billing and Payment 4) Communications, 5) Corporate Citizenship and 6) Customer care.	
Customer		Results of 1) Non-contact survey customer satisfaction, 2) contact survey.	
Engagement	Outage Communication	Customer satisfaction survey results from customers who had recent outages at their home.	
	First Call Resolution	Percentage of customer inquires resolved on the initial call made to the Company.	
	Digital Customer Engagement	Number of digital transactions completed by customers.	
Company's GHG Emissions Annual GHG emissions of Company's electric operations includir property, and fleet.		Annual GHG emissions of Company's electric operations including operations, property, and fleet.	
Fleet Electrification Number of ele		Number of electric vehicles in Company's fleet.	
Clean Energy Adoption	Customer enrolled in DER programs	Percentage of customers participating in Company's DER programs (net metering, Host/Satellites, SMART program); includes breakdown by Low incompand Environmental Justice populations.	
Affordability	Low Income Service Terminations	Low-income customer service terminations by month for non-payment, and accounts with past due balances	

Massachusetts Electric Service Quality Penalty and Non-Penalty Measures

Penalty/Non-Penalty	MECO/Nantucket Electric	
Penalty Metrics	SAIDI; SAIFI ; CKAIDI; CKAIFI	
	Consumer Complaints(non-credit related)	
	Consumer Complaints(credit related) Service Appointments Kept	
Non-Penalty	Customer Satisfaction Surveys	
Non-Penalty	Lost Work Time Accident Rate and Restricted Workday Rate	
Non-Penalty	Electric Line Losses	
Non-Penalty	Service Appts. Exclusions due to Emergencies	
Non-Penalty	Excludable Major Event Events	
Non-Penalty	Poor Performing Circuits and Poor Circuit Remediation	
Non-Penalty	IEEE 1366-2003 Electric Reliability	
Non-Penalty	MAIFI, CEMI,CELID	
Non-Penalty	CAIDI	
Non-Penalty	Down Wire Response Summary & Detail	
Non-Penalty	Feeder and Circuit Information	
Non-Penalty	Replacement of Potted Porcelain Cutouts and Overloaded Transformers	
Non-Penalty	Customer Service Guarantees Paid for 1) missed appointment 2) failure to notify of planned outage	
Non-Penalty	Unplanned Significant and Insignificant Outages	

National Grid 6

nationalgrid

Fitchburg Gas and Electric Light Company d/b/a Unitil

Massachusetts

Performance Based Ratemaking and Service Quality Metrics
November 10, 2025

Massachusetts Performance Based Ratemaking Metrics

	FG&E Electric	FG&E Gas
PBR Metrics	14 Metrics 3 Metric Categories	15 Metrics 4 Metric Categories
Filing Date (Annual)	February 28 th	February 28 th
Terms	July 1, 2024 through June 30, 2029	July 1, 2024 through June 30, 2029

Massachusetts Service Quality Penalty/Non-Penalty Reporting

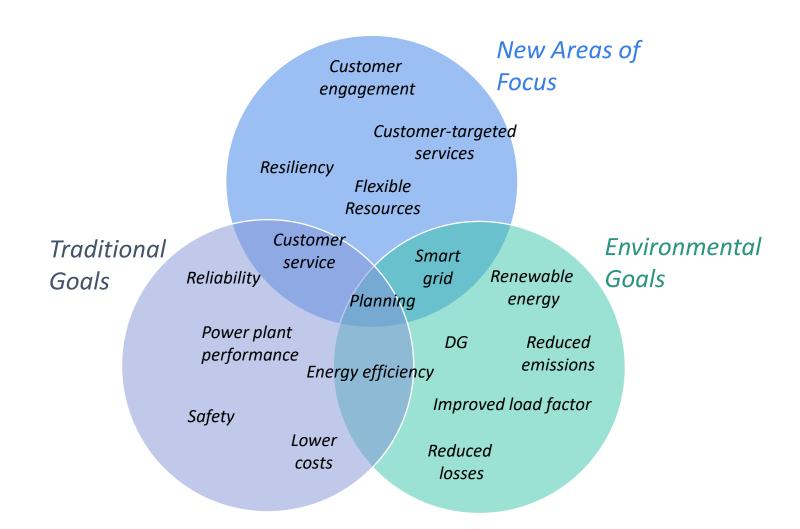
Penalty/Non-	FG&E Electric	FG&E Gas
Penalty		
Penalty Metrics	SAIDI – System Average Interruption Duration	Class I/Class II Odor Call Response
	Index	Consumer Complaints
	SAIFI – System Average Interruption	Consumer Credit Cases
	Frequency Index	Service Appointments Met
	Consumer Complaints	
	Consumer Credit Cases	
	Service Appointments Met	
	CKAIDI* - Circuit Average Interruption Duration	
	Index	
	CKAIFI* - Circuit Average Interruption	
	Frequency Index	
Non-Penalty	Electric Line Loss	Unaccounted For Gas
-	Emergency Response Times	Emergency Response Times
	Downed Wire Response	Lost Work Time Accident Rate
	Lost Work Time Accident Rate	Restricted Work Day Rate
	Restricted Work Day Rate	Customer Surveys
	Customer Surveys	Customer Service Guarantees
	Customer Service Guarantees	Odor Call Response Time Exceeded
	CAIDI – Customer Average Interruption	Odor Call response Time Overrides
	Duration Index	Leak Report
	Excludable Major Events	
	Poor Circuit Remediation	
Capability	CEMI - Customers Experiencing Multiple	
Reporting	Interruptions	
	CELID - Customers Experiencing Long	
	Interruption Duration	
	MAIFI - Momentary Average Interruption	
	Frequency Index	

^{*} Applies only if electric company is not subject to SAIDI & SAIFI penalty in a given year.

Performance Incentive Mechanisms from Other Jurisdictions

Presentation to the Massachusetts Electric Rate Task Force

November 10, 2025


Melissa Whited

Vice President, Synapse Energy Economics, Inc.

Synapse Energy Economics

- Founded in 1996 by Bruce Biewald and Jean Ann Ramey
- Leader for public interest and government clients in providing rigorous analysis of the electric power and natural gas sectors
- Staff of 40+ includes experts in energy, economic, and environmental topics

Potential PIM goals

Four Discrete Steps

PIMs can be implemented incrementally, allowing for flexibility

Performance Incentive Mechanisms

Performance Metrics

- 1. Identify
 dimensions
 of utility
 performance
 to track
- 2. Develop metrics for tracking and reporting performance
- **3.** Set a performance target
- 4. Add a financial reward or penalty

Synapse Energy Economics

Managed Charging PIM

Con Edison Residential Managed Charging

increase EV enrollment in the residential managed charging program (Smart Charge New York);

encourage program participants to avoid EV charging during system peak hours; and

reduce program participants' EV charging demand coincident with peak demand hours.

Managed Charging, continued

As of August 2024, ConEdison:

- Increased enrollment in the program by 20,287 EVs
 - Leveraged new tools to identify EV customers by disaggregating load
 - Developed in-app promotions for Tesla drivers
 - Translated materials into more languages for rideshare drivers
 - Expanded eligibility of EVs
- Reduced participant peak charging by 11% per vehicle compared to prior year (avoiding 2.08 kW per vehicle, up over 1.75 kW per vehicle)
 - Avoided peak charging is calculated as the difference between the maximum potential demand and the actual coincident demand of EVs in the program, and then is divided by the total number of light-duty vehicles in the Company's service territory

Equity in Transportation Electrification

Public Service Colorado (2021-2023)

EV rebates provided to Low- and Moderate-Income customers

Charging ports supporting income-qualified customers and targeted communities

AMI Utilization

Hawaii 2021-2023 (discontinued)

% of customers authorizing data sharing through Green Button Connect My Data

% of customers signing up for energy usage alerts

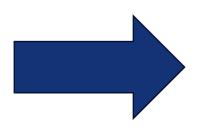
% of customers newly enrolling in TOU or DER programs

AMI Utilization

Hawaii 2021-2023 (discontinued)

% of customers authorizing data sharing through Green Button Connect My Data

% of customers signing up for energy usage alerts



% of customers newly enrolling in TOU or DER programs

AMI Utilization, Continued

Targets were not achieved

- Performance was defined as % of total customers, not just customers with AMI
 - Delays in AMI rollout made targets difficult to achieve
- TOU enrollment likely moot
 - Expectation is that customers will soon be defaulted onto TOU rates

Subsequent Developments:

- Duke Energy Progress has a PIM for enrollment in timevarying rates = \$5/customer
- Liberty NH proposed a PIM for TOU enrollment, but targets were too low and was rejected

Peak Load Reduction

Commonwealth Edison

Increase in event-based demand response capacity

- Central AC Cycling (direct load control)
- Peak Time Savings (Calculated based on test events or actual load management events)

Dynamic pricing load reductions

- Hourly pricing

(Calculated as weather-normalized peak reductions based on AMI data)

Contact

Melissa Whited Synapse Energy Economics

617-661-3248 mwhited@synapse-energy.com www.synapse-energy.com

Break: 5-10 minutes (if time allows)

Why PIMs? Addressing perverse incentives associated with cost-of-service regulation

GOLD PLATING refers to the utility's incentive to overinvest in capital projects to earn a higher return, which can **undermine affordability**.

CAPEX BIAS creates a utility preference for capital-intensive projects (e.g., large power plants) over solutions funded through operating expenses, which may be less expensive.

The **THROUGHPUT INCENTIVE** motivates the utility to increase its "throughput," or sales, to increase its revenue. This can come at **the expense of cheaper, grid-balancing resources like energy efficiency (EE) and demand flexibility.**

RESISTANCE TO THIRD-PARTY AND CUSTOMER-OWNED SOLUTIONS, driven by the utility's preference for asset ownership and its returns, can undermine cost-effectiveness, distributed generation and storage, and equitable benefit distribution.

PIMs can help realign utility incentives with desired outcomes

What are they?

A PIM has three components: a metric, a target, and a financial incentive.

PIMs can be structured in many ways. For example:

- Failure to achieve a target triggers a penalty.
- An incremental incentive is applied over a range.
- The utility earns a share of estimated savings.
 This is known as a shared-savings mechanism.

PIMs should be designed to deliver **net benefits**, and rewards should not be larger than needed.

Benefits of PIMs

- Can be used to motivate improved performance in specific areas
- Can reduce information asymmetry

Drawbacks of PIMs

- Getting PIMs "right" can be challenging, especially for emergent outcomes
- PIMs may interact with each other, and with other existing incentives
- > PIM design can be contentious

Examine policy goals and regulatory incentives

- Does the current regulatory framework align with the state's policy goals?
- Does the framework create any incentives that work counter to one or more policy goals?

Evaluate PIM effectiveness

Design the PIM

Implement & monitor utility performance

Examine policy goals and regulatory incentives

Evaluate PIM effectiveness

- What metric would best capture an improvement against the policy goal or regulatory outcome?
- What is the desired level of performance against that metric? What data can be used to determine the target?
- what incentive
 structure will provide
 appropriate incentive
 without
 overcompensating
 the utility?

Implement & monitor utility performance

Examine policy goals and regulatory incentives

Evaluate PIM effectiveness

Design the PIM

Implement & monitor utility performance

- How is the *utility performing* under the PIM? Are adjustments needed?
- Is the utility *measuring performance* appropriately, and submitting sufficient information to understand how they are changing in response to the PIM?

Examine policy goals and regulatory incentives

- Was the PIM effective at motivating improved
- Do the PIM's **benefits** outweigh the costs?

performance?

Does the PIM need to **continue**, be revised, or should it be **sunset**?

Evaluate PIM effectiveness

Design the PIM

monitor utility performance

Implement &

Regulators can adopt design principles to guide the development of new PIMs

Connecticut Performance Mechanism Design Principles

Design Principle	Metrics	Scorecards	PIMs
Reflect desired outcomes	X	X	Χ
Be quantifiable through reasonably			
available data with a clearly defined	X	X	X
calculation methodology			
Be easily verified	X	X	X
Provide certainty in the short-term while	Х	x	Х
adapting as-needed in the public interest	^	^	^
Have a clear benchmark or target for		x	x
comparison		^	^
Be comparable across peer EDCs, as		x	x
applicable		^	
Be inclusive of indirect and/or direct EDC			x
control			^
Incentivize exemplary performance and			x
discourage substandard performance			
Include a clearly stated PIM objective			X
Include incentive structures that are: (1)			
cost effective; (2) sized to achieve the			x
identified PIM objective; and (3) and			^
include appropriate marginal incentives.			

Source: Connecticut Public Utilities Regulatory Authority, <u>Proposed Decision</u>, 21-05-15RE02, July 14, 2025

Rhode Island PIM Design Principles

- A performance incentive mechanism can be considered when the utility lacks an incentive (or has a disincentive) to better align utility performance with the public interest and there is evidence of underperformance or evidence that improved performance will deliver incremental benefits.
- Incentives should be designed to enable a comparison of the cost of achieving the target to the potential quantifiable and cash benefits.
- Incentives should be designed to maximize customers' share of total quantifiable, verifiable net benefits. Consideration will be given to the inherent risks and fairness of allocation of both cash and non-cash system, customer, and societal benefits.
- An incentive should offer the utility no more than necessary to align utility performance with the public interest.
- The utility should be offered the same incentive for the same benefit. Stated another way, no action should be rewarded more than an alternative action that produces the same benefit.

Source: Rhode Island Public Utilities Commission, <u>Public Utilities</u>
<u>Commission's Guidance on Principles for the Development and Review of Performance Incentive Mechanisms</u>, Docket No. 4943.

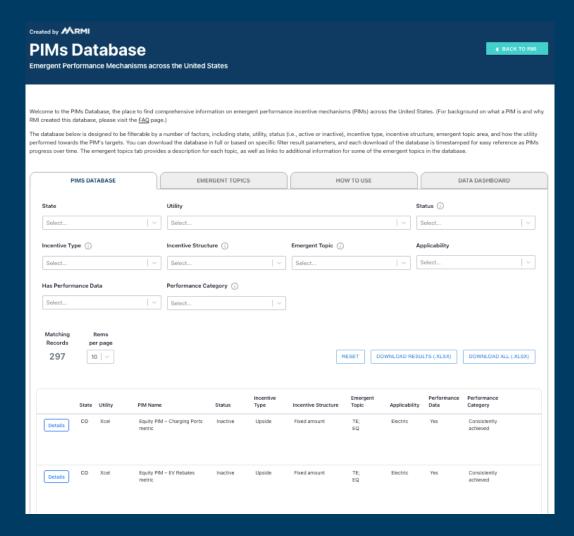
There's an opportunity to focus more intentionally on PIM evaluation

RMI research found that northeast states tend to focus more on upfront design, and less on retrospective evaluation. To level up PIM evaluation, PUCs can consider the following:

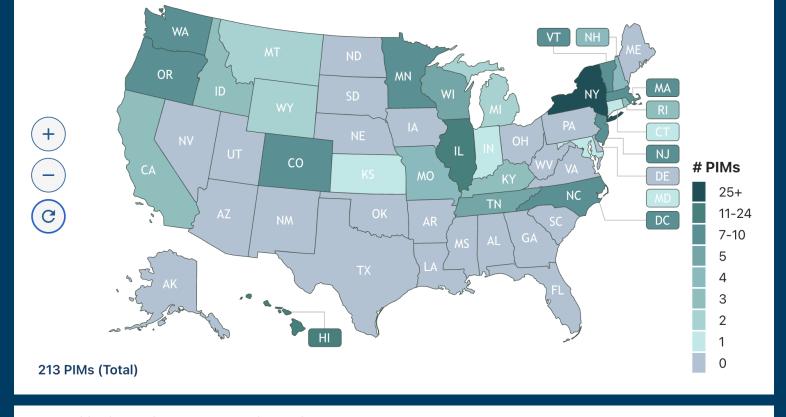
Evaluate PIMs on a recurring basis, and make the findings transparent

Evaluate all of a utility's PIMs together

Create opportunities for informal dialogue about PIM development and evaluation

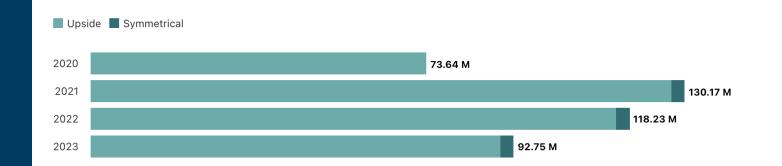

Use guidance for PIM design to inform PIM evaluation

RMI's PIMs Database


A resource to reference design and utility performance information on ~300 PIMs across the US

https://rmi.org/pimsdatabase/

Sign up for the quarterly Newsletter to receive updates and insights straight to your inbox!



Insights from the PIMs Database

Total utility incentives earned by incentive type

This chart shows the total annual dollar value of incentives earned for PIMs in the database for which utility performance and earnings data is publicly available. The earnings are broken apart by the incentive type associated with the PIMs for which a utility earned an incentive.

There are a range of innovative PIMs on emergent topics central to climate-forward, affordable resource deployment

DTE and Consumers Energy (MI) have demand response (DR) financial incentive mechanisms that reward the utilities for achieving peak demand reductions beyond the baseline targets set in their IRPs.

Rhode Island Energy (RI) has a system efficiency PIM that incentivizes the use of behind-the-meter DERs to increase peak demand capacity savings

NY utilities have Non-Wires Alternative (NWA) and Non-Pipeline Alternative (NPA) shareholder incentives that encourage deferral or avoidance of traditional infrastructure investments. Con Edison also has a PIM that incentivizes light-duty EV deployment.

Efficiency Vermont (VT) has a two-part peak demand savings PIM with differentiated targets for summer and winter peak savings

Thank you

Carina Rosenbach

Senior Associate **RMI** Carbon-Free Electricity

p (310) 435-4595

e crosenbach@rmi.org

Additional resources

NARUC PBR Working Group Webpage & Webinars:

- Webinar: Strategies for Developing Effective Performance Incentive <u>Mechanisms – Part 2</u>; Vermont's lessons learned with PIMs for energy efficiency programs, December 1, 2022
 - Speaker: Joan White, Vermont Public Utility Commission
- Webinar: Establishing Metrics, April 14, 2022
 - Speakers: Ryan Katofsky, Advanced Energy Economy; Rachel Gold, Rocky Mountain Institute; Doug Scott, Great Plains Institute

Reports:

- PIMs for Progress, RMI, 2018
- Rewarding What Matters in Energy Efficiency; Shifting Utility Performance to Focus on Climate, RMI, 2022

DOER Peak Potential Study

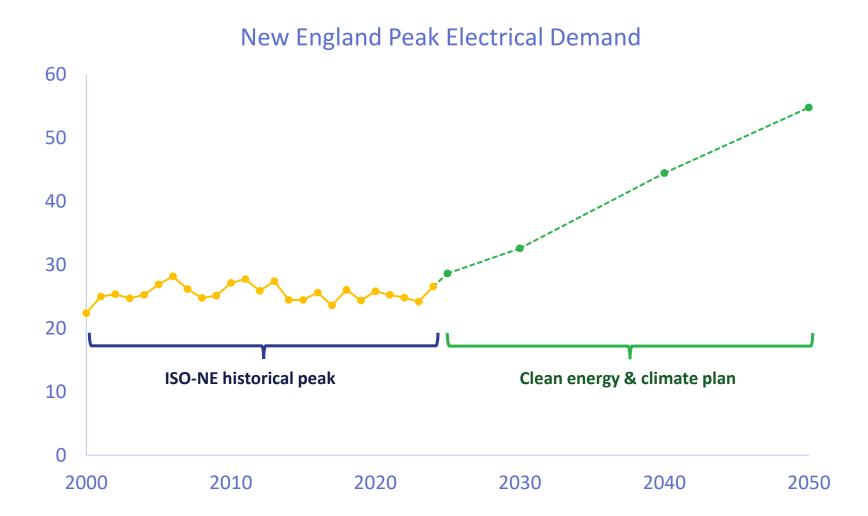
Using load management to empower consumers and reduce energy costs

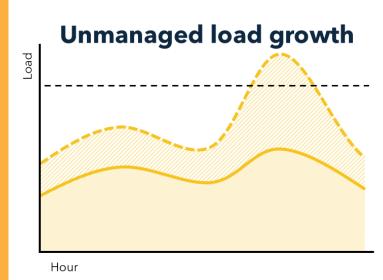
Presented to the Rates Task Force

Presented by Charles Dawson

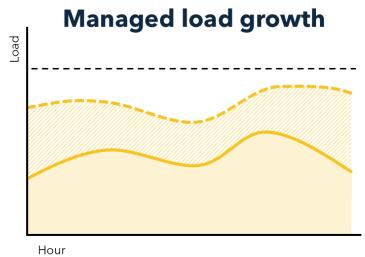
Our Mission

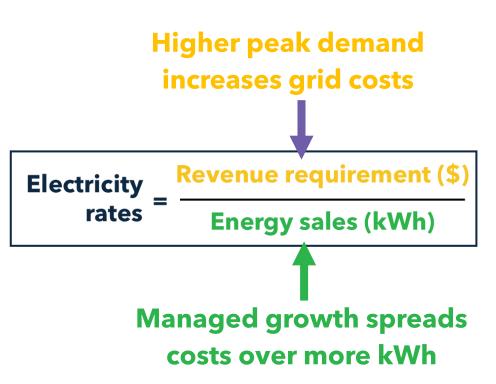
The Department of Energy Resources' (DOER) mission is to create a clean, affordable, resilient, and equitable energy future for all in the Commonwealth.


- Who We Are: As the State Energy Office, DOER is the primary energy policy agency for the Commonwealth. DOER supports the Commonwealth's clean energy goals as part of a comprehensive Administration-wide response to the threat of climate change. DOER focuses on transitioning our energy supply to lower emissions and costs, reducing and shaping energy demand, and improving our energy system infrastructure.
- What We Do: To meet our objectives, DOER connects and collaborates with energy stakeholders to develop effective policy. DOER implements this policy through planning, regulation, and providing funding. DOER provides tools to individuals, organizations, and communities to support their clean energy goals. DOER is committed to transparency and education, supporting the accessible access to energy information and knowledge.


Outline

- Background & motivation
- Technical potential study
 - Methodology
 - Key Findings
- Policy recommendations

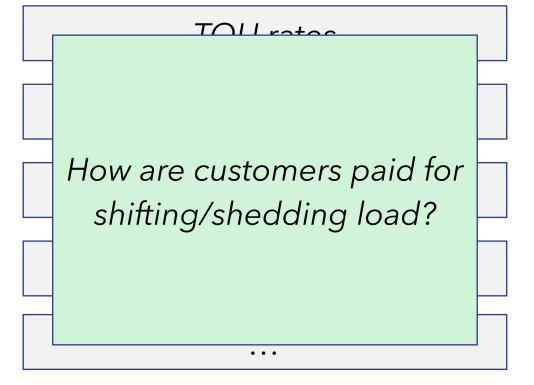

Massachusetts is facing growing load...


But load growth only increases rates if <u>unmanaged</u>

If peak demand increases <u>faster</u> than total use, it can <u>increase</u> rates.

If peak demand increases <u>slower</u> than total use, it can <u>decrease</u> rates.

Load management is a set of <u>policies</u> and <u>technologies</u> to reduce or shift demand during peak hours or in constrained regions


Load management measures	Load management incentives	
Energy efficiency	TOU rates	
EVs	CPP	
Batteries	Demand response	
Smart thermostats	Managed charging programs	
• • •	• • •	

Load management is a set of <u>policies</u> and <u>technologies</u> to reduce or shift demand during peak hours or in constrained regions

Load management measures

What load is being shifted/shed?

Load management incentives

In 2025, DOER launched an effort to quantify the potential for peak load reduction and develop a load management strategy to save ratepayers money

1. Technical Potential of Load Management Study

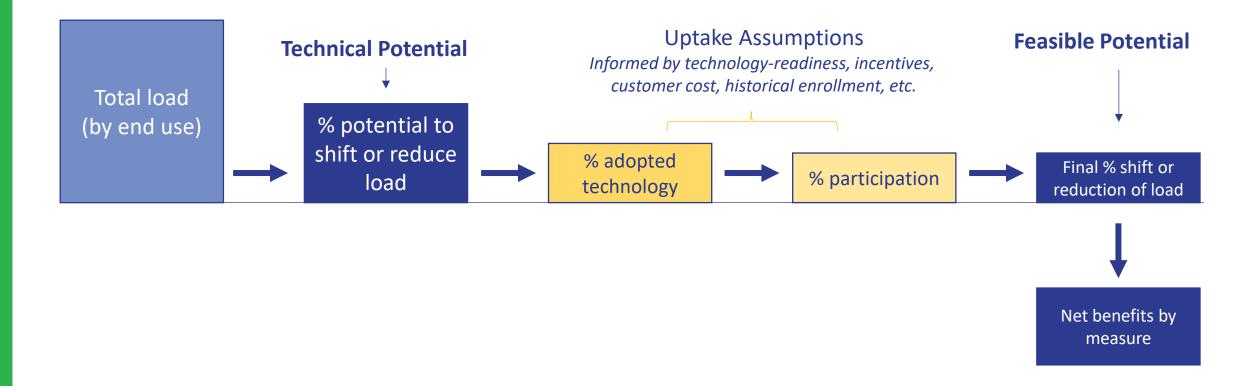
- Who: E3 and AEC
- What: Quantifies the amount of peak load reduction (and costs and benefits) possible in 2030, 2040, and 2050, given the projected pace of electrification.
- How: Bottom-up modeling with review from expert advisory group and 2 public workshops

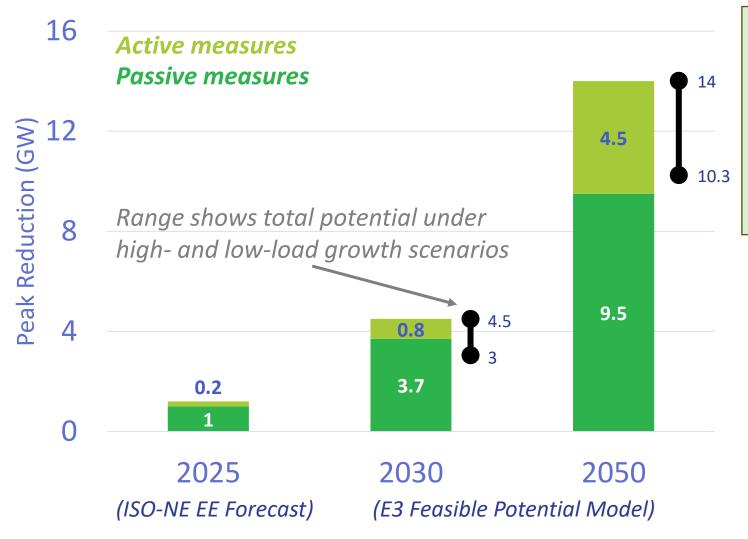
2. Peak Potential Report & Recommendations

- Who: DOER
- What: Makes policy recommendations for unlocking the benefits from load management.
- How: Input from stakeholders through two public sessions & forthcoming comment period

Stakeholder engagement

- Two public workshops (July & September), plus ongoing feedback from stakeholders
- Public comment period (once DOER report is published)




Part 1: Technical Potential of Load Management

Key technical findings

Modeling approach

Finding 1: EE, EVs, BTM storage, and heating flexibility can feasibly reduce peak by 4.5 GW in 2030 and 14 GW in 2050 (in MA)

2030: **4.5 GW** (\$1.4 bn/yr)

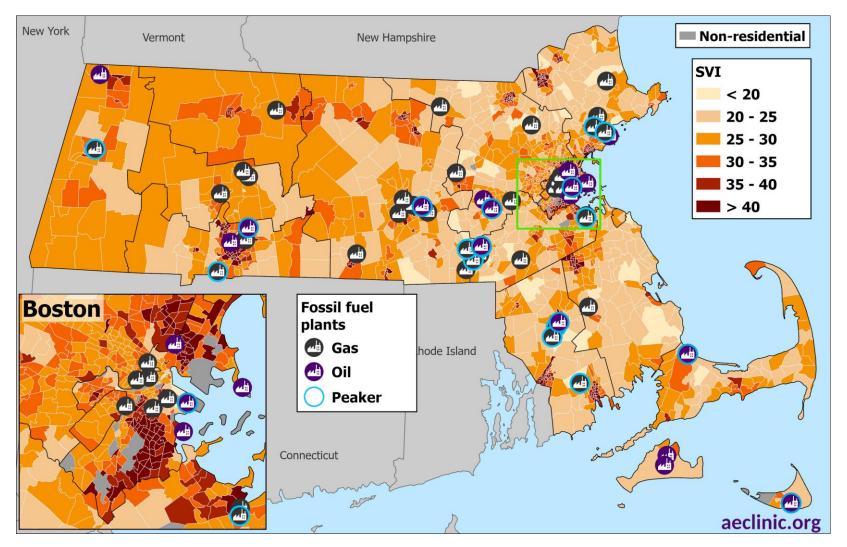
2050: **14 GW** (\$6.6 bn/yr)

Total MA peak reduction (savings)

CECP scenario w/ aggressive load management

This requires:

- 25% managed charging for LDEVs by 2030
 - 95% by 2050, including 50% V2G
- 200,000 new efficient housing units by 2030
 - 1.5 M by 2050 (per pathways report)
 - Sustain the current pace of retrofits
- 10% of households heating with GSHP by 2050


Finding 2: Both passive and active measures can deliver significant benefits

	2030	2050
Energy efficiency	3.5 GW	9.5 GW
EV management	0.3 GW	6.5 GW
Heating & residential appliances	0.3 GW	1.1 GW

Aggregation and cost-reflective prices can maximize benefits

from active measures

Finding 3: Load management, with careful program design, can provide equity and resilience benefits

Part 2: Peak Potential Report

Recommendations for unlocking the potential of load management

DOER identifies 6 areas of policy action to realize this potential

E3/AEC technical findings

2030: **4.5 GW** (\$1.4 bn/yr)

2050: **14 GW** (\$6.6 bn/yr)

Total peak reduction (MA only)

(CECP scenario w/ aggressive load management)

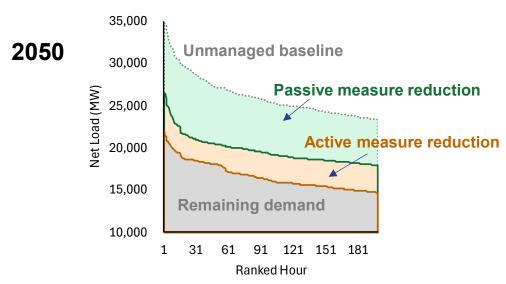
DOER policy recommendations

	EE	Double-down on both retrofits and stretch codes for new construction (9.5 GW by 2050).
•	EVs	Active managed charging & vehicle-to-everything can deliver huge benefits (6.5 GW by 2050).
	Price signals	Give customers tools to manage energy costs through TOU rates and demand response.
	Aggregation	Support innovation in new technologies and products through customer-centric aggregations.
	Equity	Minimize cost shift & reduce barriers to access for renters and LMI customers.
	Utility regulation	Provide incentives for peak load reduction and require load flexibility in utility planning.

1: Sustain Massachusetts' lead on energy efficiency

Continue to invest in retrofits through Mass Save and efficient new construction/renovations through the stretch and specialized energy codes.

- New Buildings
- Existing Buildings
- Advanced heating (ground source heat pumps)


Key technical finding:

2.5-3.5 GW by 2030, 8-9.5 GW by 2050*

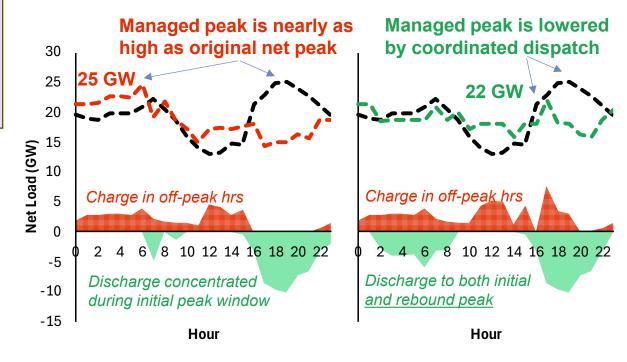
From passive load management

* Not all EE in E3's model is incremental to forecasts (e.g., stretch codes are incremental, but ccASHP are not)

CECP 2050 Growth

2: Scale EV load management as a no-regrets strategy

Invest in both managed charging (V1G) & vehicle-toeverything (V2X). Use active management to maximize benefits and minimize distribution grid impact.

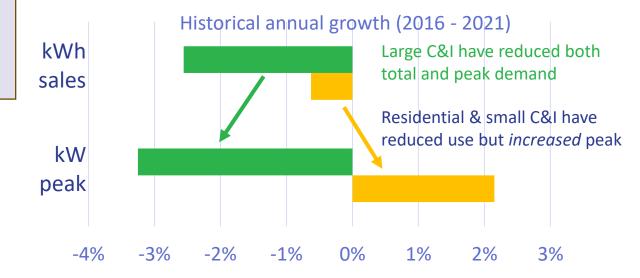

- V1G
- V2X
- Active management

Key technical finding:

50-300 MW by 2030, 2.5-6.5 GW by 2050**

From active EV load management

** 2050 EV potential includes both V1G and V2G/V2X


3: Pay customers for supporting the grid

Provide easy-to-use incentives like TOU rates and tech.-neutral demand response. Design programs to reduce friction and help customers save.

Key technical finding:

100-250 MW by 2030, 0.75-1 GW by 2050 From heating & non-EV residential loads

- Default seasonal TOU rates
- Technology-neutral peak pricing (CPP/DR), particularly for residential customers

4: Support innovation in customer-centric aggregation

Support new load management technologies and product offerings. Leverage community-led energy innovation through the municipal aggregation model.

Key technical finding:

100-250 MW by 2030, 0.75-1 GW by 2050 From heating & non-EV residential loads

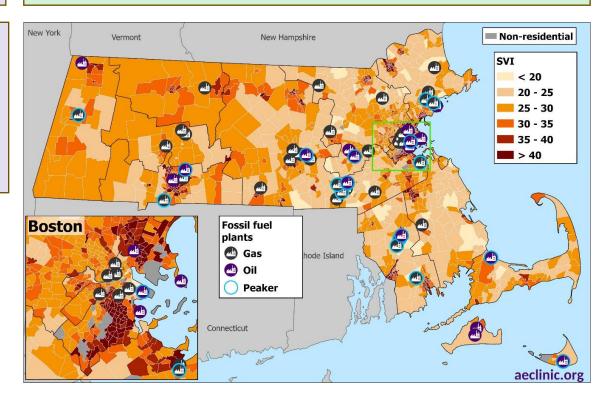
- VPP-ready equipment
- Customer-centric innovation & aggregation
- Increase retail/wholesale coordination

How do customers enroll & participate? How do customers learn about the program?

How is performance measured? What is the incentive?

What grid needs does it address? How is it dispatched?

Where does funding come from? How are costs and risks allocated?

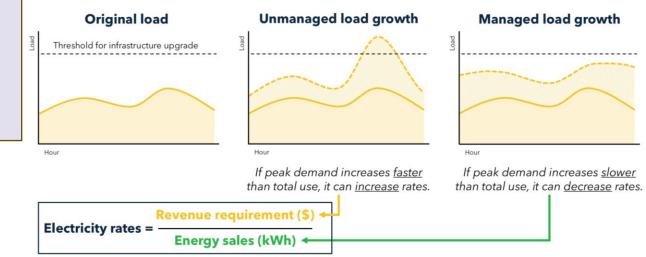

5: Ensure equitable access and distribution of benefits

Minimize cost shift from incentives, reduce barriers to access and DER ownership for renters and LMI customers, and focus outreach and education.

Key technical finding:

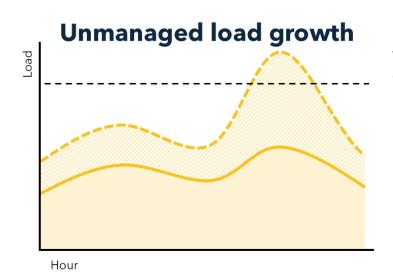
Rate and non-rate impacts of peak load fall heavily on low-income and EJ communities

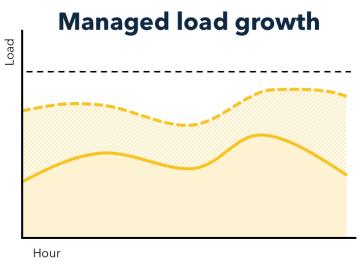
- Avoid cost shift
- Address barriers to participation (need for smart equipment, customer awareness and trust)
- Support equitable distribution of benefits

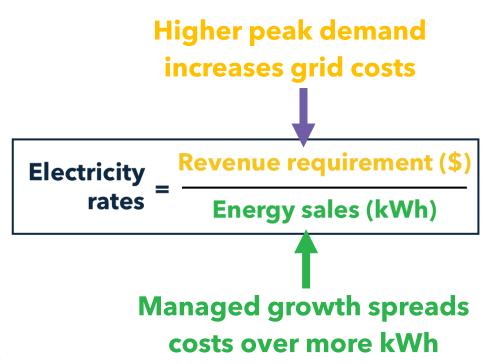

6: Align utility business models with load management

Design appropriate incentive mechanisms and regulatory frameworks.

- Incentive mechanisms
- Integrated planning
- Regulatory sandbox


Key policy principle:


Load growth is coming, managing it can increase throughput while decreasing peak, lowering rates.



Next steps

- Aiming to publish both reports (E3 and DOER) by early December
- Public comment period & webinar shortly thereafter
 - Final DOER report will include a summary of public comments

If peak demand increases <u>faster</u> than total use, it can <u>increase</u> rates.

If peak demand increases <u>slower</u> than total use, it can <u>decrease</u> rates.

100 Cambridge St. - 9th Floor - Boston, MA 02114

doer.energy@mass.gov
charles.dawson@mass.gov

x.com/massdoer

https://www.mass.gov/info-details/peak-potential-load-management-for-an-affordable-net-zero-grid

Thank You!

Next Steps

Targeted Conversation

November 19, 2025, 2-4pm

 Will serve as a deliberative space following related expert presentations to prompt informed discussion on policy questions and priorities

Illustrative Presentation

Optional Office Hours

November 17, 2025, 2-4pm

- Optional office hours for further conversation, serving as a structured opportunity to work towards common understandings and positions. We also encourage participants to have discussions amongst each other beside formal Task Force sessions
- Please reach out to chris.connolly2@mass.gov to request an invitation.