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ABSTRACT 
 

 In recent years, public interest in the status of river herring in Massachusetts has been growing.  
Community groups have established visual counting programs at several rivers along the Massachusetts 
coast, but few, if any, adhere to and use proper statistical sampling techniques required to produce reliable 
estimates of herring run size.   In this document, basic statistical concepts required for the estimation of 
herring run size, statistical sampling designs that offer alternatives to the sampling requirements of Ride-
out et al. (1979), and consequences of departures from sampling requirements are reviewed.  Based on 
results of the 2005 herring counting workshop, it is recommended that counting programs follow a two-
way stratified random sampling design in which volunteers make 3 ten-minute counts during each of three 
daily periods (7-11 am, 11-3 pm, and 3-7 pm) from April 1st to mid-June. 

iii 



Introduction 
 

In Massachusetts, more than 100 coastal rivers 
and streams are home to the anadromous alewife 
(Alosa pseudoharengus) and blueback (Alosa aes-
tivalis) herrings.  Also known colloquially by an-
glers as “river herring”, these fishes are ecologi-
cally-important because they are forage for many 
marine and freshwater fish predators such striped 
bass (Morone saxatilis), cod (Gadus morhua), and 
yellow perch (Perca fluvescens) as well as birds 
(Loesch, 1987).  In addition, they are a key link in 
the transfer of nutrients from freshwater to marine 
systems (Mullen et al., 1986). 

  
Monitoring of herring abundances is essential 

to the management of these important fisheries 
resources.  The Massachusetts Division of Marine 
Fisheries (DMF) monitors the absolute abundance 
at two locations in the State: the Essex Dam fish-
lift in Lawrence, MA on the Merrimack River and 
at the Bournedale ladder in Bourne, MA.  Run 
size is computed by counting the number of fish 
observed in each bucket lift at the Essex Dam, or 
by using an electronic fish counter at the Bourne-
dale run.  Since herring can be passed only 
through the lift system or through the electronic 
counter, no statistical sampling design is required 
to estimate run size because an exact count is 
achieved. 

 
In recent years, public interest in the status of 

river herring in Massachusetts has been growing.  
Community watershed groups have established 
herring counting programs at several rivers along 
the Massachusetts coast.  Typically, participants 
count for a short interval of time herring passing 
at an observation point, usually at the top of a fish 
ladder.  Since passage is observed in samples of 
counts,  this visual counting method requires a 
statistical sampling design to provide accurate and 
precise estimates of run size.  Some watershed 
groups try to adhere to the sampling scheme of 
Rideout et al. (1979), but the required daily cover-
age and hourly sampling is often not achieved due 
to insufficient numbers of participants or schedul-
ing difficulties.  Other groups have conducted pro-
jects without consideration of an appropriate sam-
pling design.  Without the adherence to and use of 
proper sampling techniques, run size estimates 
derived by these watershed groups may not be 

useful to biologists and managers responsible for 
the management of herring in Massachusetts. 

 
The objective of this report is to act as a guide 

for community watershed groups currently con-
ducting or starting sampling efforts to estimate 
herring run sizes using visual counts.   In this 
document, basic statistical concepts required for 
the estimation of herring run size, statistical sam-
pling designs that offer alternatives to the sam-
pling requirements of Rideout et al. (1979), and 
consequences of departures from sampling re-
quirements are reviewed.  If the procedures out-
lined in this document are followed, then statisti-
cally-sound estimates of herring run size will be 
achieved. 
 
Basic Statistical Concepts 

 
The main objective of statistical sampling is to 

estimate some characteristic of a population from 
only a small subset or sample of observations.  
With herring, the quantity of interest is the total 
number of fish passing during a spring spawning 
run.  Since passage occurs over time, the popula-
tion to be sampled is the number of herring pass-
ing in every unit of time (e.g., 5 or 10-minute in-
tervals) throughout the run.  Because every time 
unit can not be observed due to lack of partici-
pants or money, a sample of time units is selected 
without replacement (the same interval can not be 
sampled again) and counts are made.  The statistic 
that is estimated and used to extrapolate to the 
total number passing is the mean number of fish 
passing per unit time: 

     
     
where y is the mean number of fish passing per 
time unit, yi is the count of herring during the ith 
time unit, and n is the number of time units sam-
pled (sample size).  The symbol ∑ means to sum 
values of all observations.  For example, suppose 
three 5-minute herring counts were made and 
count values were 20, 3, and 10 fish per interval.  
Each of the three observations can be referenced 
by a letter and its position i:  y1 is 20, y2 is 3, and 
y3 is 10.  With these references, the numerator 
signifies y1+y2+y3 or 20+3+10.  n refers to the 
total number of observations collected or the last i 
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if the observations were sequentially numbered 
from one.  To get the total number of fish passing 
(Ŷ), the mean is multiplied by the total number of 
time units, i.e., 
 

       
  
This is essentially what is done in every sampling 
design except the selection of units will differ by 
design.  The hat (^) above the mean and total sym-
bols indicates that the value represents an estimate 
of a population characteristic, not the true value. 
  
Producing Reliable Estimates 

 
To produce reliable estimates of the mean and 

total, several statistical assumptions related to ac-
curacy and precision must be met.  An estimate is 
said to be accurate if repeated estimates of the 
same quantity are centered around the true value 
(Figures 1A and 1B), whereas those that are dis-
tant from the true value are said to be inaccurate 

or biased (Figures 1C and D).  Because all sam-
pling designs are derived from the probability the-
ory (Cochran, 1963), all time units must have 
equal chances of being selected (e.g., morning 
time units are equally likely to be selected as eve-
ning time units) and selection of one unit must be 
independent of the selection of another unit to en-
sure accuracy.  In reality, only one estimate is 
made, but it would still be considered accurate if 
the estimation procedure is correctly followed. 

 
A biased estimate can be produced either by 

deviating from sampling theory or by making er-
rors when measuring characteristics.  With the 
estimation of herring run size, it is assumed that 
selection of time intervals is made either randomly 
or systematically (Jessop and Harvie, 1990), but if 
deviations occur, accuracy of the estimates can 
not be guaranteed.  Similarly,  it is assumed that 
all individual herring are correctly identified and 
counted, but this may not be true if murky water 
hinders visibility, other herring-like species are 
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Figure 1. Diagrams demonstrating the concepts of accuracy and precision in the estimation 
 of population characteristics.  
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migrating concurrently, or too many herring pass 
at once.  In such events, the interval counts will be 
falsely high or falsely low and will produce inac-
curate estimates of daily totals. 

 
An estimate is said to be precise if repeated 

estimates of the mean are close to each other 
(Figures 1A and 1C);  whereas those that show 
lots of scatter are said to be imprecise (Figure 1B 
and 1D). To ensure reasonably good precision, the 
number of samples taken must be large enough to 
reduce the effect of random deviations.  In prac-
tice, as the sample size increases, the less likely 
the estimate would be affected by random devia-
tions, and the more certain we are that it will lie 
close to the true population value.  The determina-
tion of the sample size needed to attain a certain 
level of precision is an important aspect of sam-
pling theory that must be considered before sam-
pling begins. 

 
An important measure of variability that is 

used to derive variance of estimates is the sample 
variance (s2), given by 

  

    
  
It is calculated by first computing the mean, sub-
tracting the mean from each observation, squaring 
the deviations, summing all squared deviations, 
and then dividing the sum by the number of obser-
vations (n) less one.  The sample variance summa-
rizes the differences among characteristics of indi-
viduals in a population.  In nature, biological 
processes dictate the amount of variability that is 
observed.  For herring run size estimation, varia-
tion of observed numbers of herring passing at a 
single location will depends on factors influencing 
migration, such as water temperature and velocity, 
the reproductive and energy state of herring, the 
ability of herring to find and use fish ladders, etc. 
(see Mullen et al., 1986).  If herring pass rela-
tively consistently throughout a day, differences 
among sample observations (variation) will be 
low (Figure 2A).  If migration becomes more con-
centrated during specific times of the day, varia-
tion increases (Figures 2B-C).  The highest varia-
tion would occur if all herring passed in a rela-
tively short period of time (Figure 2D).   

 
The sample variance is important because the 

variance of the total is computed directly from it: 

        
   
Notice that the var(Ŷ) decreases as the number of 
samples taken increases.  The square-root of the 
variance is used to produce confidence intervals 
for the total, 

         
 
where t is the two-tailed student-t critical value for 
α (the allowable probability of error) which pro-
vides 100(1- α)% confidence intervals given the 
degrees of freedom (see Sokal and Rohlf, 1981).  
A table of t values for α ranging from 0.01 to 0.20 
to get 80%-99% confidence intervals is given in 
Appendix A for various degrees of freedom. The 
interpretation of these intervals for a given level 
of confidence (say 95%) is that, if sampling were 
repeated 100 times and confidence intervals were 
generated for each sampling event, 95 out of 100 
confidence intervals would encompass the true 
estimate.  It cannot be stated that there is a prob-
ability of 0.95 that the true mean is contained 
within any particular observed confidence interval 
(Sokal and Rohlf, 1981).  Large confidence inter-
vals mean that the estimate is not very precise; 
therefore, increasing the number of observed time 
units (sample size) or increasing the length of 
count intervals are the only options for reducing 
the width of the intervals for a given α. 
 
Review of Sampling Designs 
 

Common sampling designs that can be used for 
run size estimation are reviewed in standard sam-
pling texts (e.g., Cochran, 1963; Thompson, 2002) 
as well as Rideout et al. (1979) and Jessop and 
Harvie (1990).  The sampling designs reviewed 
here are 1) simple random sampling, 2) one-way 
stratified random sampling, 3) two-way stratified 
random sampling, 4) stratified systematic sam-
pling and 5) stratified two-stage random sampling.  
To demonstrate how each design is implemented, 
schematic examples for two days, broken into 20 
minute counting intervals, will be used (Figures 3 
-5).   
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In simple random sampling (SRS), a sample of 
the total number of time units in the entire dura-
tion of the run is randomly selected without regard 
to the day of run (Figure 3A).  During each inter-
val, herring are counted.  The mean number of 
herring counted per time interval under simple 
random sampling is 
 

      
         
and the total run size (ŶSRS) is  
    

        
 
where yi is the ith count, n is the number of time 
units sampled and N is the total number of units 
during the run.  The variance of ŶSRS is given by:
  

      
 
where s2 is the sample variance defined as 

           
   
      
Confidence intervals of the total are calculated by 
 

                     
 

The advantage of this design is the simplicity 
of the approach and it may not require volunteers 
for every day of  the run. A disadvantage is that 
the duration of the run has to be known in ad-
vance, otherwise the run size could be under- or 
over-estimated if sampling is stopped early, or 
extended beyond the end of the actual migration 
(the addition of a false zero count will affect the 
overall estimate).  Another disadvantage is that, 
due to the random chance, the selected intervals 
could be clumped during certain time periods of 
the run (Figure 3A) and thereby potentially pro-
duce estimates that are over- or under-estimated.  
This design is generally never used in fish count-
ing due to these disadvantages. 
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Figure 2. Hypothetical daily herring counts demonstrating possible hourly  
      patterns in migration: A) no pattern, B) afternoon migration, C) bimodal  
 migration, and D) single-hour migration 
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A. 

Figure 3.  Diagram showing the selection of ten 20-minute intervals under  
      A) simple random sampling and B) one-way stratified (by day) random  
      sampling. In A, notice that the selection of 8 intervals occurs within one day 
 of the run. 
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In one-way stratified random sampling 
(St1WRS), selection of time units occurs with re-
gard to each day (the stratum) of the run and, 
within each day, a sample of the units is selected 
randomly (Figure 3B).  The mean number of her-
ring counted per time unit for each day (k) is  

 

   
       
where yk is the mean on day k, yk,i is the ith count 
on day k, and nk is the daily number of time units 
sampled.  The total run size (ŶSt1WRS) is estimated 
as      

        
        
where L is the number of days during the run, and 
Nk is the total number of time units in day k.  The 
variance of ŶSt1WRS is  
 

          
  
where  

          
 
The confidence intervals are given by 

   
 

The degrees of freedom (df) are calculated us-
ing the Satterthwaite approximation (Cochran, 
1963) which is given by 

 

                    
where 

         

If Nk and nk are the same for each day, then the  
degrees of freedom are 
 

   
 

With St1WRS, all days of the run have to be 
sampled.  Several advantages of St1WRS are that 
the clumping of sampled time units across days 
can not occur, that sampling can occur well be-
yond the extent of the run because the addition of 
a daily zero count will not affect the overall esti-
mate, and that the total number of intervals within 
a day can change over time (e.g., length of day-
light changes over time).  This stratified design 
will generally produce more precise estimates of 
run size than SRS if the within-day variation 
changes from day-to-day.  A disadvantage is that 
clumping within a day can occur and, if there is an 
hourly pattern in migration, daily estimates of the 
number of fish passing could be over- or under-
estimated.  At least two time units must be sam-
pled to produce estimates of variance for each 
day. 
 

In two-way stratified random sampling 
(St2WRS) with day and periods defined as strata, 
selection of time units occurs with regard to each 
day (the first stratum) and then with regard to each 
period (hours grouped into strata).  For example, 
periods could be morning (06:00-11:59) and eve-
ning (12:00-18:00) hours.  Every period, a sample 
of time units is then selected randomly (Figure 
4A).  The mean number of herring per time unit of 
each period of day k is  

 

                      
 
where yk,p is the mean, yk,p,i is the ith count during 
period p on day k and nk,p is the number of time 
units sampled during period p on day k.  The total 
run size (Ŷ) under St2WRS is estimated as 
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A. B. 

Figure 4.  Diagram showing the selection of 20-minute intervals under  
      A) two-way stratified sampling for two period and B) stratified systematic 
 sampling for every 5th interval. 
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where Nk,p is the total number of time units during 
period p and P is the number of periods during 
day k, and L is the number of days of the run.  The 
variance estimate is given by 
 

     
 
where  

            
       
Confidence intervals can be approximated by 
   

     
 

If Nk,p and nk,p are the same for every period 
during each day, then the degrees of freedom are 
  

            
  
Otherwise, equation 9 is used to calculate df for 
each day substituting p for k, and the total degrees 
of freedom are derived by summing df over all 
days. 

 
The advantages of St2WRS are similar to 

St1WRS.  In addition, selection of time units can 
be spread across each day which minimizes poten-
tial clumping, and if there are patterns in migra-
tion, this design can further reduce variance of the 
total estimate.  One disadvantage is that at least 
two samples must be taken every period, so the 
minimum number of counts made per day is 2P. 

 
In stratified systematic sampling (StSYS), se-

lection of time units occurs with regard to each 
day (the stratum) of the run and the units are se-
lected systematically instead of randomly.  For 
systematic selection,  the desired sampling inter-
val v (every vth time unit) for a day is first chosen, 
and then a random time unit  j between 1 and v is 
selected (it is assumed that the daily time units are 
sequentially numbered from the beginning to end 
of the day).  Next, every interval at the appropriate 
v spacing from j is selected.   For example, if there 

are thirty-nine 20-minute intervals within a day, 
and the desired sampling interval is 5, a random 
unit from the first five intervals of the day is se-
lected and sampled, and then every 5th interval 
after that is sampled subsequently (Figure 4B).  
The mean number of herring counted per time 
interval during day k is estimated as  

 

      
     
and the total run size (Ŷ) under StSYS is estimated 
as 

        
       
The variance of ŶStSYS is approximately  

        
     
where  

  
 
The confidence intervals are calculated as 
 

        
  

The degrees of freedom are the same as 
St1WRS.  Because of the systematic selection of 
time units, ŶStSYS will be an unbiased estimate of 
the population value only if the ratios Nk/v are in-
tegers (e.g., 1,2, etc.).  If the ratios Nk/v are not 
integers (e.g., 1.5, 2.6, etc.) then ŶStSYS will be 
biased.  To avoid producing biased estimates, the 
following procedure should be used (Levy and 
Lemeshow, 1999):  
 
1. Each day, choose a random number between 1 

and Nk where Nk is the total number of time 
units in the day. 

 
2. Divide the random number by the desired sam-

pling interval v.  Express this quotient as an 
integer plus a remainder in fractional form 
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(e.g., 3⅔). 
 
3. If the numerator of the remainder is 0, take a 

systematic sample corresponding to v begin-
ning at the vth interval.  If the numerator is 
nonzero, take a systematic sample correspond-
ing to v beginning at the interval equal to the 
numerator of the remainder.  

 
Equation 18 is appropriate only for estimating 

the variance of the total run size if herring pass 
randomly throughout a day.  If this assumption is 
violated, then equation 18 will produce a biased 
estimate of variance (Cochran, 1963).  This is a 
major disadvantage of systematic sampling (Levy 
and Lemeshow, 1999). 
 

In stratified two-stage random sampling 
(St2STRS), selection of time units occurs with 
regard to each day (the stratum) of the run.  
Within each day, the time units are grouped into a 
larger time frame such as an hour.  Several hours 
are then selected randomly (stage 1) and within 
each selected hour, a sample of time units is ran-
domly taken (stage 2: Figure 5).  The mean num-
ber of herring counted per time interval within 
hour i during day k is calculated as  

 

             
       
and total count for each hour i is  
     

            
     
The mean number of herring counted per hour is  

          
     
and total count for day k is estimated as  
 

                              
      
The total run size (YSt2STRS) is computed as 
 

   
       
For the above equations, mk,i is the number of time 
units sampled within hour i, Mk is the total number 
of time units within each hour, nk is the number of 
hours sampled during day k, Nk is the total number 
of hours during day k, and L is the number of days 
of the run.   
 

The variance of ŶSt2STRS is given by 

     
  
where  

             
   
and 

           
 
such that s2

k,u is the sample variance of the hourly 
totals during day k, and s2

k,i is the sample variance 
of the time units with each hour.  Confidence in-
tervals are approximated by 
 

  
 
Approximate total degrees of freedom are 
 

                      
 
assuming mk,i is the same within nk hours.   
 

An advantage of this design is that it offers 
greater flexibility in the arrivals times of partici-
pants over St1WRS.  For example, under 
St1WRS, interval counts, due to random selection, 
will be spread out over the day, and the time be-
tween counting could be large.  Few volunteers 
would be willing to stay over several hours to 
make those counts.  With St2STRS, the volunteers 
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Day 1

Day 2

0700
0800
0900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
0700
0800
0900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

Hour 1   2   3
20 min interval

Figure 5.  Diagram showing the selection of ten 20-minute intervals under  
      stratified two-stage random sampling for two counts per hour (randomly 
 selected hours are underlined). 
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would have to stay for 1 hour only (assuming arri-
val is random) to make two or more random 
counts.  A disadvantage of this design is that, due 
to the random chance, the selected hours and time 
units within hours could be clumped, and if there 
is an hourly pattern in migration, daily estimates 
of the number of fish passing could be over- or 
under-estimated.  The minimum number of time 
units that would have to be sampled each day of 
the run is 4 (2 hours x 2 intervals per hour). 
 
Which Sampling Design Should Be Used? 
 

Which sampling design should be used by wa-
tershed groups to estimate herring run size?  The 
answer will depend on the human resources of 
each group.  In the past, groups have tried to ad-
here to Rideout et al.’s systematic design in which 
one count (10 minute interval) is made every hour 
for a total of 13 counts per day.  However, volun-
teers were often unavailable during certain hours 
or days to accomplish the required sampling 
(Figure 6).  Such deficiencies cause estimates to 
be biased because not all time units have an equal 
chance being selected.  A better strategy would be 
for watershed groups to assess realistically the 
minimum reliable volunteer effort that can be 
guaranteed daily, and then to select a design that 
is more suitable for the level of available effort. 
 

Jessop and Harvie (1990) evaluated the accu-
racy and precision of various sampling designs for 
estimating population means of herring counts for 
alewives through a fishway on the Gaspereau 
River, Nova Scotia.  The designs included in their 
evaluation were SRS, simple systematic sampling 
(a sample of the total number of time units in the 
entire duration of the run are selected in a system-
atic way), St1WRS, and StSYS.  They showed 
that the designs that used random selection (over 
systematic) with stratification required lower sam-
ple sizes to achieve equivalent levels of precision.  
Therefore, watershed groups should choose 
St1WRS, St2WRS, or St2STRS.  The choice will 
depend on advantages/disadvantages discussed 
earlier and on the willingness and numbers of the 
volunteers to make counts.  For instance, if there 
are numerous volunteers willing to make only one 
count per visit per day, then St1WRS would be 
more appropriate.  If there are only a few volun-
teers willing to make more than one count per 

visit per day, then St2STRS would be more appro-
priate.  But remember, regardless of the stratified 
design, time units still have to be selected ran-
domly with respect to time! 
 
How Many Time Intervals Should Be Sam-
pled? 
 

The number of time units that have to be sam-
pled will depend upon the desired level of preci-
sion for the total run size.  A prior estimate of the 
mean number of fish passing per time units and 
associated sample variance either for the whole 
run (for SRS) or for a number of days (for 
St1WRS, St2WRS, StSYS, or St2STRS) is needed 
before sample size can be determined.  Initial 
guesses of the estimates can be obtained from sci-
entific papers that have conducted similar studies 
or from a preliminary study. 
 

For SRS, the sample size necessary to estimate 
total herring run size to within r (proportion) of 
the true total with 1-α% confidence is  

 

  
     
where N is the total number of count intervals dur-
ing the run, t is the t-distribution value for α under 
a two-tailed test, and CV is the coefficient of 
variation.  The coefficient of variation is defined 
as 

    
    
 The student t-distribution values are those for df 
= ∞ (Appendix A).  If there are no estimates of 
mean and sample variance in the literature, or a 
preliminary study can not be conducted, then use a 
best guess for the CV in equation 28.  Again, 
however, SRS is never used for herring run size 
estimation because the duration of the run is not 
known in advance. 
 

For St1WRS, St2WRS, and StSYS, the issue is 
more complex because the ultimate goal is to pro-
duce an estimate of total run size given daily sam-
ple sizes and estimates of totals that are made 
every day of the run.  Formulae are available 
(Cochran, 1963; Thompson, 2002) that can be 
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used to allocate total n to each stratum assuming 
that total n is known.  How is total n derived?  The 
best strategy is to use daily data from the literature 
or derived in a pilot study to calculate an average 
of the CVs and assume that the total number of 
intervals per day (Nk) is the same throughout the 
run. Then to estimate total n, the following equa-
tion is used: 
  

  
 
where L is the expected duration of the run and 
the remaining parameters are as previously de-
fined.  If Nk will change daily throughout the run, 
Nk *L would be the sum of all Nks.  Because daily 
sample variances and totals will not be known in 
advance, n is allocated equally to each day such 
that daily sample size is calculated as 
 

            
       

For St2STRS, determination of sample size is 
much, more complicated than the above.  A pilot 
study must be conducted to estimate the within-
hour as well as the between-hour sample vari-
ances.  Derivation of sample size requires calculus 
to solve for the optimal number of time units and 
hours to sample.  For those interested, see Thomp-
son, 2002 (p.150-151) or Cochran (1963: p. 283-
285). 
 
Relationship between Precision, Coefficient of 
Variation, and Sample Size For Stratified Sam-
pling 
 

It may be of interest to determine what the re-
sulting precision of the total run size will be for 
the average CV and the sample sizes estimated 
from equation 30.  Although precision was stated 
in the equations (i.e., r), a measure of precision 
that is more easily interpreted is the proportional 
standard error (PSE) calculated as 
  

              
    
The PSE can be estimated given daily sample size, 
the average CV, and expected duration of the run.  

Suppose for day k, the variance of the daily total 
under St1WRS is 

          
    
Taking the square-root of both sides, rearranging 
the equation, and dividing by Ŷk gives 
 

      
 
Since Ŷk=Nkyk, then 
 

    
 
Substituting equations 29 and 32 gives 
 

            
    
The true PSE for the total run size is not the sum 
PSEk over all days, but 
  
 

  
 
which shows that the PSESt1WRS is a function of 
the duration of the run and daily variances and 
totals which are not known in advance.  However, 
if it is assumed that Nk and nk, are constant over 
the run, a PSE for the total can be approximated 
from the average CV of the total run by   
 

             
 
where CV is the average coefficient of variation 
over L days, N is the daily total number of time 
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units, and n is the daily sample size. 
 
The Power To Detect Trends in Herring Run 
Size 
 

The ability to detect changes in run size over 
time is important for management purposes.  If 
abundance is declining precipitously over a num-
ber of years, it may be a sign of trouble and there-
fore, managers may have to take regulatory action 
to avoid collapse.  The ability to detect changes 
when they are occurring is known as power in the 
field of statistics.  Power is related to the natural 
variability in fish passing, the sample size taken to 
estimate daily totals, the significance level (α) of 
inference testing, and the size of the change to be 
detected (also known as the “effect size”).  Basi-
cally, as power increases, the more likely change 
will be detected.  What this means is that if run 
size is imprecisely estimated each year, we may 
not be able to conclude statistically that an ob-
served increasing or decreasing trend is occurring.  
Further discussion on statistical power can be 
found in Sokal and Rohlf (1981). 
 

Although it may be difficult to allocate effort 
each year to produce annual run size estimates 
that are precise enough to detect year-to-year 
changes in abundance, trends over longer periods 
of time may be statistically detectable.  The power 
analysis of Gerrodette (1987;1991) can be used to 
determine the minimum percent change in herring 
run size over time that can be detected at a given 
level of power based on the precision of one 
year’s estimate.  Gerrodette’s procedure uses lin-
ear regression to test whether the slope of an as-
sumed linear or exponential trend in run size dif-
fers from zero for a given rate of change over 
time, level of precision (PSE), significance level 
(α), and the null hypothesis of the test. 
 

Gerrodette’s formulation for power is compli-
cated; therefore, I provide power curves for linear 
and exponential changes in run size over time for 
3-6 years of surveys, for PSEs ranging from 0.1 to 
0.3, for α =0.05 and α=0.10, and for one- and two-
tailed tests (Figure 7).  Power was calculated as-
suming that PSEs change inversely with the 
square-root of the run size (see Gerrodette, 1987), 
and using the non-centralized t-distribution be-
cause of the small number of years (3-6 years of 

surveys) explored (see Gerrodette, 1991).  If the 
exact PSE or desired α level is not available in 
Figure 7, additional calculations can be made us-
ing the R code provided in Appendix B.   
 

To determine the minimum percent change 
over time that can be detected,  the following pro-
cedure should be used: 
 
1. Obtain a PSE for the total run size or estimate 

using equation 34 for the expected number of 
days of the run. 

 
2. Select the significance level (usually α =0.05) 
 
3. Choose to examine either a linear or exponen-

tial changes in abundance 
 
4. Determine what null hypothesis is to be tested. 

It may be more important to determine that 
run size is changing in one direction 
(decreasing or increasing) over time; there-
fore, a one-tailed test should be used because 
the null hypotheses tested are slope>0 
(alternate hypothesis is slope<0) for a decreas-
ing trend, or slope<0 (alternate hypothesis is 
slope>0) for an increasing trend. For a two-
tailed test, the null hypothesis tested for is 
slope = 0 (alternate hypothesis is slope ≠ 0) 
meaning it can be concluded that change is 
occurring but not in a particular direction.  
 

5. Select a desired power (most statistical text-
books recommend power should be >0.80). 

 
6. Read the percent change that can be detected 

for the power probability and number of sur-
vey years from a plot in Figure 7 correspond-
ing to the parameters selected above. 

 
If the percent change is not at a desirable level for 
a given power and number of survey years, the 
only recourses are to increase daily sample sizes 
to increase precision of the estimate, or increase 
the counting interval which will reduce sample 
variation. 
 

As an example, suppose that a watershed group 
is interested in determining the percent decline in 
run size that can be detected over time.  The 
group’s sampling efforts generate an estimate of 

13 



Tr
en

d=
Li

ne
ar

, P
S

E=
0.

1,
 A

lp
ha

=0
.0

5,
 T

es
t=

1-
ta

ile
d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

A

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Li

ne
ar

, P
S

E=
0.

2,
 A

lp
ha

=0
.0

5,
 T

es
t=

1-
ta

ile
d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

B

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Li

ne
ar

, P
S

E=
0.

3,
 A

lp
ha

=0
.0

5,
 T

es
t=

1-
ta

ile
d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

C

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Li

ne
ar

, P
S

E=
0.

1,
 A

lp
ha

=0
.1

, T
es

t=
1-

ta
ile

d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

D

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Li

ne
ar

, P
S

E=
0.

2,
 A

lp
ha

=0
.1

, T
es

t=
1-

ta
ile

d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

E

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Li

ne
ar

, P
SE

=0
.3

, A
lp

ha
=0

.1
, T

es
t=

1-
ta

ile
d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

F

Y
ea

rs
  

  
  

  
 

3 4
5 6

Fi
gu

re
 7

. P
ow

er
 v

er
su

s p
er

ce
nt

 c
ha

ng
e 

de
riv

ed
 v

ia
 th

e 
m

et
ho

d 
of

 G
er

ro
de

tte
 (1

98
7;

 1
99

1)
 fo

r l
in

ea
r a

nd
 e

xp
on

en
tia

l (
Ex

p)
 tr

en
ds

 
in

 a
bu

nd
an

ce
, p

ro
po

rti
on

al
 st

an
da

rd
 e

rr
or

s f
ro

m
 0

.1
 to

 0
.3

, α
 o

f 0
.0

5 
an

d 
0.

10
, o

ne
– 

an
d 

tw
o-

ta
ile

d 
hy

po
th

es
is

 te
st

s, 
an

d 
3-

6 
su

rv
ey

 
ye

ar
s. 

 

14 



Fi
gu

re
 7

 c
on

t’d
. 

Tr
en

d=
Li

ne
ar

, P
SE

=0
.1

, A
lp

ha
=0

.0
5,

 T
es

t=
2-

ta
ile

d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

G

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Li

ne
ar

, P
SE

=0
.2

, A
lp

ha
=0

.0
5,

 T
es

t=
2-

ta
ile

d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

H

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Li

ne
ar

, P
SE

=0
.3

, A
lp

ha
=0

.0
5,

 T
es

t=
2-

ta
ile

d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

I

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Li

ne
ar

, P
SE

=0
.1

, A
lp

ha
=0

.1
, T

es
t=

2-
ta

ile
d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

J

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Li

ne
ar

, P
SE

=0
.2

, A
lp

ha
=0

.1
, T

es
t=

2-
ta

ile
d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

K

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Li

ne
ar

, P
SE

=0
.3

, A
lp

ha
=0

.1
, T

es
t=

2-
ta

ile
d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

L

Y
ea

rs
  

  
  

  
 

3 4
5 6

15 



Fi
gu

re
 7

 c
on

t’d
. 

Tr
en

d=
Ex

p,
 P

SE
=0

.1
, A

lp
ha

=0
.0

5,
 T

es
t=

1-
ta

ile
d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

M

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Ex

p,
 P

SE
=0

.2
, A

lp
ha

=0
.0

5,
 T

es
t=

1-
ta

ile
d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

N

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Ex

p,
 P

SE
=0

.3
, A

lp
ha

=0
.0

5,
 T

es
t=

1-
ta

ile
d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

O

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Ex

p,
 P

SE
=0

.1
, A

lp
ha

=0
.1

, T
es

t=
1-

ta
ile

d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

P

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Ex

p,
 P

SE
=0

.2
, A

lp
ha

=0
.1

, T
es

t=
1-

ta
ile

d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

Q

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Ex

p,
 P

SE
=0

.3
, A

lp
ha

=0
.1

, T
es

t=
1-

ta
ile

d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

R

Y
ea

rs
  

  
  

  
 

3 4
5 6

16 



Fi
gu

re
 7

 c
on

t’d
. 

Tr
en

d=
Ex

p,
 P

SE
=0

.1
, A

lp
ha

=0
.0

5,
 T

es
t=

2-
ta

ile
d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

S

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Ex

p,
 P

SE
=0

.2
, A

lp
ha

=0
.0

5,
 T

es
t=

2-
ta

ile
d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

T

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Ex

p,
 P

SE
=0

.3
, A

lp
ha

=0
.0

5,
 T

es
t=

2-
ta

ile
d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

U

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Ex

p,
 P

SE
=0

.1
, A

lp
ha

=0
.1

, T
es

t=
2-

ta
ile

d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

V

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Ex

p,
 P

SE
=0

.2
, A

lp
ha

=0
.1

, T
es

t=
2-

ta
ile

d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

W

Y
ea

rs
  

  
  

  
 

3 4
5 6

Tr
en

d=
Ex

p,
 P

SE
=0

.3
, A

lp
ha

=0
.1

, T
es

t=
2-

ta
ile

d

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Power

P
er

ce
nt

 C
ha

ng
e 

O
ve

r Y
ea

rs

X

Y
ea

rs
  

  
  

  
 

3 4
5 6

17 



total run size with a PSE=0.10.  They select a one-
tailed test at α =0.05,  want power to be 0.80,  be-
lieve an exponential decline would be the underly-
ing trend form, and want to detect changes over 4 
years.  Referring to Figure 7M, the minimum per-
cent decline that can be detected is 42% over 4 
years. 
 
What If The Sampling Procedures Aren’t Fol-
lowed? 
 

Three deficiencies that seriously affect the ac-
curacy and precision of run size estimates were 
identified in a review of efforts made by several 
watershed groups; these were 1) low sample sizes, 
2) patterned sampling, and 3) interpolation of 
daily counts for missing days.  Often, volunteers 
were unavailable to make counts every hour as 
required under the sampling scheme of Rideout et 
al. (1979) thus lower expected sample sizes were 
achieved.  As discussed previously, low sample 
sizes will reduce the precision of the daily esti-
mate and affect the overall precision of the run 
size estimate and the power to detect a change.  
Patterned sampling occurred because volunteers 
were often available only after work hours, and 
counting became aggregated during those times 
(Figure 6).  Such patterned sampling can cause 
biased estimates of run size, particularly if herring 
migrate differently throughout the day, because 
not all time intervals are available for selection.  
Daily counts for missing days estimated by using 
linear interpolation of counts from adjacent non-
missing days can introduce bias and error if dra-
matic changes in the numbers passing occur be-
tween days, and if the number of missing days is 
large.  Unless these deficiencies are minimized by 
each watershed group, the usefulness of their run 
size estimates in the management of herring will 
be questionable. 
 

To demonstrate the effects of the three defi-
ciencies on the estimation of run size, sampling 
simulations were conducted on a computer-
generated herring run.  The benefit of this ap-
proach is that, by using the computer to sample, 
bias and error can be exposed by comparing the 
estimates to known daily and total run sizes.  The 
hypothetical herring run was created from actual 
count data collected at the Central Street ladder on 
the Parker River during 1999 and 2000.  Assum-

ing a 13 hour day and a run duration of 33 days, 
the count of herring in every five minute interval 
of each day was generated from a negative bino-
mial distribution using the RAND function in SAS 
(SAS, 2002).   The distribution of daily counts 
was parameterized with the daily mean count and 
k parameter approximated by 
   

          
  
where y is the daily mean count per 5-minute in-
terval and s2 is the sample variance of the mean 
count (Krebs, 1989).  The negative binomial dis-
tribution was used because fish count data are of-
ten characterized as having many zero counts and 
highly skewed non-zero counts (Figure 8).  The 
daily mean count of the first 5-minute intervals 
collected in 1999 was assumed to represent each 
day’s average.  Because of sampling deficiencies,  
s2 for each daily mean was estimated from a linear 
equation that related s2 to mean counts derived 
using daily data with complete counts from 1999 
and 2000 (Figure 9).  Depending on the value of 
the mean (m), s2 was estimated as 
 

  
 
The daily trends in numbers passing  followed 

the actual estimates made for the Parker River in 
1999 (Figure 10).  The daily passage of herring 
was simulated as a bimodal event with a minor 
peak occurring in the mid-morning hours and a 
major peak occurring in the afternoon hours 
(Jessop and Harvie, 1990; Figure 6C this docu-
ment).  The actual total run size was 12,442 her-
ring.  In the simulations, a St1WRS design was 
used to select randomly 10-minute intervals each 
day of the 33-day run from which the daily total 
was calculated.  The sum of all daily totals was 
the estimate of total run size.   
 

To demonstrate the effect of sample size on 
precision, 1 to 13 ten-minute intervals were ran-
domly selected each day.  The simulation was re-
peated 500 times for each sample size to generate 
a distribution of total run size values that could be 
obtained if sampling was repeated.  The results of 
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the simulations are shown in Figure 11. The mean 
of the 500 simulations for each sample size is in-
dicated by a circle and the 95% percentiles are 
represented by the lower and upper whiskers.  No-
tice that the mean for a given sample size equals 
the known run size of 12,442 fish, indicating that 
the sampling design and random selection process 
produces unbiased estimates of the total run size.  
Also, notice that the range of the whiskers de-
creases rapidly as sample size increases, indicat-
ing precision increases rapidly with sample size.   
 

To demonstrate the effect of patterned sam-
pling, similar simulations and analyses were con-
ducted except that only afternoon intervals were 
used in the random selection process to simulate 
the volunteers’ availability for only afternoon 
counting.  The results of the simulations are 
shown in Figure 11B.  Notice that the mean of all 
simulations for a given sample size is well above 
the known run size of 12,442 fish.  This indicates 
that patterned sampling produces biased estimates 
of the total run size, and even though precision of 

the estimates increases with increasing sample 
size, the accuracy does not improve (Figure 11B). 

To demonstrate the effect of using linear inter-
polation to estimate missing daily totals,  simula-
tions were made in which actual daily totals for 
the 33-day run were randomly coded as missing, 
and then linear interpolation was used to estimate 
the total for the missing day.  Because the accu-
racy of linear interpolation is likely to diminish if 
days with missing data occur sequentially in time,  
the simulations examined the effect of increasing 
the sequential number of days with missing data, 
and also the effect of increasing the number of 
missing day sequences.  That is, the simulations 
examined the impact of not making counts for 
several days in a row and making those sequential 
non-counts many times throughout the duration of 
the run.  The results are presented in Figure 12.  
Notice that when the number of sequential miss-
ing days was <4 and the number of sequences in-
creased, the means were close to the actual run 
size, indicating that linear interpolation produces 
fairly unbiased estimates of the total run size.  
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Figure 8. Comparison of observed herring counts from the Parker River (bars) to predicted 
values generated from the negative binomial (hollow circles) and Poisson (solid circles) 
distributions. 
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Figure 10.  Comparison of estimated and simulated daily run sizes using data from 
 the Parker River-Central Street ladder, 1999.  
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Figure 11.  Mean and 95% percentiles of the run size distribution generated from the 
simulations, examining A) effects of differing sample size, and B) effects of selection of 
only afternoon time intervals.  

However, precision decreases as the number of 
missing days and the number of sequences of 
missing days increases (Figure 12).  Bias in the 
estimates is produced when the number of sequen-
tial missing days exceeds 5, and the number of 
sequences increases (Figure 12).  From these re-
sults, as long as the number of days in a row with 
missing data does not exceed 5, then linear inter-
polation should only affect the precision of the 
estimate of total run, not the accuracy. 
 
How to Proceed With Estimation of Herring 
Run Size 
 

The steps to a statistically-sound survey design 
used to estimate herring run sizes are as follows: 
 
1. Determine the effort (number of volunteers and 

availability) that can be realistically sustained 
for the expected duration of the run. 

 

2. Select the most appropriate stratified random 
design for the effort available.  

 
3. Determine the size of the counting interval (can 

use results from other studies). 
 
4. Obtain estimates of mean and sample variance 

over several days from a pilot study, from 
neighboring watershed groups, or from scien-
tific literature. 

 
5. For the chosen survey design, estimate the ap-

propriate daily sample size given the desired 
precision and error rate. 

 
6. Calculate the proportional standard error for 

the daily sample size, average coefficient of 
variation, and estimated length of the run. 

 
7. Determine the percent change in run size that 

can be detected over time given the propor-
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Figure 12. Mean and 95% percentiles of the run size distribution generated from the simulations 
examining the effects of linear interpolation on accuracy and precision.  The horizontal line is 
the true run size.  
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tional standard error, desired power and error 
rate, and number of years over which a de-
cline or increase would be important. 

 
8. If detecting smaller changes in run size are re-

quired, then repeat steps 5-7, increasing preci-
sion (r) until the desired detectability is 
reached. 

 
9. Conduct the survey and make adjustments to 

design for the following year if required. 
 

The following hypothetical example will show 
the steps that are needed to conduct a statistically-
sound and useful survey design for the estimation 
of herring run size. 
 

Suppose the Ipswich Watershed Association 
wants to conduct a survey to estimate the size of 
the Ipswich River herring run passing over the 
Sylvania Dam in 2006.  The group believes that 
they will have no trouble soliciting the help of at 
least 5-10 volunteers who will make one 5 minute 
count per day for the entire 33 day duration of the 
run.  Based on this information, it is decided that a 
St1WRS design is most appropriate for their needs 
and a 13 hour day will be assumed.  Because of 
lack of data for the Ipswich River, estimates of 
mean counts and sample variances from Rideout 

et al. (1979) were used by the group to estimate 
total and daily sample size.  The group is inter-
ested in obtaining an estimate within 0.2 (r) of the 
true total with 95% confidence.  These values are 
entered in Table 1, along with the total number 
(N) of 5-minute intervals per 13 hour day (156=13 
hours*60 minutes /5 minutes) and the t-value for 
the associated confidence level (=1.960).  After 
calculating the daily coefficients of variation,  the 
average CV and selected parameters are inserted 
into equation 30 and 31 to derive daily sample 
sizes.  In this example, daily sample size is 12 
(Table 1).  If 12 counts per day are too high for 
the organization to support, the only options are to 
reduce the precision by reducing r in equation 30, 
or increase the duration of the interval count 
which will lower the sample variance. 
  

The next step in the process is to determine the 
change in percent run size that can be detected 
over time. The PSE derived using equation 38 is 
0.10.  Since the group believes it is more impor-
tant to know that the herring abundance is declin-
ing exponentially, a one-tailed test is assumed.  
They want the power to be fairly high, so a value 
of 0.80 is selected.  Using Figure 7M, the mini-
mum percent decline in the abundance that can be 
detected with a power of 0.80 is 45% over 4 years,  
32% over 5 years, and 28% over 6 years.  Notice 

23 

Table 1.  Example calculations for determining sample size and power of the herring run size es-
timates. 

______________________________________________________________________________________ 

Mean number
of herring

Fishway per 5-minutes s2 CV
1 4.377 111.59 2.413
2 3.773 46.43 1.806
4 2.571 30.11 2.134

Average CV 2.118

Total Daily PSE
CV N L r t n n of Total
2.118 156 33 0.2 1.96 397 12.04 0.102



that there is not enough power to detect a 100% 
decline in abundance over three survey years. 
 
Recommendations to Community Groups 
 

There are many choices of statistical designs 
offered in this document to suit each program and 
volunteer behavior.  However, it may be difficult 
deciding which design and level of counting are 
right for your group.  At the herring counting 
workshop held at the Massachusetts Division of 
Marine Fisheries’ Annisquam River Field Station 
on February 2, 2005, it was recommended that 
counting groups use the two-way stratified ran-
dom sampling design to help overcome problems 
discussed earlier and to produce reasonably accu-
rate and precise estimates of run size.  The de-
tailed recommendations are below: 
 
Counting Season: April 1st to mid-June. 
Counting Day:  7 am to 7 pm  (12 hrs.) 
Counting Periods: 7-11 am, 11-3 pm, and  
   3-7 pm. 
Counting Interval: 10 minutes. 
Counting Coverage: 3 counts per period 
 

There is no need to strictly coordinate the arri-
val times of volunteers by picking random inter-
vals each day and then assigning each to a volun-
teer.  As long as they arrive in somewhat of a ran-
dom fashion and effort occurs in each period, the 
estimate should be reasonably accurate.  What 
volunteers should avoid is setting arrivals at the 
same time each day.  This would produce a sys-
tematic-like sampling design that has not been 
formulated correctly and it will ultimately produce 
biased estimates. 
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α 0.2 0.15 0.1 0.05 0.01 0.001
df Confidence 80% 85% 90% 95% 99% 99.9%

1 3.078 4.165 6.314 12.706 63.657 636.619
2 1.886 2.282 2.920 4.303 9.925 31.599
3 1.638 1.924 2.353 3.182 5.841 12.924
4 1.533 1.778 2.132 2.776 4.604 8.610
5 1.476 1.699 2.015 2.571 4.032 6.869
6 1.440 1.650 1.943 2.447 3.707 5.959
7 1.415 1.617 1.895 2.365 3.499 5.408
8 1.397 1.592 1.860 2.306 3.355 5.041
9 1.383 1.574 1.833 2.262 3.250 4.781

10 1.372 1.559 1.812 2.228 3.169 4.587
11 1.363 1.548 1.796 2.201 3.106 4.437
12 1.356 1.538 1.782 2.179 3.055 4.318
13 1.350 1.530 1.771 2.160 3.012 4.221
14 1.345 1.523 1.761 2.145 2.977 4.140
15 1.341 1.517 1.753 2.131 2.947 4.073
16 1.337 1.512 1.746 2.120 2.921 4.015
17 1.333 1.508 1.740 2.110 2.898 3.965
18 1.330 1.504 1.734 2.101 2.878 3.922
19 1.328 1.500 1.729 2.093 2.861 3.883
20 1.325 1.497 1.725 2.086 2.845 3.850
21 1.323 1.494 1.721 2.080 2.831 3.819
22 1.321 1.492 1.717 2.074 2.819 3.792
23 1.319 1.489 1.714 2.069 2.807 3.768
24 1.318 1.487 1.711 2.064 2.797 3.745
25 1.316 1.485 1.708 2.060 2.787 3.725
26 1.315 1.483 1.706 2.056 2.779 3.707
27 1.314 1.482 1.703 2.052 2.771 3.690
28 1.313 1.480 1.701 2.048 2.763 3.674
29 1.311 1.479 1.699 2.045 2.756 3.659
30 1.310 1.477 1.697 2.042 2.750 3.646
31 1.309 1.476 1.696 2.040 2.744 3.633
32 1.309 1.475 1.694 2.037 2.738 3.622
33 1.308 1.474 1.692 2.035 2.733 3.611
34 1.307 1.473 1.691 2.032 2.728 3.601
35 1.306 1.472 1.690 2.030 2.724 3.591
36 1.306 1.471 1.688 2.028 2.719 3.582
37 1.305 1.470 1.687 2.026 2.715 3.574
38 1.304 1.469 1.686 2.024 2.712 3.566
39 1.304 1.468 1.685 2.023 2.708 3.558
40 1.303 1.468 1.684 2.021 2.704 3.551
50 1.299 1.462 1.676 2.009 2.678 3.496
60 1.296 1.458 1.671 2.000 2.660 3.460
70 1.294 1.456 1.667 1.994 2.648 3.435
80 1.292 1.453 1.664 1.990 2.639 3.416
90 1.291 1.452 1.662 1.987 2.632 3.402

100 1.290 1.451 1.660 1.984 2.626 3.390
110 1.289 1.450 1.659 1.982 2.621 3.381
120 1.289 1.449 1.658 1.980 2.617 3.373
130 1.288 1.448 1.657 1.978 2.614 3.367
140 1.288 1.447 1.656 1.977 2.611 3.361
200 1.286 1.445 1.653 1.972 2.601 3.340
500 1.283 1.442 1.648 1.965 2.586 3.310
∞ 1.282 1.440 1.645 1.960 2.576 3.291

Appendix A. Critical values of Student’s t-distribution (two-tails). 
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############################################################### 
#### Power Analysis for Linear and Exponential Trends  ######## 
#### Based on Gerrodette 1987, 1991                    ######## 
#### Tested Against Gerrodette's TREND program         ######## 
############################################################### 
 
 Trend<-2    # 1= Linear, 2=Exponential 
A1<-100     # Start Year Abundance 
CV<-0.30    # Proportional Standard Error (CV in Gerrodette) 
cvrel<-1    # PSE of A: 1=1/sqrt(A),2=constant, 3=sqrt(A) 
maxyrs<-6   # Maximum number of Years 
pR<-100 # Highest Positive R in percent 
step<-5 # Increment of R 
alpha<-0.05 # Alpha Level (Type I error) 
tail<-2    # 1=one-tail, 2=two-tail test 
 
  
 ######################  Program   #################### 
tlen<-length(seq(-100,pR,by=step)) 
results<-as.data.frame(array(rep(NA,tlen*(maxyrs-3+1)*8),dim=c(tlen*(maxyrs-3+1),8))) 
names(results)<-c("Years","Trend","CV","alpha","side","R","r","Power") 
place<-0 
 
 for (i in 3:maxyrs){ #Loop number of years 
 nyr<-i  
      R<--100 
   for (j in 0:(tlen-1)){  
    s2x<-((nyr+1)*(nyr-1))/12 ###Variance of X 
 
  ####### Linear Model ######### 
   if(Trend==1){ 
             r<-(R/100/(nyr-1)) 
   b<-A1*r 
            s2res<-ifelse(cvrel==1,((CV*A1)^2)*(1+(r/2)*(nyr-1)), 
              ifelse(cvrel==2,((CV*A1)^2)*(1+r*(nyr-1)*(1+(r/6)*(2*nyr-1))), 
              ((CV*A1)^2)*(1+(3*r/2)*(nyr-1)*(1+(r/3)*(2*nyr-1)+(r^2/6)*nyr*(nyr-1)))))            
   } 
 ###### Exponential Model ##############  
   if (Trend==2){  
         r<-((R/100+1)^(1/(nyr-1)))-1 
         b<-log(1+r) 
          if(cvrel==1){ 
    sum<-0 
              for(k in 1:i){ 
                  sum<-sum+log((CV^2/((1+r)^(k-1)))+1) 
              } 
              s2res<-sum/i 
          } 
          if(cvrel==2){ 
              s2res<-log(1+CV^2) 
          } 
          if(cvrel==3){ 
    sum<-0 
              for(k in 1:i){ 
                sum<-sum+log((CV^2*(1+r)^(k-1))+1) 
              } 
              s2res<-sum/i 
          } 
   }#If  close 
 
       sb<-sqrt(s2res/(nyr*s2x)) 
      delta<-abs(b/sb) 
      v<-nyr-2 

Appendix B.  R code for power analysis. R is free and can be downloaded at www.r-
project.org. 
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      tdist<-abs(qt(alpha/tail,v)) 
      powert<-round(1-pt(tdist,df=nyr-2,ncp=delta),2) 
      place<-place+1 
       results[place,1]<-i;results[place,2]<-Trend;results[place,3]<-CV;results[place,4]<-
alpha 
      results[place,5]<-tail;results[place,6]<-R;results[place,7]<-r 
      results[place,8]<-powert 
      R<-R+step 
    } 
} 
 
    t1<-ifelse (Trend==1,"Linear","Exponential") 
   #t2<-ifelse (cvrel==1,"1/SQRT(A)",ifelse(cvrel==2,"Constant","SQRT(A)")) 
   tit<-c(paste("Trend=",t1,sep=""),paste("PSE=",CV,sep="") 
      ,paste("Alpha=",alpha,sep=""),paste("Test=",tail,"-tailed",sep="")) 
   tit<-c(paste(tit,sep="",collapse=", ")) 
 
 ##########Make Legend Labels########### 
par(mfrow=c(1,1),adj=0.5, mgp=c(1.5,0.6,0)) 
leg.txt<-rep(NA,maxyrs-2) 
for (i in 1:maxyrs-2){ 
leg.txt[i]<-c(i+2) 
} 
legtype<-seq(1:(maxyrs-2)) 
for (i in 3:maxyrs){ 
  
    if (i==3){ 
       data<-subset(results,results$Years==i) 
       plot(data$R,data$Power,type="l",col="black",lty=c(1),ylim=c(0,1), 
        ylab="",xaxt="n",yaxt="n", 
        xlab="",main=tit,cex.main=1.2) 
        axis(1,seq(-100,pR,10),tcl=-0.3,cex.axis=0.9,mgp=c(1.5,0.6,0)) 
         axis(2,seq(0,1,0.1),las=1) 
         mtext("Power",at=-135,cex=1.0,line=-12,las=2) 
    mtext("Percent Change Over Years",at=0.5,line=-25,cex=1.0) 
    } 
    if (i>3){ 
       par(new=T) 
       data<-subset(results,results$Years==i) 
       lines(data$R,data$Power,type="l",lty=c(i-2),col="black") 
    } 
} 
 legend(x=-20,1,legend=leg.txt,ncol=maxyrs/2,lty=legtype,col="black", 
   bty="n",title="Years         ",cex=0.8) 

 
  

Appendix B cont’d. 
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