

## Massachusetts Division of Marine Fisheries Technical Report TR-28

# 2005 Massachusetts Striped Bass Monitoring Report

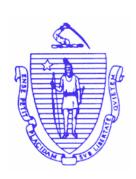
G. A. Nelson

Massachusetts Division of Marine Fisheries Department of Fish and Game Executive Office of Environmental Affairs Commonwealth of Massachusetts

### **Massachusetts Division of Marine Fisheries Technical Report Series**

Managing Editor: Michael P. Armstrong

The Massachusetts Division of Marine Fisheries Technical Reports present information and data pertinent to the management, biology and commercial and recreational fisheries of anadromous, estuarine, and marine organisms of the Commonwealth of Massachusetts and adjacent waters. The series presents information in a timely fashion that is of limited scope or is useful to a smaller, specific audience and therefore may not be appropriate for national or international journals. Included in this series are data summaries, reports of monitoring programs, and results of studies that are directed at specific management problems.


All Reports in the series are available for download in PDF format at:

<u>http://www.mass.gov/marinefisheries/publications/technical.htm</u> or hard copies may be obtained from the Annisquam River Marine Fisheries Station, 30 Emerson Ave., Gloucester, MA 01930 USA (978-282-0308).

- TR-1 McKiernan, D.J., and D.E. Pierce. 1995. The Loligo squid fishery in Nantucket and Vineyard Sound.
- TR-2 McBride, H.M., and T.B. Hoopes. 2001. 1999 Lobster fishery statistics.
- TR-3 McKiernan, D.J., R. Johnston, and W. Hoffman. 1999. **Southern Gulf of Maine raised footrope trawl experimental whiting fishery**.
- TR-4 Nelson, G.A, M.P. Armstrong, and T.B. Hoopes. 2001. Massachusetts 2000 striped bass monitoring report.
- TR-5 Chase, B.C., and A.R. Childs. 2002. Rainbow smelt (Osmerus mordax) spawning habitat in the Weymouth-Fore River.
- TR-6 Chase, B.C., J. Plough, and W. Castonguay. 2002. A study of the marine resources of Salem Sound, 1997.
- TR-7 Estrella, B.T., and R.P. Glenn. 2001. Massachusetts coastal commercial lobster sampling program May-November 2000.
- TR-8 Estrella, B.T. 2002. **Techniques for live storage and shipping of American lobster, third edition**.
- TR-9 McBride, H.M., and T.B. Hoopes. 2002. 2000 lobster fishery statistics.
- TR-10 Sheppard, J.J, M.P. Armstrong, D.J. McKiernan and D.E. Pierce 2003. Characterization of the Massachusetts scup (*Stenotomus chrysops*) fisheries.
- TR-11 Nelson, G.A., and T.B. Hoopes. 2002. Massachusetts 2001 striped bass fisheries monitoring report.
- TR-12 Howe, A. B., S. J. Correia, T. P. Currier, J. King, and R. Johnston. 2002. **Spatial distribution of ages 0 and 1 Atlantic cod** (*Gadus morhua*) off the Eastern Massachusetts coast, relative to 'Habitat Area of Special Concern'.
- TR-13 Dean, M.J., K.A. Lundy, and T.B. Hoopes. 2002. 2001 Massachusetts lobster fishery statistics.
- TR-14 Estrella, B.T., and R.P. Glenn. 2002. Massachusetts coastal commercial lobster trap sampling program, May-November 2001.
- TR-15 Reback, K.E., P.D. Brady, K.D. McLauglin, and C.G. Milliken. 2004. A survey of anadromous fish passage in coastal Massachusetts: Part 1. Southeastern Massachusetts.
- TR-16 Reback, K.E., P.D. Brady, K.D. McLauglin, and C.G. Milliken. 2004. A survey of anadromous fish passage in coastal Massachusetts: Part 2. Cape Cod and the Islands.
- TR-17 Reback, K.E., P.D. Brady, K.D. McLauglin, and C.G. Milliken. 2004. A survey of anadromous fish passage in coastal Massachusetts: Part 3. South Coastal.
- TR-18 Reback, K.E., P.D. Brady, K.D. McLauglin, and C.G. Milliken. 2004. A survey of anadromous fish passage in coastal Massachusetts: Part 4. Boston and North Coastal.
- TR-19 Nelson, G.A. 2003. 2002 Massachusetts striped bass monitoring report.
- TR-20 Dean, M.J., K.A. Lundy, and T.B. Hoopes. 2003. 2002 Massachusetts lobster fishery statistics.
- TR-21 Nelson, G.A. 2004. 2003 Massachusetts striped bass monitoring report.
- TR-22 Lyman, E.G. and D.J. McKiernan. 2005. Scale modeling of fixed-fishing gear to compare and quantify differently configured buoyline and groundline profiles: an investigation of entanglement threat.
- TR-23 Dean, M.J., K.A. Lundy, and T.B. Hoopes. 2005. 2003 Massachusetts lobster fishery statistics.
- TR-24 Nelson, G.A. 2005. 2004 Massachusetts striped bass monitoring report.
- TR-25 Nelson, G.A. 2006. A guide to statistical sampling for the estimation of river herring run size using visual counts.
- TR-26 Dean, M. J., S. R. Reed, and T. B. Hoopes. 2006. 2004 Massachusetts lobster fishery statistics.
- TR-27 Estrella, B. T., and R. P. Glenn. 2006. Lobster trap escape vent selectivity
- TR-28 Nelson, G. A. 2006. 2005 Massachusetts striped bass monitoring report.



# Massachusetts Division of Marine Fisheries Technical Report TR-28



# 2005 Massachusetts Striped Bass Monitoring Report

Gary A. Nelson

Massachusetts Division of Marine Fisheries Annisquam River Marine Fisheries Station Gloucester, MA

September, 2006

Massachusetts Division of Marine Fisheries
Paul Diodati, Director

Department of Fisheries, Wildlife and Environmental Law Enforcement
Dave Peters, Commissioner

Executive Office of Environmental Affairs
Robert W. Golledge, Jr., Secretary

Commonwealth of Massachusetts
Mitt Romney, Governor

Summary: During 2005, the commercial fishery for striped bass in Massachusetts harvested about 59,473 fish weighing 1,104,737 pounds. Total losses due to commercial harvesting (including release mortality) were 64,807 fish weighing 1,149,570 pounds. The recreational fishery harvested about 380,788 striped bass weighing over 5.3 million pounds. Total losses due to recreational fishing (including release mortality) were 799,767 fish weighing over 7.3 million pounds. Combined losses (including scientific losses) were 844,899 fish weighing over 8.5 million pounds, which reflects a 9.6% decrease in numbers lost and a 6.4 % decrease in weight lost compared to 2004 (939,078 fish; 9.0 million pounds). The majority of losses, 92% by number and 86% by weight, was attributed to the recreational fishery.

#### Introduction

This report summarizes the commercial and recreational striped bass fisheries conducted in Massachusetts during 2005. Data sources used to characterize the state fisheries come from monitoring programs of the Massachusetts Division of Marine Fisheries (DMF) and National Marine Fisheries Service (NMFS), which are considered to be essential elements of the long-term management approach described in Section 3 of the Atlantic States Marine Fisheries Commission's (ASMFC) Fisheries Management Report No. 41 (Amendment #6 to the Interstate Fishery management Plan for Atlantic Striped Bass (IFMP)).

#### **Commercial Fishery**

*Season:* July 12-August 17. No landings were permitted on Monday, Friday, or Saturday.

*Harvest:* 1,104,737 pounds (against a harvest quota of 1,094,962 pounds).

Allowable Gear Type: Hook and line.

Minimum Size: 34 inches total length.

*Trip Limit:* 5 fish per day on Sunday and 30 fish per day on Tuesday-Thursday.


Licensing, Reporting, and Estimation of Landings. To purchase striped bass directly from fishermen, fish dealers are required to obtain special authorization from the DMF in addition to standard seafood dealer permits. Dealer reporting requirement included weekly reporting to the DMF or SAFIS system of all striped bass purchases. If sent to DMF, all landings information is entered into SAFIS by DMF personnel. Following the close of the season, dealers are also required to provide a written transcript consisting of purchase dates, number of fish, pounds of fish, and names and permit numbers of fishermen from whom they purchased.

Fishermen must have a DMF commercial fishing permit (of any type) and a special striped bass fishing endorsement to sell their catch. They are required to file catch reports at the end of the season, which include the name of the dealer(s) that they sell to and extensive information describing their catch composition and catch rates. Many fishermen voluntarily provide daily fishing logs.

2005 Landings. The landings used here come from the SAFIS system. Commercial landings in 2005 were 1,104,737 pounds (59,473 fish) (Table 1). Most striped bass were sold in Barnstable,

**Table 1**. Attributes of the Massachusetts striped bass commercial fishery, 1990-2005.

|        | SEASON | HAR      | VEST      |         |         |
|--------|--------|----------|-----------|---------|---------|
|        | LENGTH | (Pounds) | (Numbers) | DEALER  | FISHING |
| SEASON | (Days) | 000s     | 000s      | PERMITS | PERMITS |
| 1990   | 93     | 160.6    | 6.3       | 95      | 1,498   |
| 1991   | 59     | 234.8    | 10.4      | 92      | 1,739   |
| 1992   | 39     | 239.2    | 11.3      | 135     | 1,861   |
| 1993   | 35     | 262.6    | 13.0      | 152     | 2,056   |
| 1994   | 24     | 199.6    | 10.4      | 150     | 2,367   |
| 1995   | 57     | 782.0    | 41.2      | 161     | 3,353   |
| 1996   | 42     | 696.8    | 38.3      | 179     | 3,801   |
| 1997   | 42     | 785.9    | 44.8      | 173     | 5,500   |
| 1998   | 28     | 822.0    | 45.3      | 180     | 5,540   |
| 1999   | 40     | 788.2    | 40.8      | 167     | 3,577   |
| 2000   | 36     | 779.7    | 40.2      | 137     | 3,280   |
| 2001   | 29     | 815.0    | 40.2      | 164     | 4,241   |
| 2002   | 21     | 924.9    | 44.9      | 132     | 4,598   |
| 2003   | 21     | 1055.4   | 55.7      | 151     | 4,867   |
| 2004   | 19     | 1206.3   | 60.6      | 130     | 4,376   |
| 2005   | 22     | 1104.7   | 59.5      | 162     | 4,025   |



Bristol and Suffolk counties of Massachusetts (Figure 1).

Size Composition. Information from biological sampling, catch reports and voluntary logs is used to characterize disposition of the catch, catch weight, and size composition by catch category. Data from 4,308 fish sampled from the 2005 commercial harvest and 2000 DMF diet study were used to construct a length-weight equation that was used to estimate weight-at-size for individual bass. The following geometric regression was derived:

$$\log_{10}(W) = -3.4363 + 2.9875 * \log_{10}(L),$$

$$RMS = 0.0030$$

where W equals weight in pounds, L equals total length in inches, and RMS is the residual mean square error. This equation was used to estimate the arithmetic average weight for given lengths by back-transforming the geometric weight as follows:

$$W = 10^{(-3.4363 + 2.9875 * \log_{10}(L) + RMS/2)}$$

Size composition of the commercial catch by category of disposition is presented in Appendix Tables 1A (numbers of fish) and 1B (pounds of fish). About 48% of the all fish caught had lengths >34 inches.

Age and Sex Composition.. Seven hundred and forty-two striped bass sampled from the 2005 commercial harvest were used to sex and age the The proportion that each age harvested fish. comprised the total samples was estimated from a sub-sample of 251 fish which guaranteed a precision of  $\pm 10\%$  at  $\alpha = 0.05$ . Weighted proportions at age were generated by weighting the age proportions sampled in each county by county landings. Age was determined from scales and sex was determined by visual inspection of gonadal tissue (Sykes Method). Age ranged from 7 to 16 years, and 97.7% were females. About 86.5% of the sub-sample consisted of individuals from the 1993-1997 year classes (ages 8-12) (Table 2).

<u>Estimates of Total Catch Rates</u>. Estimates of total catch rates (total number of fish caught per

Table 2. Age composition of the 2005 commercial harvest.

|     |       | -      |      | Weighted     |              |
|-----|-------|--------|------|--------------|--------------|
|     | Year  |        |      | Mean         | Mean         |
| Age | Class | Number | %    | Length (in.) | Weight (lbs) |
| 7   | 1998  | 5      | 2.0  | 33.2         | 12.8         |
| 8   | 1997  | 50     | 19.9 | 36.0         | 16.2         |
| 9   | 1996  | 71     | 28.1 | 36.3         | 16.3         |
| 10  | 1995  | 45     | 18.0 | 37.9         | 19.7         |
| 11  | 1994  | 34     | 13.7 | 39.7         | 22.1         |
| 12  | 1993  | 17     | 6.8  | 40.3         | 25.7         |
| 13  | 1992  | 18     | 7.1  | 41.7         | 22.1         |
| 14  | 1991  | 7      | 2.8  | 44.2         | 32.8         |
| 15  | 1990  | 3      | 1.2  | 44.6         | 33.2         |
| 16  | 1989  | 1      | 0.4  | 46.1         | 40.6         |

hour) for the commercial fishery were developed in order to provide an index that is more indicative of fluctuations in population abundance. mandatory catch reports, all fishermen are asked to record the total hours fished, number and pounds of fish caught by disposition category (i.e., released sub-legal, released legal, sold, and consumed), area fished and the fishing mode (Surf, Boat, Both) by This information was used under a generalized linear model (GLM) framework to generate a standardized catch rate index (Hilborn and Walter, 1992). Each record represented the summarization of a permit's monthly number of fish caught and hours fished by year, month, area fished reduced to 4 regions (Cape Cod Canal, Southern MA, Cape Cod Bay, North MA) and fishing mode. Only data from July-August were used to constraint analyses to the most recent duration of the fishing season. The catch rate for each record was calculated by dividing the total numbers caught by the total number of hours fished. The catch rate was standardized using the GLM model

$$\ln(y+1) = a + \sum_{i=1}^{n} b_i X_i + e$$

where y is the observed catch rate, a is the intercept,  $b_i$  is the slope coefficient of the ith factor,  $X_i$  is the ith categorical variable, and e is the error term. Any variable not significant at  $\alpha = 0.05$  with type-III (partial) sum of squares was dropped from the

initial GLM model and the analysis was repeated. First-order interactions were not considered in the analyses. The back-transformed geometric mean for each year was estimated by

$$\hat{y} = \exp^{(LSM)} - 1$$

where LSM is the least-squares natural log mean of each year. Age-specific catch rates were generated by multiplying the annual catch rates by the annual proportions-at-age in the total catch.

Results of the GLM analysis (Appendix Table 2) show that although year, sub-area, and fishing mode were significant factors, the variables accounted for only about 5% of the total variation in catch rates.

Overall commercial catch rates have been steadily increasing since 1991 (Fig. 2). Agespecific catch rates are shown in Figure 3. There were considerable fluctuations in the age-specific indices for ages 2-7, but generally indices increased through 2001 and dropped in 2002. Trends in the ages 2-7 indices show some increases in the last few year, although the age-3 index continued to decline through 2005. Indices for ages 8-9 and ages-12-13+fluctuated greatly but without trend. For ages 10-11, indices were relatively stable over time, but declined in 2000 and have remained low through 2005.

<u>Characterization of Other Losses</u>. Release mortality was estimated by using a hook-release

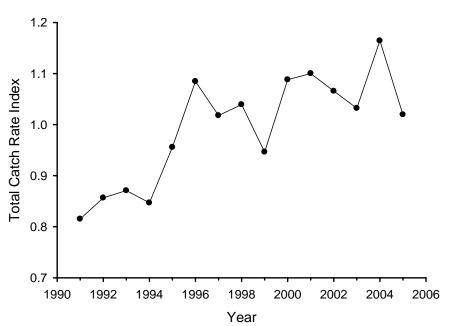
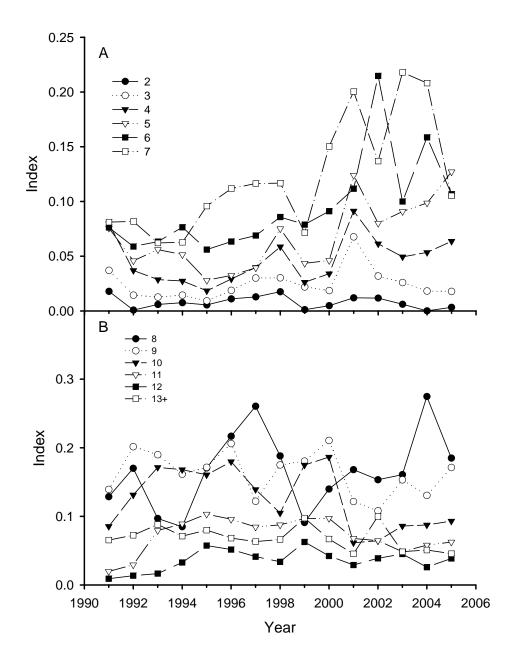




Figure 2. Total catch rate index for the Massachusetts commercial striped bass fishery.

Figure 3. Age-specific total catch rate indices for A) ages 2-7 and B) ages 8-13+ striped bass.



mortality rate of 8% applied against the released fish in Appendix Tables 1A and 1B. Total losses due to release mortality were 5,334 fish weighing approximately 44,833 pounds.

#### **Recreational Fishery**

Season: None

Daily Bag Limit: Two fish per person Allowable Gear Type: Hook and Line Minimum Size: 28 inches total length

Licensing and Reporting Requirements: None

Harvest levels: Harvest (A+B1) and total catch (A+B1+B2) estimates (Table 3) were provided by the NMFS MRFSS. Reference should be made to Osborn and Salz (1994) for a description of the new trip estimation procedure and its effect on catch.

The MRFSS estimate of total catch (including fish released alive) in 2005 was 5,370,524 striped bass, which is lower than the 2004 estimate (Table 3). The estimate of total harvest in 2005 was 380,788, which is also lower than the 2004 estimate. Total pounds harvested was over 5.3

million in 2005 (Table 3).

The MRFSS estimates were post-stratified by county to determine where harvested bass were being landed by recreational anglers. Most landings (90%) occurred in Barnstable, Essex, Dukes/Nantucket, and Plymouth counties (Figure 4). Only 10% of landings occurred in Bristol, Suffolk and Norfolk counties (Figure 4).

Size Composition. The length distribution of harvested fish was estimated from biological sampling conducted by the MRFSS program in Massachusetts. For released fish, volunteer recreational anglers were solicited to collect length and scale samples from striped bass that they captured each month (May-October). Each person was asked to collect a minimum of 5 scales from at least 10 fish per month and record the disposition of the each fish (released or harvested) and fishing mode. Over 2,800 samples were received from over 100 anglers. The size frequencies of measured fish are shown in Figure 5 by disposition and mode. The size frequency of released fishes was used to allocate MRFSS release numbers by mode among Numbers-at-length and weight-atsize classes. length data by disposition are summarized in

**Table 3**. MRFSS estimates of striped bass harvest, releases, and total catch in Massachusetts.

|      |         | . (4 54)     | D 1 (D0)      | T : 1 (A D: DO) |
|------|---------|--------------|---------------|-----------------|
|      | Harves  | st (A+B1)    | Released (B2) | Total (A+B1+B2) |
| Year | Numbers | Weight (lbs) | Numbers       | Numbers         |
| 1986 | 29,434  | 298,816      | 442,298       | 471,732         |
| 1987 | 10,807  | 269,459      | 93,660        | 104,467         |
| 1988 | 21,050  | 421,317      | 209,632       | 230,682         |
| 1989 | 13,044  | 295,227      | 193,067       | 206,111         |
| 1990 | 20,515  | 319,092      | 339,511       | 360,026         |
| 1991 | 20,799  | 440,605      | 448,735       | 469,534         |
| 1992 | 57,084  | 972,116      | 779,814       | 836,898         |
| 1993 | 58,511  | 1,113,446    | 833,566       | 892,077         |
| 1994 | 74,538  | 1,686,049    | 2,102,514     | 2,177,052       |
| 1995 | 73,806  | 1,504,390    | 3,280,882     | 3,354,688       |
| 1996 | 68,300  | 1,291,706    | 3,269,746     | 3,338,046       |
| 1997 | 199,373 | 2,891,970    | 5,417,751     | 5,617,124       |
| 1998 | 207,952 | 2,973,456    | 7,184,358     | 7,392,310       |
| 1999 | 126,755 | 1,822,818    | 4,576,208     | 4,702,963       |
| 2000 | 181,295 | 2,618,216    | 7,382,031     | 7,563,326       |
| 2001 | 288,032 | 3,644,561    | 5,410,899     | 5,698,930       |
| 2002 | 308,749 | 4,304,883    | 5,718,984     | 6,027,733       |
| 2003 | 402,201 | 5,120,554    | 4,306,965     | 4,709,166       |
| 2004 | 406,590 | 5,539,086    | 5,878,546     | 6,285,136       |
| 2005 | 380,788 | 5,340,361    | 4,989,736     | 5,370,524       |

**Figure 4**. Percentage of total numbers of striped bass harvested by recreational anglers in each county of Massachusetts during 2005.

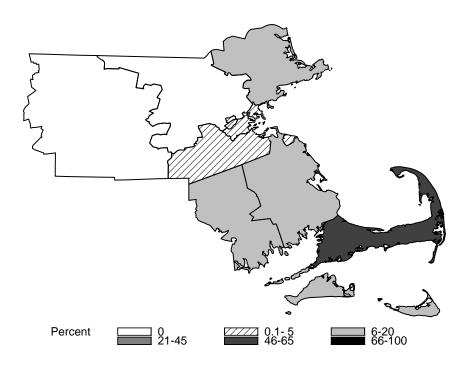
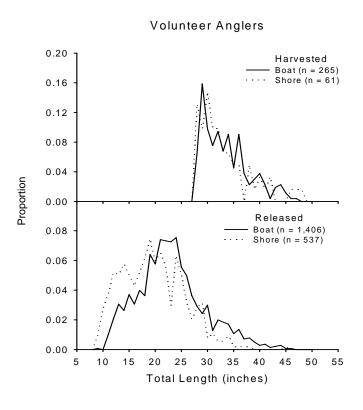




Figure 5. Sizes of striped bass caught by volunteer recreational anglers in 2005 by disposition and fishing mode.



Appendix Tables 3A and 3B.

Age Composition. A sub-sample of 483 fish from the volunteer angler survey was aged and combined with commercial and tagging samples to produce an age-length key used to convert the MRFSS size distribution into age classes. Recreational samples were selected using a weighted random design based on the total number of striped bass caught in each wave and mode stratum (as determined by MRFSS).

Trends in Catch Rates. To examine trends in recreational angler catches, standardized catch rates (total number of fish per trip) for striped bass were calculated for all fish caught using a deltalognormal model (Lo et al., 1992) which adjusts trip catches for the effects of year, wave, county, area fished, mode fished, and time spent fishing. A deltalognormal model was selected as the best approach to estimate year effects after examination of model dispersion (Terceiro, 2003) and standardized residual deviance plots (McCullagh and Nelder, 1989). In the delta-lognormal model, catch data is decomposed into catch success/failure and positive catch components. Each component is analyzed separately using appropriate statistical techniques and then the statistical models are recombined to obtain year estimates. The catch success/failure was modelled as a binary response to the categorical variables using multiple logistic regression:

$$\log it(p) = \log(p/1 - p) = a + \sum_{i=1}^{n} b_i X_i + e$$

where p is the probability of catching a fish, a is the intercept,  $b_i$  is the slope coefficient of the ith factor,  $X_i$  is the ith categorical variable, and e is the error term. PROC LOGISTIC (SAS, 2002) was used to estimate parameters, and goodness-of-fit was assessed using concordance measures and the Hosmer-Lemeshow test (SAS, 2002).

Positive catches, transformed using the natural logarithm, were modelled assuming a normal error distribution using PROC GLM

$$\log(y) = a + \sum_{i=1}^{n} b_i X_i + e$$

where y is the observed positive catch,  $b_i$ , and  $X_i$  are the same symbols as defined earlier, and e is the normal error term. Any variable not significant at  $\alpha$ =0.05 with type-III (partial) sum of squares was dropped from the initial GLM model and the

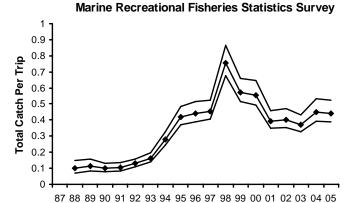
analysis was repeated. First-order interactions were considered in the initial analyses but it was not always possible to generate annual means by the least-square methods with some interactions included (see Searle et al., 1980); therefore, only main effects were considered.

The annual index of striped bass total catch per trip was estimated by combining the two component models. The estimate in year i from the models is given by

$$\hat{I}_i = \hat{p}_i * \hat{y}_i$$

where  $p_i$  and  $y_i$  are the predicted annual responses from the logistic and GLM models.  $p_i$  is calculated by

$$\hat{p}_i = \frac{\exp(\hat{a} + \hat{b}_i)}{1 + \exp(\hat{a} + \hat{b}_i)}$$


and yi is calculated by

$$\hat{\mathbf{y}}_i = \exp(LSM_i + \sigma^2/2)$$

where LSM<sub>i</sub> is the least squares mean for year i and  $\sigma^2$  is the mean square error. Only data for those anglers who said they targeted striped bass were used in the analyses.

Results of the logistic and GLM analyses are given in Appendix Tables 4 and 5. Standardized catch rates increased from 1993 to 1998, declined through 2003, but increased in 2004 and 2005 (Fig. 6).

**Figure 6**. Estimates of total catch rates (total number of fish caught per trip) of the recreational fishery for striped bass in Massachusetts waters. 95% confidence intervals are shown.



#### Characterization of Losses

The same methods and rates previously described in the commercial fishery section were used to estimate recreational losses. Release mortality was 399,179 fish (2,023,188 pounds).

#### **Scientific Collections**

About 125 bass were taken or killed for scientific research in 2005.

#### **By-catch in Other Fisheries**

During 1994, DMF sea-sampling efforts identified striped bass as by-catch in a Nantucket Sound springtime trawl fishery directed at longfinned squid (Loligo pealei). Those by-catch estimates were about 3,100 fish (17,600 pounds). Anecdotal information was also reported for this fishery which suggested that striped bass by-catch ranged from 8,000 pounds per day, with up to single tows landing 19,000 pounds. DMF personnel seasampled this fishery during 1995-2000 and observed only incidental catches of striped bass. Limited sampling and low catch rates make it unreasonable to extrapolate sample information. DMF will continue to monitor potential sources of striped bass by-catch during 2006.

#### **Estimated Total Losses**

Total estimated loss of striped bass during 2005 was 844,899 fish weighing 8,514,543 pounds (Table 4), which is a 9.6% decrease in numbers lost and a 6.4% decrease in weight compared to 2004 (939,078 fish; 9,061,080 pounds). The majority of losses, 92% by number and 86% by weight, was attributed to combined losses in the recreational fishery.

#### **Removals-At-Age Matrix**

The removals (numbers) due to release mortality and harvest by the recreational and commercial fisheries and scientific activities are apportioned by age and mortality source in Table 5.

# **Required Fishery-Independent Monitoring Programs**

#### Massachusetts Tagging Study

The Massachusetts Division of Marine Fisheries (DMF) joined the Striped Bass Cooperative State-Federal Coast-wide Tagging Study in 1991. The study's primary objective has been to develop an integrated database of tag releases and recoveries that will provide current information related to striped bass mortality and migration rates. majority of striped bass tagged prior to 1991 (the tagging study began in 1986) have ranged from 18 to 28 inches in length. Since Atlantic coastal fisheries had employed minimum sizes of 28-36 inches, resulting mortality estimates from these data may understate the effects fishing has on larger striped bass. The Massachusetts tagging effort has therefore focused on the tag and release of larger fish that reach coast-wide legal sizes. accomplish this job, the DMF contracts several select charter boat captains to take DMF personnel on board to tag and release their catch during regularly scheduled fishing trips. Fish are caught in fall by trolling artificial baits in shoal areas around Nantucket Island. In 2004, spring tagging of small bass in Plum Island Sound also occurred. Floy internal anchor tags provided by the USFWS are used. Total length of each fish is recorded. Scales are removed from each fish for aging. The release data are made available to the Annapolis, Maryland office of the USFWS, which coordinates regional tagging programs of state-federal participants.

**Table 4**. Estimates of striped bass losses occurring in Massachusetts waters during 2005.

| FISHERY           | NUMBER  | POUNDS    | MEAN WT. |
|-------------------|---------|-----------|----------|
| Commercial        |         |           |          |
| Harvest           | 59,473  | 1,104,737 | 18.6     |
| Release Mortality | 5,334   | 44,833    | 8.4      |
|                   |         |           |          |
| Recreational      |         |           |          |
| Harvest           | 380,788 | 5,340,361 | 14.0     |
| Release Mortality | 399,179 | 2,023,188 | 5.1      |
|                   |         |           |          |
| Scientific        | 125     | 1,423     | 11.4     |
|                   |         |           |          |
| Total             | 844,899 | 8,514,543 |          |

| Table 5. | Massachusetts | Striped Bass | Removals-At-Age | Matrix of 2005 By | Source. |
|----------|---------------|--------------|-----------------|-------------------|---------|
|----------|---------------|--------------|-----------------|-------------------|---------|

|     |            | Recreatio         | nal     | Commercial        |         |  |
|-----|------------|-------------------|---------|-------------------|---------|--|
| Age | Scientific | Release Mortality | Harvest | Release Mortality | Harvest |  |
| 2   | 20         | 64999             | 0       | 33                |         |  |
| 3   | 5          | 60348             | 0       | 177               |         |  |
| 4   | 5          | 102893            | 2428    | 630               |         |  |
| 5   | 11         | 81539             | 35667   | 1254              |         |  |
| 6   | 13         | 31965             | 55018   | 1017              |         |  |
| 7   | 15         | 16260             | 60007   | 839               | 1187    |  |
| 8   | 23         | 16633             | 77792   | 802               | 11852   |  |
| 9   | 19         | 11882             | 65632   | 432               | 16704   |  |
| 10  | 8          | 5688              | 33851   | 119               | 10689   |  |
| 11  | 4          | 2945              | 21837   | 25                | 8123    |  |
| 12  | 1          | 1708              | 11567   | 4                 | 4069    |  |
| 13  | 1          | 1279              | 9341    | 1                 | 4204    |  |
| 14  | 0          | 751               | 4212    | 1                 | 1669    |  |
| 15  | 0          | 141               | 1799    | 0                 | 733     |  |
| 16  | 0          | 95                | 1461    | 0                 | 244     |  |
| 17+ | 0          | 55                | 175     | 0                 | 0       |  |

For the analyses of survival, the ASMFC Tagging Subcommittee began using the MARK implementation of the Brownie et al. (1985) tagging models (White and Burnham 1997). The program MARK calculates maximum likelihood estimates of the multinomial parameters of survival and recovery based on an observed matrix of recaptures. The following passages were taken from ASMFC (2003) to describe the analyses of tagging data: "The analysis protocol involves the following series of steps. First, a full set of biologically-reasonable candidate models are identified prior to analysis. Various patterns of survival and recovery are used to parameterize the candidate models. These include models that allow parameters to be constant, time specific, or allow time to be modeled as a continuous variable. Other models allow time periods to coincide with changes in regulatory regimes established coastwide. These models are then fit to the tag recovery data and are arranged in order of fit by Akaike's Information Criteria (AIC). Annual survival is then calculated as a weighted average across all models, where the weight is a function of model fit. The lower the AICc (i.e., the better the fit), the higher the weight assigned to a specific model in the model averaging. averaging eliminates the need to select a single, best model, allowing the uncertainty of model selection to be incorporated into the variance of parameter estimates".

Summary statistics compiled since the start of this study are shown in Table 6. The recapture matrix used in the MARK modeling is shown in

Table 7. Estimates from the MARK modeling showed that striped bass survival was relatively stable prior to 1994, but it dropped after the ASMFC closures were lifted in 1995. Survival has been increasing since 2000-01 (Figure 7).

#### **Planned Management Programs in 2005**

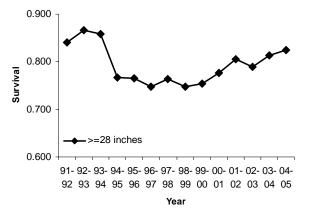
#### Regulations

Massachusetts' recreational bag and minimum size limits will remain at 2 fish per day and 28length, respectively. inches total For commercial fishery, minimum size limit and quota 34-inches and 1,159,750 pounds will remain allowed under Amendment 6, respectively. The commercial fishery quota will be monitored using the SAFIS system. In addition, the commercial season will not open until July 12 and harvesting will be allowed only on Sunday with a daily bag limit of 5 fish, and Tuesday-Thursday with a daily bag limit of 30 fish.

### **Monitoring Programs**

All monitoring programs will continue in 2006.

Table 6. Massachusetts tag summary statistics.


|      |       |       | Number Ave. Length Ran |        |       | h Range |      |
|------|-------|-------|------------------------|--------|-------|---------|------|
| Year | Trips | Boats | Tagged                 | Length | SD    | Min     | Max. |
| 1991 | 17    | 4     | 388                    | 817    | 106.4 | 534     | 1300 |
| 1992 | 29    | 3     | 899                    | 798    | 125.9 | 524     | 1267 |
| 1993 | 15    | 2     | 678                    | 784    | 125.0 | 515     | 1210 |
| 1994 | 13    | 2     | 377                    | 735    | 93.2  | 548     | 1028 |
| 1995 | 11    | 2     | 449                    | 767    | 110.2 | 470     | 1178 |
| 1996 | 8     | 2     | 203                    | 748    | 64.1  | 541     | 1077 |
| 1997 | 10    | 2     | 321                    | 773    | 114.7 | 485     | 1090 |
| 1998 | 12    | 2     | 382                    | 797    | 93.8  | 597     | 1055 |
| 1999 | 16    | 2     | 471                    | 777    | 95.5  | 594     | 1108 |
| 2000 | 25    | 4     | 1095                   | 752    | 102.6 | 510     | 1204 |
| 2001 | 14    | 3     | 456                    | 786    | 102.5 | 503     | 1110 |
| 2002 | 12    | 3     | 239                    | 764    | 103.6 | 487     | 1060 |
| 2003 | 15    | 3     | 655                    | 825    | 92.1  | 602     | 1204 |
| 2004 | 25    | 7     | 784                    | 707    | 193.1 | 316     | 1164 |
| 2005 | 19    | 4     | 752                    | 726    | 210.5 | 299     | 1114 |

**Table** 7. Recapture matrix of striped bass ≥28 inches from 1991-2005 (Fall Tagging Only). A recapture year was defined as the beginning of tagging in year t to beginning of tagging in year t+1.

|                |      |      |      | Year I | Recapti | ured |      |      |      |      |      |      |      |      |
|----------------|------|------|------|--------|---------|------|------|------|------|------|------|------|------|------|
| Year Tagged    | 1991 | 1992 | 1993 | 1994   | 1995    | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| 1991           | 16   | 25   | 11   | 14     | 8       | 3    | 1    | 3    | 3    | 1    | 1    | 0    | 0    | 0    |
| 1992           |      | 33   | 34   | 27     | 26      | 19   | 16   | 11   | 4    | 1    | 3    | 2    | 1    | 0    |
| 1993           |      |      | 20   | 23     | 29      | 20   | 17   | 7    | 2    | 3    | 2    | 1    | 1    | 1    |
| 1994           |      |      |      | 15     | 11      | 9    | 5    | 4    | 4    | 1    | 0    | 2    | 0    | 0    |
| 1995           |      |      |      |        | 21      | 12   | 16   | 9    | 10   | 2    | 2    | 2    | 0    | 2    |
| 1996           |      |      |      |        |         | 11   | 6    | 3    | 3    | 1    | 2    | 0    | 1    | 0    |
| 1997           |      |      |      |        |         |      | 14   | 20   | 8    | 6    | 4    | 5    | 0    | 1    |
| 1998           |      |      |      |        |         |      |      | 4    | 4    | 1    | 2    | 0    | 0    | 0    |
| 1999           |      |      |      |        |         |      |      |      | 10   | 4    | 8    | 3    | 4    | 0    |
| 2000           |      |      |      |        |         |      |      |      |      | 19   | 23   | 16   | 11   | 10   |
| 2001           |      |      |      |        |         |      |      |      |      |      | 25   | 14   | 15   | 9    |
| 2002           |      |      |      |        |         |      |      |      |      |      |      | 9    | 4    | 6    |
| 2003           |      |      |      |        |         |      |      |      |      |      |      |      | 30   | 25   |
| 2004           |      |      |      |        |         |      |      |      |      |      |      |      |      | 23   |
| Total Released | 329  | 612  | 463  | 219    | 274     | 118  | 220  | 59   | 163  | 411  | 353  | 172  | 615  | 542  |

Figure 7. Estimates of annual survival of striped bass released in coastal waters of Massachusetts.

### MA Striped Bass Survival - Tagging Data



#### Acknowledgements

The collection and quality of striped bass data would suffer greatly without the efforts of many DMF employees. Tom Hoopes, Micah Dean, Kim Lundy, and Story Reed assisted with the Oracle database of commercial landings, wrote SOL code to summarize the landings data, and managed catch reports. Jennifer Stritzel-Thomson coordinated the volunteer recreational angler data collection program and entered scale envelope data. Boardman aged all scale samples. John Boardman, Paul Caruso, and J.A. MacFarlan conducted the commercial sampling of stripers. Paul Caruso and John Boardman also coordinated and conducted the USFWS cooperative tagging study. Mary Ann Fletcher managed catch reports and entered data.

Funding for this effort was provided by the Massachusetts Division of Marine Fisheries and Sportfish Restoration Funds Grants F-57-R and F-48-R.

#### **Literature Cited**

- ASMFC. 2003. 2003 stock assessment report for Atlantic striped bass: catch at age based VPA & tag release/recovery based survival estimation. Report # SBTC-2003-03.
- Brownie, C., D.R. Anderson, K.P. Burnham, and D.R. Robson. 1985. Statistical Inference from Band Recovery a handbook. 2<sup>nd</sup> ed. U.S. Fish Wildl. Serv. Resour. Publ. No 156.
- Hilborn, R. and C. J. Walters. 1992. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. 570 p. Chapman and Hall, Inc., New York, NY.
- Lo, N. C., L. D. Jacobson, and J. L. Squire. 1992. Indices of relative abundance from fish spotter data based on the delta-lognormal models. Can. J. Fish. Aquat. Sci. 49:2525-2526.
- McCullagh, P. and J. A. Nelder. 1989. Generalized linear models, 511 p. Chapman and Hall, London.
- SAS Institute Inc. 2002. SAS Online Doc 9.1.2.
- Searle, S. R., F. M. Speed, and G. A. Milliken . 1980. Population marginal means in the linear model: an alternative to least-squares means. Am. Stat. 34:216-221.

- Terceiro, M. 2003. The statistical properties of recreational catch rate data for some fish stocks off the northeast US coast. Fish. Bull. 101: 653-672.
- White, G.C., and K.P. Burnham. 1999. Program. MARK survival estimation from populations of marked animals. Bird Study 46: 120-138.

**Appendix Table 1A**. Estimated size distribution of the Massachusetts commercial striped bass catch (numbers of fish) in 2005.

|           |        |          |         |         | Cumulative |
|-----------|--------|----------|---------|---------|------------|
| TL (in.)  | Kept   | Released | Total   | Percent | Percent    |
| 11        |        | 0        | 0       | 0.00    | 0.00       |
| 12        |        | 0        | 0       | 0.00    | 0.00       |
| 13        |        | 0        | 0       | 0.00    | 0.00       |
| 14        |        | 84       | 84      | 0.07    | 0.07       |
| 15        |        | 21       | 21      | 0.02    | 0.08       |
| 16        |        | 272      | 272     | 0.22    | 0.30       |
| 17        |        | 440      | 440     | 0.35    | 0.65       |
| 18        |        | 566      | 566     | 0.45    | 1.10       |
| 19        |        | 566      | 566     | 0.45    | 1.55       |
| 20        |        | 1,111    | 1,111   | 0.88    | 2.43       |
| 21        |        | 734      | 734     | 0.58    | 3.01       |
| 22        |        | 2,096    | 2,096   | 1.66    | 4.67       |
| 23        |        | 1,970    | 1,970   | 1.56    | 6.23       |
| 24        |        | 4,989    | 4,989   | 3.95    | 10.19      |
| 25        |        | 3,563    | 3,563   | 2.82    | 13.01      |
| 26        |        | 5,638    | 5,638   | 4.47    | 17.48      |
| 27        |        | 5,303    | 5,303   | 4.20    | 21.68      |
| 28        |        | 5,010    | 5,010   | 3.97    | 25.65      |
| 29        |        | 2,389    | 2,389   | 1.89    | 27.55      |
| 30        |        | 6,309    | 6,309   | 5.00    | 32.55      |
| 31        |        | 4,842    | 4,842   | 3.84    | 36.39      |
| 32        | 574    | 8,342    | 8,916   | 7.07    | 43.46      |
| 33        | 2259   | 8,971    | 11,230  | 8.90    | 52.36      |
| 34        | 8395   | 2,138    | 10,533  | 8.35    | 60.71      |
| 35        | 7456   | 314      | 7,770   | 6.16    | 66.87      |
| 36        | 7894   | 629      | 8,523   | 6.76    | 73.62      |
| 37        | 6697   | 105      | 6,802   | 5.39    | 79.02      |
| 38        | 6099   | 126      | 6,225   | 4.93    | 83.95      |
| 39        | 4870   | 42       | 4,912   | 3.89    | 87.84      |
| 40        | 3289   | 84       | 3,373   | 2.67    | 90.52      |
| 41        | 4158   | 0        | 4,158   | 3.30    | 93.81      |
| 42        | 2634   | 0        | 2,634   | 2.09    | 95.90      |
| 43        | 1808   | 0        | 1,808   | 1.43    | 97.33      |
| 44        | 1739   | 21       | 1,760   | 1.40    | 98.73      |
| 45        | 745    | 0        | 745     | 0.59    | 99.32      |
| 46        | 562    | 0        | 562     | 0.45    | 99.77      |
| 47        | 225    | 0        | 225     | 0.18    | 99.94      |
| 48        | 0      | 0        | 0       | 0.00    | 99.94      |
| 49        | 0      | 0        | 0       | 0.00    | 99.94      |
| 50        | 70     | 0        | 70      | 0.06    | 100.00     |
| 51        | 0      | 0        | 0       | 0.00    | 100.00     |
| 52        | 0      | 0        | 0       | 0.00    | 100.00     |
| Total     | 59,474 | 66,675   | 126,149 |         |            |
| Avg. Size | 37.6   | 28.4     | 32.7    |         |            |

**Appendix Table 1B**. Estimated size distribution of the Massachusetts commercial striped bass catch (pounds) n 2005.

I

|             |           |          |           |         | Cumulative |
|-------------|-----------|----------|-----------|---------|------------|
| TL (in.)    | Kept      | Released | Total     | Percent | Percent    |
| 11          | 0         | 0        | 0         | 0.00    | 0.00       |
| 12          | 0         | 0        | 0         | 0.00    | 0.00       |
| 13          | 0         | 0        | 0         | 0.00    | 0.00       |
| 14          | 0         | 80       | 80        | 0.00    | 0.00       |
| 15          | 0         | 25       | 25        | 0.00    | 0.01       |
| 16          | 0         | 387      | 387       | 0.02    | 0.03       |
| 17          | 0         | 750      | 750       | 0.05    | 0.07       |
| 18          | 0         | 1,143    | 1143      | 0.07    | 0.14       |
| 19          | 0         | 1,344    | 1344      | 0.08    | 0.22       |
| 20          | 0         | 3,074    | 3074      | 0.18    | 0.41       |
| 21          | 0         | 2,349    | 2349      | 0.14    | 0.55       |
| 22          | 0         | 7,712    | 7712      | 0.46    | 1.01       |
| 23          | 0         | 8,278    | 8278      | 0.50    | 1.51       |
| 24          | 0         | 23,802   | 23802     | 1.43    | 2.94       |
| 25          | 0         | 19,207   | 19207     | 1.15    | 4.09       |
| 26          | 0         | 34,170   | 34170     | 2.05    | 6.14       |
| 27          | 0         | 35,973   | 35973     | 2.16    | 8.31       |
| 28          | 0         | 37,883   | 37883     | 2.28    | 10.58      |
| 29          | 0         | 20,067   | 20067     | 1.21    | 11.79      |
| 30          | 0         | 58,630   | 58630     | 3.52    | 15.31      |
| 31          | 0         | 49,626   | 49626     | 2.98    | 18.29      |
| 32          | 6,469     | 94,010   | 100479    | 6.03    | 24.32      |
| 33          | 27,908    | 110,831  | 138739    | 8.33    | 32.65      |
| 34          | 113,389   | 28,877   | 142265    | 8.54    | 41.20      |
| 35          | 109,816   | 4,631    | 114446    | 6.87    | 48.07      |
| 36          | 126,475   | 10,075   | 136550    | 8.20    | 56.27      |
| 37          | 116,450   | 1,822    | 118272    | 7.10    | 63.37      |
| 38          | 114,846   | 2,368    | 117214    | 7.04    | 70.41      |
| 39          | 99,103    | 853      | 99956     | 6.00    | 76.41      |
| 40          | 72,189    | 1,840    | 74029     | 4.45    | 80.86      |
| 41          | 98,249    | 0        | 98249     | 5.90    | 86.76      |
| 42          | 66,885    | 0        | 66885     | 4.02    | 90.78      |
| 43          | 49,254    | 0        | 49254     | 2.96    | 93.74      |
| 44          | 50,742    | 612      | 51354     | 3.08    | 96.82      |
| 45          | 23,248    | 0        | 23248     | 1.40    | 98.22      |
| 46          | 18,727    | 0        | 18727     | 1.12    | 99.34      |
| 47          | 7,995     | 0        | 7995      | 0.48    | 99.82      |
| 48          | 0         | 0        | 0         | 0.00    | 99.82      |
| 49          | 0         | 0        | 0         | 0.00    | 99.82      |
| 50          | 2,992     | 0        | 2992      | 0.18    | 100.00     |
| 51          | 0         | 0        | 0         | 0.00    | 100.00     |
| 52          | 0         | 0        | 0         | 0.00    | 100.00     |
| Total       | 1,104,737 | 560,418  | 1,665,155 |         |            |
| Avg. Weight | 18.6      | 8.4      | 13.2      |         |            |

Appendix Table 2. Results of the GLM analyses of total catch rates for the commercial striped bass fishery.

|                 |       | Sum of      |             |        |        |
|-----------------|-------|-------------|-------------|--------|--------|
| Source          | DF    | Squares     | Mean Square | F      | P      |
| Model           | 19    | 387.21      | 20.38       | 87.94  | <.0001 |
| Error           | 34559 | 8009.09     | 0.23        |        |        |
| Corrected Total | 34578 | 8396.30     |             |        |        |
| R-Square        | 0.04  | 6117        |             |        |        |
| Source          | DF    | Type III SS | Mean Square | F      | P      |
| Year            | 14    | 71.32       | 5.09        | 21.98  | <.0001 |
| Subarea         | 3     | 165.65      | 55.22       | 238.26 | <.0001 |
|                 | _     |             |             |        |        |
| Fishing Mode    | 2     | 93.78       | 46.89       | 202.33 | <.0001 |

### **Least-Squares Means**

| Year | Mean        | Standard Error |
|------|-------------|----------------|
| 1991 | 0.596134263 | 0.013181867    |
| 1992 | 0.618652621 | 0.013493622    |
| 1993 | 0.62640443  | 0.012854988    |
| 1994 | 0.613466612 | 0.012820517    |
| 1995 | 0.67073764  | 0.010708046    |
| 1996 | 0.734593477 | 0.021835039    |
| 1997 | 0.701995721 | 0.010048189    |
| 1998 | 0.712551928 | 0.010523415    |
| 1999 | 0.665980587 | 0.011051444    |
| 2000 | 0.736184569 | 0.011619994    |
| 2001 | 0.742000052 | 0.011769921    |
| 2002 | 0.725376019 | 0.011523796    |
| 2003 | 0.709051474 | 0.010063716    |
| 2004 | 0.772084821 | 0.013776076    |
| 2005 | 0.702858257 | 0.011812465    |

**Appendix Table 3A**. Estimated size distribution of the Massachusetts recreational striped bass catch (numbers of fish) in 2005.

|           |           |           |           |         | Cumulative |
|-----------|-----------|-----------|-----------|---------|------------|
| TL (in.)  | Harvested | Released  | Total     | Percent | Percent    |
| 9         | 0         | 9,748     | 9,748     |         |            |
| 10        | 0         | 21,558    | 21,558    | 0.40    | 0.40       |
| 11        | 0         | 67,596    | 67,596    | 1.26    | 1.66       |
| 12        | 0         | 120,912   | 120,912   | 2.26    | 3.92       |
| 13        | 0         | 167,647   | 167,647   | 3.13    | 7.05       |
| 14        | 0         | 158,544   | 158,544   | 2.96    | 10.00      |
| 15        | 0         | 199,646   | 199,646   | 3.72    | 13.73      |
| 16        | 0         | 160,401   | 160,401   | 2.99    | 16.72      |
| 17        | 0         | 206,301   | 206,301   | 3.85    | 20.57      |
| 18        | 0         | 201,988   | 201,988   | 3.77    | 24.34      |
| 19        | 0         | 329,283   | 329,283   | 6.14    | 30.48      |
| 20        | 0         | 289,990   | 289,990   | 5.41    | 35.89      |
| 21        | 0         | 371,299   | 371,299   | 6.93    | 42.81      |
| 22        | 0         | 352,634   | 352,634   | 6.58    | 49.39      |
| 23        | 0         | 331,448   | 331,448   | 6.18    | 55.57      |
| 24        | 0         | 364,962   | 364,962   | 6.81    | 62.38      |
| 25        | 0         | 278,998   | 278,998   | 5.20    | 67.59      |
| 26        | 0         | 227,501   | 227,501   | 4.24    | 71.83      |
| 27        | 0         | 170,915   | 170,915   | 3.19    | 75.02      |
| 28        | 22,463    | 142,706   | 165,168   | 3.08    | 78.10      |
| 29        | 45,870    | 126,650   | 172,520   | 3.22    | 81.32      |
| 30        | 44,198    | 124,728   | 168,926   | 3.15    | 84.47      |
| 31        | 32,455    | 63,083    | 95,538    | 1.78    | 86.25      |
| 32        | 40,531    | 85,391    | 125,922   | 2.35    | 88.60      |
| 33        | 29,998    | 79,679    | 109,677   | 2.05    | 90.65      |
| 34        | 30,878    | 80,621    | 111,500   | 2.08    | 92.73      |
| 35        | 25,764    | 43,256    | 69,020    | 1.29    | 94.01      |
| 36        | 21,556    | 56,296    | 77,853    | 1.45    | 95.47      |
| 37        | 11,991    | 30,846    | 42,837    | 0.80    | 96.27      |
| 38        | 15,574    | 36,199    | 51,773    | 0.97    | 97.23      |
| 39        | 15,803    | 21,537    | 37,340    | 0.70    | 97.93      |
| 40        | 15,403    | 13,224    | 28,627    | 0.53    | 98.46      |
| 41        | 9,097     | 16,777    | 25,874    | 0.48    | 98.94      |
| 42        | 3,046     | 5,126     | 8,172     | 0.15    | 99.10      |
| 43        | 2,921     | 10,661    | 13,581    | 0.25    | 99.35      |
| 44        | 3,503     | 13,628    | 17,131    | 0.32    | 99.67      |
| 45        | 3,979     | 4,405     | 8,384     | 0.16    | 99.83      |
| 46        | 2,711     | 3,554     | 6,265     | 0.12    | 99.94      |
| 47        | 1,169     | Ô         | 1,169     | 0.02    | 99.96      |
| 48        | 583       | 0         | 583       | 0.01    | 99.98      |
| 49        | 0         | 0         | 0         | 0.00    | 99.98      |
| 50        | 1,295     | 0         | 1,295     | 0.02    | 100.00     |
| 51        | 0         | 0         | 0         | 0.00    | 100.00     |
| 52        | Ö         | 0         | Ö         | 0.00    | 100.00     |
| 53        | 0         | 0         | Ö         | 0.00    | 100.00     |
| Total     | 380,788   | 4,989,736 | 5,370,524 |         |            |
| Avg. Size | 33.6      | 22.3      | 23.1      |         |            |
| J - 1     | =         | -         |           |         |            |

 $\textbf{Appendix Table 3B}. \ \ \text{Estimated size distribution of the Massachusetts recreational striped bass catch (pounds) } \\ in 2005.$ 

|             |           |            |            |         | Cumulative |
|-------------|-----------|------------|------------|---------|------------|
| TL (in.)    | Kept      | Released   | Total      | Percent | Percent    |
| 9           | 0         | 2,532      | 2,532      |         |            |
| 10          | 0         | 7,672      | 7,672      | 0.03    | 0.03       |
| 11          | 0         | 31,979     | 31,979     | 0.10    | 0.13       |
| 12          | 0         | 74,183     | 74,183     | 0.24    | 0.37       |
| 13          | 0         | 130,642    | 130,642    | 0.43    | 0.80       |
| 14          | 0         | 154,166    | 154,166    | 0.50    | 1.30       |
| 15          | 0         | 238,570    | 238,570    | 0.78    | 2.08       |
| 16          | 0         | 232,432    | 232,432    | 0.76    | 2.84       |
| 17          | 0         | 358,300    | 358,300    | 1.17    | 4.01       |
| 18          | 0         | 416,133    | 416,133    | 1.36    | 5.37       |
| 19          | 0         | 797,303    | 797,303    | 2.60    | 7.97       |
| 20          | 0         | 818,440    | 818,440    | 2.67    | 10.64      |
| 21          | 0         | 1,212,358  | 1,212,358  | 3.96    | 14.60      |
| 22          | 0         | 1,323,085  | 1,323,085  | 4.32    | 18.92      |
| 23          | 0         | 1,420,213  | 1,420,213  | 4.64    | 23.55      |
| 24          | 0         | 1,775,838  | 1,775,838  | 5.80    | 29.35      |
| 25          | 0         | 1,533,632  | 1,533,632  | 5.01    | 34.36      |
| 26          | 0         | 1,406,016  | 1,406,016  | 4.59    | 38.95      |
| 27          | 0         | 1,182,367  | 1,182,367  | 3.86    | 42.81      |
| 28          | 173,229   | 1,100,523  | 1,273,752  | 4.16    | 46.97      |
| 29          | 392,837   | 1,084,658  | 1,477,495  | 4.82    | 51.79      |
| 30          | 418,866   | 1,182,054  | 1,600,920  | 5.23    | 57.02      |
| 31          | 339,227   | 659,371    | 998,598    | 3.26    | 60.28      |
| 32          | 465,795   | 981,341    | 1,447,136  | 4.72    | 65.00      |
| 33          | 377,947   | 1,003,859  | 1,381,806  | 4.51    | 69.51      |
| 34          | 425,319   | 1,110,489  | 1,535,808  | 5.01    | 74.52      |
| 35          | 386,980   | 649,715    | 1,036,695  | 3.38    | 77.91      |
| 36          | 352,209   | 919,824    | 1,272,033  | 4.15    | 82.06      |
| 37          | 212,632   | 546,980    | 759,612    | 2.48    | 84.54      |
| 38          | 299,074   | 695,126    | 994,201    | 3.25    | 87.79      |
| 39          | 327,949   | 446,958    | 774,907    | 2.53    | 90.32      |
| 40          | 344,766   | 295,990    | 640,756    | 2.09    | 92.41      |
| 41          | 219,210   | 404,265    | 623,475    | 2.04    | 94.44      |
| 42          | 78,886    | 132,735    | 211,621    | 0.69    | 95.13      |
| 43          | 81,140    | 296,174    | 377,313    | 1.23    | 96.37      |
| 44          | 104,245   | 405,522    | 509,766    | 1.66    | 98.03      |
| 45          | 126,631   | 140,166    | 266,797    | 0.87    | 98.90      |
| 46          | 92,134    | 120,772    | 212,906    | 0.70    | 99.60      |
| 47          | 42,362    | 0          | 42,362     | 0.14    | 99.73      |
| 48          | 22,483    | 0          | 22,483     | 0.07    | 99.81      |
| 49          | 0         | 0          | 0          | 0.00    | 99.81      |
| 50          | 56,442    | 0          | 56,442     | 0.18    | 99.99      |
| 51          | 0         | 0          | 0          | 0.00    | 99.99      |
| 52          | 0         | 0          | 0          | 0.00    | 99.99      |
| 53          | 0         | 0          | 0          | 0.00    | 99.99      |
| Total       | 5,340,361 | 25,292,386 | 30,632,747 |         | _          |
| Avg. Weight | 14.0      | 5.1        | 5.7        |         |            |

| R-Square                                                                               |                                                   |                                                                                                                                                      |                                         | 0.197 N                                                                                                                                                                                                                                                                                                                                    | /lax-resc                                                                                         | aled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R-Squa                                                                                                                                                                                                                                                                                                                                                    | are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2669                                                     |
|----------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Type 3 Analysis of Effects Wald Effect YEAR WAVE CNTY AREA_X MODE_FX FFDAYS12 NUM_HRSF |                                                   | C                                                                                                                                                    | 0F<br>17<br>3<br>7<br>2<br>4<br>14<br>1 | 209<br>46-<br>17<br>2780<br>888                                                                                                                                                                                                                                                                                                            | 8.4938<br>9.1073<br>4.518<br>1.355<br>0.5016<br>8.8259                                            | Pr>Ch<br>8 <.0001<br>3 <.0001<br>1 <.0001<br>7 <.0001<br>6 <.0001<br>9 <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | isq                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
|                                                                                        | Parameter                                         | DF                                                                                                                                                   | E                                       | Estimate                                                                                                                                                                                                                                                                                                                                   | Error                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vald<br>Chi-Square                                                                                                                                                                                                                                                                                                                                        | Pr > Chis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | q                                                          |
|                                                                                        | Intercept YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR | 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 3 4 5 7 9 19 21 23 1 2 3 4 5 6 0 10 20 30 40 50 60 70 80 90 100 |                                         | -2.92 -0.8882 -0.7012 -0.8359 -0.9026 -0.766 -0.4597 0.0189 0.3276 0.3553 0.3598 0.8213 0.5722 0.5099 0.2801 0.3385 0.2455 0.3756 0.3255 0.0338 -0.0707 0.00954 -0.2699 -0.0991 0.4627 -0.4937 0.2355 -0.03 -0.1226 -0.0743 0.5254 -9.0965 3.8519 3.0061 -0.708 -0.5625 -0.2771 -0.1805 -0.0568 0.0756 0.0336 0.1238 0.1668 -0.0612 0.2281 | 13<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3974<br>.1191<br>.1031<br>.0794<br>.0729<br>.0552<br>.0432<br>.0395<br>.0.042<br>.0.038<br>.0.037<br>.0376<br>.0403<br>.0381<br>.0423<br>.0413<br>.0481<br>.0292<br>.0309<br>.0254<br>.0483<br>.0574<br>.0267<br>.0803<br>.0517<br>.0332<br>.0517<br>.0332<br>.0517<br>.0332<br>.0517<br>.0349<br>.0383<br>.0388<br>.0494<br>.0383<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.0388<br>.038 | 0.0475 55.6438 46.2931 110.7902 153.1439 192.4355 77.6785 0.191 68.7241 71.4228 89.7963 492.2344 231.3104 160.1799 54.0898 63.9839 35.34 60.8519 119.3091 1.3405 5.2192 0.1408 31.2356 2.9874 299.4461 37.782 20.7839 0.8172 53.4601 10.701 0.0015 0.0288 0.0827 0.0503 412.5562 215.8722 50.9196 17.3068 1.205 2.6873 0.3056 2.852 2.5794 0.3038 21.7694 | 0.827 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 <.000 | 511<br>1111<br>1111<br>1111<br>1111<br>1111<br>1111<br>111 |
|                                                                                        | FFDAYS12<br>FFDAYS12<br>FFDAYS12<br>NUM_HRSF      | 150<br>200<br>250                                                                                                                                    | 1<br>1<br>1<br>1                        | 0.2929<br>0.1895<br>0.1937<br>0.2218                                                                                                                                                                                                                                                                                                       | 0                                                                                                 | .0786<br>.1023<br>.2369<br>00536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.8788<br>3.4312<br>0.6688<br>1710.8838                                                                                                                                                                                                                                                                                                                  | 0.000<br>0.06<br>0.413<br><.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4<br>5                                                     |

Appendix Table 5. Results of the GLM regression analysis of MRFSS striped bass positive catches.

| Source<br>Model<br>Error<br>Corrected                                                                                        | DF<br>47<br>17554<br>Total                                                                                                                                                       | Sum of<br>Squares<br>1473.33174<br>8442.03781<br>17601                                                                                                                                                                                                  | Mean<br>31.347484<br>0.480918<br>9915.369551                                                                                                                            | Square F<br>65.18 <.0001 |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| R-Square<br>0.148591                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                                                                                                         |                                                                                                                                                                         |                          |
| Source                                                                                                                       | DF                                                                                                                                                                               | Type III SS                                                                                                                                                                                                                                             | Mean Square                                                                                                                                                             | F Pr>F                   |
| YEAR<br>WAVE<br>CNTY<br>AREA_X<br>MODE_FX<br>FFDAYS12<br>NUM_HRSF                                                            | 17<br>3<br>7<br>2<br>3<br>14<br>1                                                                                                                                                | 156.237019<br>89.4638144<br>92.8826133<br>25.4679083<br>250.808239<br>274.795129<br>422.171648                                                                                                                                                          | 13.2689448<br>12.7339541<br>83.6027464<br>19.6282235                                                                                                                    |                          |
| YEAR                                                                                                                         | LSMEAN                                                                                                                                                                           | Error                                                                                                                                                                                                                                                   | Pr>t                                                                                                                                                                    |                          |
| 1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>2000<br>2001<br>2002<br>2003<br>2004 | 1.193681<br>1.218108<br>1.342847<br>1.390755<br>1.327882<br>1.394787<br>1.515574<br>1.542011<br>1.568456<br>1.645825<br>1.597872<br>1.629284<br>1.503311<br>1.463625<br>1.478055 | 0.07889638<br>0.06586751<br>0.05381935<br>0.05103031<br>0.03993896<br>0.03891682<br>0.03268103<br>0.03038919<br>0.03198123<br>0.02986124<br>0.02899433<br>0.02934413<br>0.03094431<br>0.03071093<br>0.03206364<br>0.0318958<br>0.03343425<br>0.03218784 | <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 |                          |