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Executive Summary 

This study of Tracking and Reducing the Energy Consumption and Emissions of MBTA Rapid 
Transit Vehicles (TREEM) was undertaken as part of the Massachusetts Department of 
Transportation (MassDOT) Research Program. This program is funded with Federal Highway 
Administration (FHWA) State Planning and Research (SPR) funds. Through this program, 
applied research is conducted on topics of importance to the Commonwealth of Massachusetts 
transportation agencies.  

The Massachusetts Bay Transportation Authority (MBTA) operates the public transportation 
network that serves the Boston metropolitan area. The MBTA’s rapid transit network is the 
fourth busiest in the United States by passenger ridership and includes a light rail line (Green 
Line) and three heavy rail lines (Red, Orange, and Blue Lines). The energy consumption of the 
rapid transit system is significant, with the MBTA spending approximately $38 million per year 
422 GWh of electricity for the system, including vehicle traction power, signal systems, and 
stations. The MBTA currently has meters at electric substations throughout the system but no 
direct measurements of electricity consumption by trains. 

This study addresses a need for understanding the contributors to energy consumption in the 
rapid transit system. This information is useful for planning and predicting energy consumption, 
which is important for making decisions about purchasing electricity, operating trains, and 
managing facilities. To this end, the study addresses the following questions: 

• What is the relationship between energy consumption and train movement of MBTA
rapid transit vehicles?

• Can the energy consumption of the system be reliably predicted?
• What were the impacts of the COVID-19 pandemic on operations and energy

consumption?

In light of these questions, this study has two main objectives: 

1. To analyze the relationship between energy (including costs and emissions) and rapid
transit train movement.

2. To estimate a model to predict systemwide energy consumption at an hourly level.

During the course of the study, the COVID-19 pandemic had a profound impact on rapid transit 
ridership and operations, which led to greater variation in ridership and train operations than 
would normally be expected. These changes prompted a third objective:  

3. To evaluate the impact of the pandemic systemwide energy consumption.

Methodology 

The research method had three main parts. First, an exploratory analysis of the available data 
from the MBTA on energy consumption and train operations provided general insights about the 
trends over time and the relationships between the data. Energy consumption data from the 
MBTA were aggregated hourly for each substation in the system, which accounted for electricity 
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consumption of trains, stations, and other related equipment in the vicinity of the station. 
Altogether, this accounted for the total electricity consumption of the rapid transit system. 
Comprehensive data on train movements and passenger ridership were obtained from the MBTA 
Research Database. This data included time-stamped records of train locations from each vehicle 
as it moved through the system. An automated process was developed to construct detailed 
trajectories for each vehicle’s movement through the system, including calculation of speed and 
acceleration, which are important determinants of the energy required for tractive power. These 
data were visualized in a trajectory dashboard and used to calculate planning metrics that are 
relevant for monitoring the performance of the MBTA heavy rail system in terms of operations 
and energy consumption. 
  
Second, a regression model was developed and estimated to relate explanatory factors to the 
systemwide energy consumption of the MBTA heavy rail system. An exploratory analysis of 
correlations between the potential explanatory variables and the systemwide energy consumption 
was used to identify the potential parameters for a regression model. A multiple linear regression 
(MLR) was then estimated to relate the explanatory variables to the energy consumption. Since 
the physical relationship between speed, acceleration, and energy is not linear, observations of 
speed and acceleration were grouped by quantile into six bins for each (allowing for 36 
interaction terms). Three techniques were used to select the most relevant variables for the 
model: lasso regression was used to extract relevant features; the variance inflation factor (VIF) 
was used to identify multicollinear variables; and the correlation coefficients were inspected to 
identify collinear variables. These methods were used to develop a model that provides strong 
explanatory power using only variables that have a statistically significant relationship with 
energy consumption. 
  
Third, the performance of the model was tested by using 80% of the observations from 2019 as 
training data and the remaining 20% of the observations for validation. The same model was then 
tested with data from 2020, which is particularly revealing, because the COVID-19 pandemic 
has led to significant reductions in rapid transit ridership and train operations, which tested the 
ability of the model to accurately capture the effect on energy consumption. 
 
Results 
 
Planning Metrics 
Annual energy consumption for MBTA rapid transit operations has averaged 422 GWh from 
2009 to 2020, with very little fluctuation until 2019. The changes in ridership and operations 
associated with the COVID-19 pandemic resulted in a reduction in energy consumption by 7% 
from 2019 (414 GWh) to 2020 (384 GWh). Energy consumption varied by month (with peak 
consumption in January associated with the coldest weather), day of the week (with fewer trains 
in operation on weekends), and time of day (again, with fewer trains operating in off-peak hours 
and no revenue service over night). The main planning metrics for energy consumption and rapid 
transit operations were identified and are summarized for 2019 in Table 1. 
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Table 1: Planning metrics 

Planning metrics Mean 
Energy per vehicle-mile (MWh/veh-mi) 0.04 
Energy per vehicle-hour (MWh/veh-hr) 0.27 
Cost per vehicle-mile ($/veh-mi) 1.56 
Cost per vehicle-hour($/veh-hr) 10.82 

 
Trajectory Dashboard 
The processed train-tracking records were used to construct trajectories for each train that 
operates in MBTA’s rapid transit system. The data for each train can be visualized in a trajectory 
dashboard (e.g., Figure 1), which summarizes the distance traveled and elapsed time between 
observations, as well as computed speed and acceleration. The histograms show the distributions 
of observed speeds and accelerations, and a map shows the locations of observations in the 
network. 

 
Figure 1: Trajectory dashboard for Green Line, Vehicle ID 3699 

 
Energy Consumption Model 
The regression analysis identified the variables with the strongest explanatory power for 
predicting the systemwide energy consumption. The final model predicts hourly energy 
consumption as a linear combination of the following explanatory variables: 
 

• Number of trains operating within the hour 
• Tap-in rapid transit ridership within the hour 
• Daily mean temperature 
• Daily mean temperature squared 
• Monthly dummy variables 
• 26 speed-acceleration interaction terms (out of 36 total) 

 
The estimated model has indicated a good fit between the explanatory variables and the observed 
energy consumption data. The variables that had the biggest effect on variations in energy 
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consumption are the temperature and the number of operating vehicles. Of the variables included 
in the model, ridership had the smallest effect. 
  
The performance of the model was first evaluated with parameters estimated to fit a training data 
set from 80% of the observations in 2019. Applying this model to the remaining 2019 data, the 
root mean squared error (RMSE) was 2.19 MWh and mean average percentage error (MAPE) 
was 3.32%, all indicating high predictive accuracy (Figure 2). The model was then tested on data 
for the entire year 2020, which resulted in an RMSE of 2.7 MWh and MAPE of 4.68% (Figure 
3). Although there was some variation in the energy consumption that the model did not fully 
capture, the predictions are robust even though the model was trained with pre-pandemic data 
from 2019. The model still produced accurate energy consumption estimates based on observed 
temperature, operations, and ridership data in 2020, the latter two of which were significantly 
impacted by the COVID-19 pandemic. 
  

 
Figure 2: Linear regression model performance on train set and validation set, 2019 

  

 
Figure 3: Linear regression model performance on test set, 2020 

 
A random forests model was also estimated to predict energy consumption in this project. The 
optimal hyperparameters for the Random Forests were 500 estimators (trees) and a random 
splitting-variable subset size of 40. The entire set of 2019 hourly observations was used for 
training the model (noting that about 37% of these observations are expected to be in the OOB 
sample). The research team reserved observations from the year 2020 for predictive performance 
testing. The random forests model resulted in a RMSE of 2.94 MWh and a MAPE of 5.01%, 
shown in Figure 4. 
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Figure 4: Random forests model performance on test set, 2020 

 
Impacts of COVID-19 
The COVID-19 pandemic has brought about significant changes to MBTA rapid transit use and 
operations, as shutdowns have been implemented to protect public health. Figure 5 shows time 
series of energy consumption, rapid transit ridership, and train operations (vehicle miles and 
vehicle hours) in 2019 and 2020. Although ridership plummeted following the lockdown orders 
in March 2020, and vehicle operations were reduced by almost half, the impacts on energy 
consumption were relatively low. Train service was restored to normal levels in July 2020, but 
ridership remained depressed through the end of the year. The model accounts for these changes 
in demand and operations in estimating energy consumption for 2020, and the low impact of 
ridership is reflected in the small coefficient in the model. The data and model show that energy 
consumption is largely driven by fixed components of the system. 
  
Conclusions and Future Work 
 
This project utilized data from MBTA rapid transit operations, ridership, and ambient 
temperature to accurately predict systemwide electricity consumption. The study resulted in four 
main contributions and findings: 
 

1. Detailed train trajectories were computed from the MBTA’s train tracking data, which 
characterize the movements of trains that are correlated with energy consumption. 

2. A high-performance energy consumption model was developed that is robust to large 
disruptions, such as the COVID-19 pandemic. 

3. The key drivers of system-wide energy consumption were identified as temperature, 
baseline energy consumption by facilities, and train operations. 

4. Ridership was shown to have a very small impact on energy consumption. 
  
Ongoing research efforts include equipping individual trains with accelerometers to collect high-
resolution, train-specific data to identify more detailed relationships between train motion and 
energy consumption. The trajectory analysis tool that was developed can be extended to a real-
time trajectory-energy dashboard. The dashboard and model can be used for scenario planning 
and analysis.  
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Figure 5: Time series plots of energy, ridership, vehicle-miles and vehicle-hours, Jan. 2019–Dec. 

2020, for MBTA rapid transit system. 
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1.0 Introduction 

Urban rapid transit systems are critical for public transportation networks. In transit-oriented 
high-density cities such as New York, Tokyo, and Beijing, rapid transit is one of the most 
popular and convenient modes of transportation. According to the International Transport 
Forum (1), the demand for urban passenger rail is expected to increase from 1.12 trillion 
passenger-kilometers traveled (pkm) in 2015 to 1.80 trillion pkm in 2050—an increase of 
60.7% (Figure 6). 
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Figure 6: Urban rail passenger-kilometers by mode (billions) 

Also, CO2 emissions due to urban passenger transport were estimated at 2200 million tCO2e 
in 2015. This is expected to increase by 37% to 3000 million tCO2e in 2050 (see Figure 7) 
(2). Data on energy consumption of urban rapid transit systems, however, are not readily 
available. 
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Figure 7: Global urban passenger CO2 emissions (million tCO2e) 

 
The heavy- and light-rail (rapid transit vehicle) system of the Massachusetts Bay 
Transportation Authority (MBTA) is the fourth busiest in the United States (Wikipedia, n.d.). 
In 2019, the MBTA RTV system operated trains over 1.5 million vehicle-hours and 10.5 
million vehicle-miles. In addition, 150 million riders tapped into the system for their mobility 
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needs in the same year. To provide traction power for this system, the MBTA spends $38 
million annually. According to MBTA urban transit annual energy consumption statistics 
(Figure 8), annual consumption has averaged 422 GWh over the past 11 years. This energy 
consumption has been coupled with increased costs and rising greenhouse gas (GHG) 
emissions.  
 

 
Figure 8: Annual energy consumption of MBTA urban rapid transit system 

In order to facilitate effective planning for current and future needs, the MBTA requires a 
framework that not only provides important consumption metrics but also explains the 
various contributors to energy consumption and their interactions. Furthermore, this 
framework should also be useful for predicting energy usage in order to evaluate the relevant 
impacts of proposed strategy decisions, particularly in response to disruptive events or 
financial constraints. Ultimately, there is a critical need to reduce costs while still meeting the 
mobility needs of the surrounding communities in the Boston area. 

1.1 Research Questions and Objectives 

In order to frame these practical challenges, the research team developed the following 
research questions: 
 

• What is the relationship between energy consumption and train movement of MBTA 
rapid transit vehicles?  

• Can the energy consumption of the system be reliably predicted? 
• What were the impacts of COVID-19 on the system, and what can be learned from 

the implemented response? 
 
The corresponding research objectives are as follows: 
 

• Analyze the relationship between energy (along with costs and emissions) and train 
movement. 

• Estimate a model to predict system-wide energy consumption. 
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• Analyze the impacts of the service and demand changes due to COVID-19 on the 
system and use these to validate the estimated model. 

1.2 Report Structure 

The rest of the report is organized as follows. Chapter 2 presents a survey of the existing 
literature on transit system energy modeling. Chapter 3 describes the data structures and 
sources used in the project. Chapter 4 presents the research framework and methods, 
followed by the results in Chapter 5. These consist of the planning metrics estimates, model 
coefficients, and model performance. Chapter 6 analyzes the impacts of COVID-19 on the 
MBTA RTV system. Chapter 7 concludes with a summary of study findings and possible 
future directions for research, practice, and knowledge transfer. 
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2.0 Literature Review 

2.1 Overview 

Various approaches have been implemented in recent years to address the challenges relating 
to energy consumption and consequent costs and emissions in rapid transit systems. These 
efforts have ranged from simulation platforms to optimization and machine learning models. 
Currently, systems researchers have developed effective methods to optimize energy 
consumption. Yet, these approaches have their limitations when applied to the real world, as 
they rarely integrate the objectives of reducing energy, emissions, and costs, which are 
important for service providers and regulators. 

2.2 Energy Consumption Simulation 
Approaches 

Some researchers proceeded from the network’s operating system to conduct simulations to 
find ways to reduce energy consumption. Higuera et al. (2) proposed that during the 
acceleration of the metropolitan railway, the stored kinetic energy will be greatly consumed 
to avoid DC-link perturbation voltage. They established a Voltage Compensation System 
based on simulation analysis of six railway stations and used this system to evaluate the 
energy savings. Mao, Mao, and Yu (3) built a traction power supply model for a virtual 
metro network using the Simulink (4) environment. The study demonstrated that adjusting 
the departure interval between metro trains is a viable approach for energy consumption 
reduction. Ruigang et al. (5) designed a new onboard energy storage system (ESS), and this 
system was improved for energy recovery of the metro vehicle braking. It simulated metro 
vehicle traction conditions and tested the characteristics of the ESS.  
 
Su, Tang, and Wang (6) analyzed how the factors in an optimal train control model influence 
the traction energy consumption. They established the relationship between energy reduction 
strategies and energy system design. The energy strategies were estimated by the data of the 
Beijing Yizhuang metro line. The model indicated that the energy could reduce by 1.5% to 
15% if the factors in the model were appropriately adjusted. An electric train energy 
consumption modeling framework was created by Wang and Rakha (7), which takes 
instantaneous regenerative braking efficiency into account to support railway simulation 
systems. The model was calibrated by data from the Metropolitan Area Express Blue Line, 
using an unconstrained nonlinear optimization program, and was validated using data from 
Chicago, Illinois. It was confirmed that the energy recovery of the tested Chicago route could 
reduce the overall power consumption by 20%.  
 
Sanchis and Zuriaga (8) developed a computer model for calculating the speed curve of 
subway vehicles to minimize energy consumption. The model considered the behavior of a 
single vehicle under manual driving and is limited by various factors to calculate the different 
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commands that the driver wants to execute by the system. The proposed solution can reduce 
net energy consumption by about 19%. Another example used a neural network model to 
simulate the non-linear relationship between energy consumption and other variables such as 
site space design, meteorological factors, and the usage of 19 selected stations. This study 
provides a useful methodology to reduce the electric energy consumption of new stations (9). 
 
Other efforts have been made to determine the factors responsible for energy consumption in 
rapid transit systems. For example, one study (10) introduced a multicriteria decision method 
for this purpose and demonstrated that the introduction of renewable energy is important for 
reducing consumption. Andrade and D’Agosto (11) evaluated the energy used in the life 
cycle of a new subway network in Rio de Janeiro and the emissions generated and avoided. 
They confirmed that the increase in the share of renewable energy in power generation and 
the improvement in cement and steel production are key factors in reducing emissions during 
the life cycle.  
 
Some field surveys and measurement data are utilized to investigate the electricity 
consumption of underground subway stations. A study conducted by Arikan and Cam (10) 
showed that the lighting system dominated the underground station’s energy consumption. 
This study shows that complete information of non-traction energy usage is effective on the 
energy consumption reduction and operation costs. Wang et al. (12) developed a continuous 
railway transportation simulator for multimodal energy-efficient routing applications. The 
simulator was calibrated through an offline optimization program to optimize three model 
parameters to match the preprogrammed railway schedule. The pilot test of the simulator 
implementation was conducted to prove that it supports the feasibility of energy-saving 
travel. 
 
Machine learning theory also has many applications in reducing energy consumption. 
Fernandez, Roman, and Franco (13) introduced an energy consumption model based on a 
neural network to estimate the energy consumption of electric trains using one line of the 
Valencia metro network. The inputs used were speed, acceleration, and track grade, and the 
optimum neural network size was 15 neurons in the hidden layer. The result showed that a 
neural network can reliably estimate vehicle consumption along a specific route. 
Additionally, the deep convolutional neural networks proposed by Modi, Bhattacharya, and 
Basak (14) were used to estimate the real-time energy consumption of electric vehicles to 
reduce driver anxiety.  
 
Malikopoulos and Aguilar (15) investigated the driving style factors that have a significant 
impact on fuel economy. An optimization framework was proposed to optimize the driving 
style for these driving factors. A set of polynomial meta-models was constructed to reflect 
the response generated by changes in driving factors. The optimization method used here 
facilitates a better understanding of the potential energy benefits of conservative driving. 
Oettich, Albrecht, and Scholz (16) proposed three methods to reduce the energy consumption 
of trains. The first is to adjust the route and schedule of single trains. The second approach is 
to exploit the energy regenerated during braking in newer trains. The last method is helping 
the transportation system meet demand by using small vehicles and a flexible itinerary. 
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2.3 Emissions of Urban Transit Systems 

Emissions impacts of urban rapid transit are also critical to sustainability. For example, the 
life cycle assessment (LCA) method was used to define the system boundary of the Shanghai 
Metro life cycle, and the relevant resource input and emission output are counted based on 
actual observation data. The results showed that the total carbon emissions in the 
construction phases of the Shanghai Metro amounted to 2.68 MtCO2e (17). Zhang, Long, 
and Chen (18) analyzed 18 cities in China using a backward analysis method to estimate the 
proportion of coal used for rail transit in various cities from 2015 to 2017.  
 
Studies have shown that transportation demand is directly proportional to the carbon 
emission reduction potential of rail transit. Promoting the development of rail transit 
technology and reducing energy consumption per unit of travel distance per capita are the 
fundamental ways to increase the potential of rail transit to reduce emissions. 

2.4 Summary 

Given the differences in transit networks worldwide and the diversity of their influencing 
factors, there is currently no perfect model for system energy consumption prediction and 
inference. At present, most researchers have conducted in-depth research on energy 
consumption at the level of simulation theory and have produced very good results. 
However, the exploration of the factors affecting system-wide energy consumption and the 
development of models describing the relationship between energy consumption and 
influencing factors in order to render them useful for decision making remain an avenue for 
further research. Also, there have only been a few pilot projects demonstrating these gains in 
real-world situations. The TREEM project aims to fill some of these gaps by developing a 
system-wide energy consumption model that (a) explains the various sources responsible for 
energy consumption and (b) can be used as a decision-support tool for sustainability planning 
and disruptive event response in the MBTA RTV system.
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3.0 Data Summary 

The research team utilized the following types of data and sources for this project: 
 

1. Energy consumption data from 2008 through 2020 (provided by the MBTA as an 
Excel spreadsheet). 

2. Time-stamped train location (latitude and longitude) data from the MBTA Research 
Database (for light and heavy rail vehicles): Tables obtained for 2019 and 2020. 

3. Time-stamped tap-in ridership, also from the MBTA Research Database: Tables 
obtained for 2019 and 2020. 

4. Energy costs for the system from 2008 through 2020 (provided by the MBTA as an 
Excel spreadsheet). 

5. Daily average temperature for Boston for 2019 and 2020 (obtained from National 
Oceanic and Atmospheric Administration [NOAA] historical records). 

3.1 Energy Consumption 

The MBTA provided a spreadsheet with the hourly energy consumption data of the system 
for the years 2008 through 2020. In this section, data are visualized and described at the 
annual, monthly, daily, and hourly timescales. 

3.1.1 Annual Patterns 
On average, the MBTA rapid transit system consumes 422 GWh of energy (calculated for the 
period 2008 through 2020). The annual consumption and year-on-year change are shown in 
Table 2. From 2016 onward, energy use was largely stable at just under 420 GWh. In 2020, it 
decreased by 7%, due to the service reductions as a result of the COVID-19 pandemic. 
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Table 2: Annual energy consumption and percentage change, year-on-year 

Year Energy Consumption (GWh) % Change 

2009 430.06  

2010 429.81 0 

2011 430.47 0 

2012 422.07 -2 

2013 436.68 3 

2014 436.58 0 

2015 419.62 -4 

2016 418.04 0 

2017 417.66 0 

2018 419.07 0 

2019 414.27 -1 

2020 383.82 -7 

3.1.2 Monthly Patterns 
At the month level, energy use is greatest in the winter months (Figure 9). Peak usage is 
observed in January (average of 39 GWh). From April through November, energy 
consumption is visibly lower, presumably due to reduced third-rail heating needs. A smaller 
peak, however, is observed in July, which is typically the hottest month of the year. Thus, 
weather is shown to be a significant explanatory variable for energy consumption. 

 
Figure 9: Boxplot of monthly energy usage 
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3.1.3 Daily Patterns 
At the day level, the average energy usage is just over 1 GWh (Table 3). As seen in Figure 
10, there is a marked difference between weekday consumption and that of weekend days. 
The seasonality is even more strongly observed, as the peak days occur during the winter 
(heating needs), and shorter second peaks occur in the middle of the summer (cooling needs).  

Table 3: Daily energy consumption statistics 

Year Mean (GWh) Maximum (GWh) Minimum (GWh) Median (GWh) 

2009 1.18 1.66 0.84 1.13 

2010 1.18 1.60 0.89 1.16 

2011 1.18 1.66 0.74 1.15 

2012 1.15 1.49 0.85 1.16 

2013 1.20 1.59 0.87 1.18 

2014 1.20 1.67 0.88 1.16 

2015 1.15 1.60 0.83 1.12 

2016 1.14 1.54 0.83 1.12 

2017 1.14 1.59 0.85 1.11 

2018 1.15 1.59 0.83 1.13 

2019 1.13 1.62 0.87 1.09 

2020 1.05 1.43 0.82 1.03 

 
 

 
Figure 10: Time series of daily energy consumption  
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3.1.4 Hourly Energy Consumption 
The hourly energy distribution indicates that the peak consumption period occurs from 7 to 9 
AM and from 4 to 6 PM (Figure 11). The average hourly peak energy consumption in 2019 
was 53 MWh, and the lowest value was 33 MWh. “Overnight” is the period during which 
there is minimal train movement and no ridership. This occurs between 2 and 4 AM. Yet, 
there is a baseline average energy consumption of 34 MWh during this period. The overall 
average hourly energy consumption from 2008 to 2010 is 48 MWh (Table 4). 
 

 
Figure 11: Boxplot of hourly energy consumption  

Table 4: Hourly energy consumption in different periods 

Period of day Average hourly energy consumption 
(MWh) 

Morning peak 54 
Afternoon peak 55 
Overnight 34 
Overall 48 

3.2 Train Operations 

The research team obtained train location data from the MBTA Research Database. Due to 
the size of the tables, only data for 2019 and 2020 were downloaded and processed. The 
number of unique trains running in each hour is shown for the four lines (Red, Blue, Green, 
and Orange Lines) in Figure 12. As will be discussed in the next chapter, a pipeline was 
developed to compute trajectories from the time-stamped locations. Furthermore, the 
trajectory details for each unique train were visualized in a format that could potentially serve 
as a future online dashboard monitoring platform for the system.  
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Figure 12: Hourly operating train numbers 

3.3 Ridership 

The research team obtained system-wide tap-in ridership from the MBTA Research Database 
for 2019 and 2020, aggregating the observations at the hourly level. The time series is shown 
Figure 13. A steep decline in ridership began in March 2020 as a result of the COVID-19 
pandemic and lockdown policies. 
 

 
Figure 13: Tap-in ridership counts for MBTA RTV system, Jan. 2019–Dec. 2020 

3.2 Energy Cost  

In 2019, the energy bill of the MBTA rapid transit system was $16 million (Figure 14). The 
average monthly cost was $1.3 million. The monthly cost between January and June was 
significantly higher ($1.55 million on average) than the remaining months in the year ($1.17 
million on average). The peak monthly cost occurred in April ($1.62 million). Another 
smaller peak occurred in September ($1.20 million). 
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Figure 14: Monthly energy cost of RTV operations in MBTA, 2019 

3.3 Weather 

The research team obtained average daily temperatures in Boston from the National Oceanic 
and Atmospheric Administration (NOAA) database for the years 2008 through 2020. Figure 
15 shows the time series of the temperatures from 2019 to 2020. As expected, a seasonal 
pattern was observed in the data. The lowest temperatures are recorded in January (average: 
34°F). The highest temperatures are recorded in July (average: 77°F). 
 

 
  Source: NOAA 

Figure 15: Average daily temperature in Boston, Jan. 2019–Dec. 2020
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4.0 Research Methodology 

4.1 Research Framework 

The research team developed an integrated framework to (a) obtain and process data from a 
variety of sources; (b) compute train trajectories (distance, time, speed, and acceleration); (c) 
generate model input variables at the hourly level; (d) estimate planning metrics; and (e) 
model and predict hourly energy consumption. The framework is depicted in Figure 16. 
 
The team created a pipeline to query the MBTA Research Database and download heavy and 
light rail location tables, along with tap-in ridership tables, for a given month and year. 
Location data were used to compute trajectories and other train operation variables. Daily 
average temperature data were obtained from NOAA and spreadsheets for hourly energy 
consumption and monthly costs from the MBTA. All these variables were then integrated 
into a combined table and aggregated at the desired temporal level (hourly). Using this 
integrated table, the team computed planning metrics for energy, cost, and emissions. Then, 
the team used these as training and validation data for the estimated system energy model.  
 
 

 
Figure 16: Research framework flowchart 
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4.2 Trajectory Computation and Dashboard 

Using location data, the research team calculated the distance, time interval, speed, and 
acceleration for each unique train ID in a given day. Together, these measures constitute the 
trajectory of the given train. An example of a Green Line trajectory is shown in Figure 17. 
Based on the coordinate data in the raw trajectory table, the team computed the distance 
between successive pairs of time records and also computed the corresponding time interval. 
Then the speed, acceleration, cumulative distance, and cumulative time could be calculated 
accordingly. All of these measurements are visualized by time series in the dashboard (Figure 
17[a]). Part (b) of the dashboard indicates the distribution of the above computation results. 
This will help viewers to better understand the operation status of one train, such as how long 
it operates at a high speed or high acceleration. Finally, Part (c) spatially depicts the train 
trajectory on a map, color-coded by time. 
 

 
Figure 17: Green Line trajectory dashboard 

 
Further sample dashboards for the other three lines are shown in Appendix 8.0. 

4.3 Computation of Planning Metrics 

System-wide estimates of energy, costs, and emissions are critical for sustainable planning 
and management. The objective of this task was to therefore calculate these planning metrics 
based on both vehicle distances and vehicle operating times. Energy metrics were estimated 
using monthly data provided by MBTA for 2019. Cost metrics were also estimated based on 
monthly billing data for the same year. In order to estimate emissions, the research team used 
emissions intensities for the Commonwealth of Massachusetts provided by the Energy 
Information Administration (EIA). The following equation was used to obtain the 95% 
confidence intervals for each of the six metrics: 
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𝐶𝐶𝐶𝐶 = �̅�𝑥 ± 𝑧𝑧
𝑠𝑠
√𝑛𝑛

 

where: 
𝐶𝐶𝐶𝐶: confidence interval  
�̅�𝑥: sample mean 
𝑧𝑧: critical value (equal to 1.96 for 95% confidence level) 
𝑠𝑠: standard deviation 
𝑛𝑛: sample size (in this case, 12) 

4.4 Speed and Acceleration Binning 

The energy consumption of trains fundamentally depends on not just their mass but also on 
their speeds and rates of speed change (acceleration). Given the high-level system model 
objective, the contribution of train movements to energy consumption can be captured by 
observing how much time is spent at various speeds and accelerations. This allows for a 
fewer number of variables (depending on how many intervals are used) and, therefore, less 
uncertainty in the model parameters. 
 
In this case, the project team created equal probability bins for speed and acceleration. After 
testing with different bin numbers, the team selected Bin 6 for both speed and acceleration. 
These are described in Table 5. Each bin is initially taken as an indicator variable (1 or 0) for 
each time interval trajectory observation for each vehicle. It is then converted to a time 
variable as the length of the corresponding interval in which it is observed. 
 

Table 5: Speed and acceleration bins 

Bin Number Percentile Range Speed (miles/h) Acceleration (m/s2) 
1 [0, 16.7) [0, 3.8) [-5.0, -0.4) 
2 [16.7, 33.3) [3.8, 11.0) [-0.4, 0) 
3 [33.3, 50) [11.0, 15.5) [-0.1, 0) 
4 [50, 66.7) [15.5, 22.6) [0, 0.1) 
5 [66.7, 88.3) [22.6, 30.1) [0.1, 0.7) 
6 [88.3, 100] [30.1, 104] [0.7, 5.0] 

 
Based on the fundamental physics of train energy consumption, both the speed and 
acceleration of a vehicle are contributors to the energy demand. Thus, the team further 
computed speed-acceleration bin-time variables using each of the bins. This resulted in 36 
combinations of speed and acceleration levels. Each interval observation would then have an 
indicator corresponding to the matching speed-acceleration bin it represents. When the data 
were aggregated at the hour level, the resulting speed-acceleration interaction variables then 
denoted the total time collectively spent at a given speed, acceleration, or speed-acceleration 
interval.  
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For convenience, the notation “S𝑥𝑥A𝑦𝑦” represents the speed-acceleration interaction time 
variable. Thus, the symbol “S1A1” represents the speed-acceleration interaction time for 
Speed Bin 1 (0 to 3.8 mph) and Acceleration Bin 1 (-5.0 to -0.4 m/s2).  

4.5 Linear Regression 

The project team used a multiple linear regression (MLR) approach to predict hourly energy 
consumption based on the available potential explanatory variables. MLR has the advantage 
of being highly interpretable due to its simplicity, without sacrificing performance. the team 
used a variety of techniques to select the most relevant variables for the system model: 
 

• Lasso regression for feature extraction. 
• Variable inflation factor (VIF) to identify multicollinear variables. 
• Correlation coefficient inspection to identify collinear variables. 

 
Applying the above methods, the team compared the fitness of candidate models using the 
𝑅𝑅2 statistic, as well as assessing the validation and test performances. 
 
The model equation is given by: 
 

𝑌𝑌 =   𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯  + 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 
where: 

𝑌𝑌 is the hourly energy 
𝛽𝛽𝑖𝑖 are the coefficients 
𝑋𝑋𝑖𝑖 are the explanatory variables 

 
For training purposes, the research team used 80% of the hourly observations in 2019, 
reserving the remaining 20% for validation. 2020 observations were used to test the 
performance of the final model, in addition to analyzing the impacts of COVID-19. 

4.6 Random Forests 

A random forests (RF) model was also estimated to predict energy consumption in this study. 
Random forests is an ensemble learning approach that estimates multiple regression trees 
based on respective bootstrap samples of the data. It mitigates noise and bias by using a 
random fixed-size subset of variables at each branching (node-splitting) step of tree 
partitioning. 
 
The two hyperparameters the modeler must select are the number of estimators (trees) and 
size of the subset of random features to be considered for tree partitioning.  
 
The goodness of fit of a random forests model is determined based on error metrics 
computed on the out-of-bag (OOB) sample. OOB observations are those that are not present 
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in any of the bootstrap samples. Thus, the OOB metrics serve as an estimate of the validation 
error of the model. Ensemble models, such as random forests, are less interpretable than 
parametric approaches. However, in random forests, variable importance can be computed 
from the tree partitioning process, which ranks the relevance of each of the explanatory 
variables to the dependent variable. 
 
In this application, the best hyperparameters for the random forests model were 500 
estimators (trees) and a random splitting-variable subset size of 40. 
 
The entire set of 2019 hourly observations was used for training the model (noting that about 
37% of these observations are expected to be in the OOB sample). The research team 
reserved observations from the year 2020 for predictive performance testing.
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5.0 Results 

5.1 Planning Metrics 

The planning metrics (estimated on 2019 energy and cost data) are shown in Table 6 and 
Figure 18. All these metrics are estimated at the month level. The project team observed that 
energy and cost (and, consequently, emissions) are more sensitive to operating time than to 
operating distance (Table 6). Specifically, the per vehicle-hour energy/cost/emissions is one 
order of magnitude greater than the corresponding per vehicle-mile metric. This demonstrates 
that operating time is more relevant than operating distance. This could be helpful for the 
decision makers as they assess strategies for adjusting train schedules or responding to events 
and constraints in order to save energy and reduce costs. 
 

Table 6: Planning metrics 

Planning metrics Mean Lower 
Confidence 

Bound  

Upper 
Confidence 

Bound 
Energy per vehicle-mile (MWh/veh-mi) 0.04 0.036 0.043 
Energy per vehicle-hour (MWh/veh-hr) 0.27 0.25 0.30 
Cost per vehicle-mile ($/veh-mi) 1.56 1.38 1.75 
Cost per vehicle-hour($/veh-hr) 10.82 9.46 12.18 
GHG emissions per vehicle-mile (tCO2e/veh-mi) 18.73 17.03 20.45 
GHG emissions per vehicle-hour (tCO2e/veh-hr) 129.31 117.11 141.51 

 
 

 
Figure 18: Planning metrics 
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5.2 Multiple Linear Regression Model 

In the final selected model, the hourly energy is predicted on the following variable 
categories: 
 

• Number of trains 
• Tap-in ridership 
• Temperature 
• Monthly dummy variables 
• Speed-acceleration interaction terms 

 
The model has an 𝑅𝑅2 of 0.93, indicating that it explains 93% of the variance in the data.  
 
The estimated coefficients are summarized in Table 7. In order to provide a better sense of 
the contribution of each variable to the hourly energy consumption, the team included the 
average value of the variables from 2019. The team also showed the average effect, which 
was obtained by multiplying the coefficient and the average value of the corresponding 
variable. For reference, the average hourly energy in 2019 was 47.3 MWh. Thus, the 
intercept alone contributes a sizable net positive effect of 58.5 MWh. Temperature is next 
(with the linear and quadratic portions indicating the contributions of colder and hotter 
temperatures). In comparison, the net effect of ridership is quite small at 0.3 MWh.  
 
As the research team was unable to explicitly capture the effects of third-rail heating, and 
also due to unknown interactions with temperature, the team included monthly dummy 
variables in the model to capture these variations. January is the baseline month. On average, 
there was a larger reduction in energy usage as the months proceeded from March through 
November. The greatest savings were seen in May and October, compared to the baseline of 
January. This behavior mirrors the pattern shown in Figure 9. 
 
The team also analyzed how the energy varies with the speed-acceleration interaction 
variables. The coefficients of the relevant variables are also included in Table 7 and 
visualized using a matrix heatmap in Figure 19. Nearly all of the interaction terms involving 
Acceleration Bin 1 (A1) were negative, except for S3A1. One potential reason for this is that 
some trains don’t process regenerative process. The negative sign indicates a net energy 
saving and is reflective of the trains in the system with regenerative braking capabilities. In 
contrast, the positive sign indicates that the train is accelerating. The project team observed 
average effect of S6A5 to energy consumption was 2.13MWh, which made the greatest 
contribution to energy consumption around all positive interaction terms. This also indicated 
that trains spent most of accelerating time on operating with Speed Bin 6 and Acceleration 
Bin 5. Average hourly interaction terms effect based on 2019 measurements was 0.94 MWh. 
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Table 7: Model coefficients and variables contributions to energy consumption 
Category Coefficient Value Corresponding 

variable 
Description 2019 

Average 
Average 

effect 
 𝛽𝛽0 58.48 

 
Intercept  58.48 

 𝛽𝛽1 −0.81 𝑋𝑋1 Temperature (F) 53.5 −43.3 
 𝛽𝛽2 0.01 𝑋𝑋2 Sq. Temperature (F)2  3,155.2 31.6 
 𝛽𝛽3 0.06 𝑋𝑋3 Number of trains 129.8 7.8 
 𝛽𝛽4 1.49

× 10−5 
𝑋𝑋4 Ridership 17,299.1 0.3 

Monthly 
dummy 

𝛽𝛽5 1.67 𝑋𝑋5 February   1.67 
𝛽𝛽6 – 0.52 𝑋𝑋6 March  – 0.52 
𝛽𝛽7 – 3.92 𝑋𝑋7 April  – 3.92 
𝛽𝛽8 – 5.49 𝑋𝑋8 May  – 5.49 
𝛽𝛽9 – 4.86 𝑋𝑋9 June  – 4.86 
𝛽𝛽10 – 4.50 𝑋𝑋10 July  – 4.50 
𝛽𝛽11 – 3.37 𝑋𝑋11 August  – 3.37 
𝛽𝛽12 – 4.41 𝑋𝑋12 September  – 4.41 
𝛽𝛽13 – 5.44 𝑋𝑋13 October  – 5.44 
𝛽𝛽14 – 3.56 𝑋𝑋14 November  – 3.56 
𝛽𝛽15 1.28 𝑋𝑋15 December  1.28 

Speed-
acceleration 
interaction 
time 

𝛽𝛽16 −0.38 𝑋𝑋16 S1A1 0.92 −0.35 
𝛽𝛽17 −0.23 𝑋𝑋17 S2A1 1.99 −0.46 
𝛽𝛽18 0.59 𝑋𝑋18 S3A1 1.623 0.96 
𝛽𝛽19 −0.19 𝑋𝑋19 S4A1 1.617 −0.31 
𝛽𝛽20 −0.81 𝑋𝑋20 S5A1 1.28 −1.04 
𝛽𝛽21 0.13 𝑋𝑋21 S1A2 11.27 1.47 
𝛽𝛽22 0.14 𝑋𝑋22 S2A2 9.42 1.32 
𝛽𝛽23 1.23 𝑋𝑋23 S3A2 1.57 1.93 
𝛽𝛽24 0.99 𝑋𝑋24 S5A2 0.82 0.81 
𝛽𝛽25 0.03 𝑋𝑋25 S2A3 10.61 0.32 
𝛽𝛽26 0.27 𝑋𝑋26 S3A3 2.007 0.54 
𝛽𝛽27 0.52 𝑋𝑋27 S4A3 1.07 0.56 
𝛽𝛽28 0.59 𝑋𝑋28 S5A3 1.11 0.65 
𝛽𝛽29 −1.81 𝑋𝑋29 S6A3 0.59 −1.07 
𝛽𝛽30 0.02 𝑋𝑋30 S2A4 12.58 0.25 
𝛽𝛽31 −0.08 𝑋𝑋31 S4A4 3.49 −0.28 
𝛽𝛽32 0.27 𝑋𝑋32 S5A4 3.12 0.84 
𝛽𝛽33 0.88 𝑋𝑋33 S6A4 0.951 0.84 
𝛽𝛽34 0.63 𝑋𝑋34 S2A5 0.954 0.60 
𝛽𝛽35 −0.74 𝑋𝑋35 S3A5 1.92 −1.42 
𝛽𝛽36 −0.21 𝑋𝑋36 S4A5 3.12 −0.66 
𝛽𝛽37 1.01 𝑋𝑋37 S6A5 2.11 2.13 
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Category Coefficient Value Corresponding 
variable 

Description 2019 
Average 

Average 
effect 

𝛽𝛽38 2.02 𝑋𝑋38 S3A6 0.23 0.46 
𝛽𝛽39 −2.10 𝑋𝑋39 S5A6 1.46 −3.07 
𝛽𝛽40 0.46 𝑋𝑋40 S6A6 2.59 1.19 

 
 

 
Figure 19: Coefficients of interaction terms 

5.3 Random Forests 

While the random forests model does not result in an explainable or parametric form, it 
allows us to understand the most relevant variables with respect to the predicted variable. 
This is given via the variable importance plot (Figure 20). The number of operating trains 
was the variable with the greatest impact on energy consumption. In addition, average daily 
temperature, ridership, operating time, monthly factors and some train movements (S6A5, 
S5A2, S3A2) were also very important for energy consumption. This result further confirmed 
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that trains spent most of the time operating in Speed Bin S6 (30.1 to 104 mph) and 
Acceleration Bin A5 (0.1 to 0.7 m/s2). 
 
Generally, the importance rankings agreed with the coefficients and average effect sizes of 
the corresponding variables in the linear model.  
 

 
Figure 20: Top 10 important variables selected by random forests model 

5.4 Model Performance 

5.4.1 Linear Regression 

The model performance on the validation set is shown in Figure 21. With an 𝑅𝑅2 = 0.93, the 
team estimated a model that reasonably fits the data. The training RMSE was 2.19 MWh, and 
the MAPE was 3.32%, which indicate that this model provides high predictive accuracy in 
these two data sets. 
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Figure 21: Linear regression model performance on train set and validation set 

The research team tested the model on data from 2020. Based on the prediction over the year, 
a test RMSE of 2.7 MWh and test MAPE of 4.68% were obtained. Figure 22 shows that the 
prediction errors from May to December were greater than earlier in the year, indicating that 
there are some effects the model does not fully capture. Nevertheless, the model performed 
well in testing and was clearly robust to the disruptions that COVID-19 brought about.  
 

 
Figure 22: Linear regression model performance on test set 

5.4.2 Random Forests 
The random forests model was tested on the 2020 data set. The model performance is shown 
in Figure 23. Based on predictions in 2020, an RMSE of 2.94 MWh and MAPE of 5.01% 
were obtained. Random forests basically captured the effects in 2020, but the prediction 
errors from July to December were slightly higher than for other periods in 2020. 
Nevertheless, as seen from the residuals (Figure 24), both models performed similarly well in 
testing. 
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Figure 23: Random forests model performance on test set 

 
 

 
Figure 24: Residuals of linear regression and random forests 

 
Table 8: Summary of model goodness of fit metrics, based on out-of-bag estimate 

Model Training Validation Test 
RMSE 
(MWh) 

MAPE 
(%) 

RMSE 
(MWh) 

MAPE 
(%) 

Linear 
regression 

R2 0.93 3.32 3.32 2.70 4.68 

Random forests PVE 0.95 1.78 - 2.94 5.01 

5.5 Impacts of COVID-19 

COVID-19 was first reported in December 2019 and rapidly spread all over the world, 
reaching pandemic proportions in January 2020. It was declared a U.S. national emergency in 
March 2020. Subsequently, all nonessential travel was curtailed. Public places were closed, 
and working or schooling from home was imposed in many areas. Given the infectiousness 
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of the disease, social distancing was imposed in many locales, and this significantly reduced 
transit usage across the United States. In response to these events and in order to cut costs as 
revenues declined, the MBTA reduced service on the Red, Orange, and Green lines by 20%, 
while reducing Blue Line service by 5% beginning March 14, 2020. 
 
Later in the year, regular service was largely restored, even though ridership remained 
depressed throughout the rest of the year. Key metrics for the MBTA urban transit system in 
2019 and 2020 are compared in Table 9. Ridership decreased by 66% from 150.3 million tap-
ins in 2019 to 51.1 million tap-ins in 2020. This ridership decline is also shown in Figure 
25(b). Compared to other metrics, ridership had the greatest change. It did not begin to climb 
to prior levels until the end of 2020.  
 
The energy consumption in 2020 decreased by 7.6%, contributing to a cost decrease of 
13.6%. The relatively low impact on energy demand, even though ridership declined so 
significantly, provided further evidence on the unimportance of ridership to overall energy 
consumption in the MBTA RTV system. 
 
The service reductions resulted in declines in operating distance (vehicle-miles) and 
operating times (vehicle-hours): 5.7% and 13.3%, respectively. Regular MBTA rapid transit 
operations resumed in July 2020. 
 

Table 9: Summary of COVID-19 impacts on MBTA 

Year 2019 2020 % change 
Cost (million $) 16.2 14 -13.60% 
Energy consumption (GWh) 410.9 379.8 -7.60% 
Vehicle-mile (million miles) 10.5 9.9 -5.70% 
Vehicle-hour (million hours) 1.5 1.3 -13.30% 
Ridership (million) 150.3 51.1 -66% 
Energy per vehicle-mile (kWh/mile) 39.2 38.6 -1.50% 
Energy per vehicle-hour (kWh/hour) 270.3 281.5 4.10% 
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Figure 25: Time series plots of energy, ridership, vehicle-miles and vehicle-hours, Jan. 2019–
Dec. 2020, for MBTA rapid transit system. 



 

30 

This page left blank intentionally.



 

31 

6.0 Conclusion 

The TREEM project utilized data from train movement and operations, ridership, and 
ambient temperature to accurately predict and explain system-wide electricity consumption 
in the Massachusetts Bay Transportation Authority rapid transit vehicle network. First, the 
project team developed an integrated framework for data processing and trajectory 
computation. A proposed trajectory dashboard visualized train trajectory variables (distance, 
time, speed, acceleration), distributions of these variables, and a map showing the physical 
location of the given trajectory.  
 
The project team then estimated a high-performance energy consumption multiple linear 
regression (MLR) model with an R2 of 0.93, and random forests model (RF) with proportion 
of variance explained (PVE) of 0.95. On testing the model on 2020 data, these two models 
produced errors of less than 5.1%. The models provide insights into the driving factors of 
system energy consumption while also showing potential as a decision-support tool for future 
planning. The key drivers of the system-wide energy consumption were identified as 
temperature, baseline energy consumption by facility, and train operations, while ridership 
was found to have a very small impact on energy consumption. This is buttressed by the fact 
that the model predictions held up under COVID-19 disruptions.  
 
One limitation of the current approach is that movement variables are aggregated without 
accounting for rail type, i.e., heavy, or light rail. Given the clear differences in speeds and 
vehicle mass between these two types, the models could be improved by computing these 
variables (such as bin times, train numbers, etc.) as type-specific or line-specific. Ongoing 
research efforts include equipping individual trains with accelerometers to calibrate physical 
models of electric train energy consumption using their high-resolution data. These models 
can then be upscaled for better system-wide energy explanation, and potentially shed more 
light on the contribution of other operational factors. In addition, the team plans to further 
develop the trajectory analysis tool into an online trajectory-energy dashboard. The 
dashboard can be used for real-time monitoring in order to pinpoint areas or vehicles in 
network with significant changes in energy use patterns. 
 
Ultimately, while the models estimated have shed more light on the relevant variables for 
energy consumption, they would be most impactful as high-level decision-support tools that 
can guide planning efforts in light of future budgetary constraints or in response to disruptive 
events. By implementing learning procedures to map these low-level movement and 
operation variables to high-level planning metrics, generative processes can be estimated to 
produce valid synthetic data in response to any proposed policy response. Thus, future 
strategies can be readily assessed for energy and costs impacts and save valuable resources 
by providing reliable estimates to guide decision choices. 
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8.0 Appendix: Prototype Trajectory Dashboards 

 
Figure 26: Orange Line dashboard example 
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Figure 27: Red Line dashboard example 
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Figure 28: Blue Line dashboard example 
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