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Executive Summary 

This study of “Translating Data Generated by the Transit App into Insights on Transportation 
Use in Greater Boston” was undertaken as part of the Massachusetts Department of 
Transportation (MassDOT) Research Program. This program is funded with Federal 
Highway Administration (FHWA) State Planning and Research (SPR) funds. Through this 
program, applied research is conducted on topics of importance to the Commonwealth of 
Massachusetts transportation agencies.   

The project was completed by the Boston Area Research Initiative (BARI), led by PIs 
Daniel T. O’Brien, Justin de Benedictis-Kessner, and Qi Wang. Transit is an app that MBTA 
riders can use to navigate the system and compare alternative routes. These decisions leave 
“digital breadcrumbs” that are stored in a database that is a rich resource for understanding 
the behavior of Massachusetts Bay Transit Authority (MBTA) customers, and it is made 
available to the MBTA through their contract with Transit. The purpose of this project was to 
tap this unprecedented resource, evaluate and demonstrate its potential, and support the 
MBTA in using these data for research and analysis moving forward. This work was pursued 
in collaboration with the Office of Performance Management and Innovation (OPMI). 

The project consisted of three tasks that constituted the full data life cycle from 
description to interpretation to research to the construction of technical processes for 
sustainable use of the data. We summarize the highlights from each of these tasks. 
Task 1. Construct Transit Data Storage Infrastructure included two subtasks: 
determining the content and organization of the data; and building a storage infrastructure. 
BARI built a Python script that unfolds the data from their original JSON format into a 
tabular format that is accessible to analysis; provided variable-by-variable-documentation for 
the resultant tables; and deployed these on MBTA servers for sustainable use. 
Task 2. Enhanced Measures for Research and Policy included a series of derived 
measures describing sessions (i.e., individual uses of the app), routes, and users that were not 
explicitly available in the data but could be calculated from the information that was there 
(e.g., tabulating total walk distance across a trip with multiple segments of walking). We also 
developed mechanisms for merging the data with general transit feed specification (GTFS) 
feeds and weather data from the National Oceanic and Atmospheric Administration (NOAA). 
These variables were included in the full documentation. 
Task 3. Research Illustrating the Utility of Transit Data for future use. We determined 
that the greatest novelty in the data was their ability to capture real-world mode choice 
decisions. Based on this, we completed an analysis that examined if and when Transit users 
appeared to select rideshare options (or TNC), as indicated by their decision to “tap” on them 
when planning a trip. We analyzed the general spatial and temporal distribution of these TNC 
taps as well as the contextual conditions that were associated with them, many of which were 
measures drawn from the original data or derived in Task 2 (e.g., wait time, walking 
distance). The findings illustrated both complementarity and competition between TNC 
services and public transit. This analysis, which was the most detailed of its kind and the first 
to leverage real-life decisions made by transit riders, was submitted for publication at 
Transportation Research Part C: Emerging Technologies.
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1.0 Introduction 

This study of “Translating Data Generated by the Transit App into Insights on 
Transportation Use in Greater Boston” was undertaken as part of the Massachusetts 
Department of Transportation (MassDOT) Research Program. This program is funded with 
Federal Highway Administration (FHWA) State Planning and Research (SPR) funds. 
Through this program, applied research is conducted on topics of importance to the 
Commonwealth of Massachusetts transportation agencies. The work was completed by the 
Boston Area Research Initiative (BARI). 

Transit is a mobile phone application that provides real-time public transit data, as 
well as information about alternative options, allowing riders to make informed decisions 
about how to navigate a metro region. It is available internationally in over 200 metro 
regions, including greater Boston. The Massachusetts Bay Transit Authority (MBTA) has a 
contract with Transit by which MBTA endorses Transit as its preferred app for navigating the 
system and Transit provides MBTA with access to the data generated by the app. The 
purpose of this project was to tap this unprecedented resource, evaluate and demonstrate its 
potential, and support the MBTA in using these data for their own purposes moving forward. 

When riders interact with the Transit app, they leave “digital breadcrumbs” that are 
collected by Transit and stored in a database. This database is a rich resource for 
understanding the behavior of customers and unique in that it captures their real-time 
decision-making and habits. It can in theory be useful for answering a variety of questions. 
When, where, and why do residents of greater Boston use transit? How are these tendencies 
affected by the immediate context, policy changes, or disturbances? What factors do 
individuals prioritize when selecting one of multiple trip options? The raw data generated by 
Transit (hereon, Transit data), however, are not ready for such analyses. Like many other 
modern digital (i.e., “big”) data generated by administrative systems or internet-based 
platforms, they lack the structure and documentation necessary to be immediately useful for 
research, policy, or practice. The first step is to get to know the data better, in order to 
determine what precise information is contained in the data, what insights they will support, 
and how we can achieve these insights. 

BARI worked in close collaboration with the Office of Performance Management and 
Innovation (OPMI) to develop an understanding of the content and potential of the Transit. 
The project consisted of three tasks: (1) Construct transit data storage infrastructure, 
including the two subtasks of determining the content and organization of the data and then 
building a storage infrastructure for housing the data in tabular form. (2) Enhanced 
measures for research and policy, consisting of derived measures describing sessions (i.e., 
individual uses of the app), routes, and users that were not explicitly available in the data but 
could be calculated from the information that was there. (3) Research illustrating the utility 
of Transit data to demonstrate how it might be used in the future. These three tasks 
constituted the full data life cycle, from description to interpretation to research to the 
construction of technical processes for sustainable use of the data. 
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This document summarizes the products of each of the three tasks, with a focus on the 
culminating research project, which built on and illuminated the value of the first two tasks. 
Once we completed the initial process of preparing the data for research, we invested much 
effort in determining what types of research questions Transit data were best suited to 
answer. A series of initial analyses revealed considerable difficulty in confirming whether the 
population of Transit app users were demographically or behaviorally representative of the 
broader population or of those that ride public transit, especially being that app users do not 
report any demographic information. One promising lead was that a small subset of app users 
have included their home address in their profile. We used techniques common in the study 
of mobility data to infer home addresses to see if locations of greatest usage matched onto 
stated home addresses, but the two rarely agreed. The hope was that if this approach worked 
we could estimate the demographic composition of Transit users. It turns out that, while 
people use their cellular devices for communication and social media while at home, 
allowing the inference of home addresses, they have generally already left the home when 
they are checking for the schedule of their bus, train, or other travel options. For this reason, 
we concluded that without a survey of the app users themselves the problem of 
representativeness seemed intractable (we provide the full analysis in Section 7.1 in the 
Appendix). 

We determined in collaboration with OPMI that one thing that was unique about 
Transit data that no other data source offered was the ability to reveal the real-time decision-
making of its users as they considered different options. This ability partially obviated 
concerns about representativeness because it allowed for within-person comparisons of 
options with different characteristics; for instance, if a person is presented with five options 
for travel, we can determine whether certain modes are more attractive, the influence of wait 
time or transfers, and other contextual factors without concern as to whether the sample itself 
was fully representative. Based on this, we undertook an analysis of when and why Transit 
users select rideshare options (or transportation network companies, or TNC), such as Uber 
and Lyft. We analyzed the general spatial and temporal distribution of these TNC taps as 
well as the contextual conditions that were associated with them, many of which were 
measures drawn from the original data or derived in Task 2 (e.g., wait time, walking distance, 
time to destination). We believe this is an important advance and we have submitted it for 
publication at the journal Transportation Research Part C: Emerging Technologies with the 
title ‘To Ride-Hail or Not to Ride-Hail? Complementarity and Competition Between Public 
Transit and TNCs Through the Lens of App Data’. It also makes up the bulk of this report. 

The remainder of this document is structured as follows. This chapter continues with 
background on TNC and current knowledge about when and why transit riders choose it over 
public transit options. Chapter 2 presents the Research Methodology, which includes a 
description of Tasks 1 & 2, including the steps for processing the data, the resultant data 
structure, and the various variables accessed, created, and leveraged. Chapter 3 presents the 
Results of the study. Chapter 4 presents the Implementation and Technology Transfer, 
including a more detailed description of the tools for data processing and associated 
documentation that BARI delivered. Chapter 5 presents the Conclusions from the study on 
TNC as well as insights on the utility of the Transit data themselves. Chapter 6 includes 
References from throughout the document. And Chapter 7 contains the multiple Appendices 
that provide extra detail on process, variables, and descriptive statistics. 
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1.1 Background on TNC 

TNC services are reshaping urban mobility. Uber, for instance, provided 6.9 billion 
trips in 2019 (Uber Technologies Inc 2019) and is available in over 10,000 cities globally 
(Inc 2020). The expansion of TNC necessarily means that their riders are shifting many of 
their trips from other modes of transportation, leading them to have outsized impacts on the 
dynamics of urban transportation. Scholars and pundits have especially highlighted the 
consequences this might have for public transportation, but there are differing views on 
exactly how this relationship is operating. Some see the relationship as competitive, with 
TNCs and their offers of affordable, door-to-door travel drawing riders away from public 
transportation (Habib 2019). Others have argued, though, that TNC complements public 
transportation by filling in the gaps in public transit service. The extent to which each of 
these mechanisms is at work determines the actual impact TNCs have on cities (Shaheen and 
Chan 2016). How much do they replace public transit ridership with automobile traffic? 
What are the implications for the optimal allocation of resources? The answers are in turn 
crucial for transportation authorities and planners as they shape the urban transportation 
system of the 21st century. 

There have been a number of studies on when and why riders choose TNC, but they 
have generally relied on self-report surveys (Habib 2019). Such research designs are 
informative, but their detail and validity are of course limited by the nature of survey work. 
These studies have highlighted either the potential for competition or complementarity 
between TNC and public transportation - but rarely have the limited data available given 
researchers the opportunity to evaluate the two phenomena in tandem. We assess the tradeoff 
between competition and complementarity directly by analyzing an original data set 
generated by a transportation services app, Transit, that informs riders about options in all 
available modes of transportation, including public transportation and TNCs, among others. 
These data allow us to observe the real-time decisions of thousands of riders as they navigate 
the city - in this case, greater Boston, MA. We examine the geospatial patterns of the TNC 
and public transit trips selected by users of the app and use machine learning models to 
determine which contextual and personal conditions lead a rider to select TNC over public 
transit. From these analyses we find new evidence that, depending on the situation, TNC both 
complements and competes with public transit. 

1.2 Previous Studies 

TNCs have become ubiquitous in cities across the world, providing riders with an 
alternative to more traditional forms of transportation. Most obviously, TNCs draw riders 
away from taxis, as they offer a nearly identical product but with more convenient, on-
demand service. From a transportation planning perspective, however, there has been much 
discussion of how TNCs might disrupt other modes of transportation in cities, with the 
greatest attention to its impacts on public transit usage. Two different perspectives on this 
question have emerged. The predominant narrative, especially in popular media, has been 
that the same convenience that leads riders to choose TNCs over taxis also draws them away 
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from public transit (Eluru, Chakour, and El-Geneidy 2012; Bovy and Hoogendoorn-Lanser 
2005; Yan, Levine, and Zhao 2019) . Alternatively, some researchers have claimed that 
TNCs complement public transit services in various ways, possibly even increasing public 
transit ridership. To date, there is some empirical evidence for each of these dynamics, but as 
of yet no consensus. 

The theory that TNCs might compete with public transit relies on a broader logic and 
body of research on mode choice.  In particular, the kinds of factors that tend to influence 
riders' mode choices make TNC services appealing. For instance, one study (Carrel, 
Halvorsen, and Walker 2013) showed that less reliable bus and light rail services - that is, 
inconsistency in the timing of vehicle arrivals - cause passengers to ride public transit less 
often. Such unreliability, especially when coupled with real-time information on delays, can 
make passengers more anxious about their transit mode choice (Chow, Block-Schachter, and 
Hickey 2014). Other work on public transit mode choice has emphasized the number and 
wait time of transfers as consistent factors driving transit mode choice. Notably, it was found 
that passengers consider every additional transfer to be as burdensome as an additional 10 
minutes of travel time. Consequently, they estimate that reducing the number of transfers by 
1 would increase transit ridership by 9.17% (Eluru, Chakour, and El-Geneidy 2012). While 
these studies do not explicitly reference TNCs, they highlight the kinds of advantages - 
including real-time arrival information, no transfers or crowding, and fewer on-board delays - 
that might offer TNCs a comparative advantage over public transit. 

Studies that have directly compared mode choice between public transit and TNCs 
have reinforced TNCs potential appeal. One major convenience of TNC services is that they 
offer point-to-point trips without transfers. This suggests that the number of transfers in 
public transit may lead travelers to choose TNC services in order to minimize transfers (Yan, 
Levine, and Zhao 2019). Another study (Rayle et al. 2016) found that for most trips taken 
using TNCs, the public transit trip would have taken significantly more time. Similarly, two 
other studies (Habib 2019; Clewlow and Mishra 2017) show that longer total travel time for 
public transit trips can lead passengers to prefer TNCs and subsequently take fewer transit 
trips. Taken together, these results appear to confirm that the efficiency and convenience 
offered by TNCs cause some passengers to replace a portion of their public transit trips with 
ride-hailing. That said, it is possible that the cost of convenience proves too great in certain 
situations. For instance, very long trips typically served by commuter rail might experience 
less competition given that the corresponding TNC trip could be prohibitively expensive. 

An alternative perspective is that TNC can complement public transit, possibly even 
increasing its effectiveness. There are two main elements to this argument. First, TNCs may 
solve what is known as “the last mile problem" - passengers’ ability to get to and from the 
public transit stations where their trip begins and ends (Shaheen and Chan 2016) - and 
otherwise fill in gaps in public transit. A 2016 joint report from the Shared-Use Mobility 
Center and American Public Transportation Association stated that because TNC trips 
commonly occur at times and in places where public transit is not readily available, it often 
serves as a complement (Murphy 2016). A similar report from Pew Research Center 
suggested that TNC services complement public transit because TNC users are more likely to 
use other mobility options such as public transit than non-users of TNCs (Smith 2016). Some 
indirect evidence for this comes from the finding that public transit ridership, especially rail 
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transit ridership, has increased in places where TNCs have been introduced (Hall, Palsson, 
and Price 2018; Malalgoda and Lim 2019) relative to places where they have not been 
introduced. This parallel rise in both TNC and public transit ridership suggests that TNCs do 
not replace public transit trips so much as enable individuals to more easily access public 
transit when stations are not necessarily conveniently located. Others have made the same 
argument for the timing of rides, as ride-hailing services are more likely to be made in the 
late afternoon, evening, and night, and on weekends, times at which transit service tends to 
run at lower frequencies (Feigon and Murphy 2018; Habib 2019). Of course, these aggregate 
comparisons fail to account for potential trends in more general transportation demand rising 
over time as well, which could lead to observed parallel increases in TNC and public transit 
use independent of underlying patterns of trip replacement. 

The work on complementarity between TNCs and public transit has been bolstered by 
evaluations of pilot programs that sought to integrate TNC services with existing fixed-route 
transit services. These studies are intriguing for two reasons. First, they include one of the 
only studies (if not the only study) that used actual records of rides to examine mode choice. 
One study (Terry and Bachmann 2020) found that the majority of ride-hailing trips taken in 
such a pilot served as "feeder" trips that brought passengers closer to transit stops. Second, 
however, these ridership patterns are potentially the consequence of sizable discounts on the 
kinds of TNC trips that complement public transit that are offered by cities partnering with 
ride-hailing companies (Habib 2019; Westervelt, Schank, and Huang 2017; Curtis et al. 
2019). Such subsidies may be unsustainable over the long-term, especially considering the 
well-known lack of profitability for companies like Uber thus far (Zoepf et al. 2018). If such 
deliberate price manipulation is a key element of the ability for TNCs to solve last-mile 
problems, it raises the question of whether such complementarity will persist (Guda and 
Subramanian 2017). 

In summary, there are two well-established perspectives on the relationship between 
TNC and public transit, one that sees them as complements in a modern urban transportation 
system, the other that sees them as competitors. The empirical evidence currently comes, 
however, from only a handful of studies, most of which rely on aggregate inference or survey 
responses. Further, many of the studies have set out to test only one of these theories and not 
the other, providing a partial view of the TNC-public transit relationship. There is clearly a 
need for ride-level data that can reveal passenger choices and the contextual features that 
inform them - be they wait time, transfers, walking distance, or time of day or week. Such 
data would help to paint a more conclusive, comprehensive picture of the complementarity or 
competition between TNCs and public transit (or lack thereof) but have largely been 
unavailable to researchers to date. Most recently a study (Zhao et al. 2020) utilized stated-
preference (SP) survey data and implemented multiple advanced machine learning 
algorithms, they found that random forest outperforms the logit models in terms of travel 
mode choice prediction. 
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1.3 Current Study 

The current study uses data from the Transit app to examine when and why travelers 
choose TNC over public transit services. The app is designed to help riders navigate public 
transit services by providing them with real-time information on local routes as well as 
alternative modes of transportation, including TNC. It generates data from user interactions, 
capturing how riders make mode-choice decisions in real time without the complications and 
validity issues of survey data. Rather than posing specific trade-offs and comparisons, we are 
able to model the rider's travel behavior based on their use of the "trip planning interface," 
which offers the rider multiple options across mode choices for completing a requested trip 
from one point to another. In doing so, the app produces objective versions of many of the 
measures used in previous hypothetical survey items, including number of transfers, wait 
time, and travel time, among others. Alongside these advantages, we do note a downside. 
Users of the Transit app are not necessarily a random sample of transit riders. Most 
importantly for our study questions, those who use the app are potentially predisposed to 
riding public transit, as that is the named purpose of the app and it has been endorsed by 
multiple public transit agencies. Keeping this in mind, the interpretation of the results should 
be of the factors that encourage transit riders to select TNC instead. This may in fact be a 
positive aspect as we highlight the features that are strong enough to encourage such a 
switch, but it is also important when considering the results and their implications. 

Another advancement of using such data is its neutral position with regards to TNCs, 
which leaves no potential for bias from marketing stimulation in our examination of evidence 
for either competition and complementary. The precise spatiotemporal nature of the data also 
allows us to link the information from within the app with contextual information, including 
time of day and week and real-time weather, which are both believed to affect mode choice. 
Last, we do note that the specific data we use here only became available at the end of 
February 2020, meaning our study occurs almost entirely during the COVID pandemic. We 
include the different phases of the pandemic in Massachusetts (shutdown, Phase 1 reopening, 
etc.) in our models to control for this, but there is the possibility that some of the results we 
see are specific to the pandemic. On the other hand, it is unclear how quickly, if ever, transit 
usage will return to its previous equilibria, meaning that these results could be more 
informative moving forward. In any case, any interpretation should keep this factor in mind.
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2.0 Research Methodology 

2.1 Data and Preprocessing 

Transit data describes each user session (i.e., discrete time period between opening 
and closing the app on the phone). This includes information presented to the user by the app 
and about the actions the user took while in the app. There is no personally identifiable 
information, but a device identifier represents an anonymous record of a user. These 
identifiers persist across sessions, meaning it is possible to compare behavior at the 
individual level over time. In order to directly examine decision-making behavior, our 
primary scale of analysis is the user session. This report focuses substantively on our analysis 
of when and why users of the app might choose TNC options instead of or in conjunction 
with public transit options, but here we describe the data source more generally. Additional 
information is also provided in Section 4 on Implementation and Technology Transfer and 
numerous Appendices (specific references made throughout this section). 

The two most commonly used features in Transit are the “nearby views” and "trip 
planning” interfaces. The first is the default when opening the app and informs users of 
routes that are near to their current location. The second, displayed in Figure 2.1, is the focus 
of our analysis here as it permits the comparison of preferences across options for trip with 
established origin and destination. The trip planning interface allows users to input an origin 
(most often their current location from GPS) and destination. The app then returns multiple 
potential routes using a variety of different transportation modes by which the user could 
reach their destination. The app includes all forms of public transportation that are locally 
available (e.g., subway, commuter rail, bus, light rail, etc.) as well as walking, biking, bike 
share, and TNC. Routes often combine multiple transportation modes (e.g., walk-subway-
walk). In both interfaces, users can “tap” on routes to learn more about them or set alerts for 
when they need to leave to catch a given vehicle. 

The data generated by the app are provided by Transit in a JSON array wherein each 
element is a nested JSON object containing a user's activity for that day. This format is 
somewhat difficult for analysis purposes: (1) querying for a slice of the data spanning several 
days, i.e. a column across all user sessions, requires a full read and parse of each daily data 
dump; (2) querying for a specific subset of all columns for a specific set of users similarly 
requires a full read and parse; (3) the data must be flattened into data frame-like structures 
before being used statistics software packages, given that information within a given data 
dump reference multiple scales of analysis (e.g., app usage session, user, route) and 
interfaces (e.g., nearby routes, trip planning searches initiated by the user). For this reason, 
we “flatten” or “unfold” the data into multiple tables before analysis. 

When flattening the data we generate five tables, each describing a different set of 
objects or actions: user sessions; trip views; favorite locations (from a user’s profile); nearby 
views; legs (from a suggested route in trip planning). For instance, as shown in the left panel 
of Figure 2.1, the trip planning interface reports various features for each route, including 



8 
 

estimated departure and arrival times, distance to origin station, and wait time. This 
information is contained in the trip planning table. We also merge in weather data for the 
date of the session for Boston provided by the National Oceanic and Atmospheric 
Administration’s (NOAA) National Climatic Data Center (NCDC), contained in a sixth table. 
We also have built a process for merging general transit feed specification (GTFS) data for 
the MBTA based on spatiotemporal proximity, in order to coordinate the within-app 
information with the availability of vehicles for routes of interest. We have provided the 
syntax for the flattening process, the variables in each of these tables, and merger with 
external data sources to OPMI for use in future work. More detail on these processes is 
provided in Section 4 on Implementation and Technology Transfer, and the readme guide for 
the code is included in Section 7.2 in the Appendix. 

For the purpose of the analysis that follows, we use data recording 336,873 trip 
queries generated by 55,163 users between February 29, 2020, and December 15, 2020 that 
included at least one tap on either a public transit or TNC option. For fuller comparative 
analyses (Sections 3.2 and 3.3), we limited our data to users who had tapped at least once on 
a public transit trip in the trip planner and at least once on a TNC trip during the study period. 
This ensures that we are not making unrealistic comparisons between individuals who would 
never tap on one mode or the other. Within these users, we only include sessions in which: 
(1) the user utilized the trip planning feature (i.e., requested a set of trip options from the 
app); (2) the trip planner generated at least one public transit option and at least one TNC 
option; (3) the user tapped on at least one of these options; and (4) the option tapped on was 
not a combination of transit and TNC (see Section 4.1 for more). This amounts to a final 
sample of 23,475 trip queries generated by 1,918 users for these comparative analyses. 

 

 
 

Figure 2.1: Screenshot of Transit app trip planning results (left) and detailed view of 
one public transportation option (middle) and TNC option (right). 
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2.2 Measures 

Numerous measures are associated with the components of each session and 
interface. These are described in full detail in Section 7.3 in the Appendix, which is a 
documentation file that we provided to OPMI to inform their use of the flattened data; 
Section 7.4 in the Appendix also includes descriptive statistics for select variables capturing 
basic patterns of usage. To illustrate a particular use case for this content, we concentrate on 
the measures needed to examine users’ tendencies to select options involving TNC. 

In order to best measure individuals' choices between public transit and TNC, we 
treat users' "taps" on individual transportation options as a measure of their interest in - and 
possible use of - a given mode. We mark the mode choice as TNC if the user tapped on a 
greater number of TNC trip options during a session than the number of public transit trip 
options that garnered taps. For analytic purposes, we then remove any sessions in which the 
user tapped on a different mode choice (e.g., walk) or the tap numbers on Transit and TNC 
are equal (true for < 1.5\% of sessions with taps). 

We use several features to predict the conditions under which users were more or less 
likely to choose (i.e., tap) on TNC relative to public transit options. These trip characteristics 
fall into three categories: (1) trip-specific features of the travel options generated by the app 
(e.g., distance from the user's origin position); (2) the user's ridership habits, based on 
historical usage patterns (e.g., tendency to ride during commuting hours); and (3) contextual 
factors (e.g., time of day, precipitation). Before analysis, we log-transformed numerical 
predictors to account for outliers and skewness and performed One-Hot Encoding for the 
categorical variables, translating them into a series of dichotomous variables. Section 7.4 in 
Appendix provides more details on measures, data transformation and correlations. 

2.2.1. Trip-specific Features 
The trip planning interface provides detailed information on each leg (i.e., the 

undivided portion of a trip on a single vehicle, like a segment of walking or a ride on a single 
bus) of each option it generates for a given trip. We extract a series of variables that describe 
the distance, duration, and modes of the trip and its legs, detailed in Table 2.1. We treat these 
trip-specific variables as factors that might influence a rider's decision-making. In order to 
have a direct comparison between TNC and public transit, we select a single "optimal" option 
for both modes. For both public transit and TNC, if a single trip is selected by a user, then we 
define that as "optimal" for that mode, as it was clearly the one that most attracted the user's 
attention. If either more than one or no trips are tapped for that mode, then we define the 
optimal route as the option with the shortest duration among all candidates with the fewest 
transfers. This definition is based on previous work indicating that transfers and then length 
are the most important factors for riders choosing between public transit options. The 
features of this optimal option are then those used for comparison in the models that follow.  
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Variable Computation 
Walk Distance Cumulative distance to reach the origin of the first 

vehicular leg 
Wait Time Cumulative time before the first vehicular leg 

(including walking time) 
Travel Time Total duration of the trip 

Longest Leg Mode Vehicle type for the longest non-walking legs (e.g., 
bus, subway) 

Number of Transfers  The number of vehicular legs (excluding walking) 

Table 2.1: List of Trip-specific variables 

2.2.2. User-specific Features 
Individuals' preferences and patterns of behavior could also contribute to their choice 

of travel mode choice. Some such characteristics can be extracted from the user's usage of the 
app across the full timespan of the data (February through December 2020), as we 
summarize in Table 2.2 below. 

 
Variable Computation 

Tap Frequency Proportion of sessions with taps performed 
Usage Frequency Proportion of days with active sessions 

Primary Usage Time (Used to 
identify "Commuters") 

 Most frequent usage time window (weekday 
commuting hours, weekday non-commuting 

hours or weekends) 

Table 2.2: List of User-specific variables 

2.2.3. Contextual Factors 
Last, we consider contextual factors including weather, time of day, week, and year. 

Data from the primary Boston weather station, located at Boston's Logan Airport 
(USW00014739), were retrieved from NOAA’ NCDC. These data contain records of 
precipitation (in inches) for each day. We match the date of the start time of each session in 
the Transit data to the corresponding weather readings as the amount of precipitation might 
influence rider behavior. 

We also use the time and date of a given session to better understand the context of 
the user's decision making. First, we note whether the session began during commuting hours 
from Monday through Friday (i.e., between 7 am and 10 am as well as between 4 pm and 6 
pm) or not, and whether it occurred on a weekend. Second, we divided the year according to 
the evolution of public policies related to the ongoing coronavirus pandemic--namely, pre-
shutdown, shutdown, and reopening phases, as defined by emergency declarations by the 
Governor of Massachusetts. These dates are listed in detail in Table 2.3. 
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Date Stage 
Before March 13th, 2020 Before Emergency Declaration   
March 13th to May 17th  National Emergency 

May 18th to June 5th  Phase 1 Reopening 
June 6th to July 6th  Phase 2 Reopening 
After July 6th, 2020 Phase 3 Reopening 

 

Table 2.3: Temporal Intervals of Lockdown Stage in response to COVID-19 in MA 

2.3 Classification Models 

We examine whether the features described in the previous section predict whether a 
rider selected TNC over public transit with four different machine-learning techniques: (1) 
logistic regression (Scott, Hosmer, and Lemeshow 1991; Peng, Lee, and Ingersoll 2002) uses 
independent variables to predict the likelihood of an outcome variable being classified as '1'; 
(2) support vector machine (SVM) (Chih-Wei Hsu, Chih-Chung Chang 2008), which 
classifies cases by finding the best k-dimensional hyperplane as a decision boundary, with 
the advantage of reducing overfitting; (3) random forest (RF) (Vladimir Svetnik et al. 2003; 
Archer and Kimes 2008), which classifies cases using a series of decision trees to control for 
both the bias and variance of the model; and (4) Adaptive Boosting (AdaBoost) (Schapire 
2003), which integrates trees from multiple classifiers into one “great classifier” that is 
weighted to enhance accuracy on challenging cases, often enhancing overall fit. 

For all models the data were randomly split, with 75% samples as training and the 
remaining 25% samples as testing. Last, the low prevalence of TNC taps creates an 
imbalanced data set and thus can impact the performance of prediction from conventional 
classification algorithms (Guo and Viktor 2004) to address this issue, we assign the class 
weight to each instance based on the inverse ratio of the corresponding label during the 
training process to balance the label distribution. Additionally, in order to ensure the 
robustness of the results, we reran analyses 100 times and report both the means and standard 
deviations for all results. 

We evaluate the efficacy of our models with multiple indicators. The most commonly 
used metric is accuracy, which is the number of accurate predictions divided by total 
prediction. However, when the data categories are imbalanced, as in the current case, 
accuracy is a less reliable indicator of the efficacy of a model. In addition, accuracy reflects 
the entirety of the model, rather than evaluating its performance in predicting a particular 
class of interest. Therefore, we also consider other metrics that overcome these weaknesses. 
Precision and recall scores for the minority class are the two most common metrics for 
dealing with an imbalanced class distribution. The precision score (true positive/(true 
positive + false positive)) captures the proportion of predicted TNC taps that were correct 
while the recall (true positive/(true positive + false negative)) reflects the ratio of actual TNC 
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taps that were classified correctly. Last, the F-1 score considers both metrics, with the 
formula: 

 
F-1 = 2 * (precision * recall) / (precision + recall) 

 
The F1 score is commonly used to evaluate the overall predictive performance for the 
minority class (Huang et al. 2016; Chawla 2009). 

2.3.1. Logistic Regression 
 
Logistic regression (Peng, Lee, and Ingersoll 2002) is widely used to model dichotomous 
dependent variables where log odds of the outcome is modeled as a linear combination of the 
predictor variables. The basic function that Logistic Regression model relies on is: 

𝑃𝑃(𝑦𝑦𝑖𝑖 = 1|𝑥𝑥𝑖𝑖 ,𝑤𝑤) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤0 + 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖) 

In this equation, 𝑥𝑥𝑖𝑖  represents the input feature vector and   𝑦𝑦𝑖𝑖 = 1 or 0  represents whether it 
is classified as one particular label or not. The sigm() function refers to the sigmoid function 
and it has been defined as:  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) =
𝑒𝑒𝑥𝑥

𝑒𝑒𝑥𝑥 + 1
 

The loss function is the cross-entropy loss which is defined as below: 
 

𝐿𝐿(𝑓𝑓(𝑥𝑥�),𝑦𝑦) = −
1
𝑛𝑛
� (𝑦𝑦𝑖𝑖 ∙ ln 𝑓𝑓(𝑥𝑥𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) ∙ ln(1 − 𝑓𝑓(𝑥𝑥𝑖𝑖)))

𝑛𝑛

𝑖𝑖=1
 

   

Here, X is the set of inputs and Y represent the corresponding labels. The function 𝑓𝑓(𝑥𝑥) 
denotes the output of the logistic regression model given input features 𝑥𝑥𝑖𝑖    and binary 
outcome variable 𝑦𝑦𝑖𝑖 . 

2.3.2. Support Vector Machine 

Support vector machine (SVM) (Hastie, Tibshirani, and Friedman 2009; Chih-Wei Hsu, 
Chih-Chung Chang 2008) can be used as a classifier that performs classification by finding 
the best hyperplane as decision boundary. One main advantage of the SVM is that it 
implements instinctive complexity control to reduce overfitting. The main idea of SVM is to 
maximize the margin around the hyperplane and the classifier is determined by a subset of all 
samples. A simple SVM classifier can be built for a non-separable case via the following 
constraints: 

𝑠𝑠𝑚𝑚𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒
𝛽𝛽0,𝛽𝛽1 …𝛽𝛽𝑝𝑝, 𝜀𝜀1 … 𝜀𝜀𝑛𝑛

 𝑀𝑀 
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𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 �𝛽𝛽𝑗𝑗2 = 1,
𝑝𝑝

𝑗𝑗=1

 

𝑦𝑦𝑖𝑖�𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑝𝑝� ≥ 𝑀𝑀(1 − 𝜀𝜀𝑖𝑖), 

𝜀𝜀𝑖𝑖 ≥ 0,�𝜀𝜀𝑖𝑖 ≤ 𝐶𝐶
𝑛𝑛

𝑖𝑖=1

 

where 𝑀𝑀 is the width of the margin that is being maximized,  𝐶𝐶 is a tuning parameter and 
𝜀𝜀1,2…𝑛𝑛  are slack variables. Decision function 𝑓𝑓(𝑥𝑥) is defined as: 

𝑓𝑓(𝑥𝑥) =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝 

   

And the classification result is based on the sign of 𝑓𝑓(𝑥𝑥). 

The loss function for the SVC is hinge loss, which is also sometimes called the max-margin 
loss with respect to the optimization function and defined as: 

𝐿𝐿(𝑓𝑓(𝑥𝑥�),𝑦𝑦) = max (0,1 − 𝑦𝑦 ∙ 𝑓𝑓(𝑥𝑥�)) 

Support Vector Machine is an extension of the SVC with kernels in order to expand the 
feature space. A simple SVM with Linear Kernel will have the following function:  

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖′) = �𝑥𝑥𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖′𝑗𝑗

𝑝𝑝

𝑗𝑗=1

 

𝑓𝑓(𝑥𝑥) = 𝛽𝛽0 + �𝛼𝛼𝑖𝑖𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖)
𝑖𝑖∈𝑆𝑆

 

In addition to the Linear Kernel, the Gaussian Kernel has also been selected and 
experimented where now the Kernel function has been replaced as: 
 

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖′) = exp (−𝛾𝛾 ‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′‖2) 
 
Note that 𝛾𝛾 is another tuning parameter that was finalized to be 0.05. 

2.3.3. Random Forest 
As an extension to the traditional Classification and Regression Tree (CART) 

method, Random Forest (Breiman 2001) is a tree ensemble non-parametric method that 
builds many decision trees simultaneously in order to reduce the bias and variance of the 
mode. The training of Random Forest model combines two statistical techniques: 
bootstrapping and bagging. First, N bootstrapped sample sets are obtained from the entire 
training set by random sampling with replacement. Each subset is then used to construct a 
regression tree without pruning, which allows the tree to grow independently to its 
maximum.  Instead of considering all predictors, only a smaller and fixed number m of total 
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predictors would be considered as split candidates, as using only a subset of the predictors 
can eliminate the correlations among all N trees. The variable m is generally recommended as 
the square root of the total number of predictors. Subsequently, bagging essentially averages 
all N trees to reduce the overall model variance: 

𝑓𝑓𝑅𝑅𝑅𝑅𝑁𝑁 (𝑥𝑥) =
1
𝑁𝑁
�𝑇𝑇𝑘𝑘

𝑁𝑁

𝑘𝑘=1

(𝑥𝑥) 

Where 𝑥𝑥 is the vectored input variable and  𝑇𝑇𝑘𝑘(𝑥𝑥) denotes a single regression tree 
constructed only based on a subset of variables and the bootstrapped samples. 𝑁𝑁 is the 
number of trees, which is a key hyperparameter and requires tuning for optimal model 
performance. Another important feature of RF is its capability in measuring variable 
importance. The algorithm permutes all the variables and records the mean decrease in 
prediction accuracy for each, which is then used to assign the relative importance score for 
each variable.  

2.3.4. AdaBoost 
AdaBoost (Freund 1999) is an adaptive and ensembled boosting algorithms that 

essentially integrates multiple classifiers into one “great classifier”. The ensembling of many 
decision stumps and weighting them as emphasizing on the challenging instances and less on 
those already trained well provides an opportunity to optimize the model performance, which 
leads to generally higher accuracy compared to linear models. The Pseudo-code for the 
algorithm (Freund 1999) is shown in Figure 2.2 below. 

 

 

Figure 2.2: Pseudo-code for AdaBoost 
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3.0 Results 

3.1 Spatial-temporal Patterns of Trip Taps 

We first compare the features of sessions in which a user tapped on a public transit 
option to those in which they tapped on TNC. We start with sessions with public transit taps 
to establish a baseline for interpreting the characteristics of sessions with TNC taps.  

Figure 3.1 shows the spatial distribution of sessions with taps on public transit. These 
sessions tended to have origins and destinations that conform with general patterns that 
match previously-validated measures of public transit usage. Namely, they concentrate in the 
northern part of Boston, which is home to downtown, and the cities of Cambridge and 
Somerville to the north, which also have robust transit service. Two major hotspots for both 
origins and destinations were the areas surrounding North and South Stations, the two 
primary transit hubs for the metro area. Confirming these patterns, very few trips had an 
origin or destination that was far from Boston's geographic center (see Figure 3.1c and 3.1d). 
Last, Figure 3.1e shows that the temporal pattern is consistent with the daily rhythms of 
public transit ridership. The proportion of trips is fairly smoothly distributed across the 
daytime hours, with peaks during the morning and afternoon commutes. There is then little 
use late at night, when public transit services are shut down. 

 

 

Figure 3.1: The geospatial distribution of (a) trip origins and (b) destinations, by census 
tract of trip with taps on public transit and the spatiotemporal features of trips with 
taps on public transit, including the distances of (c) origins and (d) destinations from 

Boston; and (e) their distribution over the course of the day. 
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Figure 3.2 shows that the sessions with taps on TNC had a distinct spatiotemporal 
profile. Though the majority of TNC trips still originated and concluded within the city of 
Boston, there were substantially more trips starting outside the city and off the main transit 
corridors (Figure 3.2a and 3.2b). There were also many more trips originating or concluding 
far from the center of the city (Figure 3.2c and 3.2d). In addition, there is a noticeable hotspot 
for destinations of trips at Logan Airport (on the northeast shore of the city, shaded dark red 
in Figure 3.2b), reflecting the popularity of TNC for travel from and, especially, to the 
airport. Taps on TNC also had their own evident temporal patterns. As with public transit 
taps, we see peaks during commuting hours (Figure 3.2e), but TNC taps are considerably 
more common relative to public transit taps after 8 pm, when transit shifts to a reduced, off-
peak schedule and then shuts down. This suggests that users may tap on TNC options when 
transit service is less reliable or entirely unavailable and mostly used for suburban localilties 
(Acheampong et al. 2020). 

A final observation was that approximately half (50.77%) of TNC options that were 
tapped actually had a combination of TNC and public transit services, typically with TNC as 
a means for reaching a public transit station or for completing the trip after arrival at a station 
- in other words, as the proverbial first or last mile. This interpretation of TNC as facilitating 
public transit use is further supported by the observation that the average trip in this category 
spends about 20% of its distance and duration in TNC and 80% on public transit. Nearly all 
such trips spent more time and distance in public transit than TNC. These multimodal trips 
represent true complementarity between TNC and public transit in the most literal sense. 
They would in turn be inappropriate for any deeper comparisons between sessions with taps 
on public transit and those with taps on TNC. Thus, all analyses that follow, which explicitly 
evaluate the choice between the two options, omit these cases. 

 

Figure 3.2: The geospatial distribution of (a) trip origins and (b) destinations, by census 
tract of trip with taps on public transit and the spatiotemporal features of trips with 
taps on TNC service, including the distances of (c) origins and (d) destinations from 

Boston; and (e) their distribution over the course of the day. 
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3.2 Trip Characteristics of Trips with TNC 
and Public Transit Taps 

To further explore the differences between trips in which riders tapped on transit and TNC, 
we compare the characteristics of trips with taps on TNC to those with taps on public transit 
graphically in Figure 3.3. A few differences in particular stand out. First, sessions with TNC 
taps tend to have longer waits for and longer walks to reach the first leg of the optimal public 
transit option Fig 3.3a and Fig 3.3f). Interestingly, we see no clear association between mode 
choice and the wait time for the optimal TNC trip or the total travel time for either the 
optimal TNC or public transit trip (see Figure 3.3b and 3.3d, and 3.3e). One surprising 
finding is that taps on TNC tended to be in sessions when the distances from origins to 
destinations were shorter than those with public transit taps (Figure 3.3c). This finding might 
indicate that the use of TNC is less associated with distance itself - especially considering 
that many riders of the commuter rail might use the app in advance of long trips - with 
inconveniences like long wait times and inability to access stations. We will have to probe 
these patterns more closely, however, in the models that follow. 

 

Figure 3.3: Comparisons between sessions with taps on public transit (yellow) and TNC 
(blue), including distributions and medians (dashed lines) for (a) estimated wait time 

for optimal transit trip, (b) estimated wait time for optimal TNC trip, (c) trip distance, 
(d) total travel time for optimal transit trip, (e) total travel time for optimal TNC trip, 

and (f) walking distance to reach first leg for optimal public transit trip. 
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3.3 When Do Riders Select TNC over Public 
Transit? 

We next move to the series of machine learning models using trip, user, and 
contextual characteristics to predict whether a rider tapped on TNC. As we omit those 
sessions with taps on combined TNC-transit trip options, the final sample for all models is 
23,475 trip queries generated by 1,918 users. 

Table 3.1 summarizes the overall efficacy of each model, showing accuracy, recall, 
precision, and F-1 scores. We focus on F-1 scores because of their use as a comprehensive 
indicator of model performance when predicting a rare outcome (in this case, TNC taps). As 
Table 3.1 summarizes, Adaboost had the highest F-1 score at 0.38 (s.e. = 0.03), reflecting its 
more robust combination of multiple decision trees. The other three models were comparable 
to each other (F-1 scores = 0.22 - 0.25), with logistic regression and SVM especially 
struggled with precision, that is the proportion of sessions predicted to have TNC taps that in 
fact had such taps. It is important to note that even AdaBoost was only moderately capable of 
predicting TNC taps with both recall and precision. The moderate prediction indicates that, at 
least with these data, TNC taps occur rarely enough and under a sufficient range of 
conditions - at least through the lens of the features we included in the model - to make 
prospective prediction difficult. This could be owed to missing variables, the rarity of TNC 
taps, and other idiosyncrasies of the data (see Section 5 on Discussion for more). That said, 
the models are still sufficiently strong to merit examining which variables were best able to 
guide such prediction when it was effective. For parsimony, we proceed in two steps. First, 
we examine the parameter results of the logistic regression equation because it is the only 
one of the four methods that provides a clearly interpretable relationship between each 
predictor and the likelihood of TNC taps. We then describe the results from the AdaBoost 
and random forest models, which the best predictive efficacy, but due to their complexity are 
only able to evaluate variable importance in predicting TNC taps, but do not report the 
magnitude or direction of these relationships. In this way, AdaBoost and random forest 
provide the strongest evidence of which variables are meaningful, but the logistic regression 
fills in some ambiguity as to how to interpret these results. 

 
 

Algorithm Accuracy Recall Precison F-1 Score 
Logistic Regression 0.60 ± 0.01 0.52 ± 0.05 0.13 ± 0.01 0.22 ± 0.02 

SVM 0.60 ± 0.01 0.53 ± 0.04 0.13 ± 0.01 0.23 ± 0.02 
Random Forest 0.78 ± 0.02 0.36 ± 0.04 0.20 ± 0.02 0.25 ± 0.03 

AdaBoost 0.75 ± 0.02 0.31 ± 0.03 0.53 ± 0.05 0.38 ± 0.03 
 

Table 3.1: Predictive efficacy of the four algorithms used to predict TNC taps 
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3.4 What are the Most Influential Factors? 

Moving to the variable importance, Figure 3.4 presents the importance of each 
variable in predicting mode choice with AdaBoost and random forest models. Specifically, 
variable importance is a quantification of the increases in the error rate with the removal of 
each variable from the model, with higher scores indicating that a variable improves the 
predictive efficacy of the model. 

Such feature importance is based on expected decrease in performance when a 
specific predictor is included in the model, which is different from the scale of coefficients. 
We note that each model had five relatively more important features with scores greater than 
0.1. Notably, these were the same five measures in each model. A sixth measure of less 
importance stood out in the AdaBoost model; the same measure was less prominent but still 
ranked sixth in the random forest model. In order to make sense of these results, we run 
logistic regressions with 100 iterations with down-sampling (0.75) at each iteration, in order 
to maintain consistent interpretation with the Adaboost and random forest methodologies. 
We concentrate on these six measures, most of which were also significant in the logistic 
regression model, in the summary that follows. 

Five features that were most predictive of TNC taps echoed the descriptive results 
from the previous section and the logistic regression results, heavily featuring characteristics 
of the trip options generated by the app. Though these models do not estimate the direction of 
a given variable's effect, we describe them in this way based on the previous descriptive and 
logistic regression analyses. A greater walk distance to the first leg of the optimal public 
transit option and more wait time for public transit predicted a greater likelihood of tapping 
TNC. Having a greater trip duration on public transit was also predictive of tapping TNC. 
We also see that overall trip distance still predicted tapping TNC. As seen above, longer 
distance was associated with a lower likelihood of tapping TNC, which we believe is because 
these longer trips are largely associated with commuter rail. In each model, the sixth and 
least prominent of the potentially meaningful predictors was wait time for TNC. If we look 
back to the descriptive statistics and logistic regression, it would appear that sessions with 
longer wait times for TNC were more likely to have a tap on TNC. This might be because 
trips that originate in more remote places - which are also poorly served by public transit - 
require more wait time for a TNC driver to arrive. Last, the logistic regression models found 
that if the optimal transit trip contained commuter rail, the user was more likely to tap on a 
TNC-containing option. This was not an important variable in the other models, however, so 
we regard this finding cautiously. 

One of the top five most important features for predicting TNC taps was a 
characteristic of the user, not the session. Both models found that those who more often used 
the app during commuting hours were more likely to tap on TNC. Importantly, this was 
independent of whether the session occurred during commuting hours, which had negligible 
importance in the models, suggesting that it indicates more about how the rider's historical 
habits are associated with future decisions. Apart from this, however, no other non-session 
characteristics were important predictors. Most strikingly, this includes time of day, time of 
week, and daily precipitation. This last finding contrasts with previous studies suggesting that 
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variances in the physical environment could contribute to mode shift (Hyland et al. 2018). 
Instead, it appears that the characteristics of the session, and to a lesser extent the rider, are 
more powerful in influencing this decision. 

 

Figure 3.4: Model coefficients for Logistic Regression in (a) and feature importance for 
all predictor variables included in the models, as determined by the (b) AdaBoost and 
(c) random forest. For each algorithm, we select only 75\% of the samples and assign 

the class weight to each instance based on the inverse ratio of the corresponding label to 
balance the label distribution. We perform 100 iterations and report both the means 

and standard deviations for all the metrics.This page left blank intentionally. 
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4.0 Implementation and Technology Transfer 

A major focus of the project was to develop processes that not only make the Transit 
data accessible to analysis, either for research or real-time forecasting, but to codify these 
processes with replicable code and formalized documentation of the resultant data structure 
and content. These products were then delivered to OPMI and MBTA so that they could 
continue to utilize the Transit data past the end of the project. Here we describe the data 
processing steps and the products that they generate. This information is also spelled out in 
greater detail in Sections 7.2 and 7.3 in the Appendix, which contain the readme document 
that accompanies the syntax and the data documentation, respectively. 

4.1 Accessing and Preparing Transit Data 
for Analysis 

Transit serves up the data generated by the app in JSON format, wherein each 
element is a nested JSON object containing a user's activity for that day. This format is 
efficient for storage but difficult for analysis: (1) querying for a slice of the data spanning 
several days (e.g., a column across all user sessions) requires a full read and parse of each 
daily data dump; (2) querying for a specific subset of all columns for a specific set of users 
similarly requires a full read and parse; the data must be flattened into data frame-like 
structures before being used statistics software packages. We developed a process for 
"flattening" or "unfolding" the daily data dumps and loading them into a SQLite database 
which is both portable and familiar to data scientists. This is described in greater detail in 
Section 7.2 in the Appendix, the readme document for utilizing the syntax. Here we 
summarize the main components. 

Quick Start advises the user on how to initiate the database and any access keys 
needed for sourcing information. Update the Database explains how to update an already 
established version of the database. Transit App Data Structure describes the structure of the 
data set when downloaded with some guidance of how these translate to the contents of the 
final tables generated by the flattening process. Data Unfolding Process describes how the 
nested data structure of each user's data for one day is flattened into records that are then 
added to the SQLite database. This process leverages a variety of unique identifiers at 
multiple levels of organization (e.g., sessions nested within users). During this process, 
multiple additional variables not already present in the data are calculated (e.g., 
walk_distance is a sum of the walking distances of all legs of a single route occurring in a 
single session). Technical Notes summarizes additional details that users should anticipate. 
External Data describes the processes by which we have integrated NOAA’s NCDC daily 
weather data and GTFS real-time arrival times data into the database. These were merged in 
using spatiotemporal information from the session. The latter content was especially 
requested by OPMI as giving fuller context to rider decision-making. Trip-Planning Data 
Processing describes a later addition to the database, though one that forms the basis of the 
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research study presented here. Data from the trip planning interface did not become available 
until February 2020, which means we incorporated it at a later stage in the project. 

4.2 Data Tables and Variables 

After the flattening process, the resultant data structure consists of five tables, each 
describing a different set of objects or actions. A sixth table containing weather records 
provided by NOAA is also included in the final output. sessions contains information on the 
unique user session, including the device ID and the start and end times. trip_views contains 
information about any trip presented to the user when entering a search into the trip planner 
interface, including the unique route ID, the total walking time and distance, total time for the 
trip, number of transfers, and whether the user tapped on it. favorite_locations is a list of 
stored locations from a user’s profile, including the latitude, longitude, and type of location 
(e.g., home, work). nearby_views contains information about each route presented to the user 
in the nearby views interface, including the unique route ID, whether the user has stored that 
route as a favorite, and the number of times they have tapped on it historically. legs contains 
a list of all the legs for a given trip, including the mode, distance, and wait time. Importantly, 
trip_views and nearby_views are nested in sessions though they have additional unique 
identifiers because a single session can have multiple searches in the trip planner or multiple 
updates to the nearby routes. legs are nested within trip_views. Last, daily_weather contains 
the amount of precipitation on the session’s date. The feature_extraction.ipynb from the 
repository will read the .db file and extract the variables for the predictive modeling of mode 
choice and the classficiation_model.ipynb provides demo code for the pipeline of machine 
learning analysis. These tables and their contents are described in more detail in Section 7.3 
of the Appendix.This page left blank intentionally. 
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5.0 Conclusions 

Data generated by the Transit app are a novel resource for understanding how the 
riders of public transit navigate their various transportation options. This project set out to do 
three things: (1) establish a process for making the data accessible for research and analysis; 
(2) interpret the data and create new variables based on this interpretation to enhance the 
value of the data; and (3) conduct a research demonstration that illustrated the utility of the 
data. We discovered early in the project that it would be difficult to confirm whether the data 
were representative of the transit-riding population that the MBTA serves. As such, it was 
necessary to concentrate on the features of the database that were sufficiently distinctive to 
make it stand out from other data sources, and whose analysis might be robust to concerns of 
representativeness. The best candidate for this was the app’s unique ability to capture the 
real-world decision-making of riders as the consider multiple travel options. This sort of 
information is not available from other data sources. Further, it permits within-individual 
analyses that can overcome certain types of representational bias because we are more easily 
able to establish how individual users tend to prioritize certain characteristics when choosing 
between routes (e.g., mode of transportation, travel time, number of transfers). 

With the focus on real-world decision-making between multiple travel options, we 
identified a key research question for demonstrating the value of the Transit app database: 
when and why do riders of public transit select TNC? This question has been of interest to 
transportation officials, advocates, and others ever since Uber, Lyft, and others became 
commonplace options for travel. Some have argued that they act as competition for public 
transit, whereas others have seen them as complementary. The Transit data set acted as an 
ideal mechanism for testing this question. The remainder of this section walks through the 
implications of those research findings, but we note that it is just one of many studies that 
might be conducted on mode choice through Transit’s data. 

5.1  Research Discussion 

The current study used a unique database generated by the Transit navigation app to 
examine how riders choose between TNC and public transit options when navigating greater 
Boston. Where previous work has relied on surveys of riders and aggregated ridership data, 
the app captures rider decisions in real time. We leveraged "taps" that users of the app made 
on TNC and public transit service options as a proxy for which mode they selected. We then 
combined these decisions with extensive contextual data stored by the app - including 
characteristics of the route and the user, time of day and week, and weather conditions - to 
better understand when, where, and why riders select one mode over the other. A series of 
descriptive analyses and machine learning models revealed patterns of both competition and 
complementarity between TNC and public transit, adding evidence and nuance to both sides 
of an ongoing debate. 

The more prominent discussion in the literature has been about how TNC might draw 
riders away from public transit, especially because TNC offsets or altogether avoids the sorts 
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of issues that deter transit ridership in general, such as long wait times, long walks to reach a 
station, and transfers between vehicles (Eluru, Chakour, and El-Geneidy 2012; Bovy and 
Hoogendoorn-Lanser 2005; Yan, Levine, and Zhao 2019). Such work has often been 
conjectural, though surveys have found that when the same trip would be substantially 
shorter by TNC than public transit riders are more likely to opt for the former (Rayle et al. 
2016; Habib 2019). In this light, the results of our machine learning models not only 
reinforce these perspectives but give them greater depth. They found that characteristics of 
the available public transit options are the most important in predicting whether a rider opts 
for TNC. When the wait time for transit, the walking distance to the nearest station, and the 
trip duration on public transit were greater, users of the Transit app were more likely to tap 
on TNC. It is important to note that these models compared the TNC option to the shortest of 
the public transit options with the fewest transfers, which we assumed to be the one that 
riders would be most likely to concentrate on when making deciding between modes. 
Notably, the total distance of the trip was negatively associated with selecting TNC. This 
might be better understood when considering that all models also considered expected time 
length of trip, in which case it could point to the fact that the overall convenience advantage 
of TNC is what matters, not the distance alone. That is, given a long-distance trip, if the time 
duration on transit is not so great, then TNC is less attractive; but if a trip takes longer 
relative to its distance, TNC is more attractive. Overall, given the detailed nature of the data 
and the fact that they capture riders' decisions when navigating the transit system in real time, 
these results are likely the most direct confirmation of how and when TNC competes 
successfully for public transit riders to date. 

The machine learning models did generate two additional results that went beyond the 
characteristics of the TNC and public transit options themselves. First, users who regularly 
ride public transit during commuting hours were more likely to tap on TNC. This might 
reflect a certain facility with the app and the varied options that might be available for transit 
not as present in those who do not use the app as part of their daily routine. Second, other 
contextual factors, including time of day and week and precipitation, were not predictive of 
TNC selection. This was somewhat surprising given other literature that suggests that such 
factors play a substantial role in mode choice (Hyland et al. 2018). 

Our results also highlight areas in which TNC services may complement public 
transit, particularly in addressing the “last-mile problem.” First, the spatial distribution of 
TNC origins and destinations suggests that people are using TNC service to access large 
transportation hubs, such as bus and train stations and airports. Further, half of all taps on 
TNC routes were actually taps on routes in which TNC was carrying the rider either to or 
from a public transit connection. This indicates that TNCs may help to fill spatial gaps left 
between public transit service and long-haul shared transportation by inter-city rail and air. 
Last, as noted above, the use of TNC taps was less frequent for longer trips. As we discussed, 
this primarily captures riders on commuter rail. But it also might point to one of the 
downsides of TNC, which is the increased cost of TNCs relative to public transit, which is 
exacerbated for longer-distance travel (Habib 2019). Users may therefore choose to link 
shorter trips via TNC (with little cost disadvantage) to longer trips via public transit (where 
public transit remains drastically cheaper). 
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As with the evidence on competition between TNC and public transit, this evidence 
for complementarity between the two modes is some of the first that leverages real-time rider 
decision-making. Additionally, much of the previous work on complementarity occurred in 
contexts in which the local transit authority had been working with one or more TNCs to 
subsidize first-mile and last-mile trips connecting to the public transit system (Terry and 
Bachmann 2020). This work had been limited by whether such dynamics occurred naturally 
or were economically sustainable. Because greater Boston's transit system has no such 
program in place, the results would suggest that such behaviors emerge organically. 

5.2  Limitations and Next Steps 

There are a few limitations of the study that must be noted. First, we were limited to 
the information generated by the Transit app. Though this information in many cases was 
more detailed and precise than previous studies, it lacked certain measures that have been in 
use. For instance, the data did not include wait time of transfers, which in previous research 
was found to be a major factor influencing mode choice. This prevented us from verifying its 
effect, though we were able to verify that number of transfers is a significant factor. Second, 
it is important to reiterate the interpretation of the Transit data and therefore the study as a 
whole. The Transit app is positioned as a tool for navigating public transit systems around the 
world, in which context it informs users of all alternative options. Users of the app, then, are 
presumably individuals who ride public transit with some frequency. However, the 
demographics of Transit app users are not guaranteed to match the demographics of transit 
riders, especially during the pandemic. Further, when riders use the app they are probably 
already inclined to use public transit. The results here in turn should not necessarily be 
interpreted as describing the frequency and tendencies with which the whole population of a 
metropolitan region weigh TNC and public transit against each other so much as when and 
why regular public transit riders opt to ride TNC. The critical factors are sufficiently 
consistent with previous research to suggest that they are probably relevant more broadly, but 
this caveat should be kept in mind. 

A third limitation was the overall efficacy of the machine learning models. 
Specifically, despite decent accuracy for all algorithms used in this paper, they all suffered 
from moderate-to-poor levels of recall and precision. Practically speaking, this means that 
Transit app data is not sufficient to generate reliable forecasting mechanisms. While such 
forecasting would be ideal, there are a number of reasons why it would be difficult to achieve 
with these data and maybe in general. First, as noted above, we were limited to the measures 
generated by the Transit app, meaning that the models could not capture the full range of 
influences on individuals' behavior. These might include environmental features of the mode 
choice that we do not examine here, such as current traffic, or individual-level features, such 
as a rider's socioeconomic status or the purpose of their trip. Second, the class imbalance that 
is inherent in transportation mode choices given the lower prevalence of TNC trips relative to 
public transit trips may lead to poor accuracy regardless of any unobserved features that 
could be incorporated into these models. Though we attempt to account for this, imbalance 
by incorporating down-sampling and weighting techniques to ensure the evenness of data 
label distribution prior to model training, these problems remain. These results collectively 
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indicate that such decision-making processes might be more complex to model. While more 
complex modeling strategies might be fruitful for improving our models' predictive ability, 
future researchers would be wise to keep in mind that the limitations of measurement and 
class imbalance might make TNC choices a poor target for predictive modeling. 

Another limitation is the absence of cost due to the unavailability of such data for 
TNC trips due to contract limitations between Transit and TNC companies. The economic 
aspect of trip mode choice is an important feature which could be a great extension of this 
research especially during the pandemic. Finally, we note that the data for this study came 
almost entirely from the period following the onset of COVID-19 in greater Boston, which 
may limit the generalizability of the results. Namely, individuals might be behaving 
differently during this period than they typically would when deciding between 
transportation modes. However, our methodological choices at least partially assuage these 
types of concerns. In our models, we controlled for the different stages of the shutdown and 
reopening and found them to have no meaningful effect on mode choice decisions. Because 
these types of models incorporate both direct and interaction effects, this would mean that the 
trajectory of the pandemic had little effect on which variables impacted the likelihood of 
TNC selection. It may also be true that the pandemic has affected ridership behaviors in 
durable ways such that our data may be more indicative of future patterns than pre-pandemic 
data would have been. In any case, as we have already noted, the results were sufficiently 
consistent with the existing theory on the subject that it would not seem as though they were 
an artifact of the pandemic. 

5.3  Final Conclusion 

The Transit app data provide a unique view into the factors that influence a rider's 
choice between public transit and TNC, generating new evidence for both the competition 
and complementarity between these two modes of transportation. Policymakers and other 
decision-makers pursuing optimal resource allocation in the realm of transportation would do 
well to heed these results. The results validated several previously studied features of transit 
that may be driving mode shift from public transportation to TNC, but also add greater 
nuance and detail than previous studies. In highlighting features of the transportation network 
that drive users to choose TNC over public transit, we demonstrate the potential danger for 
future disinvestment in public transit to exacerbate existing trends in mode shift. Rather than 
improving efficiency, such policy choices may serve only to push more people towards cars 
and away from shared buses and trains as a means of transportation. There is some promise, 
however, in capitalizing on the natural intersections of TNC and public transit that increase 
the overall efficiency and effectiveness of the transit system as a whole. Further exploring 
these dynamics as people and transportation systems adapt to shifting services and policies 
will be critical for shaping the transportation systems of the 21st century. Last, this is one 
illustration of the potential that Transit app data can have to advance our understanding of the 
ways public transit riders make decisions when selection between travel options. 
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7.0 Appendices 

7.1 Attempts to Validate Transit App User 
Sample 

We used an established technique for inferring home locations from mobility data: 
identifying the location at which a person has the most activity between the hours of 8 pm 
and 5 am. We pursued two forms of validation. First, we could attach these home locations to 
census geographies and compare to the residential population. Though transit ridership is not 
necessarily evenly distributed across the population, we would expect some level of 
consistency between these measures. Second, approximately 20% of Transit app users have 
stored a home location, allowing for a direct comparison between known and inferred home 
location. 

These analyses provided conclusive evidence that home locations could not be 
inferred from Transit app data in this way. We focus here on the results for Suffolk county, 
which contains Boston, though similar results were found for Norfolk and Middlesex 
counties. The density of known home locations correlated with population reasonably 
strongly (r = .59; see Figure 7.1), but when we conducted the same analysis for inferred 
locations the correlation dropped precipitously (r = .28; see Figure 7.2). These relationships 
are represented in Figure 7.1. 

We concluded that activity between 8 pm and 5 am for an app for navigating public 
transit might not be an appropriate time window for inferring home locations. We tried again 
using 5 am to 9 am, anticipating that some people might use the app before leaving home in 
order to plan their commute. This time, we validated directly against stated home addresses 
for those who had them saved in their account. We found that the median inferred home 
address was over 2 km from the known home address of the same individual, meaning the 
inferences were still far too error prone to allow us to determine where the Transit app 
population lived, thereby severely limiting our ability to validate its population distribution, 
whether against census population or ridership statistics. 
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Figure 7.1: Comparison of the Density of Actual Residents (left and Known Home 
Locations from Transit App Accounts (right) in Suffolk County. 

Figure 7.2: Comparison of the Density of Actual Residents (left) and Inferred Home 
Locations from Transit App Usage (right) in Suffolk County. 
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7.2 Accessing and Preparing Transit Data 
for Analysis 

This repository from GitHub contains code that facilitates the flattening of data from 
the Transit App into a database that can be easily queried. In its raw form, each Transit App 
data dump exists as a single JSON array, where each element is a nested JSON object 
containing a user's activity for that day. This format is somewhat difficult to interface with 
for analysis: 

 
• Querying for a slice of the data spanning several days, i.e. a feature / column across 

all user sessions, requires a full read and parse of each daily data dump; 
• Querying for a specific subset of all columns for a specific set of users similarly 

requires a full read and parse; 
• The data must be flattened into data frame-like structures before being used statistics 

software packages. 
 
The code in this repository attempts to address all of the above issues by "flattening" 

or "unrolling" the daily data dumps and loading them into a SQLite database which is both 
portable and familiar to data scientists. 

7.2.1. Quick Start 
For an initial database setup: 

1. Create a copy of config.ini.template and rename it to config.ini. 
2. Credentials for accessing the Transit App's data feeds have been included 

in config.ini. Double check that you can log into the data portal with these 
credentials. Also, if weather data is to be imported, register an NCDC API key and 
paste it into config.ini. A URL to the registration page has been included in config.ini. 

3. Run bootstrap.py, which will download all available data from the Transit App using 
the URL and credentials specified in config.ini. 

4. Run init_db.py to import the data into the database. 
o The default behaviour of init_db.py is to import all daily JSON dumps in 

the transitapp-data/transit directory. To restrict the import to a subset, simply 
pass the desired files as command-line arguments. 

 e.g. to import all data on or after 2020 February 28: find transitapp-
data/transit/20*.json | tail -n +303 | xargs ./init_db.py 

5. Optionally, run weather.py to scrape, import, and create a crosswalk for NOAA 
NCDC daily weather data. 

6. The initialized database will be available at transit.db. 
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7.2.2. Update the Database 
 

To update the database: 

1. Run bootstrap.py. 
2. Make a backup of the database. Rationale for this can be found below. 
3. Run init_db.py. 
4. If updating weather: drop the tables daily_weather and daily_weather_crosswalk then 

run weather.py. 

The database can be updated incrementally with bootstrap.py and init_db.py; 
imported Transit App files are kept track of with a table in the database and will not be 
imported again. However, to save on space improve import performance, the database will 
not keep track of incomplete imports. In these cases, the database must be rebuilt. Because 
of this, it is recommended to back up the database before updating with init_db.py. To update 
the weather data, the tables daily_weather and daily_weather_crosswalk must be dropped 
before running weather.py again.  Downloaded data is stored locally to avoid redownloading. 

7.2.3. Transit App Data Structure 
In this section, a brief summary of the Transit App data structure will be presented. 

Words appearing in bold appear as separate tables in the final database. 

The structure of each days' data is in the form of one giant JSON array. Each element 
of this array corresponds to a user comprising several sessions, which are the primary data 
unit, and also favorite_locations, which are essentially a user's bookmarks. Favorite locations 
correspond to a user's bookmarks at the time that the dump occurred and can change between 
dumps, within users. 

A single session corresponds to all activities that occurred between a user opening an 
app and the app being closed and cleared from the phone's memory. It is important here to 
note that there is a distinction between simply leaving the app and actually closing it, as the 
former will not end a session and the session will persist in the background until the user 
returns. As a result, some sessions can end up being disproportionately long. The rate at 
which background apps are closed is dependent on the phone's operating system and user 
settings. 

Each session consists, among other things, of several trip_views and nearby_views. 
Each trip view corresponds to a single "trip" planned by the app, which encompasses a 
unique multimodal route from the user's input origin and destination and consists of several 
legs. Each leg has an origin, destination, distance, estimated duration, mode of transportation, 
and a unique identifier linking the public transit route to the MBTA's GTFS feeds, if 
applicable. 

An important feature of the trip views is that trip views do not explicitly include 
information of when an origin-destination query was made or which views were presented 
for which query. However, the former can be reasonably deduced from the session start time 
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and the latter can be reasonably estimated by examining the coordinate pairs of the origin and 
destination, as a specific pair of coordinates will generally correspond to a specific query. 

Nearby views refer to nearby transit routes that are suggested to the user on the home 
screen, before they start planning their trip. Each nearby view has information about the 
number of times the route was tapped by the user during that session, whether or not the 
route was favorited, and an identifier linking to the MBTA's GTFS feeds, if applicable. 

In both sessions and nearby views, ridesharing and bikesharing options are also 
presented, if applicable. 

For a full list of all available variables and types, please refer to the variable 
SQL_TABLE_INIT in init_db.py, which contains the database schema. This can also be 
accessed by opening the database in an SQLite database exploration software or by 
typing .schema in the sqlite3 command line. For more detailed information about each 
column, please refer to the PDF documentation. 

7.2.4. Data Unfolding Process 

Overview 

The data unfolding process, which is handled by init_db.py, essentially walks through 
the nested data structure of each user's data for one day and inserts flattened records into the 
SQLite database. Each element of each array of interest corresponds to a single row in the 
database. 

For elements that are arrays, a unique MD5 hash is generated as a unique identifier 
for each element within the array by hashing together data that, when combined, are unique 
for that particular element. The MD5 hash function allows us to reduce each heterogenous 
and variable-length tuple of values into a single string. For example, a session can be 
uniquely identified by the user and start time alone, so those are what are hashed. 

The unique identifiers are unidirectional in the database, pointing up from the lower 
levels. For example, legs embed trip view identifiers, trip views embed session identifiers, 
etc. 

In addition to unique identifiers, some other additional data is generated in the 
unfolding process: 

• Several variables in the trip_views table are generated as aggregates of 
constituent legs, such as walk_distance which is a sum of the distances of all legs. 

• All durations, appearing as e.g. travel_time in the trip_views and legs tables, have 
been generated. For legs, this corresponds to the end_time of each leg minus 
the start_time; for trip views, this corresponds to the end_time of the last leg minus 
the start_time of the first leg. 

• All indicator variables, such as has_rideshare and has_transit in trip_views, have 
been generated. 
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Technical Notes 
Data unfolding takes place in the process_user function of the init_db.py script. 

Tables have been separated by indentation levels corresponding to loops that unfold each 
nested array. An SqlRecord object is created for each element and appended to an empty list 
generated at the start of each user's parsing procedure; the list grows as that user's data is 
parsed. At the end of parsing, the records are inserted, in the order that they were generated, 
into the database. 

The use of arrays of SqlRecord objects here is to allow for parallel processing of 
JSON files but sequential ordering of records into the database, which is necessary for 
preserving the integrity of the data and allowing links across tables. Essentially, users are 
processed on several different threads, and chunks corresponding to users' processed data are 
passed back to the main thread in a FIFO queue where they are consumed one-by-one. This 
eliminates a condition where two users could be simultaneously processed and their data 
inserted in a staggered manner. This consumption pattern is not a performance issue since the 
parsing of the JSON data is the main bottleneck. 

7.2.5. External Data 

Weather 

In addition to the data provided by Transit, we have additionally created facilities for 
merging National Climatic Data Center daily weather data into the database, for assessing 
route preference under different weather conditoins. Both the scraping and inserting of 
weather data is handled entirely by the weather.py script, which queries the NOAA NCDC 
API. 

The script additionally generates a crosswalk that links session identifiers to the 
weather data by comparing session start times to NCDC dates. This is done with an SQL 
query that is embedded in weather.py. This script can be run without any user input. The 
default behaviour is to scrape all data from January 1st, 2020 to the present day, though the 
start date can be changed by changing the GHCND_START_DATE variable. 

7.2.5.2 GTFS-realtime Arrival Times 
The wip_init_trip_updates.py script is a proof-of-concept showing how enhanced 

GTFS-realtime archives from the MBTA could be flattened. The behavior of the script is to 
parse the GTFS-realtime feeds in the transitapp-data/gtfs directory, where GTFS-realtime 
GZIP-compressed data archives should be dumped (this can be changed by changing the 
target of the glob that defines the files variable) and outputs flattened data to transitapp-
data/gtfs-processed. Similarly to the weather data, a crosswalk for this could be created with 
a SQL query that compares start times and route identifiers. 
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7.2.6. Trip-Planning Data Processing 
The processing code is available at the feature-extraction.py. The main objective is to 

select all the candidate trip queries where they satify all of the following conditions: 

 
• The user has at least performed taps on trips with both Transit and TNC at least once  
• For each trip query, the user was presented with trip candidates containing modes 
• The user has to show preference toward one mode over another (i.e more taps) 

 
The code in this repository attempts to address all of the above criteria across all the 

trip view feeds generated from the previous unflattening process. One notable thing is that, 
even under the same session, a user could specify multiple origin/destination pairs. Hence we 
re-assign the trip-id prior to identifying the optimal trips with both modes and extracting the 
corresponding information as mentioned in Section 2.2. The detailed extraction/aggeration 
principles are listed below and the code in the repository provides step-by-step extraction 
code as well as the merge between different features to generate the following variables: 

User-level Features 

• User’s primary usage purpose: the ratio of sessions occuring during different time  
windows: Weekday Commuting/Weekday Non-commuting/Weekend (Numerical) 

• User’s overall frequency of app usage: the average number of sessions in last week 
(Numerical) 

• User’s overall tendency of the tapping act: the ratio of sessions with taps to the total 
number of sessions of the user (Numerical) 
 

Trip-level Features 

Note: To ensure all spatial and temporal information belong to one single trip rather 
than extracted from multiple trips, we first define the ‘optimal’ trip for both Transit and 
TNC, for both modes. If any trip feed was tapped it automatically becomes an optimal trip 
candidate. If more then one trip was tapped for each mode, we use the one with the shortest 
duration from the trips has the minimum transfers. If none of the trips with the specifc mode 
was tapped, similarly, we select one with the shortest duration from the trips has the 
minimum transfers from the untapped trips to reflect the ‘best’ option provided with the 
corresponding mode. 

 
• User’s interaction during the session: Whether the user has tapped on any nearby 

views during the session, and if yes, if the tapped nearby views contains any of the 
user’s favorite route (Categorical) 

• Session’s start time type: Weekday Commuting/Weekday Non-commuting/Weekend 
(Categorical) 

• The initial wait times for both optimal trips (Numerical) 
• The initial walking distances for both optimal trips (Numerical) 
• The number of transfers for the optimal Transit trip (Numerical) 
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• The trip durations for both optimal trips (Numerical) 
• Trip Distance computed based on Origin and Destination information (Numerical) 
• Vehicle Type of the primary mode(s) of optimal Transit   trip (e.g. Bus vs. Subway 

vs. Commuter Rail (Categorical) 

Additional Predictors 

• Weather information such as the temperature and actual hourly percipitation during 
the beginning of the session (Numerical) 

• Stage of the shutdown based on local authority’s guidance (Categorical) 
 

7.3 Transit App Data 

This data documentation describes the schema and contents of the Transit app data 
once “flattened” or “unfolded” into tabular formats to facilitate analysis. It contains a 
subsection describing the variables contained in each of the resultant tables. For each, the 
unique identifier variables that create links across the files (or reflect nesting of one table’s 
rows in the rows of another table) are noted. 

7.3.1. sessions 
Sessions are unique periods of usage of the app, from opening of the app to closing of the 
app. 
 

Variable Name Type  
session_id TEXT unique identifier for each session 

(PRIMARY KEY) 
device_id TEXT unique identifier of the device 

(FOREIGN KEY) 
start_dt INTEGER start time of the session 
end_dt INTEGER end time of the session  

Table 7.1: List of variables for table: sessions 
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7.3.2. trip_views 
Trip views are all trips presented to a user when conducting a search in the trip planning 
interface. Trip views are nested within sessions as a given session might include one or more 
uses of the trip planning interface. 
 

Variable Name Type  
trip_view_id TEXT unique identifier for each 

trip view 
(PRIMARY KEY) 

session_id TEXT unique identifier for of the 
session (FOREIGN KEY) 

orig_lon REAL longitude of origin 
orig_lat REAL latitude of origin 
dest_lon REAL longitude of destination 
dest_lat REAL latitude of destination 

mbta_services TEXT the global-route-id of all 
legs 

vehicle_types TEXT the vehicle type of all legs 
walk_distance REAL total walk distance of all 

legs (m) 
walk_distance_transit REAL the initial walk distance 

before the first transit leg 
(m) 

walk_time REAL the sum of legs with 
walking (sec) 

travel_time REAL the sum of all trip legs (sec) 
transfers INTEGER number of transfers 

longest_leg_mode TEXT the mode of the longest leg 
longest_leg_vehicle_type TEXT the vehicle type of the 

longest leg 
tapped INTEGER if tapped is 1, else 0 

session_start_to_first_vehicle_time REAL the time between the session 
start time and the first 

vehicular leg 
planning_start_to_first_vehicle_time REAL the time between the desired 

departure time and the first 
vehicular leg 

has_transit INTEGER if contains Transit mode leg 
1 else 0 

has_rideshare INTEGER if contains TNC mode leg 1 
else 0  

Table 7.2: List of variables for table: trip views 
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7.3.3 favorite_locations 
Favorite locations are a part of an individual user’s account data. 

Variable Name Type  
favorite_id TEXT unique identifier for each record 

(PRIMARY KEY) 
device_id TEXT unique identifier of the device 

(FOREIGN KEY) 
address VARCHAR address of the favorite location 
name VARCHAR name chosen by the user to represent this 

location 
favorite_type INTEGER type of the favorite location which is a 

numerical value and there are ten unique 
values and all records contain such 

information. Most common entries are 
home and work. 

latitude REAL latitude of the favorite location 
longitude REAL longitude of the favorite location 
locality VARCHAR locality of the favorite location (such as 

Boston, Cambridge) 
sub_locality VARCHAR sub-locality of the favorite location (such 

as downtown, south end) 
postal_code VARCHAR postal code of the favorite location 

country_code VARCHAR country code of the favorite location 

Table 7.3: List of variables for table: favorite locations 
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7.3.4 nearby_views 
Nearby views are the routes presented to a user as being nearby (based on GPS-derived 
location) when the user opens the app. Nearby views are nested within sessions as a user is 
presented with multiple nearby routes in each session. 
 

Variable Name Type  
nearby_view_id TEXT unique identifier for each nearby view 

(PRIMARY KEY) 
session_id INTEGER unique identifier of the session 

(FOREIGN KEY) 
rideshare_category TEXT specifying tnc options (lyft, uber etc) 

global_route_id TEXT global_route_id of the mbta service 
shown in the feed if applicable 

is_lyft INTEGER binary variable indicating whether the 
nearby view option is by Lyft  

is_uber INTEGER binary variable indicating whether the 
nearby view option is by Uber 

is_favorite INTEGER start time of the session 
tap_count INTEGER end time of the session  

Table 7.4: List of variables for table: nearby views 

7.3.5 legs 
Legs are the components of a given trip presented by the trip planner interface. Legs 

are nested within trip views (which, in turn, are nested within sessions), as any given trip 
generated by the trip planner will have one or more legs. 
 

Variable Name Type  
leg_id INTEGER unique identifier for each leg 

(PRIMARY KEY) 
trip_view_id TEXT unique identifier of the trip view which 

the leg belongs to (FOREIGN KEY) 
leg_idx INTEGER  leg index within each trip view sorted by 

the departure time 
global_route_id INTEGER  global route id of the leg if applicable 

mode TEXT  mode of the leg (transit or tnc) 
vehicle_type TEXT vehicle type of the leg 
travel_time REAL travel duration of the leg 

distance REAL travel distance of the leg 
wait_time REAL the start time of the current leg minus the 

previous leg for any vehicular leg 

Table 7.5: List of variables for table: legs 



43 
 

7.3.6 daily_weather 
Weather data are accessed from NOAA’s NCDC and merged based on the date of the session 
(see Section 7.2 for merging process). 
 

Variable Name Type  
weather_id INTEGER unique identifier for each session 

(PRIMARY KEY) 
date TEXT unique identifier of the device 

precipitation_inches INTEGER end time of the session  

Table 7.6: List of variables for table: daily weather 

7.4 Descriptive Statistics of Trip View Data 

To provide background on patterns of usage, we present a series of descriptive 
statistics from the trip view table. This analysis is based on the data obtained immediately 
after the database was constructed and prior to the feature extraction process. Figure 7.3 
shows the top 10 most frequently appeared routes where we see that 7095 (Red Line), 7532 
(Green Line) and 7094 (Orange Line) are the top candidates along with the combinations of 
them. The bus routes appear to be less frequent which could be due to the large number of 
bus routes compared to subway. Figure 7.4 shows that if we consider only the vehicle type, 
then bus becomes the most dominant which is most likely caused by the large number of 
unique bus routes. 

 

 

Figure 7.3: Frequency of Trip Global_Route_IDs from Trip View Table 
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Figure 7.4: Frequency of Vehicle Types from Trip View Table 
 

Figures 7.5 and 7.6 reflect the overall relative frequency of the trip’s longest mode. 
Over 40% of the trips have a public transit mode as the longest leg while the same proportion 
is 12% for TNC. The most common vehicle type is bus with 22% while for subway is 11%. 

 

 

Figure 7.5: Frequency of Longest Leg Mode from Trip View Table 
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Figure 7.6: Frequency of Longest Leg Vehicle Type from Trip View Table 
 

Figure 7.7 show the percentage of three binary variables included in the table. Where 
we can observe that 16% of the trips has rideshare service included whereas 67% include 
public transit. The overall percentage of trips with taps is 7%. Table 7.7 summarizes the 
quantile information and mean value for the numerical variables. Note these values were 
obtained after removing extreme or false values (negative value for a distance or time). 

 

 

Figure 7.7: Frequency of the Binary Variables from Trip View Table 
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Numerical Column Median Mean Std 25% 75% 
walk_distance (m) 382.9 682.5 1063.3 13.1 906.7 

walk_distance_transit (m) 161.4 313.1 437.6 42.3 429.6 
walk_distance_rideshare (m) 0 0 135.6 0 0 

walk_time (s) 606.0 617.2 303.5 371.0 862.1 
travel_time (s) 1887.0 2203.8 2285.3 1261.0 2742.0 

transfers 4 3.5 1.7 2 4 
session_start_to_first_vehicle_

time (s) 
856.0 1191.8 1106.2 445.0 1542.0 

planning_start_to_first_vehicle
_time (s) 

795.0 1146.7 1132.7 378.0 1502.0 

Table 7.7: Statistics of Numerical Variables from Trip View Table 

7.5 Supplementary Information of Analysis 

7.5.1. Database Component 
As described in the main text, the data used for this paper come from the Transit app, 

with records of user's interactions with several different aspects of the app stored in separate 
forms. The main data used in the paper are the trip planning features of the app, which allow 
us to impute both origins and destinations of users given their input. 

Other components of the data include the “nearby view" feature, which is what most 
users see when first opening the app. This feature allows users to see transit stops and 
upcoming arrivals in their close vicinity, as well as other alternative transportation options 
such as bikeshare or TNCs. Our records of users' interactions with this feature of the app 
include users' taps on each line of transit (or non-transit) transportation option shown to them 
in this view. Similar to the main data described earlier, we store the records of users' 
interactions with the ``nearby views" feature in a database consisting of a flattened version of 
the raw JSON data managed with SQLite3 via Python. 

7.5.2. Tap Number Comparison 
Figure 7.8 shows that amongst all trip queries, during the vast majority (94.51%) of 

queries a user only taps on transit-based trips. There is no query during which a user taps on 
only TNC trips, this might be due to the fact that our data are from Transit App rather than 
any TNC App, through which many users who intend to use TNC services likely originate 
their trips. Taps on TNC trips are greater than taps on transit trips for 3.59% of sessions with 
taps. There are only 1.24% where the total tap count for both modes are equal and we remove 
those trip queries to capture clear inclinations. 
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Figure 7.8: Comparison of the Number of Taps on both Transit and TNC across all 
Queries 

7.5.3. Multi-mode Trips with Taps 
Another initial finding based on the trip data screening is that a large portion of 

individuals who have tapped on TNC trips tend to tap on the trips that have a combination of 
both Transit and TNC services. Based on the historical taps, 50.77% of the tapped trips 
contains TNC are multi-mode trips and across all users who have previously expressed their 
interests toward the TNC services, 50.4% of them are solely interested in the multi-mode 
trips. 

This further suggests that a significant fraction of potential riders who select a TNC-
containing option from the Transit app are using the TNC service as the first or last mile to 
the transit stop. Figure 7.9 reveals the spatial and temporal features of trips with both modes. 
Where it can be observed that the overall hot spots are similar to the TNC-only hot spots 
including South Station and Logan Airport. The majority of the trips are less than 20km from 
the city. There are some additional new destination spots such as the Southeastern areas to 
the city. The temporal distribution shows slight peak around 3pm across the study period. 
Figure 7.10 shows the ratios between the duration and distance of the TNC portion to the 
Transit portion, and the ratios are close to 0.25 for both metrics highlighting that the Transit 
service acts as the major portion of such trips. 
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Figure 7.9: Comparison of the Number of Taps on both Transit and TNC across all 
Queries 

 

Figure 7.10: Comparison of the Number of Taps on both Transit and TNC across all 
Queries 
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7.5.4. Feature Transformation 
For all optimal trip features extracted, we visualize the histogram and compute the 

skewness (Mardia 1974) as shown in Fig 7.11. We use a threshold of 1 as threshold (Mardia 
1974) and perform a log-transformation for any variable has a skewness value greater than 1 
which is shown in Fig 7.12.  We can see that most heavy-tailed features appear to be more 
bell-shaped after the transformation with significant decrease on the skewness value. 
However, the walk distance feature appears to be an exception hence we use the original 
scale for modeling and analysis. 

 

Figure 7.11: Distributions of Values for Original Input Features 
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Figure 7.12: Distributions of Values of Input Features with Log-transformation on 
Selected Features 

 

7.5.5. Precipitation Data 
Figure 7.13 summarizes the daily and weekly rainfall based on weather station's 

historical readings. We can observe some peaks during certain times which are likely caused 
by storms and such events are quite sparse rather than continuous. 
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Figure 7.13: Time Series of the Historical Precipitation Data 

7.5.6. Temporal Progression of Tap Tendencies 
Figure 7.14 shows the temporal progression of daily trip taps from the Transit App 

users during the study period. The y-axis represents the ratio to the annual median value on 
each day of the week for different type of trip taps (daily value divided by the annual average 
day-of-week value). We observe that there is a decrease following the national emergency 
declaration responding to the COVID-19 pandemic, which is visible for both daily and 
weekly patterns and the usage recovered between late July and late October as the reopening 
takes place. The overall temporal progression trends for both TNC and Transit are similar to 
each other with ascending and descending trends at the same intervals. 
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Figure 7.14: Time Series of the Relative Trip Taps on Transit and TNC modes 
 

7.5.7. Correlation Heatmap 
We then move towards a predictive approach to more systematically analyze users' 

choices between TNC and public transit. First, we plot the correlations between the features 
we use in our predictive models. Figure 7.15 plots the Pearson’s correlations between each 
pair of features used in our models and described earlier. We see that all trip, user, and 
environmental features of users' trips appear to have no or only weak linear correlation with 

the output variable (tap choice): no correlation has an absolute value greater than 0.05. 
However, some trip features are collinear with one another. The difference in trip duration 
between TNC and public transit is correlated positively with the number of transfers and the 
trip distance. 
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Figure 7.15: Pearson Correlation Heatmap of Predictive Features 
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