

#### A Screening Tool for Evaluation of Need for Impact Study Analysis for Intermittent DER Interconnections

Presented to TSRG Meeting May 16, 2017

- A screening tool that Eversource employs, in addition to other screening criteria in the Tariff and engineering judgement, to determine the Need for Impact Study analyses for intermittent DER applications
- A measure of expected power quality (PQ) impacts for intermittent DG interconnections (e.g. solar and wind). Not needed for dispatchable or loadreducing DER interconnections (e.g. CHP, synchronous machines).
- Evaluates the effects of interconnection of a one (1) DER interconnection at one primary point of common coupling (PCC).
- A pre-existing power flow or protection model of the distribution system (CymDist, Synergee, PSS/Adept, ASPEN, etc.) may be required.
- It is a well-known test. See NREL presentation "High-Penetration Photovoltaic Standards and Codes Workshop" page 25 "Ratios and Their Uses" http://www.nrel.gov/docs/fy10osti/48378.pdf
- The other criteria include: Existing DER saturation level of the circuit / substation bus with existing / approved for interconnection applicants, results of last impact study for projects queued just before, fault current contribution, light load voltage rise analysis, concern for islanding, etc. 2

#### Identify Study Criteria – Example: System Stiffness

- A screening criterion to determine whether detail studies are required to assess DG impact on power quality:
  - The ratio between the available utility system fault current  $(I_{sc})$  at point of DG connection and the DG's full load rated output current  $(I_{DG})$

Stiffness Factor = 
$$\frac{I_{sc}}{I_{DG}}$$

| Stiffness<br>Factor (SF) | Recommendation                                                                                                                                                                                   |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SF >250                  | Insignificant: Absolutely no concern that flicker or voltage change will be an issue for any type of DG source                                                                                   |
| 100 < SF≤ 250            | Nearly Insignificant: Very little concern unless DG is started/stopped frequently or has unusual<br>fluctuations                                                                                 |
| 50 < SF≤ 100             | Minor Concern: Moderate concern for fluctuating sources such as wind and PV. Will need to assess rates of fluctuations and start/stop cycles but still probably not an issue in most cases       |
| 25 < SF≤ 50              | Significant Concern: Any DG source connecting with an SF in this range will need serious analysis<br>of planned start/stop cycles and output fluctuations and may need some mitigation equipment |
| 15 < SF≤ 25              | Very Significant Concern: DG in this range can cause serious voltage flicker and fluctuations.<br>Mitigation equipment and/or system changes probably are needed                                 |
| SF ≤ 15                  | Extreme Concern: Voltage changes may be so severe that project is not viable without extreme application of mitigation devices or feeder upgrades                                                |



© 2010 Quanta Technology LLC

Page 54

**EVERSURCE** 



- Available Fault Duty, I<sub>sc</sub>
- Maximum available fault (short circuit) current at the requested point of common coupling. Includes contributions of existing and previously queued DG applicants.
- Can be a 3-phase fault, 2-phase fault, 2-phase to ground fault, or single line to ground fault (most common). The lowest value is used in the calculation.
- A function of the location and strength of the transmission system where the source substation is located, the impedance of the bulk substation, and the length, topology, and impedance of the distribution circuit from the substation to the requested point of common coupling.

**EVERS** 

# CymDist Model – Example 13.2kV Circuit



# CymDist Model – Example 13.2kV Circuit



**EVERS©URCE** 

ENERG

Safety First and Always



- DG full load primary output current, Ipg
- The maximum primary load Amperes for the DER at the requested point of common coupling with the DER at its full claimed kW(AC) output.
- Example for a 1,000 kW(AC) PV array

$$I_{DG} = \frac{1,000,000}{\sqrt{3}*4160} = 139 \text{ Amps at } 4.16 \text{kV}$$

$$I_{DG} = \frac{1,000,000}{\sqrt{3}*13,800} = 44 \text{ Amps at } 13.8 \text{ kV}$$

$$I_{DG} = \frac{1,000,000}{\sqrt{3}*23,000} = 25 \text{ Amps at } 23.0 \text{ kV}$$

**EVERS** 

### **Example Calculation - #1**

2 MW Solar Interconnection at the End of A Long 13.2kV Feeder No other applicants queued ahead on the feeder, other applicants same bus section Fails stiffness factor test and requires impact study

| Example 1.99       | MW PV /      | Array                                 |             |            |           |                    |               |            |            |    |
|--------------------|--------------|---------------------------------------|-------------|------------|-----------|--------------------|---------------|------------|------------|----|
|                    |              |                                       |             |            |           |                    |               |            |            |    |
| Near the End       | of a Lon     | g 13.2kV                              | distribut   | tion circ  | uit       |                    |               |            |            |    |
|                    |              |                                       |             |            |           |                    |               |            |            |    |
| SYSTEM STIFFN      | ESS FACT     | OR CALCL                              | JLATION (F  | ED FROM    | FISHER F  |                    | UBS           | TATION.    | #523 CIR   |    |
|                    |              |                                       |             |            |           |                    |               | ,          |            |    |
|                    |              |                                       |             |            |           | D                  |               |            |            |    |
| Existing Fault Dut | y at Point c | of Interconn                          | ection (POI | J <b>)</b> | Short-Cir | cuit Box           | \$            |            |            | ×  |
| III-G              | 1032         | Amperes                               |             |            |           |                    |               | LG LG      | min<br>729 |    |
|                    | 969          | Amperee                               |             |            | ×1/B1 ×   | 363  <br>(0/R0   F | 81            | X1 B       | 0 X0       |    |
| LL-G               | 729          |                                       |             |            | 1.38      | 1.93 4.5           | 5665 6        | 6.2931 8.0 | 765 15.587 | 77 |
| LG                 | 729          |                                       |             |            | 05.00     |                    | 10. 🛛         | d 🕂 💼      | 2 🔂        |    |
|                    |              |                                       |             |            |           |                    |               |            |            |    |
|                    |              | 1.99 MW F                             | PV ARRAY    |            |           |                    |               |            |            |    |
|                    |              | 1.00                                  | Ν.Λ\Λ/      |            |           |                    | $\rightarrow$ |            |            |    |
|                    |              | 1.55                                  |             |            |           | _                  |               |            |            |    |
| Max lsc            |              | 1032                                  | Amperes     |            |           | _                  |               |            |            |    |
| Min Isc            |              | 729                                   | •           |            |           |                    |               |            |            |    |
|                    |              |                                       |             |            |           |                    |               |            |            |    |
| l FL @ 13.2kV      |              | 87.0                                  | Amperes     |            |           |                    |               |            |            |    |
|                    |              |                                       |             |            |           | _                  |               |            |            |    |
| Stiffness Factor   |              | 11.9                                  | (using Ma:  | x lsc)     | (Extreme  | Concer             | n)            |            |            |    |
| (lsc / IFL)        |              | 8.4                                   | (using Min  | lsc)       | (Extreme  | Concer             | n)            |            | -          |    |
| ,                  |              | · · · · · · · · · · · · · · · · · · · |             | ,          |           |                    |               |            |            |    |

#### **Example Calculation - #2**

2 MW Solar Interconnection at the End of A Long 23kV Feeder Stiffness Factor Test Result Borderline BUT in a cluster with 2 other applicants Area Saturated already with prior applicants, requires impact study

| EXAMPLE 2        | 2 MW DE      | <b>R INTER</b> | CONNE          | CTION      |             |                 |               |                  |          |
|------------------|--------------|----------------|----------------|------------|-------------|-----------------|---------------|------------------|----------|
|                  |              |                |                |            |             |                 |               |                  |          |
| NEAR TAIL        | END OF       | 23KV D         | <b>ISTRIBU</b> |            | RCUIT       |                 |               |                  |          |
|                  |              |                |                |            |             |                 |               |                  |          |
|                  |              |                |                |            |             |                 |               |                  |          |
| SYSTEM STIF      | FNESS FA     | CTOR CAL       | CULATION       | I (FED FRO | OM WEST F   | POND #10        | LINE #929     | CIRCUIT)         |          |
|                  |              |                |                |            |             |                 |               |                  |          |
| Evisting Fault I | Duty at Poi  | nt of Interco  | propertion (E  |            |             |                 |               |                  |          |
|                  | Duty at F On |                |                |            | She         | ort-Circuit B   | ox            |                  | ×        |
| LLL-G            | 2074         | Amperes        |                |            | L           | LL LLG          | LL LG         | LG min           |          |
| LLL              | 1880         |                |                |            | 2           | 074 1880        | 1794 142      | 2 1422           |          |
| LL-G             | 1794         |                |                |            | ×1          | /R1 X0/R0       | <u>B1 ×1</u>  | RO               | ×0       |
| LG               | 1422         |                |                |            |             | 2.54   2.44   2 | 2.3860 [6.062 | 27   5.8568   14 | 4.3011   |
|                  |              |                |                |            | 0           | s 🔍 O L         | 🛍 🕙 4         | › 🛅 🗹 📢          | <u>}</u> |
|                  | !            | 2.0 MW P       | V ARRAY        |            |             |                 |               |                  |          |
|                  |              | 2              | Ν Α\Δ/         |            |             |                 |               |                  |          |
|                  |              | Z              |                |            |             |                 |               |                  |          |
| Max Isc          |              | 2074           | Amperes        | -          |             |                 |               |                  |          |
| Min Isc          |              | 1422           | ·              |            |             |                 |               |                  |          |
|                  |              |                |                |            |             |                 |               |                  |          |
| I FL @ 23k∨      |              | 50.2           | Amperes        |            |             |                 |               |                  |          |
|                  |              |                |                |            |             |                 |               |                  |          |
| Stiffness Facto  |              |                | (using Ma)     |            | (Significan | t Concern)      |               |                  |          |
| (lec / IFL)      |              | 28.3           | (using Maz     |            | (Significan | t Concern)      |               |                  |          |
|                  |              | 20.0           | (doing kiin    |            | (eigninean  |                 |               |                  |          |

### **Example Calculation - #3**

334 kW Solar Interconnect near tail end of 23kV distribution feeder; not a saturated area, interconnection small compared to fault duty at PCC, passes stiffness factor test no impact study required

| EXAMPLE 3        | 34 KW F     | <b>PV ARRA</b> | Y            |          |             |             |            |           |          |
|------------------|-------------|----------------|--------------|----------|-------------|-------------|------------|-----------|----------|
|                  |             |                |              |          |             |             |            |           |          |
| NEAR TAIL        | END OF      | 23KV D         | ISTRIBU      | TION C   | IRCUIT      |             |            |           |          |
|                  |             |                |              |          |             |             |            |           |          |
| SYSTEM STIFI     | FNESS FA    | CTOR CAL       | CULATIO      | N (FED F |             | URY #25 LIN | IE)        |           |          |
|                  |             |                |              |          |             |             |            |           |          |
| Existing Fault D | Duty at Poi | nt of Interco  | onnection (I | 20I)     |             |             |            |           |          |
|                  |             |                |              |          |             | Short-Circ  | uit Box    | 1         | <u> </u> |
| LLL-G            | 3130        | Amperes        |              |          |             | 111 11      | G U U      | lG lG min |          |
| LLL              | 2851        |                |              |          |             | 3130 2      | 351 2711 2 | 195 2195  |          |
| LL-G             | 2711        |                |              |          |             | ×1/R1 ×0    | /RO        |           |          |
| LG               | 2195        |                |              |          |             | 1.56 1      | .50        |           |          |
|                  |             |                |              |          |             | OS OC       |            | പപി 🔊 🕤   |          |
|                  |             | 0.334 MW       | PV ARRA      | Y        |             |             |            |           | <u>1</u> |
|                  |             | 0.334          |              |          |             |             |            |           |          |
| Max lsc          |             | 3130           | Amperes      |          |             |             |            |           |          |
| Min Isc          |             | 2195           |              |          |             |             |            |           |          |
| l FL @ 23kV      |             | 8.4            | Amperes      |          |             |             |            |           |          |
| Stiffness Facto  | r           | 373.3          | (using Ma    | x lsc)   | (Insignific | ant Concern | )          |           |          |
| (lsc / IFL)      |             | 261.8          | (using Min   | lsc)     | (Insignific | ant Concern | )          |           |          |
|                  |             |                |              |          |             |             |            |           |          |

### **Example Calculations - #4**

296 kW Solar Interconnect on a 4.16kV stepdown area fed by overhead 23/4.16kV stepdown transformers. Not a saturated area, low stiffness factor test due to high primary amps and low fault duty, impact study would have been required. 23kV system was one conductor span away. Cost of upgrades for 1 span less than the cost of an impact study, so no impact study was required.

| Example 29       | 6 kW PV      | Array         |             |          |              |              |               |              |       |
|------------------|--------------|---------------|-------------|----------|--------------|--------------|---------------|--------------|-------|
|                  |              |               |             |          |              |              |               |              |       |
| Interconnec      | ction to a   | a 4.16kV s    | stepdow     | n area   |              |              |               |              |       |
|                  |              |               |             |          |              |              |               |              |       |
| SYSTEM STIF      | FNESS FA     |               | CULATION    | N (FED F | ROM HARWIG   | CH #95A L    | NE, 4kV S     | Stepdown a   | area) |
|                  |              |               |             |          |              |              |               |              |       |
| Eviating Fault   |              | nt of Intoroc | nnaction /  |          | Short-0      | Circuit Box  |               |              | ×     |
| Existing Fault I | July at Poil |               | nnection (F | -01)     |              | LLG L        | LG            | LG min       |       |
| LLL-G            | 1371         | Amperes       |             |          | 1371         | 1281 11      | 87 1094       | 1094         |       |
| LLL              | 1281         | · ·           |             |          | ×1/B1        | X0/R0 R      | 1 ×1          | RO XO        |       |
| LL-G             | 1187         |               |             |          | 2.15         | 1 2.33 [0.79 | 900 [1.7004 ] | 1.2990 [3.03 | 30    |
| LG               | 1904         |               |             |          | Os           | ) o O L 🖞    | 📕 🔁 🕂 🛉       | 🛅 🗹 🔂        |       |
|                  |              | 296 KW P      | V ARRAY     |          |              |              |               |              |       |
|                  |              |               |             |          |              |              |               |              |       |
|                  |              | 0.296         | MW          |          |              |              |               |              |       |
| Max lsc          |              | 1904          | Amperes     |          |              |              |               |              |       |
| Min Isc          |              | 1187          |             |          |              |              |               |              |       |
| Fl @ 4 16kV      |              | 41 1          | Amperes     |          |              |              |               |              |       |
|                  |              |               | 7 inporce   |          |              |              |               |              |       |
|                  |              |               |             |          |              |              |               |              |       |
| Stiffness Facto  | r            | 46.3          | (using Max  | k lsc)   | (Significant | Concern)     |               |              |       |
| (lsc / IFL)      |              | 28.9          | (using Min  | lsc)     | (Significant | Concern)     |               |              |       |