nationalgrid

Company Owned Solar - Phase II

MA TSRG Regular Meeting – 9/17/14 Justin Woodard PE

Introduction - Phase I Solar

 Received pre-approval from Department of Public Utilities (DPU) in 2009 as authorized by the Green Communities Act in 2008.

nationalgrid

- Five separate sites for a total of approximately five megawatts of solar generation.
 - Dorchester 1250kW
 - Everett 605kW
 - Haverhill 1016 kW
 - Revere 750 kW
 - Sutton 983 kW
- Environmental Remediation Solar on limited use land

Introduction - Phase I Solar

nationalgrid

- Currently National Grid owns 5 MW's of Solar (Phase I)
 - Additional Site Information : <u>https://www.nationalgridus.com/masselectric/solar/</u>

Waltham - 225 kW

Sutton - 983 kW

Everett - 605 kW

Revere – 750 kW

Dorchester - 1250 kW

Haverhill - 1016 kW

Company's Solar Phase II Proposal nationalgrid

- On 12/31/2013 National Grid submitted plans to the Massachusetts Department of Public Utilities (DPU) for approval to build, own and operate an additional 20 megawatts (MW) of new solar generation with advanced inverter functionality within targeted towns in the state
- Integrate vs. Interconnect
- On June 28, 2014 the DPU responded with a favorable order

Why is National Grid doing Phase II ? nationalgrid

- Since 2009, National Grid has interconnected over 200 MW of third party-owned solar generation facilities within its service territory.
- National Grid is looking to interconnect a greater number of projects with higher benefits to customers, developers and the electric distribution system, especially given the Commonwealth's goal of 1,600 MW of solar by 2020, set by Governor Deval Patrick.
- National Grid's goal is to use these sites, to further solar development in the commonwealth through advanced technologies.
- Installing solar generation in pre-selected areas will enable the company to experiment with new tools and unlock technical challenges. National Grid will share findings with the entire energy community, assisting toward the Commonwealth's clean energy goals.

nationalgrid

The Pre-Selected Cities and Town were selected for one of three reasons:

- Areas with High PV Penetration
- Lightly Loaded Feeders
- Heavily Loaded Feeders
- Example application on selected feeder
 - Capacity relief
 - Voltage regulation
 - Coordination

Pre-Selected Towns

national**grid**

Abington Andover Attleboro Ayer Billerica Brockton Charlton Dighton **Fall River** Grafton Gloucester Hanover Harvard Leicester

Marlborough Millbury Nantucket Northbridge Norton Quincy Rockport Shirley Stoughton Sturbridge Swansea Tewksbury Weymouth

Advanced Functionalities

nationalgrid

Functionality	Modes	Description
Active Power Control	Real Power Curtailment	Ability to limit the active power production of the
		PV site to a value below its potential
Active Power Control	Ramp Rate Control	Ability to limit the rate of change in magnitude of
		active power supplied
Reactive Power	Fixed Power Factor: Pffixed	Ability to maintain a power factor at the PV site's
Control		PCC by changing reactive power injection
Reactive Power	Fixed Reactive Set-point: Qfixed	Ability to inject a fixed amount of reactive power
Control		(percentage of nameplate) at the PCC
Reactive Power	Power factor compensation - Power factor/active	Ability to establish a Power Factor level at the
Control	power characteristic curve PF(P)	PCC based on actual Active Power production
Reactive Power	Voltage Compensation - Reactive power/voltage	Ability to inject Reactive Power at the PCC based
Control	characteristic curve Q(U)	on actual Voltage level
Reactive Power Control	Voltage Regulation – closed loop regulation of the voltage Ramp Rate Control	Ability to establish a Voltage level at the PCC by
		injecting Reactive Power. Ability to limit the rate of
		change in magnitude of reactive power supplied
Frequency Droop	Real Power Curtailment	Ability to curtail Active Power during higher than
Response		normal frequency at the PCC
Low Voltage Ride Through		Ability to configure the tripping of the PV site
("LVRT") & High Voltage Ride	Ride Through or Modulated Power Output	during Under and Over Voltage events at the
Through ("HVRT")		PCC (beyond what UL1741 specifies)
Frequency Ride Through ("FRT")	Ride Through or Modulated Power Output	Ability to configure the tripping of the PV site
		during Under and Over Frequency events at the
		PCC (beyond what UL1741 specifies)

nationalgrid

Advanced technologies

TSRG Involvement

- National Grid will be drafting the testing protocols, we would like to ask the TSRG to review and recommend any improvements for maximizing the potential benefits
- National Grid would like to present the results of the Company's analysis performed under its Solar Phase II program to the TSRG and other Massachusetts electric distribution companies at a future meeting of the TSRG.

Questions

nationalgrid

Justin Woodard, PE

Lead Engineer New Products and Energy Solutions National Grid 40 Sylvan Road Waltham, Ma 02451 T: (781) 907-1617 justin.woodard@nationalgrid.com

11