1996 TURA Information Release

Introduction

TURA was a cutting edge bill when it was unanimously passed by the Massachusetts legislature in 1989. It introduced a new way of promoting environmental protection by focusing on pollution prevention as a way to comply with, and to exceed, regulatory standards while increasing the economic competitiveness of Massachusetts industry. Evidence gathered over the life of the TURA program has verified the success of this new environmental protection strategy.

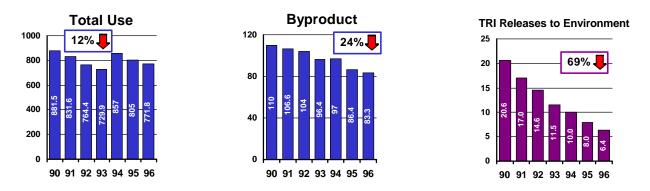
In a recent program evaluation, Massachusetts industries credited TURA with helping them increase their manufacturing efficiency and improve their bottom lines. In fact, TURA is one of the few environmental laws that saves companies money while it improves the environment. TURA filers documented monetized benefits as a result of their toxics use reduction efforts that are more than the costs associated with TURA and its implementation.

The progress of Massachusetts industries in reducing toxic chemical waste, use, and emissions to the environment is remarkable. DEP would like to thank companies which have demonstrated significant reductions in chemical waste, and the TURA Program staff for their commitment to continuous improvement and protection of the environment.

Executive Summary

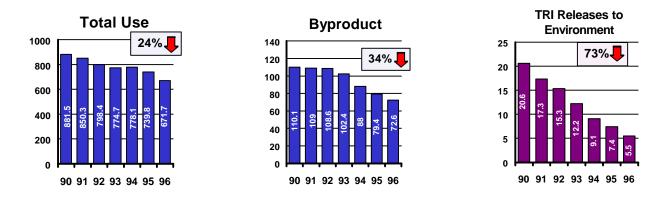
This report summarizes the information collected by the Massachusetts Toxics Use Reduction Program from 530 Large Quantity Toxics Users who reported under TURA in calendar year 1996. In addition, it provides a comprehensive analysis of the 7 years of TURA information to allow evaluation of toxics use reduction progress in Massachusetts from 1990 to 1996.

Since the last TURA Information Release, significant work has been done to raise the quality and reliability of the information. This year's Release contains the most accurate up-to-date information to evaluate toxics use reduction progress. It also contains the same type of analysis and information we have presented in the past: a core group of companies and chemicals with both reported numbers and numbers adjusted to account for changes in production.


Here are some highlights from the Core Group:

Reported TURA Data:

• From 1995 to 1996, Massachusetts manufacturers have decreased their total use of chemicals by 33.2 million pounds, their byproduct generation by 3 million pounds, and their toxic releases by 1.6 million pounds.


	TOTAL USE	BYPRODUCT	TRI RELEASES TO THE ENVIRONMENT
1995	805,000,000	86,400,000	8,000,000
1996	771,800,000	83,300,000	6,400,000

• Since 1990, Massachusetts manufacturers have decreased their total chemical use by 109.7 million pounds, their byproduct generation by 26.7 million pounds, and their toxic releases to the environment by 14.2 million pounds.

Toxics Use Reduction Progress from 1990 to 1996 - Production Adjusted Data:

• When the information is adjusted to account for changes in production, this information documents that Massachusetts manufacturers are now using 24% fewer toxic chemicals to make their products, they are generating 34% fewer wastes, and they are releasing 73% fewer toxics to the environment since the first year of TURA reporting.

Summary of Terms Used in the Information Release

For a more detailed description of these terms, please refer to the TURA and TRI annual reporting packages.

1. TURA and TRI Definitions

TURA - Massachusetts Toxics Use Reduction Act of 1989

TRI - federal EPA Toxics Release Inventory

Chemical Use - amount of the manufacture, processing and otherwise use of a chemical. Relabeling or redistributing a container of a toxic substance where no repackaging of the toxic substance occurs does not constitute use or processing of the toxic substance.

Manufacture - to produce, prepare, import or compound a toxic or hazardous substance

Otherwise Use - any use of a toxic substance that is not covered by the terms "manufacture" or "process" and includes use of a toxic substance contained in a mixture or trade name product.

Process - the preparation of a toxic or hazardous substance, including without limitation, a toxic substance contained in a mixture or trade name product, after its manufacture, for distribution in commerce:

a) in the same form or physical state, or in a different form or physical state, from that in which it was received by the toxics user so preparing such substance; orb) as part of an article containing the toxic or hazardous substance

Total Use - the total amount of TURA chemicals reported as manufactured, processed, and otherwise used

Byproduct - all non-product outputs of reportable substances generated by a production unit prior to handling, transfer, treatment, and release.

Product - a product, a family of products, an intermediate product, family of intermediate products, or a desired result or a family of results. "Product" also means a byproduct that is used as a raw material without treatment.

Process Codes - alpha-numeric codes

TURA Fact			
1996 TURA and TRI Information			
1,285,000,000 lb Total Use 551,000,000 lb Shipped in/as Product 139,000,000 lb Byproduct 66,000,000 lb TRI Releases and Transfers			

by which TURA filers identify the processes included in their production units. For instance, the code AA-01 refers to dip, flow and curtain coating.

Shipped in or as Product - the quantity of the chemical that leaves the facility as product.

Transfers and Releases (TRI) - Total transfers and releases reported under TRI. This is the total of all releases to the environment, (Form R-Sections 5 and 8.8) transfers to publicly owned treatment works (POTWs) and off-site transfers (Form R-Section 6) for energy recovery, recycling, treatment and disposal.

Transfers Off-Site (TRI) - Byproducts that are transferred off-site for energy recovery, recycling, treatment and disposal (Form R-6.2).

Releases to the Environment (TRI) - All byproducts that are released to the air, discharged to surface waters, on-site releases to land and underground injection wells (Form R-5.1 through 5.5 and 8.8)

Trade Secret - All quantities in this report include aggregated trade secret data, unless otherwise noted.

2. <u>Trend Analysis Definitions</u>

Core Group Definition - The TURA information is used to measure progress of Massachusetts TURA filers in reducing their use of toxic materials and their generation of toxic byproducts. Because the TURA reporting requirements have changed form 1990 to 1996, it is important to examine a set of industries and chemicals which have been consistently subject to reporting.

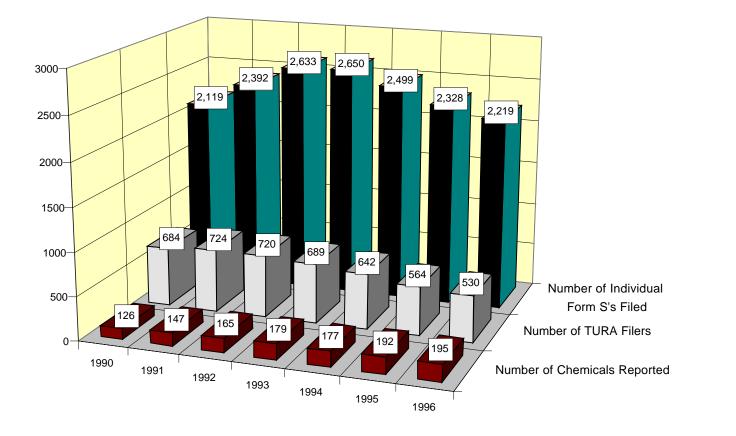
In the first year, only manufacturing firms were required to report. Then pursuant to the TURA statute, non-manufacturers were added. The list of chemicals subject to reporting was expanded during reporting years 1991 through 1993. In addition, over the years, certain chemicals have been delisted.

To create a meaningful comparison from one year to the next, a group of records, called the Core Group, has been defined. The Core Group consists of industries and chemicals that were subject to reporting in 1990 and remain subject to reporting now. For industries, the Core Group includes any facility whose Standard Industry Classification (SIC) code is within the range of 20 to 39 (inclusive), the manufacturing SIC codes. For chemicals, the Core Group includes all chemicals on the 1990 TURA reporting list that have not since been delisted.

- The qualifications for inclusion in the Core Group never change.
- The companies & chemicals included in the Core Group may change.
- If a chemical is delisted, it is removed from the Core Group for all reporting years.

- If a core facility drops below the reporting threshold, their prior year records remain in the core. New filers are included in the Core Group if their SIC codes and chemicals qualify as core.
- There are yearly changes in the Core Group according to chemical delistings and facility revisions.
- The Core Group includes the majority of the chemicals and facilities reporting in each year, both in terms of the number of forms received and the quantities of chemicals reported.
- The Core Group does not include chemicals for which a facility claimed trade secret in any year.

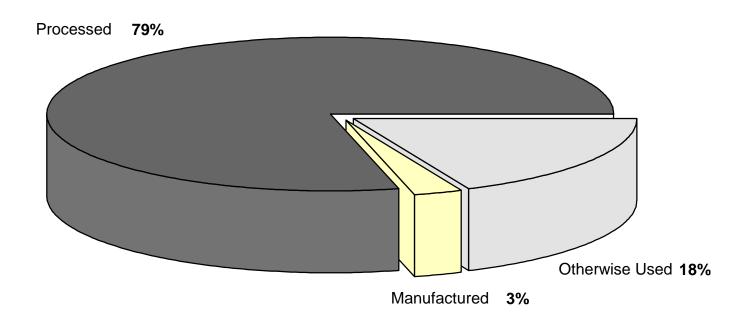
Reported Change -The change in total reported Core Group quantities over the period 1990 to 1996 (unless otherwise noted). For example, there has been a reported reduction of 24% in total pounds reported of byproduct from 1990 to 1996. Observed changes may be due to either TUR or changes in production.

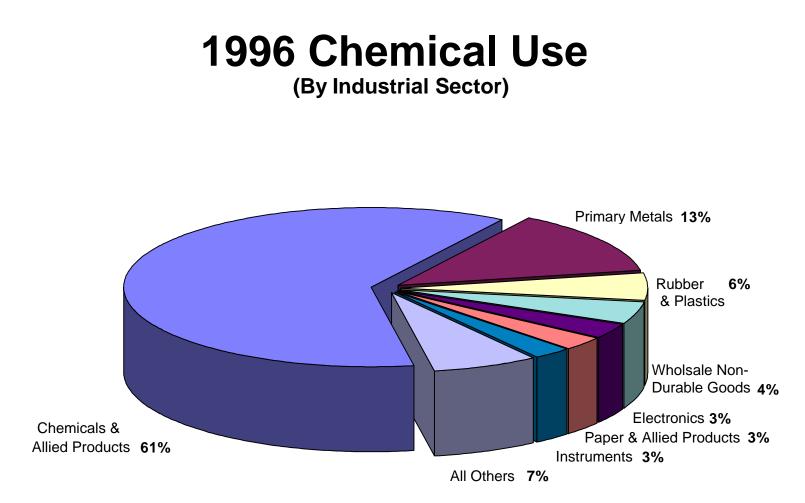

Production Adjusted - From year to year, the Core Group reported quantities change, and are adjusted for changes in manufacturing activity.

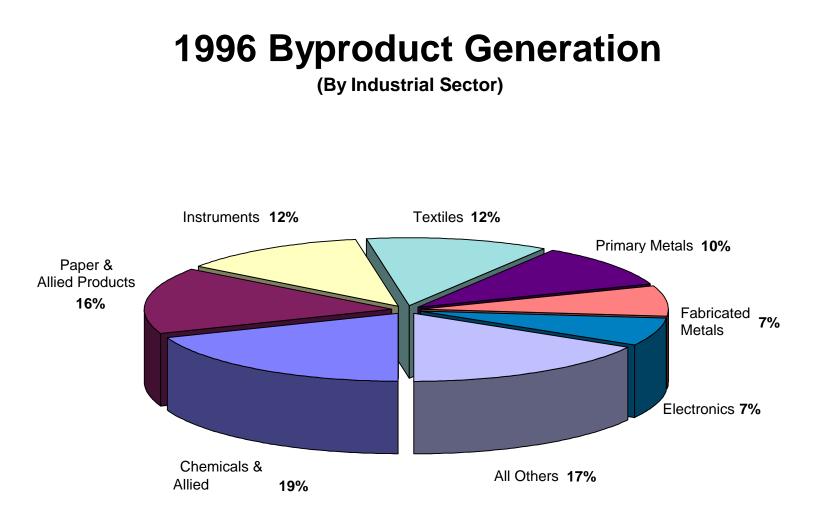
TURA Fact Core Non-Trade Secret 1990 - 1996 Trends		
Total Use 12% Reported Reduction 24% Production Adjusted Reduction		
Byproduct	24% Reported Reduction 34% Production Adjusted Reduction	

Example:

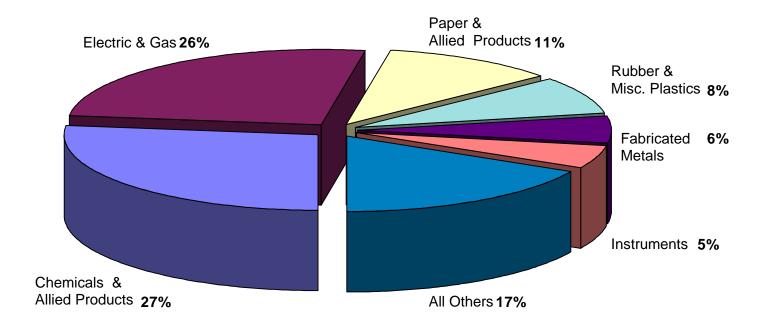
- A facility produces 1,000 machine parts, and generates 100 lbs of byproduct in year 1.
- In year 2, it produces 25% more machine parts (1,250). Therefore, the TRI production ratio
- = 1.25. However, it still only generates 100 lbs of byproduct.
- The production adjusted by product for year 2 is 100 lb/1.25 = 80 lbs.
- The production adjusted percent change is [100-80]/100=0.20. The reduction from year 1 to year 2 is 20%, while their actual byproduct reduction is 0%.

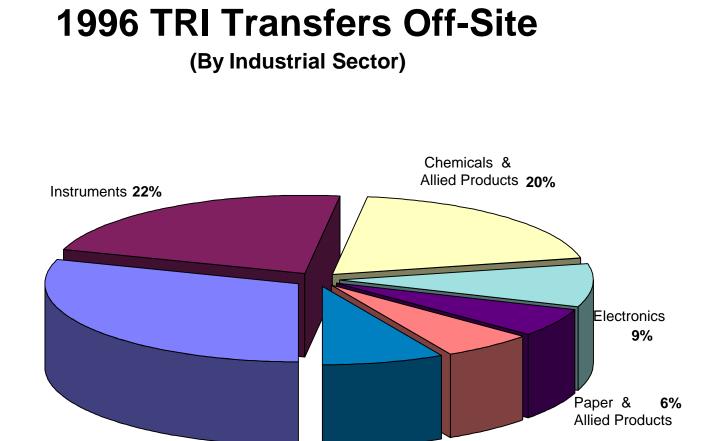

TURA Filer Trends 1990-1996




One Form S is completed for each TURA chemical reported. The number of individual Form S's filed has decreased since 1993, the year in which CERCLA chemical list was completely phased into reporting. As of 1996, only 195 of 1500 listed chemicals were reported by TURA regulated the facilities

1996 Chemical Use


(Does Not Include Trade Secret)



1996 TRI Releases (By Industrial Sector)

Primary Metals 29%

All Others 8%

Fabricated Metal 6%

	Four Most Commonly Reported Industrial Processes This table shows the four most commonly reported process codes and the five most common industries, chemicals, and TUR techniques associated with each of these process codes.			
	GG-01 Blending, Mixing, Compounding	BB-04 Removal by Chemical Means	BB-02 Aqueous Cleaning	GG-03 Packaging/Filling
Chemicals Most Commonly Reported Used in this Process	Zinc CompoundsToluene	Sulfuric AcidNitric Acid	Sodium HydroxideSulfuric Acid	TolueneGlycol Ethers
	Methyl Ethyl KetoneGlycol EthersXylene	Sodium HydroxideHydrochloric AcidCopper	CopperHydrochloric AcidNitric Acid	AcetoneXyleneZinc Compounds
Industries Most Commonly Reporting this Process	 Chemicals & Allied Products Rubber & Miscellaneous Plastic Products 	 Fabricated Metal Products Electronic & Other Electric Equipment 	 Fabricated Metal Products Electronic & Other Electric Equipment 	 Chemicals & Allied Products Wholesale Trade of Nondurable Goods
	 Paper & Allied Products Textile Mill Products Primary Metal Industries 	 Textile Mill Products Primary Metal Industries Paper and Allied Products 	 Textile Mill Products Primary Metal Industries Miscellaneous Manufacturing Industries 	 Rubber & Miscellaneous Plastic Products Instruments and Related Products Food and Kindred Products
TUR Techniques Most Commonly Reported for this Process	 Improved O&M of Processing Equipment Product Reformulation 	 Improved O&M of Processing Equipment Recycling, Reuse or Extended Use of Toxics 	 Improved O&M of Processing Equipment Recycling, Reuse or Extended Use of Toxics 	 Improved O&M of Processing Equipment Product Reformulation

The industries, chemicals, and TUR techniques associated with each process code are listed in order from the most commonly reported to the least commonly reported.

1996 Top 10 Facilities with the Greatest Reduction in Byproduct Generation While Implementing Toxics Use Reduction (1995-1996)

Compan	y	Reduction in Byproduct (Lbs.)
1. Solutia	(Springfield)	5,464,830
2. Novacor Chemicals	(Springfield)	2,064,085
3. Eastman Gelatin Corp.	(Peabody)	471,679
4. Hazen Paper Co.	(Holyoke)	429,822
5. Sullivan Paper Company	(W. Springfield)	400,517
6. Cambridge Electric Light	(Wareham)	386,374
7. Boston Edison Co.	(Boston, ID# 130085)	324,000
8. Cranston Print Works	(Webster)	258,028
9. Lepages, Inc.	(Gloucester)	255,403
10. Surface Coatings, Inc.	(Wilmington)	208,350

1996 Top 20 Chemicals

Total Use

(These quantities do not include Trade Secret)		
Chemical Name (CAS Number)	Total Use (Lbs.)	
STYRENE MONOMER (100425)	325,846,809	
COPPER (7440508)	181,797,675	
SODIUM HYDROXIDE (1310732)	80,858,810	
HYDROCHLORIC ACID (7647010)	47,087,474	
SULFURIC ACID (7664939)	44,847,784	
TOLUENE (108883)	32,021,690	
METHANOL (67561)	20,594,237	
METHYL ETHYL KETONE (78933)	17,757,207	
COPPER COMPOUNDS (1015)	17,162,028	
ZINC AND COMPOUNDS (1039)	16,162,351	
DIISOCYANATES (822060)	16,104,791	
AMMONIA (7664417)	14,980,502	
SODIUM HYPOCHLORITE (7681529)	14,584,204	
POTASSIUM HYDROXIDE (1310583)	14,156,940	
ACETONE (67641)	13,425,905	
METHYL METHACRYLATE (80626)	12,541,273	
ETHYL ACETATE (141786)	12,449,496	
LEAD COMPOUNDS (1026)	8,897,196	
PHOSPHORIC ACID (7664382)	8,877,590	
PHTHALIC ANHYDRIDE (85449)	8,527,101	

Byproduct Generation

Chemical Name (CAS Number)	Byproduct Generation (Lbs.)
SODIUM HYDROXIDE (1310732)	16,712,505
TOLUENE (108883)	14,624,411
SULFURIC ACID (7664939)	12,136,313
COPPER (7440508)	10,840,639
ETHYL ACETATE (141786)	9,752,930
METHYL ETHYL KETONE (78933)	9,283,874
ACETONE (67641)	9,157,037
METHANOL (67561)	6,141,829
HYDROCHLORIC ACID (7647010)	5,967,839
COPPER COMPOUNDS (1015)	5,420,775
NITRICACID (7697372)	3,947,544
DICHLOROMETHANE (75092)	2,992,406
NITRATE COMPOUNDS (1090)	2,566,046
AMMONIA (7664417)	2,198,521
PHOSPHORIC ACID (7664382)	2,089,756
ACETIC ACID(64197)	1,757,500
DIMETHYLFORMAMIDE (68122)	1,529,255
XYLENEMIXEDISOMER (1330207)	1,101,889
TRICHLOROETHYLENE (79016)	1,086,372
ZINC AND COMPOUNDS (1039)	954,249

Total Use/Top 20 Chemicals (Including Trade Secret) = 1,050,887,133 or 82% of Total Use Reported for All Chemicals Statewide Byproduct Generation/Top 20 Chemicals = 120,261,690 or 86% of Byproduct Generation for All Chemicals Statewide

The following 3 chemicals appear in the Top 20 Chemicals Total Use list when trade secret chemical quantities are included: BUTYRALDEHYDE, FORMALDEHYDE, VINYL ACETATE

1996 Top 20 Chemicals

Shipped in Product

(These quantities do not include Trade Secret)		
Chemical Name (CAS Number) Shipped in Product (Lbs		
COPPER (7440508)	170,107,648	
STYRENE MONOMER (100425)	54,268,265	
SODIUM HYDROXIDE (1310732)	33,328,360	
TOLUENE (108883)	18,533,427	
METHANOL (67561)	14,840,251	
ZINC AND COMPOUNDS (1039)	13,419,957	
POTASSIUM HYDROXIDE (1310583)	11,235,218	
COPPER COMPOUNDS (1015)	11,004,325	
DIISOCYANATES (822060)	10,912,479	
SODIUM HYPOCHLORITE (7681529)	8,828,091	
METHYL ETHYL KETONE (78933)	8,646,974	
ACETONE (67641)	7,853,616	
SULFURIC ACID (7664939)	7,234,290	
LEAD COMPOUNDS (1026)	7,190,513	
HEXANE (N-HEXANE) (110543)	6,562,993	
GLYCOL ETHERS (1022)	6,129,959	
FORMALDEHYDE (50000)	6,060,121	
ANTIMONY COMPOUNDS (1000)	5,524,240	
AMMONIUM HYDROXIDE (1336216)	5,308,390	
AMMONIA (7664417)	5,095,720	

TRI Transfers and Releases

Chemical Name (CAS Number)	Transfers and Releases (Lbs.)
COPPER (7440508)	12,382,211
COPPER COMPOUNDS (1015)	5,556,149
TOLUENE (108883)	5,447,654
METHANOL (67561)	3,146,861
DICHLOROMETHANE (75092)	2,939,731
METHYL ETHYL KETONE (78933)	2,722,984
NITRATE COMPOUNDS (1090)	2,606,389
HYDROCHLORIC ACID (7647010)	2,547,454
SODIUM HYDROXIDE (1310732)	2,279,790
ACETONE (67641)	2,066,984
SULFURIC ACID (7664939)	1,884,510
AMMONIA (7664417)	1,772,181
ETHYL ACETATE (141786)	1,573,305
TRICHLOROETHYLENE (79016)	1,360,306
PHOSPHORIC ACID (7664382)	1,211,817
NICKEL AND COMPOUNDS (1029)	726,552
ANTIMONY COMPOUNDS (1000)	716,251
XYLENEMIXEDISOMER (1330207)	597,191
1-METHYL-2-PYRROLIDONE (872504)	560,746
HEXANE (N-HEXANE) (110543)	560,103

Shipped in Product/Top 20 Chemicals (Including Trade Secret) = 452,169,806 or 82% of Shipped in Product Reported for All Chemicals Statewide Transfers and Releases/Top 20 Chemicals = 52,659,169 or 79% of Transfers and Releases for All Chemicals Statewide

The following 2 chemicals appear in the Top 20 Chemicals Shipped in Product

list when trade secret chemical quantities are included: ETHYL ACETATE, ETHYLENE GLYCOL

1996 Top 20 Facilities

Total Use			
Facility Name	Town	Total Use (Lbs.)	
Novacor Chemicals, Inc.	Springfield	214,169,490	
Solutia, Inc.	Springfield	126,165,750	
BASF Corp Polymers	Holyoke	62,761,000	
Boremco Specialty Chemicals	Fall River	61,657,326	
American Polymers	Oxford	56,782,939	
American Insulated Wire Corp.	Attleboro	54,956,579	
Holland Company, Inc.	Adams	46,090,042	
Eastman Gelatin Corporation	Peabody	40,449,360	
General Cable	Taunton	26,756,842	
American Flexible Conduit	New Bedford	25,485,423	
Brand Rex Nonotuck Division	South Hadley	21,174,019	
Astro Chemicals, Inc.	Springfield	20,876,377	
Texas Instruments	Attleboro	16,326,590	
Houghton Chemical Corporation	Boston	16,092,233	
Elite Chemicals	Ludlow	15,805,714	
Ashland Chemical Company	Tewksbury	14,768,138	
Firestone Building Products	Springfield	12,607,427	
Monson Companies, Inc.	Leominster	10,631,153	
Rockbestos Surprenant & Cable Corp.	Clinton	10,447,441	
Teknor Apex Co.	Attleboro	10,317,629	

Byproduct Generation

Facility Name	Town	Byproduct Generation (Lbs.)
Rexam Graphics, Inc.	South Hadley	10,191,593
Chemdesign Corp.	Fitchburg	8,464,622
American Insulated Wire Corp.	Attleboro	8,359,272
Polaroid Corporation	Waltham	7,931,812
Solutia, Inc.	Springfield	7,314,170
Flexcon Co., Inc.	Spencer	5,837,804
Texas Instruments	Attleboro	5,307,301
Eastman Gelatin Corporation	Peabody	3,311,008
Crane & Co., Inc. Pioneer Mill	Dalton	2,072,607
Ideal Tape Company	Lowell	1,995,009
Veratec Griswoldville Plant	Colrain	1,892,862
Venture Tape	Rockland	1,887,004
Polaroid Corporation	Assonet	1,745,064
New England Power Company	Westborough	1,687,000
Cranston Print Works	Webster	1,579,080
Anitec Printing Plates	Holyoke	1,440,762
Foilmark, Inc.	Newburyport	1,351,473
Madico, Inc.	Woburn	1,351,134
Altron	Wilmington	1,346,979
Precision Lithograining Corp.	South Hadley	1,330,160

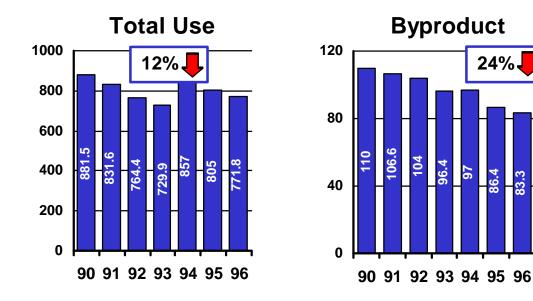
1996 Top 20 Facilities

Shipped in Product

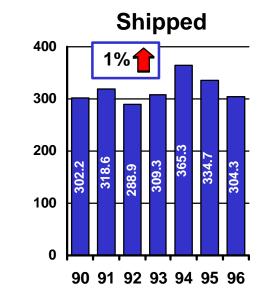
Facility Name	Town	Shipped in Product (Lbs.)
Boremco Specialty Chemicals	Fall River	61,624,833
American Polymers	Oxford	53,137,383
American Insulated Wire Corp.	Attleboro	46,597,307
Solutia, Inc.	Springfield	28,597,000
General Cable	Taunton	26,438,095
American Flexible Conduit	New Bedford	25,468,293
Brand Rex Nonotuck Division	South Hadley	20,617,650
Astro Chemicals, Inc.	Springfield	19,690,296
Ashland Chemical Company	Tewksbury	17,519,193
Houghton Chemical Corporation	Boston	16,080,205
Firestone Building Products	Springfield	12,550,226
Monson Companies, Inc.	Leominster	10,616,320
Rockbestos Surprenant & Cable	Clinton	10,432,505
Elite Chemicals	Ludlow	10,411,162
Tacc International	Rockland	9,642,808
Industrial Blast Coil Corp.	South Easton	8,897,872
Spalding & Evenflo Co., Inc.	Chicopee	7,853,603
Texas Instruments	Attleboro	7,265,000
Shipley Co., Inc.	Marlborough	7,052,835
Mohawk CDT	Leominster	6,291,894

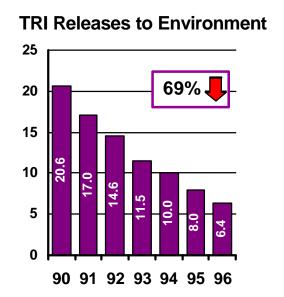
Transfers and Releases

Facility Name	Town	Transfers and Releases (Lbs.)			
American Insulated Wire Corp.	Attleboro	8,360,171			
Texas Instruments	Attleboro	5,218,640			
Solutia, Inc.	Springfield	4,567,923			
Chemdesign Corp.	Fitchburg	3,953,108			
Polaroid Corp.	Waltham	3,749,495			
Rexam Graphics, Inc.	South Hadley	2,066,239			
New England Power Company	Westborough	1,592,000			
Modern Aluminum Anodizing	North Adams	1,167,660			
Mass Recycling Assoc Ltd Partnership	Hingham	1,103,185			
Altron	Wilmington	1,076,423			
Polaroid Corporation	Assonet	1,038,777			
Attleboro Refining Company, Inc.	Attleboro	938,937			
Ideal Tape Company	Lowell	871,230			
New England Power Company	Westborough	866,808			
Boston Edison Company	Boston	830,000			
Montaup Electric Co.	W. Bridgewater	776,636			
Gould Electronics, Inc.	Newburyport	649,949			
Judd Wire Div HVEC	Turners Falls	641,748			
Spectrum Wire Corp.	E. Londmeadow	576,957			
Brand Rex Nonotuck Division	South Hadley	556,369			

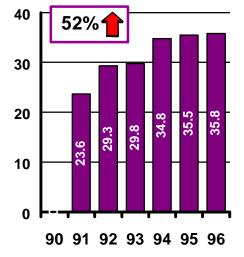

Measuring changes in raw totals doesn't tell the whole story because:

- There have been changes in the list of chemicals covered by the law
- There have been changes in the industrial sectors covered by the law
- There have been changes in production levels

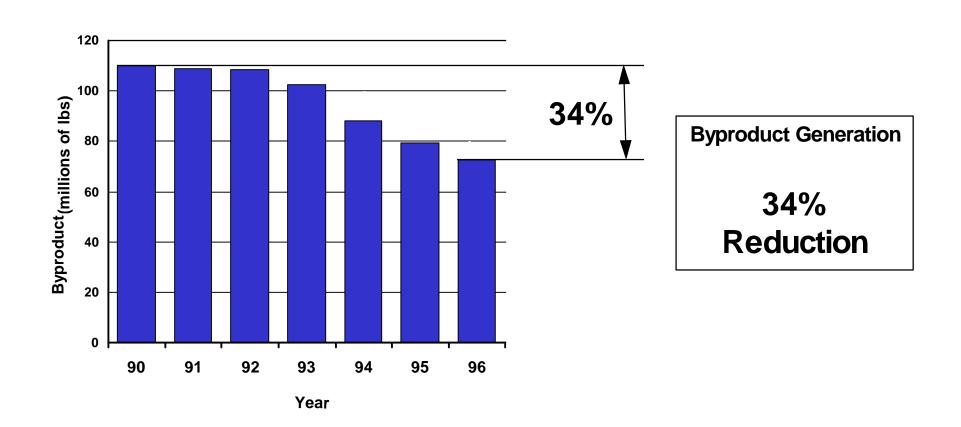

Therefore:


- Core Group is defined which consists of:
 - Chemicals reportable in all years
 - Industrial sectors required to report in all years
- Reported Totals for the Core Group are adjusted for changes in the level of manufacturing activity using production ratio/activity index that facilities report under TRI

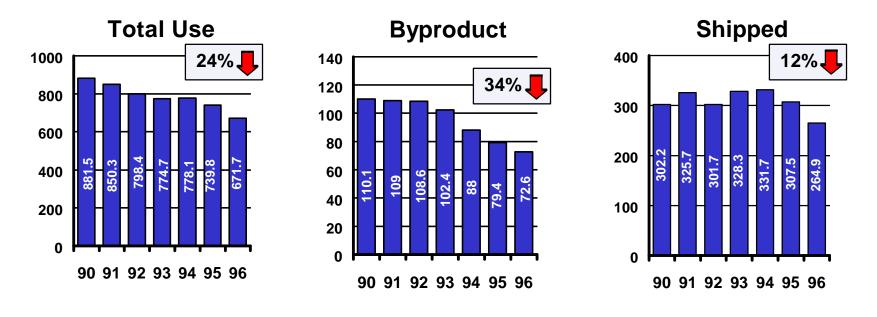
- "Production Adjusted"

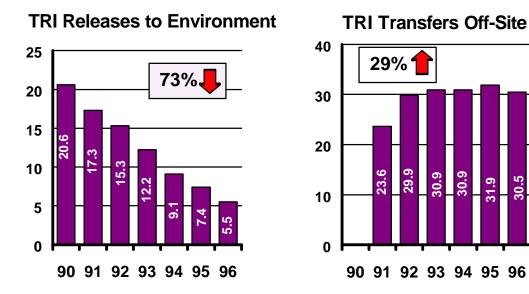


Core Chemicals and Industries: Reported Quantity Trends: 1990 - 1996



TRI Transfers Off-Site




All quantities in millions of pounds, not production adjusted

TUR Byproduct Reduction Goal Progress Production Adjusted Byproduct

Core Chemicals and Industries: Production Adjusted Trends: 1990 - 1996

All quantities in millions of pounds, production adjusted

CORE GROUP TURA INFORMATION: 1990 - 1996 Trend Summary

(Does Not Include Trade Secret Quantities) Quantities are in Millions of Pounds

	TOTAL USE		BYPRODUCT		SHIPPED IN PRODUCT		TRI RELEASES TO THE ENVIRONMENT		TRI TRANSFERS OFF-SITE (Notes 2&3)		TRI PRODUCTION RATIO ACTIVITY INDEX
	Reported Quantity	Adjusted for Production	Reported Quantity	Adjusted for Production	Reported Quantity	Adjusted for Production	Reported Quantity	Adjusted for Production	Reported Quantity	Adjusted for Production	
1990	881.5	881.5	110.1	110.1	302.2	302.2	20.6	20.6			
1991	831.6	850.3	106.6	109.0	318.6	325.7	17.0	17.3	23.6	23.6	0.98
1992	764.4	798.4	104.0	108.6	288.9	301.7	14.6	15.3	29.3	29.9	0.98
1993	729.9	774.7	96.4	102.4	309.3	328.3	11.5	12.2	29.8	30.9	0.98
1994	857.0	778.1	97.0	88.0	365.3	331.7	10.0	9.1	34.8	30.9	1.17
1995	805.0	739.8	86.4	79.4	334.7	307.5	8.0	7.4	35.5	31.9	0.99
1996	771.8	671.7	83.3	72.6	304.3	264.9	6.4	5.5	35.8	30.5	1.06
Percent Change 1990- 1996	12% Reduction	24% Reduction	24% Reduction	34% Reduction	0.7% Increase	12% Reduction	69% Reduction	73% Reduction	52% Increase	29% Increase	15% Increase

Notes:

1) Quantities in shaded boxes are adjusted for changes in manufacturing activity (production adjusted) using the facility-reported TRI production ratio/activity index.

2) Definition of TRI off-site transfers changed in 1991, therefore trends must be measured from 1991 to 1996.

3) Most of the transfers off-site are metals being sent to scrap metal recycling facilities.