Energy from Wastewater

Green heating and cooling with Therm-Liner from UHRIG

UHRIG Group, December 28, 2023

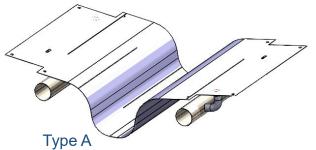
About us: UHRIG Group

Company

- German company from the wastewater sector with 120 Employees, founded in 1964
- ▶ Headquarters: City of Geisingen, in the greater Stuttgart area
- ▶ Focus: Civil engineering, Construction of large sewers in urban areas
- Known for innovative and patented solutions

Energy from Wastewater

- Development of patented heat exchanger system THERM-LINER since 2007
- 110+ Therm-Liner plants installed throughout Europe
- Oldest system in operation for 15 years
- Market leader in Europe
- Demand increasing rapidly


Business Focus

- Source side: Public sewer network
- Demand side: Buildings / heat networks
- Plant sizes: 50 kW 8 to 10 MW

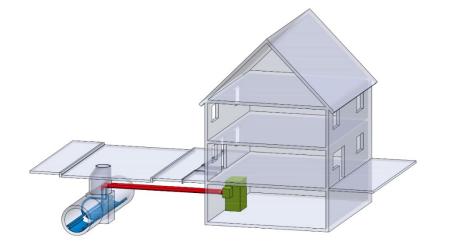
Our product: UHRIG Therm-Liner

- Developed for retrofitting in existing and new public sewers
- Always tailor-made for the relevant sewer system
- Does not affect the operation of the sewer in any way
- Easy to install using the existing manhole structure
- Easy to remove or expand at any time
- Easy to recycle and reuse
- Equipped with monitoring
- Patented and certified

USP Therm-Liner Internal solution No external space required Passive system with low maintenance

UHRIG scope of work: components & interfaces UHRIG

Heat exchanger


- Heat exchanger system extracts energy from wastewater
- ▶ Wastewater flows over heat exchanger system which then continuously supplies thermal energy

House connection

- Connects heat exchanger and heat pump = feed and return line
- Brings the transfer medium (water or water-glycol mixture) to the heat pump back and forth

Heat pump

- Regulates the temperature level in the heating circuit in the building or in the heating network
- Needs electrical power to raise the temperature level of the thermal energy

UHRIG services		Costs
Heat exchanger		\$ 700 - 1,400 per kW capacity
House connection	(☑)	distance dependent
Heat pump	X	\$ 350 - 550 per kW capacity

UHRIG approach: keep it simple

Step 1: Finding customers

- We search for projects: new buildings, existing buildings, heating networks
- We check if there is a public sewer available nearby
- ▶ If there is a match, we calculate the energy potential and talk to the customer

Step 2: Offering a turnkey solution

- ► We offer the component heat from wastewater turnkey ready
- We help designing an energy concept based on heat from wastewater
- We support the creation of a contract for the use of the sewer

Step 3: Setting up the right business model

- Goal: Take away initial investment from the customer
- ▶ Therefore, a third party (Energy Company) finances and operates the plant
- Customer gets heat/cold sold over 15 to 20 years at a fixed price per kWh

UHRIG Therm-Liner: good starting conditions

Source side: Wastewater

- Sewer size: > 800 mm (30")
- Wastewater flow rate: > 10 I/s (9,510 GPH)
- Sewer located near the project area: 0 900 m (0 2,952 ft)

Demand side: building / heating network

- Every building with more than 20 residential units
- Residential and commercial buildings
- Heating networks

Heating system

- Low temperatures in the heating system
- Surface or floor heating
- Heating and cooling in the project
- Many hours of use

UHRIG Therm-Liner: references

- 110+ Therm-Liner plants installed throughout Europe
- Outputs from a few kW to many MW. Many plants used for heating and cooling
- Proven technology: Oldest plant in operation for 15+ years

Stuttgart, Germany, 2018

- Thermal output: 2,100 kW
- Sewer profile: Box 2,400 (94 inch)
- Flow rate: 170 l/s (2,694 GPM)
- Use: New building (residential & commercial use)

Wangen, Germany, 2019

- Thermal output: 300 kW
- Sewer profile: Circular 1,900 (75 inch)
- Flow rate: 50 l/s (792 GPM)
- ► Use: Feeding into existing heating network

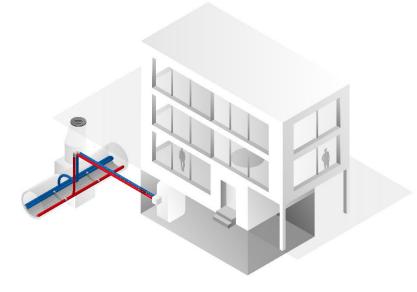
UHRIG Therm-Liner: contact persons

UHRIG North America Office

Mr. Frank Urro Renewable Energy Strategist Head of North America Business Unit Massachusetts, USA T +1 978-528-4478 M <u>urro@uhrig-bau.com</u> I <u>www.uhrig-bau.com</u>

UHRIG Headquarters Germany

Mr. Stephan von Bothmer


Head of Global Business Unit Energy from Wastewater

Geisingen, Germany

T +49 7704 806 48

M <u>s.bothmer@uhrig-bau.de</u>

l <u>www.uhrig-bau.de</u>

UHRIG Therm-Liner Technical details

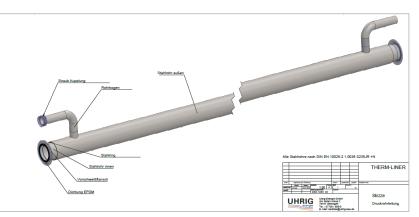
UHRIG Therm-Liner: standard types

Module type	Туре А	Туре В
Features	Increasing overflow area per m	Exactly adapted to sewer shape
i calules	Increase in flow velocity	Lowest cross-section reduction
Sewer types	Gravity sewers	Gravity sewers
Fastening	Hold down devices	Hold down devices
	Quick lock sleeves	Quick-Lock sleeves
Pipes	Below the module	Above the module

Form A and B are used in different variants, depending on the sewer shape and the starting conditions

UHRIG Therm-Liner: tailor-made solutions

Further patented, customized solutions are available for:


- Treatment plants
- Pressure lines
- Bypass solutions for gravity sewers
- Heat exchangers for basins

Basin, Rotterdam, Netherlands 2021

Treatment plant, Karlsruhe, Germany, 2018

Bypass, Hamburg, Germany, 2023 (under construction)

UHRG

UHRIG Therm-Liner: production and material

Production, material, certification

Production

- Ready-to-install pre-production of the individual modules at UHRIG headquarters in Germany
- Installation and connection work on site

Material

- Austenitic stainless steel. Material grade 1.4404 AISI 316L
- Safety-related design according to BGV D4 and EN 378
- Connection system according to DIN 86128-1 and 86128-2

Standards and certificates for production and installation

- ISO 14001 Environmental management system
- ► ISO 45001 Occupational health and safety management system
- ISO 9001 Quality control and quality assurance system
- Installation according to German DWA M114 standards

Commissioning and pressure test

- System filled, vented via the heat exchangers and tested according to DIN EN 805
- Maximum operating pressure of the entire system: 2.5 bar

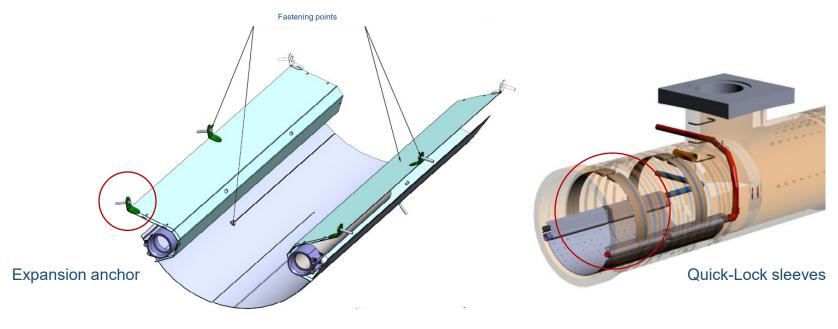
UHRIG Therm-Liner: serial production

Sustainable production, material recycling

Production

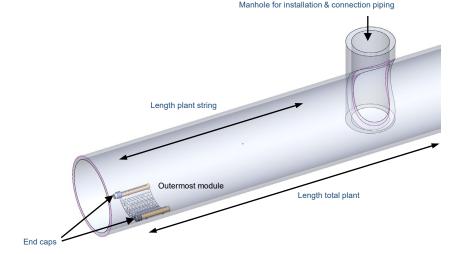
- Until 2020, all Therm-Liner systems were manufactured by hand at the headquarters in Geisingen
- In 2021, UHRIG has automated production with a specially developed serial production
- The complete production runs with PV power, which is generated on the roof of the production hall

Material

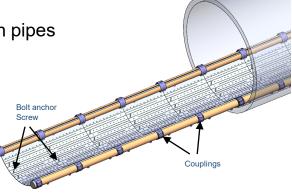

- ▶ The Therm-Liner system consists largely of austenitic stainless steel. 1.4404 AISI 316L
- ▶ At the end of the project period, the plants are deinstalled, the material recycled and reused

UHRIG Therm-Liner: fastening options

	Expansion anchor	Quick Lock sleeves
Sewer material	Concrete, stone, clinkered	Synthethic materials
Fastening tool	HKD expansion anchor	Quick-Lock Sleeve
Fastening mode	Hold down devices	Clamping of Quick Lock sleeve
Fastening points	Sewer botttom and sewer walls	Therm-Liner module
Sealing of fastening points	Cement mortar	

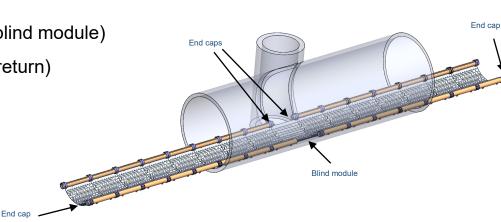

UHRIG Therm-Liner: installation*

Step 1


- Calibrate sewer
- Determine position of the outermost module
- Insert outermost module
- Attach end caps to feed and return pipe

Step 2

- Push the couplings for follow-on module onto the supply and return pipes
- Align follow-on module and connect modules with couplings
- Fix each module with bolt anchors and screws
- Perform pressure test with air

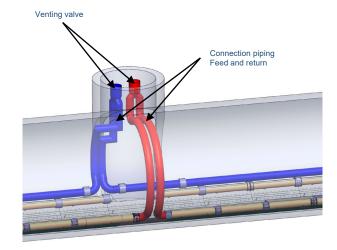

*Each installation is unique and requires, for example, a different water management. This illustration is a classic standard case

UHRIG Therm-Liner: installation*

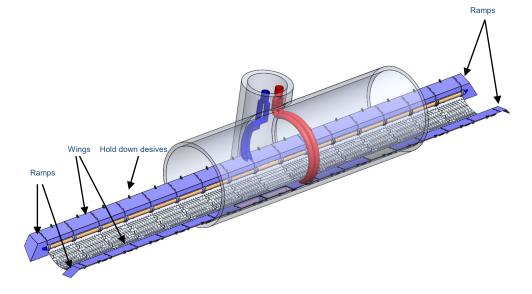
Step 3

- Install the remaining modules (including blind module)
- Attach end caps to both pipes (feed and return)

Step 4
Set 180° bend / line
Calibrate and lay out the Tichelmann pipe
Fix Tichelmann pipe (e.g. cable tie)
Perform pressure test with air


180° bend

UHRIG Therm-Liner: installation*

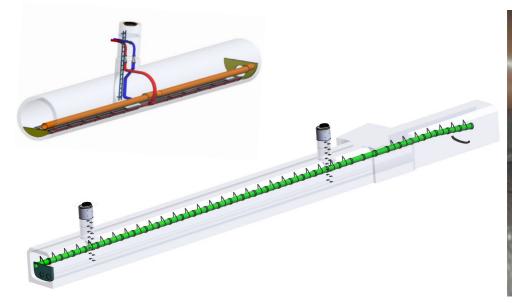

Step 5

- Assemble connection piping
- Mount venting valves
- Fill up plant with water / water glycol
- Vent and check plant

Step 6

- Fix wings and hold down devices
- Prepare and install ramps

UHRIG Therm-Liner: dewatering for installation


Internal bypass

Basic conditions for the installation

- The installation of the Therm-Liner plant equipment requires dry conditions
- Wastewater must be diverted with an internal or external bypass during installation
- As soon as it rains, the sewer must be temporarily abandoned

Internal bypass

- ▶ Wastewater can be diverted internally with a baffle plate and a laterally suspended pipe
- ▶ UHRIG installs approx. 50 to 80 modules per week. The standard case installation takes 2-4 weeks

UHRIG Therm-Liner: dewatering for installation

External bypass

Basic conditions for the installation

- ► The installation of the Therm-Liner plant equipment requires dry conditions
- Wastewater must be diverted with an internal or external bypass during installation
- As soon as it rains, the sewer must be temporarily abandoned

External bypass

- ▶ Wastewater can be discharged externally. It is pumped out of the sewer and later fed back again
- ▶ UHRIG installs approx. 50 to 80 modules per week. The standard installations take 2-4 weeks

UHRIG Therm-Liner: operation

Biofilm formation and clogging risk

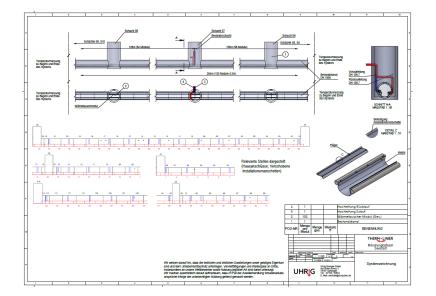
Biofilm

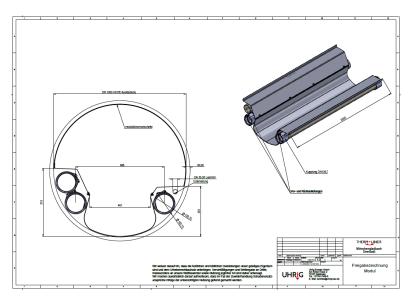
- Biofilm formation on the surface of the heat exchanger is calculated from the beginning
- Plants are oversized by design to compensate for biofilm. Biofilm is not avoidable, but predictable

Ramps to prevent clogging

▶ In front of the first module, a ramp ensures a smooth transition to the system

Design to prevent clogging


- Therm-Liner systems do not offer any points of attack for deposits or blockages
- The plant is designed so that the wastewater, including all solids, flows over the plant smoothly

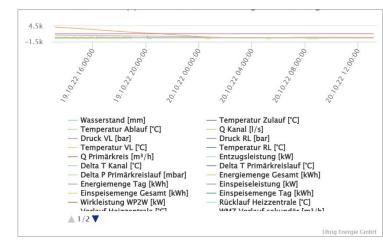


UHRIG Therm-Liner: approval process

- > Approval documentation standardized in Europe. Idea: Benefit from these templates in all markets
- Comprehensive documentation to be submitted upfront for plant construction

Phase	Task	Basis
1. Early phase	 Clarification of the feasibility in the relevant sewer section Clarification of which cross- section reduction in the sewer is tolerable 	 First system design of UHRIG based on the existing data Continued updates in between to sewer network operator by UHRIG thereafter
2. Permit phase	 Final approval of the project 	Full documentation by UHRIG

UHRIG Therm-Liner: monitoring



UHRIG monitoring system collects sensor data

- ▶ Temperature in the feed and return line of the heat exchanger system
- Operating pressure in the feed and return line of the heat exchanger system
- Flow rate in the feed or return line of the heat exchanger
- Temperature of the wastewater upstream and downstream of the heat exchanger system (in the sewer)
- Wastewater flow rate at the beginning or end of the heat exchanger system (in the sewer)

Advantages of the UHRIG monitoring system

- Collection and processing of all parameters in real time
- Customer access to monitoring of the plant 24/7 online

Temperature feed line
Operating pressure feed line

Temperature return line – Operating pressure return line –

House connection: technical details

- Connecting heat exchanger and heat pump with feed and return line
- Installed at a depth of between 0.8 and 1.2 m as uninsulated polyethylene (PE) pipes
- Implementation in open construction or as a flush drilling

Connection in the trench

Return

Line

Feed Line Monitoring Pipe

Interface outside heating central

Return

Line

Monitoring Pipe Feed Line Interface inside heating central

Line

Line

Pipe