

Enbridge Suite 600 – 890 Winter Street Waltham, Massachusetts 02451 USA

October 24, 2018

Mr. Thomas Cushing Permit Section Chief MassDEP Southeast Regional Office 20 Riverside Drive Lakeville, MA 02347

RE: Update to Non-Major Comprehensive Plan Approval Application Transmittal No. X266786 Application No. SE-15-027 Algonquin Gas Transmission, LLC – Weymouth Compressor Station

Dear Mr. Cushing:

Algonquin Gas Transmission, LLC (Algonquin) is providing an update to its Non-Major Comprehensive Plan Approval (Non-Major CPA) Application (Transmittal No. X266786) initially filed on October 23, 2015, and updated on September 9, 2016 and May 25, 2018. The application pertains to Algonquin's proposed construction of the Weymouth Compressor Station in Weymouth, MA, as a component of its Atlantic Bridge Project (Project).

The following is a description of the updates included with this letter:

- Attachment C updated BWP AQ Sound Form based on the Supplemental Sound Level Impact Assessment report ("sound level report") submitted on October 15, 2018;
- Attachment F-2 the sound level report for the Weymouth Compressor Station;
- Attachment H Applicant Redline (10/24/2018) to Draft Proposed Non-Major CPA (03/30/2017)
 - Page 1 of 25 updated professional engineer certification information to reference seal and signature on May 25, 2018 application package submittal,
 - Page 6 of 25 and 7 of 25 updated section on "Sound Impacts and Mitigation" based on the sound level report,
 - Page 8 of 25 updated footnote 8 for clarification on the version of modeling report,
 - Page 9 of 25 updated Table 4 headings for clarification to read "Background plus Cumulative Impact of Weymouth Compressor Station and Regional Sources",
 - Page 10 of 25 added sentence "The maximum modeled impacts were compared to the TELs and AALs" above Table 5,
 - Page 25 of 25 updated Trinity cc list.

Should you have any questions regarding this updates included with this letter, please do not hesitate to contact me at 207-274-2607.

Sincerely, ENBRIDGE

Kathy A. Brown

Kathryn A. Brown Consulting Scientist

cc: Reagan Mayces, Enbridge Barry Goodrich, Enbridge George McLachlan, Enbridge Ralph Child, Mintz, Levin, Cohn, Ferris, Glovsky and Popeo, P.C. Robert O'Neal, Epsilon Associates Wendy Merz, Trinity Consultants

Enclosures

Enclosure 1: Attachment C BWP AQ Sound Form

Important: When

move your cursor -

do not use the

return key.

Massachusetts Department of Environmental Protection

Bureau of Waste Prevention – Air Quality

BWP AQ Sound

Submit alone and/or with Form CPA-FUEL and/or CPA-PPROCESS whenever the construction or alteration of stationary equipment (e.g. electrical generating equipment, motors, fans, process handling equipment or similar sources of sound) has the potential to cause noise, or in response to a MassDEP enforcement action citing noise as a condition of air pollution.

X266786 Transmittal Number

Facility ID (if known)

filling out forms on the computer, use only the tab key to

When proposing sound suppression/mitigation measures, similar to the traditional "top-down" BACT process, the "top case" sound suppression/mitigation measures which deliver the lowest sound level increase above background are required to be implemented, unless these measures can be eliminated based upon technological or economic infeasibility. An applicant cannot "model out" of the use of the "top case" sound suppression/ mitigation measures by simply demonstrating that predicted sound levels at the property line when employing a less stringent sound suppression/mitigation strategy will result in a sound level increase of less than or equal to the 10 dBA (decibel, A –Weighted) above background sound level increase criteria contained in the MassDEP Noise Policy. A 10 dBA increase is the maximum increase allowed by MassDEP; it is not the sound level increase upon which the design of sound suppression/mitigation strategies and techniques should be based. Also, take into consideration that the city or town that the project is located in may have a noise ordinance (or similar) that may be more stringent than the criteria in the MassDEP Noise Policy

A. Sound Emission Sources & Abatement Equipment/Mitigation Measures

1. Provide a description of the source(s) of sound emissions and associated sound abatement equipment and/or mitigation measures. Also include details of sound emission mitigation measures to be taken during construction activities.

Significant sound sources include: 1) noise generated by the turbine/compressor located within the compressor building that radiates outside the compressor building, 2) turbine exhaust noise, 3) noise radiated from aboveground gas piping and related piping components, 4) noise of the outdoor lube oil cooler and outdoor gas cooler, 5) noise generated by the turbine air intake system. The project will use a sound suppressant muffler system for the turbine exhaust system, acoustical pipe insulation for outdoor above ground gas piping, a silencer for the turbine air intake system, a low-noise lube oil cooler for the compressor unit, an 8.5-inch concrete block building to house the gas turbine/compressor, and an 8.5-inch thick 19-foot tall courtyard barrier wall.

B. Manufacturer's Sound Emission Profiles & Sound Abatement Equipment

Please attach to this form the manufacturer's sound generation data for the equipment being proposed for installation, or the existing equipment as applicable. This data must specify the sound pressure levels for a complete 360° circumference of the equipment and at given distance from the equipment. Also attach information provided by the sound abatement manufacturer detailing the expected sound suppression to be provided by the proposed sound suppression equipment. See Sections 6.1 to 6.6 in Sound Level Impact Assessment Report Weymouth Compressor Station, Atlantic Bridge Project, Weymouth, MA, prepared by Epsilon Associates, Inc. October 15, 2018.

C. Plot Plan

Provide a plot plan and aerial photo(s) (e.g. GIS) that defines: the specific location of the proposed or existing source(s) of sound emissions; the distances from the source(s) to the property lines; the location, distances and use of all inhabited buildings (residences, commercial, industrial, etc.) beyond the property lines; identify any areas of possible future construction beyond the property line; and sound monitoring locations used to assess noise impact on the surrounding community. All information provided in the sound survey shall contain sufficient data and detail to adequately assess any sound impacts to the surrounding community, including elevated receptors as applicable, not necessarily receptors immediately outside the facility's property line.

See Figure 5-1 (Sound Monitoring Locations), Figure 6-1 (Project Layout), Figure 6-2 (Sound Modeling Locations), Figure 6-7 (Project Layout—Mitigation Case 3) in Sound Level Impact Assessment Report Weymouth Compressor Station, Atlantic Bridge Project, Weymouth, MA, prepared by Epsilon Associates, Inc. October 15, 2018.

Continue to Next Page ►

Bureau of Waste Prevention - Air Quality

BWP AQ Sound

Submit alone and/or with Form CPA-FUEL and/or CPA-PPROCESS whenever the construction or alteration of stationary equipment (e.g. electrical generating equipment, motors, fans, process handling equipment or similar sources of sound) has the potential to cause noise, or in response to a MassDEP enforcement action citing noise as a condition of air pollution.

X266786 Transmittal Number

Facility ID (if known)

D. Community Sound Level Criteria

Approval of the proposed new equipment or proposed corrective measures will **not** be granted if the installation:

- Increases off-site broadband sound levels by more than 10 dBA.above "ambient" sound levels. Ambient is defined as the lowest one-hour background A-weighted sound pressure level that is exceeded 90 percent of the time measured during equipment operating hours. Ambient may also be established by other means with the consent of MassDEP.
- 2. Produces off-site a "pure tone" condition. "Pure tone" is defined as when any octave band center frequency sound pressure level exceeds the two adjacent frequency sound pressure levels by 3 decibels or more.
- 3. Creates a potential condition of air pollution as defined in 310 CMR 7.01 and the MassDEP Noise Policy.

Note: These criteria are measured both at the property line and at the nearest inhabited building.

For equipment that operates, or will be operated intermittently, the ambient or background noise measurements shall be performed during the hours that the equipment will operate and at the quietest times of the day. The quietest time of the day is usually between 1:00 a.m. and 4:00 a.m. on weekend nights. The nighttime sound measurements must be conducted at a time that represents the lowest ambient sound level expected during all seasons of the year.

For equipment that operates, or will operate, continuously and is a significant source of sound, such as a proposed power plant, background shall be established via a minimum of seven consecutive days of continuous monitoring at multiple locations with the dBA L 90 data and pure tone data reduced to one-hour averages.

In any case, consult with the appropriate MassDEP Regional Office before commencing noise monitoring in order to establish a sound monitoring protocol that will be acceptable to MassDEP.

E. Full Octave Band Analysis

The following community sound profiles will require the use of sound pressure level measuring equipment in the neighborhood of the installation. An ANSI S1.4 Type 1 sound monitor or equivalent shall be use for all sound measurements. A detailed description of sound monitor calibration methodology shall be included with any sound survey.

1. Lowest ambient sound pressure levels during operating hours of the equipment.

A-Weighted	31.5	63.0	125	250	500	1K	2K	4K	8K	16K
(M1) 40	53	52	43	36	38	37	33	34	27	22
· · · · · · · · · · · · · · · · · · ·										

a. At property line: (see Table 5-4B of Epsilon Associates, Inc. October 15, 2018 report)

ND = No Data

Bureau of Waste Prevention - Air Quality

BWP AQ Sound

Submit alone and/or with Form CPA-FUEL and/or CPA-PPROCESS whenever the construction or alteration of stationary equipment (e.g. electrical generating equipment, motors, fans, process handling equipment or similar sources of sound) has the potential to cause noise, or in response to a MassDEP enforcement action citing noise as a condition of air pollution.

Facility ID (if known)

Transmittal Number

X266786

E. Full Octave Band Analysis (continued)

b. At the nearest inhabited building and if applicable at buildings at higher elevation: (see Table 5-4B of Epsilon Associates, Inc. October 15, 2018 report)

A- Weighted	31.5	63.0	125	250	500	1К	2K	4K	8K	16K
(M2) 36	50	49	41	36	34	30	25	28	21	23
(M3) 45	54	55	59	42	38	37	34	36	24	23
(M4) 37	51	52	43	39	33	31	28	34	20	23
(M5) 34	50	51	44	35	31	28	23	22	18	22
(M6) 41	50	51	46	40	40	38	33	31	20	24

Note: You are required to complete sound profiles 2a and 2b only if you are submitting this form in response to a MassDEP enforcement action citing a noise nuisance condition this is an applicatio for new equipment Skip to 3.

2. Neighborhood sound pressure levels with source operating without sound abatement equipment.

a. At property line:

m	A- Weighted	31.5	63.0	125	250	500	1K	·2K	4K	8K	16K
on											
n. If								<u></u>			
ion nt,											

b. At the nearest inhabited building and if applicable at buildings at higher elevation:

A- Weighted	31.5	63.0	125	250	500	1K	2K	8K	
			•						
							İ		i i

NA = Not Applicable

Continue to Next Page ►

BWP AQ Sound • Page 3 of 5

Bureau of Waste Prevention – Air Quality

BWP AQ Sound

Submit alone and/or with Form CPA-FUEL and/or CPA-PPROCESS whenever the construction or alteration of stationary equipment (e.g. electrical generating equipment, motors, fans, process handling equipment or similar sources of sound) has the potential to cause noise, or in response to a MassDEP enforcement action citing noise as a condition of air pollution.

X266786 Transmittal Number

Facility ID (if known)

E. Full Octave Band Analysis (continued)

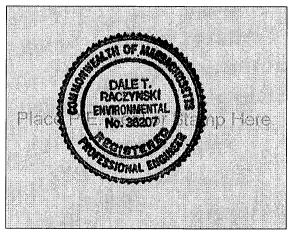
3. Expected neighborhood sound pressure levels after installation of sound abatement equipment.

a. At property line: (s	e Table 6-8B o	f Epsilon Associates,	Inc. October	15, 2018 report)
-------------------------	----------------	-----------------------	--------------	------------------

A- Weighted	31.5	63.0	125	250	500	1K	2K	4K	8K	16K
(A) 47	75	67	54	46	44	41	37	36	29	27

b. At nearest inhabited building and if applicable at buildings at higher elevations:

A- Weighted	31.5	63.0	125	250	500	1K	2K	4K	8K	16K
(B) 4 4	62	55	49	40	37	40	38	33	21	23
(C) 46	58	56	59 ²	43	39	40	37	36	24	23
(D) 38	56	53	44	39	34	32	29	34 ¹	20	23
(E) 37	54	52	45	36	32	33	30	23	18	22
(F) 42	55	53	47	40	40	39	35	31	20	24
(G) 43	56	53	48	40	40	40	36	31	20	24


Note: MassDEP may request that actual measurements be taken after the installation of the noise abatement equipment to verify compliance at all off-site locations.

¹ -- MassDEP-defined pure tone attributable to the existing ambient sound levels, not the Project

F. Professional Engineers Stamp

The seal or stamp and signature of a Massachusetts Registered Professional Engineer (P.E.) must be entered below. Both the seal or stamp impression and the P.E. signature must be original. This is to certify that the information contained in this Form has been checked for accuracy, and that the design represents good air pollution control engineering practice.

Dale T. Raczynski	
P.E. Name (Type or Print)	
M	
P.E. Signature	
Principal	
Position/Title	
Epsilon Associates, Inc.	
Company	
10/15/2018	
Date (MM/DD/YYYY)	
36207	
P.E. Number	

BWP AQ Sound • Page 4 of 5

Bureau of Waste Prevention – Air Quality

BWP AQ Sound

Submit alone and/or with Form CPA-FUEL and/or CPA-PPROCESS whenever the construction or alteration of stationary equipment (e.g. electrical generating equipment, motors, fans, process handling equipment or similar sources of sound) has the potential to cause noise, or in response to a MassDEP enforcement action citing noise as a condition of air pollution.

X266786 Transmittal Number

Facility ID (if known)

G. Certification by Responsible Official

The signature below provides the affirmative demonstration pursuant to 310 CMR 7.02(5)(c)8 that any facility(ies) in Massachusetts, owned or operated by the proponent for this project (or by an entity controlling, controlled by or under common control with such proponent) that is subject to 310 CMR 7.00, et seq., is in compliance with, or on a MassDEP approved compliance schedule to meet, all provisions of 310 CMR 7.00, et seq., and any plan approval, order, notice of noncompliance or permit issued thereunder. This Form must be signed by a Responsible Official working at the location of the proposed new or modified facility. Even if an agent has been designated to fill out this Form, the Responsible Official must sign it. (Refer to the definition given in 310 CMR 7.00.)

I certify that I have personally examined the foregoing and am familiar with the information contained in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including possible fines and imprisonment.

Enclosure 2: Attachment F-2 Sound Level Report

Weymouth Compressor Station Atlantic Bridge Project Weymouth, Massachusetts

Prepared for:

Algonquin Gas Transmission, LLC 890 Winter Street, Suite 300 Waltham, MA 02451

Prepared by:

Epsilon Associates, Inc. 3 Mill & Main Place, Suite 250 Maynard, MA 01754

October 15, 2018

Table of Contents

TABLE OF CONTENTS

1.0	1.0 EXECUTIVE SUMMARY							
2.0	INTR	ODUCTION	2-1					
3.0		JLATORY REQUIREMENTS	3-1					
	3.1	Federal Noise Guidelines	3-1					
	3.2 3.3	Massachusetts State Regulations Local Noise Regulations	3-1 3-2					
4.0	GEN	ERAL ENVIRONMENTAL NOISE METRICS	4-1					
5.0	EXIS	FING SOUND LEVELS	5-1					
	5.1	Sound Level Measurement Methodology	5-1					
	5.2	Sound Level Measurement Locations	5-2					
	5.3	Sound Level and Meteorological Measurement Equipment	5-5					
	5.4	Sound Level Measurement Results	5-5					
	5.5	Establishment of Background for MassDEP	5-10					
6.0	FUTURE OPERATIONAL SOUND LEVELS							
	6.1	Noise Sources and Reference Sound Data	6-1					
	6.2	Cadna/A Sound Model	6-3					
	6.3	Base Case Operational Sound Levels & Regulatory Evaluation	6-7					
	6.4	Base Case Mitigation Measures and Costing	6-10					
	6.5	Best Available Noise Control Technology (BANCT) Analysis	6-12					
	6.6	Proposed Case Evaluation	6-17					
7.0	OTH	er sound sources	7-1					
	7.1	Minor Sources	7-1					
	7.2	Infrequent Intermittent Sources	7-1					
8.0	CON	CLUSION	8-1					

LIST OF APPENDICES

Appendix A	Sound Level	Measurement Protocol	and MassDEP Comments	;

- Appendix B Continuous Sound Level Measurement Data
- Appendix C Sound Level Instrumentation Calibration Certificates
- Appendix D Logan International Airport NWS Data

LIST OF FIGURES

Figure 5-1	Sound Level Measurement Locations	5-4
Figure 6-1	Project Layout	6-5
Figure 6-2	Sound Level Modeling Locations	6-6
Figure 6-3	Sound Level Modeling Results – Base Case	6-11
Figure 6-4	Sound Level Modeling Results – Mitigation Case 1	6-21
Figure 6-5	Project Layout – Mitigation Case 2	6-22
Figure 6-6	Sound Level Modeling Results – Mitigation Case 2	6-23
Figure 6-7	Project Layout – Mitigation Case 3	6-24
Figure 6-8	Sound Level Modeling Results – Mitigation Case 3	6-25

LIST OF TABLES

Table 4-1	Sound Pressure Levels and Relative Loudness of Co Sources and Soundscapes	ommon Noise 4-3
Table 5-1	GPS Coordinates – Sound Level Monitoring Locations	5-3
Table 5-2A	Lowest Daytime ¹ Ambient L ₉₀ Sound Level Measurement to 9/21/18	Summary—9/13 5-8
Table 5-2B	Lowest Nighttime ¹ Ambient L ₉₀ Sound Level Measurement to 9/21/18	Summary—9/13 5-8
Table 5-3A	Lowest Daytime ¹ Ambient L ₉₀ Sound Level Measurement to 10/5/18	Summary—9/27 5-9
Table 5-3B	Lowest Nighttime ¹ Ambient L ₉₀ Sound Level Measurement to 10/5/18	Summary—9/27 5-9
Table 5-4A	Summary of Lowest Daytime ¹ Ambient L ₉₀ Sound Levels	5-10
Table 5-4B	Summary of Lowest Nighttime ¹ Ambient L ₉₀ Sound Levels	5-10
Table 6-1	Reference Sound Power Level by Source – Base Case	6-2
Table 6-2	Modeled Noise Reduction Levels – Base Case	6-2
Table 6-3A	MassDEP Daytime ¹ Compliance Evaluation – Base Case	6-8

LIST OF TABLES (CONTINUED)

Table 6-3B	MassDEP Nighttime ¹ Compliance Evaluation – Base Case 6-9
Table 6-4A	Sound Level Modeling Results by Octave-Band – Proposed Equipment + Daytime ¹ Background—Base Case 6-9
Table 6-4B	Sound Level Modeling Results by Octave-Band – Proposed Equipment + Nighttime ¹ Background—Base Case 6-10
Table 6-5	Sound Level Reductions – Base Case 6-10
Table 6-6A	Sound Level Modeling Results by Octave-Band – Proposed Equipment + Daytime ¹ Background—Mitigation Case 1 6-13
Table 6-6B	Sound Level Modeling Results by Octave-Band – Proposed Equipment + Nighttime ¹ Background—Mitigation Case 1 6-13
Table 6-7A	Sound Level Modeling Results by Octave-Band – Proposed Equipment + Daytime ¹ Background—Mitigation Case 2 6-14
Table 6-7B	Sound Level Modeling Results by Octave-Band – Proposed Equipment + Nighttime ¹ Background—Mitigation Case 2 6-14
Table 6-8A	Sound Level Modeling Results by Octave-Band – Proposed Equipment + Daytime ¹ Background—Mitigation Case 3 6-15
Table 6-8B	Sound Level Modeling Results by Octave-Band – Proposed Equipment + Nighttime ¹ Background—Mitigation Case 3 6-15
Table 6-9A	MassDEP Daytime ¹ Compliance Evaluation – Base Case + Mitigation Case 1 + Mitigation Case 3 6-16
Table 6-9B	MassDEP Nighttime ¹ Compliance Evaluation – Base Case + Mitigation Case 1 + Mitigation Case 3 6-17
Table 6-10	Increase Above Quietest L ₉₀ Background – All Cases 6-19
Table 6-11	Noise Control Commitments – BANCT Analysis 6-20

Section 1.0

Executive Summary

1.0 EXECUTIVE SUMMARY

Algonquin Gas Transmission, LLC is proposing to install a natural gas compressor station known as the Weymouth Compressor Station ("Station"). A detailed sound level impact assessment was prepared to evaluate potential noise from the Station. Existing condition sound levels were measured around the site, an operational sound level modeling analysis was conducted for the notable Station equipment, and additional noise controls are discussed in the Best Available Noise Control Technology analysis.

Existing condition sound level measurements were measured for eight days at six locations around the site in accordance with a Massachusetts Department of Environmental Protection approved protocol. During the program, the sound level monitoring equipment malfunctioned at two of the six locations, and thus no data were collected at those two locations, and no ambient sound level could be established. Both malfunctions were attributable to hardware issues that are being evaluated by the equipment manufacturer. To complete the ambient dataset, a second monitoring program was conducted at all six locations for another eight days. The lowest sound level measured during either program was conservatively used to establish background at each location.

Sound level modeling was conducted for a "Base Case" scenario. The "Base Case" included approximately \$5.57 Million of noise controls on the equipment including:

- Gas turbine air intake 5-foot silencer; air intake filter
- Gas turbine exhaust 2-stage silencer
- Gas turbine and compressor 22-gauge metal building; 6-inch insulation; insulated roll-up door; no windows
- Gas turbine compressor building air intake fans 3-foot silencers
- Aboveground piping Acoustical pipe insulation; courtyard barrier wall (8.5-inch concrete)
- Gas cooler courtyard barrier wall (8.5-inch concrete)

Three additional rounds of noise control evaluation were conducted as part of the Best Available Noise Control Technology analysis. As a result of these analyses, the following additional noise controls were evaluated and are proposed for this Station at an incremental cost of approximately \$865,000:

- Lube oil cooler quieter equipment; relocate behind courtyard barrier wall (8.5inch concrete)
- Gas turbine compressor building air intake fans 5-foot silencers (replaces 3-foot silencers)
- Additional compressor building roll-up door

- Replacing the metal-skinned gas compressor building with an 8.5-inch thick concrete block building
- Better silencing features for the turbine intake and exhaust

The net result of the study is that substantial noise mitigation measures totaling more than \$6.4 Million dollars have been incorporated into the design of the proposed Project to minimize noise impacts in the community. Results of a complete sound level assessment demonstrate that noise levels from the Project will comply with the requirements set forth in the MassDEP Noise Policy, and have been provided with the best available noise controls.

Section 2.0

Introduction

2.0 INTRODUCTION

Algonquin Gas Transmission, LLC (AGT) is proposing to install a natural gas compressor station known as the Weymouth Compressor Station ("Station"). This Station is associated with the Atlantic Bridge Project for AGT. The Station will be located in Norfolk County, Massachusetts, within the limits of the Town of Weymouth (MA), on the north side of Bridge Street just east of the Fore River Bridge. There is an existing AGT natural gas metering and regulating station (*i.e.*, "Weymouth M&R Station"), and the Massachusetts Water Resource Authority (MWRA) Intermediate Pumping Station located in the same general area as the Station site. The Station will be equipped with one (1) Solar Taurus 60 turbine-driven compressor unit [ISO horsepower (HP) of 7,700 HP]. The turbine and compressor will be installed in an acoustically-insulated building ("compressor building"), which will be constructed with a brick façade.

The following describes the auxiliary equipment and other notable items associated with the Station.

- Turbine exhaust system, which includes a silencer system and exhaust stack;
- Turbine air intake filter system that includes a silencer system;
- Outdoor lube oil cooler ("LO cooler") that serves the compressor unit;
- Aboveground gas piping and associated components (*e.g.*, valves, suction filter separators);
- Outdoor gas cooler that serves the Station compressor unit; and
- Courtyard barrier/walls between the compressor building and auxiliary building; as a result, the gas cooler and a portion of the aboveground piping in the area of the compressor building will be located inside a "courtyard area".

This report provides a description of the applicable federal, state, and local noise regulatory requirements, a brief explanation of noise terminology, a summary of the results of a complete ambient sound level monitoring program, and a discussion of the sound level modeling analysis for the proposed Station. Additional noise control options are discussed in the Best Available Noise Control Technology analysis. AGT's design of the proposed Project incorporates more than \$6.4 Million of noise reduction measures. Operation of the Station will comply with the MassDEP noise requirements at all locations.

Section 3.0

Regulatory Requirements

3.0 REGULATORY REQUIREMENTS

3.1 Federal Noise Guidelines

The Environmental Protection Agency (EPA) identifies safe levels of environmental noise exposure in a document intended to "provide State and Local governments as well as the Federal Government and the private sector with an informational point of departure for the purpose of decision making."¹ While the EPA has no regulation governing environmental noise, the agency has conducted several extensive studies to identify the effects of sound level on public health and welfare. This publication remains the authoritative study based on a large sampling of community reaction to noise. The EPA sound level guidelines do not provide an absolute measure of noise impact, but rather a consensus on potential activity interference, human health and welfare effects, and annoyance. Since these protective levels were derived without concern for technical or economic feasibility, and contain a margin of safety to ensure their protective value, they should not be viewed as standards, criteria, regulations, or goals. Rather, EPA has stated that they should be viewed as levels below which the general population will not be at risk from the effects of noise.²

The EPA recommends that sound levels outdoors in *residential* areas, and in other places in which quiet is a basis for use, not exceed a day-night sound level (Ldn) of 55 dBA in order to "protect the public health and welfare with an adequate margin of safety," the standard set out in the Noise Control Act of 1972.³ This level (55 dBA Ldn) is also the limit required at noise sensitive areas by the Office of Energy Projects of the Federal Energy Regulatory Commission (FERC) from a natural gas compressor station. The EPA also suggests an Leq of 70 dBA (24-hour) limit to avoid adverse effects on public health and safety at publicly accessible property lines or extents of work areas where extended public exposure is possible.⁴ These levels are identified as desirable to protect against speech interference and sleep disturbance for residential, educational, and healthcare areas.

3.2 Massachusetts State Regulations

The Massachusetts Department of Environmental Protection (MassDEP) regulates noise under its Air Pollution Control regulations. In these regulations, an "air contaminant" is defined to include sound, and a condition of "air pollution" includes the presence of an air contaminant in such concentration and duration as to "cause a nuisance" or "unreasonably interfere with the comfortable enjoyment of life and property." (310 CMR 7.00)

¹ U.S. EPA, Information on Levels of Environmental Noise Requisite to Protect the Public Health and Welfare with an Adequate Margin of Safety, Document EPA-550/9-74-004, March, 1974. ("Document EPA-550/9-74-004")

² Document EPA-550/9-74-004, at 4.

³ *Id.*, Noise Control Act of 1972, 42 USC 4904(a)(2).

⁴ That is, to protect against hearing damage, one's 24-hour noise exposure should not exceed 70 dBA.

MassDEP's regulations at 310 CMR 7.10 prohibit "unnecessary emissions" of noise. MassDEP Division of Air Quality Control ("DAQC") Policy Statement 90-001 (February 1, 1990) (the "MassDEP Noise Policy") interprets a violation of this noise regulation to have occurred if the source causes either:

- 1) An increase in the broadband sound pressure level of more than 10 dBA above the ambient, or
- 2) A "pure tone" condition.

"Ambient" is defined as the background A-weighted sound level that is exceeded 90% of the time, measured during equipment operating hours (L₉₀). A "pure tone" condition occurs when any octave band sound pressure level exceeds both of the two adjacent octave band sound pressure levels by 3 dB or more.

These noise limits are MassDEP policy and are applicable both at the Property line and at the nearest residences. As a policy and not regulation, the MassDEP has waived these limits in certain cases at property line locations where the adjacent land uses are not considered noise sensitive, such as an adjacent industrial parcel.

3.3 Local Noise Regulations

The Town of Weymouth, Code of Ordinances, Chapter 11, Section 11-101(b)(4) identifies a nuisance as a condition when "noise is over 10 dB over ambient background." This is similar to the MassDEP policy.

Section 4.0

General Environmental Noise Metrics

4.0 GENERAL ENVIRONMENTAL NOISE METRICS

The unit of sound pressure is the decibel ("dB"). The decibel scale is logarithmic to accommodate the large dynamics of sound intensities to which the human ear is subjected. By definition, the decibel corresponds to a logarithmic scale formed by taking 20 times the logarithm (base 10) of the ratio of two sound pressures (L_P): the measured sound pressure divided by a reference sound pressure. The reference sound pressure is 20 dB re μ Pa (0 dB), the approximate threshold of human perception of sound at a frequency of 1000 Hz. The loudness of a sound source is typically reported by equipment manufacturers as the source sound power level (L_W), or the total acoustic power radiated in decibels referenced to 10⁻¹² watts. Sound pressure levels, which include the effects of propagation and attenuation that occur between the source and receptor.

An inherent property of the logarithmic decibel scale is that the sound pressure levels of two separate sounds are not directly additive. For example, if a sound of 50 dB is added to another sound of 50 dB, the total is a three-decibel increase (or 53 dB), not an arithmetic doubling to 100 dB. The human ear does not perceive changes in the sound pressure level as equal changes in loudness. Scientific research demonstrates that the following general relationships hold between sound level and human perception for two sound levels with the same or very similar frequency characteristics:

- **1 dBA** is the practically achievable limit of the accuracy of sound measurement systems and corresponds to an approximate 10% variation in sound pressure. A 1 dBA increase or decrease is a non-perceptible change in sound.
- **3 dBA** increase or decrease is a doubling (or halving) of acoustic energy and it corresponds to the threshold of perceptibility of change. In practice, a 3 dBA change in environmental sound is just perceptible to the average person.⁵
- **5 dBA** increase or decrease is described as a perceptible change in sound level and is a discernible change in an outdoor environment.
- **10 dBA** increase or decrease is a tenfold increase or decrease in acoustic energy, but is perceived as a doubling or halving in sound (*i.e.*, the average person will judge a 10 dBA change in sound level to be twice or half as loud).⁶

Environmental sound is typically composed of acoustic energy across a wide range of frequencies, referred to as the frequency spectra; however, the human ear does not interpret

⁵ 2009 ASHRAE Handbook – Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA, 2009.

⁶ Procedures for the Computation of Loudness of Steady Sounds, American National Standard, ANSI S3.4-2007, Annex A, NY.

the sound level from each frequency as equally loud. To compensate for the physical response of the human ear, the A-weighting filter is commonly used for describing environmental sound levels. The A-weighting filters the frequency spectrum of sound levels to correspond to the frequency response of the human ear (attenuating low and high frequency energy similar to the way people hear sound). Sound levels that are A-weighted to reflect human response are presented as "dBA." The A-weighted sound level is the most widely accepted descriptor for community noise assessments. Unweighted sound levels are referred to as linear decibels, and given in units of "dB" or "dBL."

Sound levels can be measured and presented in various formats. The most common sound metric used in community sound surveys is the equivalent sound level (Leq). The Leq level is the energy averaged, A-weighted sound pressure level that occurs over a given time period, *i.e.*, the steady, continuous sound level which has the same acoustic energy as the timevarying sound levels over the same time period. The Leq has been shown to provide both an effective and uniform method for comparing time-varying sound levels and is routinely employed. Community sound levels are also often described in terms of the "day-night" averaged sound level (Ldn), which accounts for the increased potential for annoyance that comes with elevated sound levels at night. Specifically, a 10 dBA "penalty" is added to all sound levels from 10 PM to 7 AM, and the Ldn is calculated from 24 hours of sound level data. In addition, the maximum sound level (Lmax) can be used to quantify the maximum instantaneous sound pressure level generated by a source. Statistical levels help further characterize the sound environment. The percentile sound levels (L_%) indicate the sound level exceeded for that percentage of the measurement period. The L₉₀ level is commonly referred to as the residual sound level as it excludes short-term intrusive noise events so it is effective in defining the quietest periods. The L₉₀ is the statistical level that is the level exceeded during 90% of the measurement period, and is the metric used by MassDEP to define "ambient." In comparison, the L₁₀ is referred to as the intrusive level and is the sound level that is exceeded for 10% of the time during the measurement.

The noise metrics defined are broadband, *i.e.*, inclusive of sound across the entire audible frequency spectrum. In addition to broadband, sound level data typically includes an analysis of the various frequency components of the sound spectrum to determine the potential for tonal characteristics and for use in identifying candidate noise mitigation measures. The unit of frequency is Hertz ("Hz"), measuring the cycles per second of the sound pressure waves, and typically the frequency analysis is stated in terms of octave- or one-third-octave-band sound-pressure levels, in dB, with the octave frequency bands being those established by standard (American National Standards Institute (ANSI) S1.11, 1986). In this analysis, octave-band sound levels were used primarily for purposes of evaluating the "pure tone" component of the MassDEP Noise Policy.

Measured sound levels may be influenced by seasonal sound sources, *i.e.*, insects in the summertime. During some periods of the year, sound from insects, birds, and leaf rustle will not be present (*e.g.*, winter) and the ambient sound levels will be lower than during the

summertime. Therefore, to more closely replicate sound levels observed at the same monitoring locations during these periods ("quiet seasons"), a high-frequency natural sound (HFNS) filter may be applied to the measured spectral data from which a new broadband sound level may be calculated to account for seasonal variation. This technique removes all sound energy above the 1250 Hertz frequency one-third octave band. The methodology for the filtration process is specified in ANSI/ASA S12.100-2014. Sound pressure levels calculated with this methodology are indicated as ANS-weighted levels (presented in dBA).

Estimations of common noise sources and outdoor acoustic environments, and the comparison of relative loudness are presented in Table 4-1.

	T		1
Noise Source or Activity	Sound Level (dBA)	Subjective Impression	Relative Loudness (perception of different sound levels)
Jet aircraft takeoff from carrier (50 feet)	140	Threshold of pain	64 times as loud
50-hp siren (100 feet)	130		32 times as loud
Loud rock concert near stage	150		52 times as 1000
Jet takeoff (200 feet)	120	Uncomfortably loud	16 times as loud
Float plane takeoff (100 feet)	110		8 times as loud
Jet takeoff (2,000 feet)	100	Very loud	4 times as loud
Heavy truck or motorcycle (25 feet)	90		2 times as loud
Garbage disposal			
Food blender (2 feet)			
Pneumatic drill (50 feet)	80	Loud	Reference loudness
Vacuum cleaner (10 feet)	70	Moderate	1/2 as loud
Passenger car at 65 mph (25 feet)	65		
Large store air-conditioning unit (20 feet)	60		1/4 as loud
Light auto traffic (100 feet)	50	Quiet	1/8 as loud
Quiet suburban area	45		
Bedroom or quiet living room Bird calls	40	Faint	1/16 as loud
Typical wilderness area	35		
Quiet library, soft whisper (15 feet)	30	Very quiet	1/32 as loud
Wilderness with no wind or animal activity	25	Extremely quiet	
High-quality recording studio	20		1/64 as loud
Acoustic test chamber	10	Just audible	
	0	Threshold of hearing	

Table 4-1Sound Pressure Levels and Relative Loudness of Common Noise Sources and
Soundscapes

Section 5.0

Existing Sound Levels

5.0 EXISTING SOUND LEVELS

5.1 Sound Level Measurement Methodology

Pursuant to a Protocol⁷ submitted June 26, 2018, with comments from the MassDEP received August 3, 2018, a comprehensive background measurement program consisting of six long-term continuous sound level monitoring stations was developed to:

- 1. Establish representative A-weighted broadband ambient sound pressure levels, for evaluating compliance with the MassDEP policy limit of a 10 dBA increase due to the proposed Project; and
- 2. Establish representative octave-band ambient sound pressure levels to identify any existing "pure tones," as defined by MassDEP, and evaluate whether the addition of modeled sound levels from the proposed Project to these background sound levels may introduce or exacerbate existing "pure tones" in the community.

The MassDEP-reviewed Protocol is included in this report as Appendix A. The MassDEP comments on the attached Protocol were that the DEP should be consulted before anomalous data were excluded from the analysis. Only measurement periods during, or affected by, precipitation were excluded from the analysis. This approach is consistent with the ANSI Standard S12.18-1994 (R2009). MassDEP's comments were provided in email format and are included at the end of Appendix A.

Continuous A-weighted and octave-band measurements (24 hours/day) were made concurrently at six locations over approximately a one-week period from Thursday, September 13, 2018 through Friday, September 21, 2018. The long-term monitors were generally unattended⁸, with personal observations made by a field technician during deployment, a nighttime site visit, and demobilization. During the program, the sound level monitoring equipment malfunctioned at two of the six locations, and thus no data were collected at those two locations and no ambient sound level could be established. Both malfunctions were attributable to hardware issues that are being evaluated by the equipment manufacturer. To complete the ambient dataset, a second monitoring program was conducted at all six locations starting Thursday, September 27, 2018 and completed on Friday, October 5, 2018. The monitors⁹ were generally unattended¹⁰, with personal

⁷ Epsilon Associates, Inc., Sound Level Measurement Protocol, June 26, 2018.

⁸ Though the equipment was left unattended, security detail was in place for nighttime hours during the entire program to check that the equipment was secure and that no tampering of the equipment occurred.

⁹ The instrumentation that malfunctioned during the first measurement program was not utilized during the second program.

observations made by a field technician during deployment, a nighttime site visit, and demobilization. Equipment integrity checks were performed on five occasions during the second program to ensure proper operation of the instrumentation, and a data download was also performed during the interim. Meteorological data were collected onsite and archived from the Boston Logan International Airport National Weather Service (NWS)¹¹ station provided by the National Centers for Environmental Information (NCEI) for the duration of both measurement programs. All sound level data and meteorological data collected during the programs are included in the ambient analysis and presented in this report.

5.2 Sound Level Measurement Locations

Six sound level measurement locations were selected to represent sound levels at the nearest noise sensitive receptors to the Project, including residences in all relevant directions from the Project and the walking path in the King's Cove conservation area to the immediate east of the Project property line. All measurements were made at publicly accessible locations and/or with landowner permission.

These six background sound level monitoring sites, described below, were selected to establish a current ambient sound pressure level for noise sensitive areas in the vicinity of the Project.

- Location M1 King's Cove Property Line (PL) was selected to represent sound levels at the closest property line immediately east of the Project. This location is approximately 90 feet east of the center of the compressor building. This location also represents existing sound levels along the walking path that goes through the public park located in the Fore River Basin south of the MWRA pumping station within the King's Cove conservation area.
- Location M2 Bridge Street was selected to represent sound levels at the nearest residences to the southeast. This location is at a Town-owned parcel at 116 Bridge Street, approximately 840 feet from the center of the compressor building.
- Location M3 Monatiquot Street was selected to represent sound levels at the nearest residences to the south, which are set back from Bridge Street traffic. M3 was located just within the Fore River Energy Center fence line near the intersection of Monatiquot Street and Bluff Road. This location is approximately 1,300 feet from the center of the compressor building.

¹⁰ Though the equipment was left unattended, security detail was in place during the full week to check that the equipment was secure and that no tampering of the equipment occurred.

¹¹ Logan International Airport NWS data are provided as Appendix D

- Location M4 King's Cove Beach Road (KCBR) was selected to represent sound levels at the nearest residences to the east along King's Cove Beach Road (KCBR). This location is at 73 KCBR and approximately 1,530 feet from the center of the compressor building.
- Location M5 City of Quincy Park was selected to represent sound levels at the nearest residences to the west. This location is in Quincy at a City-owned parcel along Washington Street approximately 2,850 feet from the center of the compressor building.
- Location M6 O'Brien Towers was selected to represent sound levels at the nearest group of residences to the north. The location is in Quincy on the south lawn of the O'Brien Towers south of Bicknell Street. This location is approximately 1,740 feet from the center of the compressor building.

An aerial photograph of the Project site is shown in Figure 5-1, identifying the Property boundary, nearby roads, property parcels, and background monitoring locations. The coordinates listed in Table 5-1 for the sound level measurement locations were obtained from a close review of aerial imagery by the field technician.

Location	Description	Massachusetts State Plane Meters (NAD83)						
ID	Description	X (meters)	Y (meters)					
M1	King's Cove Property Line (PL)	244359.40	888390.82					
M2	Bridge Street	244489.85	888193.66					
M3	Monatiquot Street	244287.14	888000.38					
M4	King's Cove Beach Road (KCBR)	244794.57	888455.28					
M5	City of Quincy Park	243477.10	888540.14					
M6	O'Brien Towers	244232.98	888916.71					

Table 5-1 GPS Coordinates – Sound Level Monitoring Locations

Weymouth Compressor Station

Weymouth, Massachusetts

5.3 Sound Level and Meteorological Measurement Equipment

Six Larson Davis (LD) Model 831 integrating sound level meters, tripod-mounted at a height of approximately five feet (1.5 meters) above ground level and fitted with the manufacturer's environmental windscreen, were used to collect background sound pressure level data during each program. Each meter, connected to a microphone via an extension cable and housed in an environmental suitcase, was programmed to log statistical Aweighted broadband and unweighted octave-band sound level data (L1, L10, L50, L90, Lmax, and Leq) over one-hour intervals with a one-second time history.

All sound monitoring instrumentation met the "Type 1 - Precision" requirements set forth in ANSI S1.4-1983 as specified in the ANSI S12.18-1994 methodology as well as those in ANSI S1.11-2004 (octave filter standard) for acoustical measuring devices.

The measurement equipment was calibrated in the field before and after the surveys with the manufacturer's acoustical calibrator (CAL200), which meets the standards of IEC 942 Class 1L and ANSI S1.40-1984. All calibrations were within 0.5 dB from the most recent calibration. The meters were calibrated and certified as accurate to standards set by the National Institute of Standards and Technology by an independent laboratory within the prior 12 months. Calibration certificates are provided in Appendix C.

Continuous hourly wind speed, wind direction, temperature, and precipitation measurements were made at the King's Cove PL location (M1) using a 2-meter ATMOS 41 weather station and EM60 data logger manufactured by Meter Group, Inc. The sensors were mounted at a height of approximately 2 meters above ground level and data were logged every hour. The weather station has a wind speed measurement range of 0 to 30 m/s (67 mph) and an accuracy of ± 0.3 m/s (0.67 mph). The wind direction measurement range is 0 to 359 degrees with an accuracy of ± 5 degrees. The air temperature measurement range is -50 to 60°C (-58 to 140°F) with an accuracy of $\pm 1.0^{\circ}$ C, and the precipitation measurement range is 0 to 50 mm/h.

5.4 Sound Level Measurement Results

Current noise sources in the area surrounding the proposed Project area include: vehicle traffic along Route 3A (primarily over Fore River Bridge) as well as local roads; aircraft flyovers; mechanical noise from the Twin Rivers Technologies facility; mechanical noise from the MWRA facility; mechanical noise from the Calpine Fore River Energy Center; residential air conditioning units; insect noise; rustling vegetation; water on the shore; occasional wind; and birds. During the 9/13 to 9/21/18 sound level measurement program, the Calpine Fore River Energy Center was operational until midnight 9/20. During the 9/27-10/5/18 sound level measurement program, the same power plant was offline.

Hourly A-weighted broadband sound pressure level data from the continuous ambient monitoring stations at locations M1 through M6 are presented in Appendix B. Sound level measurement data from both monitoring programs are shown and included in the analysis. Periods of precipitation totaling approximately 88 hours as recorded by the ATMOS weather station were excluded from the dataset. These included some very brief gaps in the precipitation event which were excluded due to potential elevations in ambient sound levels. These precipitation periods are shown in Appendix B. Ground level wind speeds greater than 5 m/s (11 mph) were not observed during the sound level measurement program by the ATMOS station, as is evident in Appendix B. Due to zero periods reaching this threshold, there were no periods removed from the dataset due to wind speed levels.

As the ambient measurements were conducted during a time of year when insects and leaf rustle were present, the measured L₉₀ sound levels were ANS-weighted to represent a quiet period of the year. The ANS L₉₀ sound levels are presented in this report and conservatively used in the compliance evaluation for the Project.

For the period, September 13 - 21, 2018, daytime (7AM - 10PM) ANS-weighted L₉₀ sound levels at the King's Cove PL location (M1) ranged from 46 to 56 dBA. Daytime ANS-weighted L₉₀ sound levels ranged from 44 to 54 dBA at the Monatiquot Street location (M3), from 46 to 66 dBA at the Quincy Park location (M5), and from 45 to 58 dBA at the O'Brien Towers location (M6). The lowest daytime ambient broadband L₉₀ sound level for each measurement location is presented in Table 5-2A along with the L₉₀ octave-band sound levels measured during the same timestamp. No data were available at the Bridge Street location (M2) or the King's Cove Beach Road location (M4) due to the sound measurement equipment malfunctions.

For the period, September 13 - 21, 2018, nighttime (10PM – 7AM) ANS-weighted L₉₀ sound levels at the King's Cove PL location (M1) ranged from 44 to 54 dBA. Nighttime ANS-weighted L₉₀ sound levels ranged from 45 to 51 dBA at the Monatiquot Street location (M3), from 37 to 55 dBA at the Quincy Park location (M5), and from 43 to 51 dBA at the O'Brien Towers location (M6). The lowest nighttime ambient broadband L₉₀ sound level for each measurement location is presented in Table 5-2B along with the L₉₀ octave-band sound levels measured during the same timestamp. No data were available at the Bridge Street location (M2) or the King's Cove Beach Road location (M4) due to the sound measurement equipment malfunctions.

For the period, September 27 - October 5, 2018, daytime (7AM - 10PM) ANS-weighted L₉₀ sound levels at the King's Cove PL location (M1) ranged from 44 to 57 dBA. Daytime ANS-weighted L₉₀ sound levels ranged from 48 to 60 dBA at the Bridge Street location (M2), from 45 to 59 dBA at the Monatiquot Street location (M3), from 40 to 53 dBA at the King's Cove Beach Road location (M4), from 45 to 57 dBA at the Quincy Park location (M5), and from 42 to 56 dBA at the O'Brien Towers location (M6). The lowest daytime ambient broadband L₉₀ sound level for each measurement location is presented in Table 5-3A along with the L₉₀ octave-band sound levels measured during the same timestamp.

For the period, September 27 - October 5, 2018, nighttime (10PM – 7AM) ANS-weighted L₉₀ sound levels at the King's Cove PL location (M1) ranged from 40 to 56 dBA. Nighttime ANS-weighted L₉₀ sound levels ranged from 36 to 57 dBA at the Bridge Street location (M2), from 45 to 49 dBA at the Monatiquot Street location (M3), from 37 to 51 dBA at the King's Cove Beach Road location (M4), from 34 to 61 dBA at the Quincy Park location (M5), and from 41 to 51 dBA at the O'Brien Towers location (M6). The lowest nighttime ambient broadband L₉₀ sound level for each measurement location is presented in Table 5-3B along with the L₉₀ octave-band sound levels measured during the same timestamp.

The lowest ANS-weighted L₉₀ (1-hour) sound levels ranged from 40 to 48 dBA during the day and from 34 to 45 dBA at night across the six locations during all monitoring periods.

		ANS-	ANS- Measured L ₉₀ ³ Sound Pressure Level (dB) by Octave Band (Hz)										
Monitoring Location ID	Date/Start Time of Lowest Daytime L90	of Lowest	Weighted L90 ²	31.5	63	125	250	500	1k	2k	4k	8k	16k
		dBA	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	
M1	9/15 8:00 PM	46	65	61	51	43	44	41	51 ⁴	43	33	23	
M2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
M3	9/21 9:00 AM	44	59	58	57	42	39	37	34	31	28	23	
M4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
M5	9/16 7:00 AM	46	65	57	52	44	40	44 ⁴	39	29	21	24	
M6	9/19 9:00 PM	45	63	55	49	42	42	43	40	36	27	25	

Table 5-2ALowest Daytime1Ambient L₉₀Sound Level Measurement Summary—9/13 to9/21/18

1. 'Daytime' defined to be between the hours of 7AM and 10PM.

2. Broadband ANS-weighted L₉₀ (dBA) is the lowest such level observed during daytime hours.

3. Octave-band values correspond to the hourly period when the lowest ANS-weighted L₉₀ sound level was observed.

4. MassDEP-defined pure tone in ambient sound level data.

5. 'ND' indicates no data.

Table 5-2BLowest Nighttime1 Ambient L90 Sound Level Measurement Summary—9/13 to
9/21/18

		ANS-	Measured L ₉₀ ³ Sound Pressure Level (dB) by Octave-Band (Hz)											
Monitoring Location ID	Date/Start Time of Lowest Nighttime L90	Weighted L90 ²	31.5	63	125	250	500	1k	2k	4k	8k	16k		
		dBA	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB		
M1	9/17 3:00 AM	44	64	58	46	40	42	40	39	48 ⁴	44	28		
M2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
M3	9/21 2:00 AM	45	54	55	59 ⁴	42	38	37	34	36	24	23		
M4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
M5	9/14 2:00 AM	37	65	51	45	36	33	31	26	35 ⁴	20	24		
M6	9/20 2:00 AM	43	55	55	48	40	40	41	39	36	25	24		

1. 'Nighttime' defined to be between the operational hours of 10PM and 7AM.

2. Broadband ANS-weighted L90 (dBA) is the lowest such level observed during daytime hours.

3. Octave-band values correspond to the hourly period when the lowest ANS-weighted L₉₀ sound level was observed.

4. MassDEP-defined pure tone in ambient sound level data

5. 'ND' indicates no data

		ANS-	Measured L ₉₀ ³ Sound Pressure Level (dB) by Octave Band (Hz)											
Monitoring Location ID	Date/Start Time of Lowest Daytime L90	Time of Lowest	Weighted L90 ²	31.5	63	125	250	500	1k	2k	4k	8k	16k	
		dBA	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB		
M1	9/30 5:00 PM	44	58	58	49	40	43	41	37	36	25	22		
M2	9/30 9:00 PM	48	57	56	52	46	44	46	41	32	24	23		
M3	9/28 8:00 PM	45	58	58	52	43	40	41	38	38	22	22		
M4	10/1 1:00 PM	40	54	55	49	40	35	36	33	30	24	23		
M5	9/30 7:00 AM	45	55	54	49	41	40	42	37	26	19	22		
M6	10/3 8:00 PM	42	55	54	48	41	39	39	37	33	22	30		

Table 5-3ALowest Daytime1Ambient L₉₀Sound Level Measurement Summary—9/27 to10/5/18

1. 'Daytime' defined to be between the hours of 7AM and 10PM.

2. Broadband ANS-weighted L₉₀ (dBA) is the lowest such level observed during daytime hours.

3. Octave-band values correspond to the hourly period when the lowest ANS-weighted L₉₀ sound level was observed.

Table 5-3B	Lowest Nighttime	Ambient L90	Sound Leve	Measurement	Summary—9/27 to
	10/5/18				

Monitoring Location ID	Date/Start	ANS-	ANS- Measured L ₂₀ ³ Sound Pressure Level (dB) by Octav									/e-Band (Hz)		
	Time of Lowest Nighttime L ₉₀	Time of Lowest	Weighted L90 ²	31.5	63	125	250	500	1k	2k	4k	8k	16k	
		dBA	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB		
M1	10/1 2:00 AM	40	53	52	43	36	38	37	33	34	27	22		
M2	10/4 1:00 AM	36	50	49	41	36	34	30	25	28 ⁴	21	23		
M3	9/28 2:00 AM	45	57	57	58	41	37	37	36	45 ⁴	27	22		
M4	9/28 2:00 AM	37	51	52	43	39	33	31	28	344	20	23		
M5	9/30 3:00 AM	34	50	51	44	35	31	28	23	22	18	22		
M6	10/1 2:00 AM	41	50	51	46	40	40	38	33	31	20	24		

1. 'Nighttime' defined to be between the operational hours of 10PM and 7AM.

2. Broadband ANS-weighted L₉₀ (dBA) is the lowest such level observed during daytime hours.

3. Octave-band values correspond to the hourly period when the lowest ANS-weighted L₉₀ sound level was observed.

4. MassDEP-defined pure tone in ambient sound level data

5.5 Establishment of Background for MassDEP

Based on the data presented in this report, daytime and nighttime ambient L₉₀ background sound levels for each of the six measurement locations have been established as listed in Tables 5-4A and 5-4B. These utilize the lowest L₉₀ values from both measurement programs combined.

Mon. Loc.	Description	ANS- Weighted	N	Measured L_{20}^3 Sound Pressure Level (dB) by Octave-Band (Hz)										
ID	Description	L90 ²	31.5	63	125	250	500	1k	2k	4k	8k	16k		
		dBA	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB		
M1	King's Cove PL	44	58	58	49	40	43	41	37	36	25	22		
M2	Bridge St.	48	57	56	52	46	44	46	41	32	24	23		
M3	Monatiquot St.	44	59	58	57	42	39	37	34	31	28	23		
M4	KCBR	40	54	55	49	40	35	36	33	30	24	23		
M5	Quincy Park	45	55	54	49	41	40	42	37	26	19	22		
M6	O'Brien Towers	42	55	54	48	41	39	39	37	33	22	30		

Table 5-4A	Summary of Lowest Daytime ¹ Ambient L ₉₀ Sound Levels
------------	---

1. 'Daytime' defined to be between the hours of 7AM and 10PM.

2. Broadband ANS-weighted L₉₀ (dBA) is the lowest such level observed during daytime hours.

3. Octave-band values correspond to the hourly period when the lowest ANS-weighted L₉₀ sound level was observed.

Mon. Loc.	Description	ANS- Weighted	N	leasure	d L‱³ Se	ound Pr	essure l	Level (d	B) by C	Octave-B	and (H	z)
ID	Description	L90 ²	31.5	63	125	250	500	1k	2k	4k	8k	16k
		dBA	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
M1	King's Cove PL	40	53	52	43	36	38	37	33	34	27	22
M2	Bridge St.	36	50	49	41	36	34	30	25	28 ⁴	21	23
M3	Monatiquot St.	45	54	55	59	42	38	37	34	36	24	23
M4	KCBR	37	51	52	43	39	33	31	28	34 ⁴	20	23
M5	Quincy Park	34	50	51	44	35	31	28	23	22	18	22
M6	O'Brien Towers	41	50	51	46	40	40	38	33	31	20	24

Table 5-4BSummary of Lowest Nighttime1 Ambient L₉₀ Sound Levels

1. 'Nighttime' defined to be between the operational hours of 10PM and 7AM.

2. Broadband ANS-weighted L₉₀ (dBA) is the lowest such level observed during daytime hours.

3. Octave-band values correspond to the hourly period when the lowest ANS-weighted L₉₀ sound level was observed.

4. MassDEP-defined pure tone in ambient sound level data

Section 6.0

Future Operational Sound Levels

6.0 FUTURE OPERATIONAL SOUND LEVELS

6.1 Noise Sources and Reference Sound Data

This section provides a detailed discussion of the primary components of the proposed Project and their associated reference sound level data. The primary sources of sound associated with the Project will consist of a Solar Taurus 60 gas turbine and related equipment, including lube oil and gas coolers, aboveground gas piping and components, and compressor building air intake fans. The sound level modeling assumes the proposed equipment to be operating simultaneously at full-load.

A tabular summary of the modeled equipment proposed for the Project, the quantity of each unit, and reference sound power level data provided for each unit or calculated from provided sound pressure level data, are presented below in Table 6-1. The data were provided in an acoustical analysis performed by Hoover & Keith Inc. (H&K), report dated January 11, 2017¹², in which the origin of the sound data is described. The exceptions are the Gas Cooler and the Lube Oil Cooler; more recent sound power level data were provided by H&K based on field measurements of existing, similar equipment and incorporated into the modeling. The noise reduction levels for specific pieces of equipment included in the model are summarized in Table 6-2. These data were also provided in the H&K report or estimated by Epsilon based on data used by H&K. The data presented in these tables were utilized in the "Base Case" modeling scenario, to replicate the H&K sound modeling scenario, and an initial sound level evaluation has been performed in this report. Additional "Mitigation Cases" are described in later sections of this report and the results of these cases have been evaluated as well.

¹² Hoover & Keith Inc. *Results of Additional Ambient Sound Survey and Updated Acoustical Analysis of a New Natural Gas Compressor Station Associated with the Proposed Atlantic Bridge Project ("AB Project")*. January 11, 2017.

			S	ound Po	wer Le	vel per	Unit (dl	3) by O	ctave B	and (Hz	<u>z</u>)
Proposed Source	#	Broadband Sound Power Level per Unit dBA	31.5 dB	63 dB	125 dB	250 dB	500 dB	1k dB	2k dB	4k dB	8k dB
Gas Turbine ¹	1	121	110	110	112	112	110	110	112	118	112
Gas Turbine Exhaust ¹	1	126	120	123	120	123	127	119	112	104	96
Gas Turbine Intake ¹	1	153	108	114	120	121	122	124	129	152	144
Gas Cooler ²	1	91	112	105	94	92	88	85	82	80	75
Lube Oil Cooler ²	1	89	100	97	94	90	86	83	78	72	65
Aboveground Piping & Components	-	114	98	98	102	95	96	105	110	108	100
Compressor Building Air Intake Fan ³	2	82	-	-	-	-	82	-	-	-	-

Table 6-1 Reference Sound Power Level by Source – Base Case

1. Solar Taurus 60 model.

2. Sound power levels differ from those presented in the H&K report based on more recent sound level data obtained from field measurements.

3. A-weighted sound power level was calculated from a sound pressure level. No octave band data were provided. This sound power level includes attenuation from a custom 3-ft duct silencer.

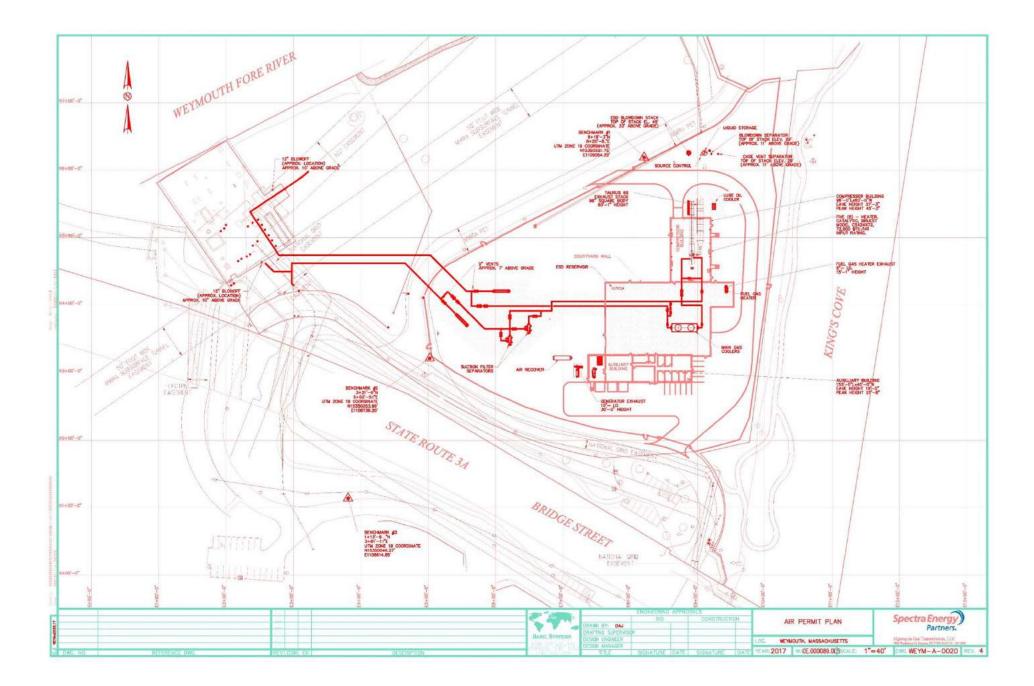
Table 6-2	Modeled Noise Reduction Levels – Base Case

	Noise Reduction Level (dB) by Octave Band (Hz)								[
Noise Control	31.5 dB	63 dB	125 dB	250 dB	500 dB	1k dB	2k dB	4k dB	8k dB
Gas Turbine Exhaust Silencer	5	18	25	35	45	45	45	35	25
Gas Turbine Intake Silencer	2	5	12	15	30	45	50	60	60
Gas Turbine Intake Air Filter	1	6	12	18	22	25	25	25	20
Compressor Building ¹	8	12	18	26	32	35	38	40	40
Acoustical Pipe Insulation ²	-4	-4	0	2	6	10	15	16	16

1. Acoustically-insulated metal building.

2. Estimated by Epsilon based on combined insulation/courtyard effect attenuation level provided in the H&K report.

6.2 Cadna/A Sound Model


Noise impacts from mechanical equipment associated with the Project were predicted using Cadna/A noise calculation software (DataKustik Corporation). This software, which uses the ISO 9613-2 international standard for sound propagation (Acoustics - Attenuation of sound during propagation outdoors - Part 2: General method of calculation), offers a refined set of computations accounting for local topography, ground attenuation, drop-off with distance, barrier shielding, diffraction around building edges, reflection off building facades, and atmospheric absorption of sound from multiple noise sources.

Inputs and significant parameters included in the model are described below:

- **Project Layout:** The location of all proposed equipment was provided by AGT in a Site Plan drawing number WEYM-A-0020 Rev. 4, dated 2017, included in this report as Figure 6-1. This "Base Case" layout includes a 19-foot courtyard wall for which the Cadna software incorporated realistic sound propagation shielding from multiple noise sources within its boundary.¹³
- **Sensitive Receptors:** Sound levels were evaluated at seven discrete point locations, shown as A through G in Figure 6-2, representing the closest sensitive receptors and property-line locations surrounding the Project. Six of the seven modeling receptors were selected based on the ambient measurement locations. The seventh receptor (G) was included in the modeling to represent the closest residences to the north of the Project in the Germantown neighborhood of Quincy. Each of these seven locations are represented by an ambient measurement location discussed in Section 5. All receptors were modeled at a height of 1.5 meters above ground level to mimic the ears of a typical standing observer.
- **Terrain Elevation:** Elevation contours for the modeling domain, derived from the New England CMGP LiDAR Dataset for the United States Geological Survey (USGS) dated Fall 2013/Spring 2014, were directly imported into Cadna/A, which allowed for consideration of terrain shielding and differences in elevation between sources and receivers, where appropriate.
- **Source Sound Power Levels:** Sound power levels and noise reduction levels were included in the model, as summarized in Tables 6-1 and 6-2, respectively.
- **Meteorological Conditions:** A temperature of 16°C (60°F) and a relative humidity of 70% were assumed in the model to reduce atmospheric attenuation in the 500 Hz and 1 kHz octave-bands where the human ear is most sensitive.

¹³ Although not quantified in this report, shielding effects from the courtyard wall are included in all modeled sound levels presented in this analysis.

- **Ground Attenuation:** Spectral ground absorption was calculated using a global G-factor of 0.5 to represent a moderately reflective surface. Project-surrounding areas of water were modeled with a G-factor of 0 to represent a reflective surface.
- **Uncertainty:** A K-factor of 2 dB was included in the modeling results to account for uncertainty in the manufacturers' sound level data and in the sound level modeling.
- **Directivity:** A directivity correction was applied to the gas turbine exhaust stack outlet for a realistic sound propagation representation.

Weymouth Compressor Station

Weymouth, Massachusetts

6.3 Base Case Operational Sound Levels & Regulatory Evaluation

With the Base Case noise control features identified in Section 6.1 and the shielding benefits from the 19-foot courtyard wall, modeled future daytime and nighttime sound levels from the Project (Project + Background) presented in Tables 6-3A and 6-3B, respectively, are predicted to increase the measured background L₉₀ sound levels by no more than 15 dBA at all modeled receptor locations. During daytime hours, Base Case impacts are predicted to be 2 dBA or less at all residential locations, well below the 10 dBA MassDEP criterion. An increase of 11 dBA is expected during the daytime at the King's Cove PL (receptor A). Base Case sound level impacts during nighttime hours are predicted to be 9 dBA or less at all residential receptors, which is also below the 10 dBA MassDEP criterion. The nighttime Base Case impact at the King's Cove PL (receptor A) exceeds the MassDEP criterion. In order to determine what additional noise reduction was possible, how effective it would be and at what cost, a Best Available Noise Control Technology (BANCT) analysis is provided in Section 6.5. Graphical modeling results for the Base Case are shown in Figure 6-3.

Predicted future daytime and nighttime octave-band sound pressure levels, presented in Tables 6-4A and 6-4B, respectively, indicate that the proposed Project would not be anticipated to create any "pure-tone" conditions, as defined by MassDEP, when combined with existing background sound levels at any modeled receptor locations. As Cadna/A does not predict sound levels in the 16 kHz octave-band (not required by ISO-9613), it was conservatively assumed for this analysis they were equivalent to those in the 8 kHz band. In actuality, sound levels in the 16 kHz band would be lower due to increased atmospheric attenuation and typically lower equipment sound power levels.

Receptor			Background Noise Level⁵	Modeled Project- Only Noise Level (Proposed)	Combined Project + Background Noise Level	Increase Above Background ²	Meets MassDEP Noise
ID	Description	Land Use	dBA	dBA	dBA	dBA	Policy ³
А	King's Cove PL	Public	44	54	55	11	No
В	Bridge St.	Residence	48	44	50	2	Yes
С	Monatiquot St.	Residence	44	40	46	2	Yes
D	KCBR	Residence	40	34	41	1	Yes
E	Quincy Park	Residence	45	35	45	0	Yes
F	O'Brien Towers	Residence	42	37	43	1	Yes
G	Germantown	Residence	42 ⁴	39	44	2	Yes

 Table 6-3A
 MassDEP Daytime¹ Compliance Evaluation – Base Case

1. 'Daytime' defined as the operational hours between 7 AM and 10 PM.

2. 'Increase Above Background' calculated from levels with greater precision than shown in this table, and then rounded to the nearest whole decibel.

3. Refers to MassDEP A-weighted criteria of 10 dBA over background.

4. Background sound level at receptor G is estimated to be equal to the level at receptor F due to proximity.

5. Background sound levels from Table 5-4A.

Receptor			Background Noise Level⁵	Modeled Project- Only Noise Level (Proposed)	Combined Project + Background Noise Level	Increase Above Background ²	Meets MassDEP Noise
ID	Description	Land Use	dBA	dBA	dBA	dBA	Policy? ³
А	King's Cove PL	Public	40	54	55	15	No
В	Bridge St.	Residence	36	44	45	9	Yes
С	Monatiquot St.	Residence	45	40	46	1	Yes
D	KCBR	Residence	37	34	39	2	Yes
E	Quincy Park	Residence	34	35	38	4	Yes
F	O'Brien Towers	Residence	41	37	43	2	Yes
G	Germantown	Residence	41 ⁴	39	43	2	Yes

 Table 6-3B
 MassDEP Nighttime¹ Compliance Evaluation – Base Case

1. 'Nighttime' defined as the operational hours between 10 PM and 7 AM.

2. 'Increase Above Background' calculated from levels with greater precision than shown in this table, and then rounded to the nearest whole decibel.

3. Refers to MassDEP A-weighted criteria of 10 dBA over background.

4. Background sound level at receptor G is estimated to be equal to the level at receptor F (proximity).

5. Background sound levels from Table 5-4B.

Table 6-4A	Sound Level Modeling Results by Octave-Band – Proposed Equipment + Daytime ¹
	Background—Base Case

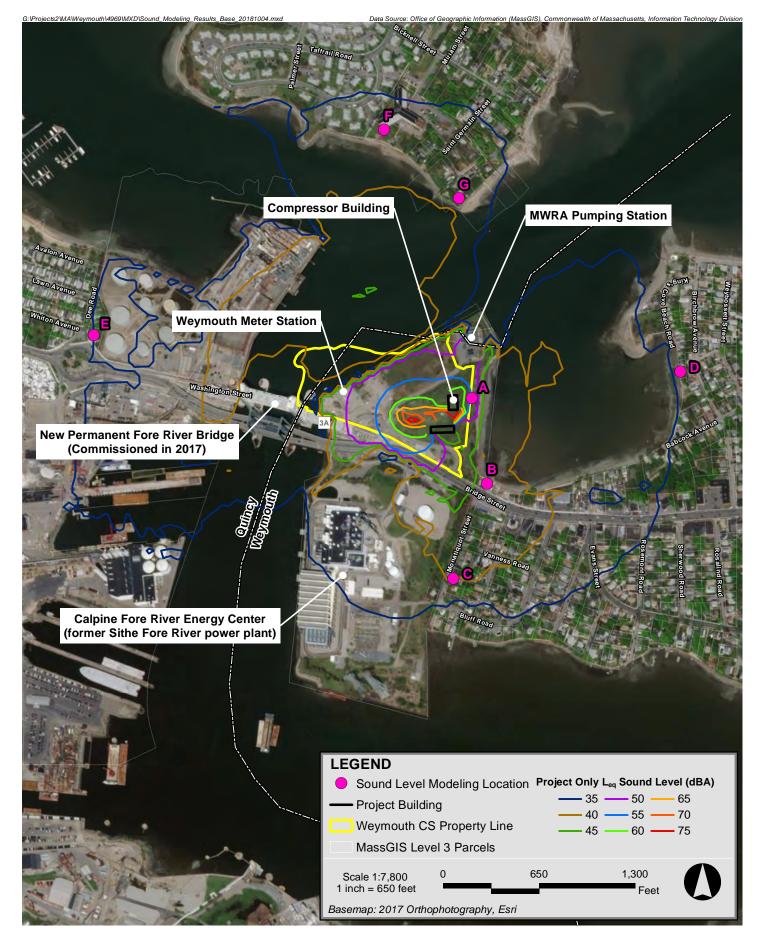
			Sound Levels (dB) per Octave-Band Center Frequency (Hz)								
Receptor ID	Broadband dBA	31.5 dB	63 dB	125 dB	250 dB	500 dB	1k dB	2k dB	4k dB	8k dB	16k dB
А	55	77	70	61	53	50	47	43	40	32	32
В	50	65	59	54	47	45	47	43	34	24	23
С	46	61	59	57	43	39	40	37	32	28	23
D	41	59	56	49	41	36	36	33	30	24	23
E	45	57	55	49	41	40	42	38	26	19	22
F	43	58	55	48	41	40	40	37	33	22	30
G	44	59	55	49	42	40	40	38	33	22	30

1. 'Daytime' defined as the operational hours between 7 AM and 10 PM.

			Sou	nd Level	s (dB) pe	er Octave	-Band C	enter Fre	quency ((Hz)	
Receptor ID	Broadband dBA	31.5 dB	63 dB	125 dB	250 dB	500 dB	1k dB	2k dB	4k dB	8k dB	16k dB
A	55	77	70	61	53	49	47	42	40	33	32
В	45	64	57	50	41	38	40	38	33	21	23
С	46	60	56	59 ²	43	39	40	37	36	24	23
D	39	58	54	45	40	34	33	29	34 ²	20	23
E	38	55	53	45	36	32	33	30	23	18	22
F	43	57	54	47	40	40	39	35	31	20	24
G	43	58	54	48	41	40	40	36	31	20	24

Table 6-4B Sound Level Modeling Results by Octave-Band – Proposed Equipment + Nighttime¹ Background—Base Case
1. 'Nighttime' defined as the operational hours between 10 PM and 7 AM.

2. MassDEP-defined pure tone attributable to the existing ambient sound levels, not the Project.


6.4 Base Case Mitigation Measures and Costing

Significant attention has been paid to reduce sound levels from the proposed Project through a combination of noise controls and enhancements to the equipment layout. As summarized in Table 6-5, the Base Case noise reduction measures identified in Section 6.1 total approximately \$5.57 Million.

Table 6-5Sound Level Reductions – Base Case

Noise Source	Control Method	Approximate Cost (materials and labor)
Gas turbine air intake	5-ft silencer; air intake filter	\$235,000
Gas turbine exhaust	2-stage silencer	\$1,200,000
Gas turbine compressor building	22-gauge metal; 6-inch insulation; insulated roll-up door; no windows	\$1,085,000
Gas turbine compressor building—air intake fans	3-ft silencers	\$10,000
Aboveground piping	Acoustical pipe insulation; courtyard barrier wall—19 ft tall, 8.5-inch thick concrete	\$1,900,000 ¹
Gas cooler	Courtyard barrier wall—19 ft tall, 8.5-inch thick concrete	\$1,140,000

1. Cost is for acoustical pipe insulation only.

6.5 Best Available Noise Control Technology (BANCT) Analysis

The results of the Base Case modeling indicate that the Project operating at full capacity is expected to increase sound levels up to 9 dBA or less over the quietest nighttime background at all residential receptors. The Base Case scenario produces sound levels at the King's Cove PL of more than 10 dBA over the quietest background. There are a few additional noise control measures that are possible for some of the noise sources. Therefore, a Best Available Noise Control Technology (BANCT) analysis was conducted. The BANCT analysis examines whether any additional or alternative noise control measures are technically feasible and cost-effective beyond the rigorous controls already proposed in the Base Case, as described in Section 6.4 above. The following analysis compares other acoustical design options to the proposed Base Case design to determine whether the application of additional noise controls can yield further acoustic benefits.

The BANCT analysis takes the "top down" approach, similar to a BACT analysis for air emissions. However, the control of noise is unlike the control of air emissions. A combustion turbine requires only one source to be controlled for each pollutant. The same turbine installation has many sound sources, which requires a systematic reduction of sound levels from individual contributing sources. Since total sound levels are combined logarithmically, any additional noise control must focus on the highest contributing sources first before moving to lesser contributing sources. For example, further controlling a component that is already 5 dBA quieter than the loudest source will have minimal impact on total Project sound levels.

The analysis of the technical feasibility and cost effectiveness of additional noise control measures involves an understanding of the locations and sensitivities of various types of receiving locations as well as the directionality of Project noise sources. The proposed design has focused on the use of proven and cost-effective means to minimize the sound levels at the nearest property line and nearby residential properties. The Base Case modeling showed operation of the Station results in a 1 to 9 dBA increase in the ambient baseline levels during the quietest hours of the night. During daytime hours, when ambient levels are higher, the facility will be less noticeable.

The Base Case modeling results at the closest receptor to the King's Cove PL (receptor A) show that the top three sources contributing to the total sound are the lube oil cooler and the two gas turbine compressor building air intake fans. Several additional noise control features have been investigated. They are summarized below and would result in an incremental cost of approximately \$850,000. This is labeled as Mitigation Case 1.

- Quieter lube oil cooler ~\$50,000
- Using 5-ft silencers, instead of 3-ft silencers, on the compressor building air intake fans - ~\$15,000

- ◆ Additional compressor building roll-up door ~\$15,000
- ◆ Replacing the metal-skinned gas compressor building with an 8.5-inch thick concrete block building ~\$628,000
- ◆ Increased turbine exhaust silencer system noise reduction ~\$105,000
- ◆ Increased turbine intake silencer system noise reduction ~\$35,000

The results of Mitigation Case 1 are shown in Tables 6-6A (daytime) and 6-6B (nighttime). Figure 6-4 depicts the results graphically.

Table 6-6ASound Level Modeling Results by Octave-Band – Proposed Equipment + Daytime1Background—Mitigation Case 1

			Sound Levels (dB) per Octave-Band Center Frequency (Hz)								
Receptor ID	Broadband dBA	31.5 dB	63 dB	125 dB	250 dB	500 dB	1k dB	2k dB	4k dB	8k dB	16k dB
А	50	75	67	56	48	47	44	40	37	28	27
В	49	63	58	53	46	44	47	43	34	24	23
С	46	60	59	57	43	39	40	37	32	28	23
D	41	57	56	49	40	36	36	33	30	24	23
E	45	56	55	49	41	40	42	38	26	19	22
F	43	57	55	48	41	40	40	37	33	22	30
G	44	58	55	49	41	40	40	38	33	22	30

1. 'Daytime' defined as the operational hours between 7 AM and 10 PM.

Table 6-6BSound Level Modeling Results by Octave-Band – Proposed Equipment +
Nighttime¹ Background—Mitigation Case 1

			Sound Levels (dB) per Octave-Band Center Frequency (Hz)									
Receptor ID	Broadband dBA	31.5 dB	63 dB	125 dB	250 dB	500 dB	1k dB	2k dB	4k dB	8k dB	16k dB	
А	49	75	67	56	48	46	43	39	36	29	27	
В	44	62	56	49	40	37	40	38	33	21	23	
С	46	58	56	59 ²	43	39	40	37	36	24	23	
D	38	56	53	45	39	34	32	29	34 ²	20	23	
E	37	54	52	45	36	32	33	30	23	18	22	
F	43	55	53	47	40	40	39	35	31	20	24	
G	43	56	53	48	40	40	40	36	31	20	24	

1. 'Nighttime' defined as the operational hours between 10 PM and 7 AM.

2. MassDEP-defined pure tone attributable to the existing ambient sound levels, not the Project.

The Mitigation Case 1 modeling results at the closest receptor, the King's Cove PL (receptor A), show that the top source contributing to the total sound is still the lube oil cooler. All other sources are more than two decibels lower than the lube oil cooler. At this point, the only further mitigation option for the lube oil cooler is a barrier wall (Mitigation Case 2), or relocating the lube oil cooler to inside the courtyard wall (Mitigation Case 3). For Mitigation Case 2, a 12-foot high solid barrier wall was modeled surrounding the lube oil cooler on the east side. The location of the lube oil cooler barrier wall is shown in Figure 6-5. This would result in an incremental cost of approximately \$241,000 over Mitigation Case 1.

The results of Mitigation Case 2 are shown in Tables 6-7A (daytime) and 6-7B (nighttime). Figure 6-6 depicts the results graphically. These results are identical to Mitigation Case 1 except for a 2 dBA decrease in sound levels directly across from the lube oil cooler.

Table 6-7A	Sound Level Modeling Results by Octave-Band – Proposed Equipment + Daytime ¹
	Background—Mitigation Case 2

			Sound Levels (dB) per Octave-Band Center Frequency (Hz)									
Receptor	Broadband	31.5	63	125	250	500	1k	2k	4k	8k	16k	
ID	dBA	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	
А	48	74	66	55	46	46	43	39	37	26	25	
В	49	63	58	53	46	44	47	43	34	24	23	
С	46	60	59	57	43	39	40	37	32	28	23	
D	41	57	55	49	40	36	36	33	30	24	23	
E	45	56	55	49	41	40	42	38	26	19	22	
F	43	57	55	48	41	40	40	37	33	22	30	
G	44	58	55	49	41	40	40	38	33	22	30	

1. 'Daytime' defined as the operational hours between 7 AM and 10 PM.

Table 6-7B	Sound Level	Modeling	Results	by	Octave-Band	_	Proposed	Equipment	+
	Nighttime ¹ Ba	c kground —/	Mitigatio	n Ca	se 2				

		Sound Levels (dB) per Octave-Band Center Frequency (Hz)									
Receptor ID	Broadband dBA	31.5 dB	63 dB	125 dB	250 dB	500 dB	1k dB	2k dB	4k dB	8k dB	16k dB
А	47	74	66	54	46	44	41	37	36	28	25
В	44	62	55	49	40	37	40	38	33	21	23
С	46	58	56	59 ²	43	39	40	37	36	24	23
D	38	56	53	44	39	34	32	29	34 ²	20	23
E	37	54	52	45	36	32	33	30	23	18	22
F	43	55	53	47	40	40	39	35	31	20	24
G	43	56	53	48	40	40	40	36	31	20	24

1. 'Nighttime' defined as the operational hours between 10 PM and 7 AM.

2. MassDEP-defined pure tone attributable to the existing ambient sound levels, not the Project.

Mitigation Case 3 relocates the lube oil cooler inside the 19-foot high courtyard wall. The relocated lube oil cooler is shown in Figure 6-7. This would result in an incremental cost of approximately \$15,000 over Mitigation Case 1.

The results of Mitigation Case 3 are shown in Tables 6-8A (daytime) and 6-8B (nighttime). Figure 6-8 depicts the results graphically.

Table 6-8A	Sound Level Modeling Results by Octave-Band – Proposed Equipment + Daytime ¹
	Background—Mitigation Case 3

			Sound Levels (dB) per Octave-Band Center Frequency (Hz)									
Receptor ID	Broadband dBA	31.5 dB	63 dB	125 dB	250 dB	500 dB	1k dB	2k dB	4k dB	8k dB	16k dB	
А	49	75	67	55	46	46	43	39	37	28	27	
В	49	63	58	53	46	44	47	43	34	24	23	
С	46	60	59	57	43	39	40	37	32	28	23	
D	41	57	56	49	40	36	36	33	30	24	23	
E	45	56	55	49	41	40	42	38	26	19	22	
F	43	57	55	48	41	40	40	37	33	22	30	
G	44	58	55	49	41	40	40	38	33	22	30	

1. 'Daytime' defined as the operational hours between 7 AM and 10 PM.

Table 6-8B	Sound Level Modeling Results by Octave-Band – Proposed Equipment +
	Nighttime ¹ Background—Mitigation Case 3

			Sound Levels (dB) per Octave-Band Center Frequency (Hz)									
Receptor ID	Broadband dBA	31.5 dB	63 dB	125 dB	250 dB	500 dB	1k dB	2k dB	4k dB	8k dB	16k dB	
А	47	75	67	54	46	44	41	37	36	29	27	
В	44	62	55	49	40	37	40	38	33	21	23	
С	46	58	56	59 ²	43	39	40	37	36	24	23	
D	38	56	53	44	39	34	32	29	34 ²	20	23	
E	37	54	52	45	36	32	33	30	23	18	22	
F	42	55	53	47	40	40	39	35	31	20	24	
G	43	56	53	48	40	40	40	36	31	20	24	

1. 'Nighttime' defined as the operational hours between 10 PM and 7 AM.

2. MassDEP-defined pure tone attributable to the existing ambient sound levels, not the Project.

With the Base Case + Mitigation Case 1 + Mitigation Case 3 noise control features identified in the BANCT analysis, modeled future daytime and nighttime sound levels from the Project (Project + Background) are presented in Tables 6-9A and 6-9B, respectively. Sound levels are predicted to increase the measured background L₉₀ sound levels by no more than 8 dBA at all modeled receptor locations. During daytime hours, Mitigation Case 3 impacts are predicted to be 2 dBA or less at all residential locations. An increase of 5 dBA is expected during the daytime at the King's Cove PL (receptor A). Mitigation Case 3 sound level impacts during nighttime hours are predicted to be 8 dBA or less at all residential receptors.

Table 6-9A	MassDEP Daytime ¹ Compliance Evaluation – Base Case + Mitigation Case 1 +
	Mitigation Case 3

Receptor ID	Description	Land Use	Background Noise Level ⁵ dBA	Modeled Project- Only Noise Level ⁶ (Proposed) dBA	Combined Project + Background Noise Level dBA	Increase Above Background ² dBA	Meets MassDEP Noise Policy? ³
А	King's Cove PL	Public	44	47	49	5	Yes
В	Bridge St.	Residence	48	44	49	1	Yes
С	Monatiquot St.	Residence	44	40	46	2	Yes
D	KCBR	Residence	40	31	41	1	Yes
E	Quincy Park	Residence	45	35	45	0	Yes
F	O'Brien Towers	Residence	42	36	43	1	Yes
G	Germantown	Residence	424	38	44	2	Yes

1. 'Daytime' defined as the operational hours between 7 AM and 10 PM.

2. 'Increase Above Background' calculated from levels with greater precision than shown in this table, and then rounded to the nearest whole decibel.

3. Refers to MassDEP A-weighted criteria of 10 dBA over background.

4. Background sound level at receptor G is estimated to be equal to the level at receptor F due to proximity.

5. Background sound levels from Table 5-4A.

6. Project-Only levels include +2 dB uncertainty factor.

Receptor ID	Description	Land Use	Background Noise Level⁵ dBA	Modeled Project- Only Noise Level ⁶ (Proposed) dBA	Combined Project + Background Noise Level dBA	Increase Above Background ² dBA	Meets MassDEP Noise Policy? ³
А	King's Cove PL	Public	40	47	47	7	Yes
В	Bridge St.	Residence	36	44	44	8	Yes
С	Monatiquot St.	Residence	45	40	46	1	Yes
D	KCBR	Residence	37	31	38	1	Yes
E	Quincy Park	Residence	34	35	37	3	Yes
F	O'Brien Towers	Residence	41	36	42	1	Yes
G	Germantown	Residence	41 ⁴	38	43	2	Yes

Table 6-9BMassDEP Nighttime1 Compliance Evaluation – Base Case + Mitigation Case 1 +
Mitigation Case 3

1. 'Nighttime' defined as the operational hours between 10 PM and 7 AM.

2. 'Increase Above Background' calculated from levels with greater precision than shown in this table, and then rounded to the nearest whole decibel.

3. Refers to MassDEP A-weighted criteria of 10 dBA over background.

4. Background sound level at receptor G is estimated to be equal to the level at receptor F (proximity).

5. Background sound levels from Table 5-4B.

6. Project-Only levels include +2 dB uncertainty factor.

6.6 Proposed Case Evaluation

Table 6-10 summarizes the A-weighted results of the Base Case, Mitigation Case 1, Mitigation Case 2, and Mitigation Case 3. The list below summarizes the Base Case cost of noise control, and the incremental cost of each additional mitigation scenario.

- ◆ Base Case ~ \$5,570,000
- ◆ Mitigation Case 1 ~\$850,000
- ♦ Mitigation Case 2 ~ \$241,000
- Mitigation Case 3 ~ \$15,000

As Table 6-10 shows, Mitigation Case 2 provides only a slightly better sound reduction at one location (King's Cove PL; receptor A) as compared to Mitigation Case 1 for an incremental cost of approximately \$241,000. This is a location where people spend a short amount of time as compared to residences. Mitigation Case 3 results are equal to or slightly lower than Mitigation Case 1 for an incremental cost of approximately \$15,000. At the residences, Mitigation Case 3, and the more than \$6.4 Million dollars in noise control

investment, provides similar sound reduction as Mitigation Case 2. <u>Therefore, for this</u> project, all the noise controls assumed in the Base Case¹⁴, Mitigation Case 1, and Mitigation Case 3 represent BANCT for this Project. Table 6-11 provides the final list of noise controls assumed for the Station.

All sound level increases at all residences will be well below 10 dBA as compared to the quietest L₉₀ background value. All sources have been provided with the best available noise controls. Sound levels from the Station under worst-case conditions may be 8 dBA over the quietest nighttime background at the nearest residence on Bridge Street (receptor B). However, this includes several very conservative assumptions:

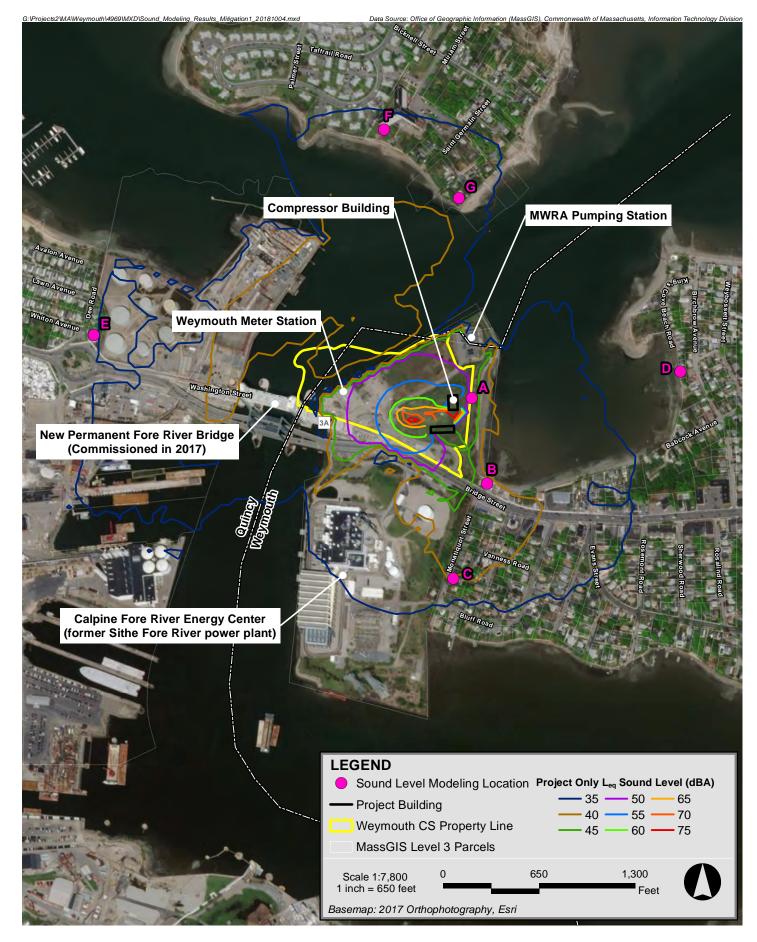
- The lube oil cooler sound levels assume a worst-case 100 degrees F day. This will not occur here at night. Therefore, sound levels from this piece of equipment will be lower at night.
- The King's Cove PL is not occupied at night, especially at 2:00-3:00 AM when the lowest background occurs.
- The quietest L₉₀ background at this location occured for one hour (see Figure B2-2 in Appendix B), and only occurred one night during the eight-day program. Increases over background are generally much less than 6 dBA during the night.
- The modeling results include the 2 dBA uncertainty factor. Actual predicted increases are 6 dBA at night at the Bridge Street receptors.

¹⁴ BANCT includes all of the noise controls in the Base Case, except for the items that are enhanced or upgraded in Mitigation Case 1, plus the action in Mitigation Case 3.

	Description	Land Use	Daytime ¹				Nighttime ²			
Receptor ID			Base Case	Base Case + Mit. Case 1	Base Case + Mit. Case 1 + Mit. Case 2	Base Case + Mit. Case 1 + Mit. Case 3 ⁴	Base Case	Base Case + Mit. Case 1	Base Case + Mit. Case 1 + Mit. Case 2	Base Case + Mit. Case 1 + Mit. Case 3 ⁴
А	King's Cove PL	Public	11	6	4	5	15	9	7	7
В	Bridge St.	Residence	2	1	1	1	9	8	8	8
С	Monatiquot St.	Residence	2	2	2	2	1	1	1	1
D	KCBR	Residence	1	1	1	1	2	1	1	1
E	Quincy Park	Residence	0	0	0	0	4	3	3	3
F	O'Brien Towers	Residence	1	1	1	1	2	2	2	1
G	Germantown	Residence	2	2	2	2	2	2	2	2

 Table 6-10
 Increase Above Quietest L₉₀ Background³ – All Cases

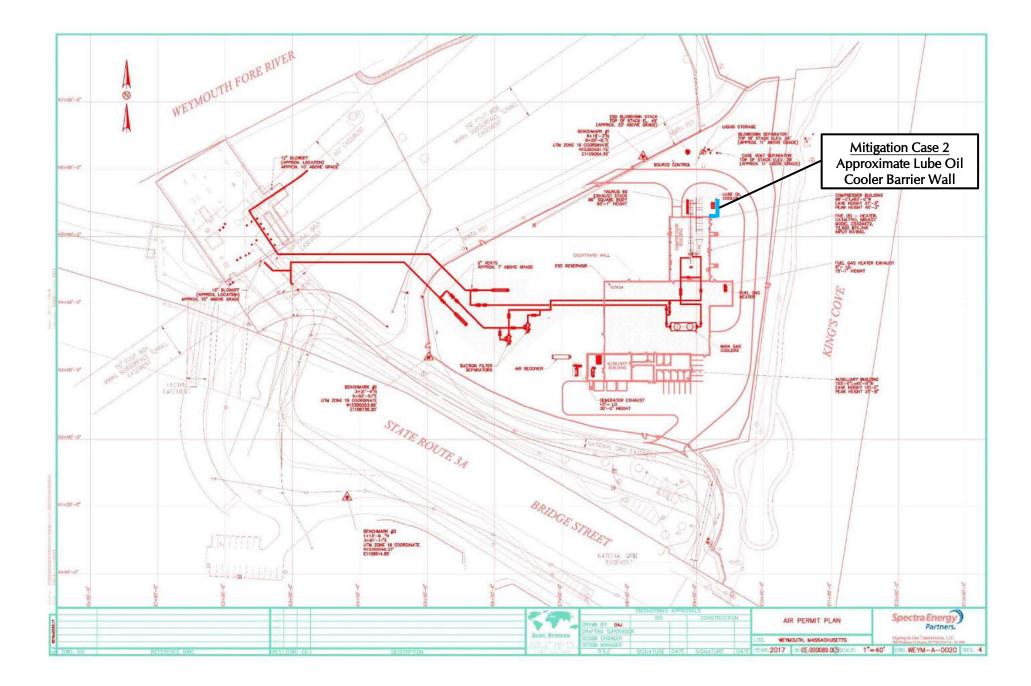
1. 'Daytime' defined as the operational hours between 7 AM and 10 PM.

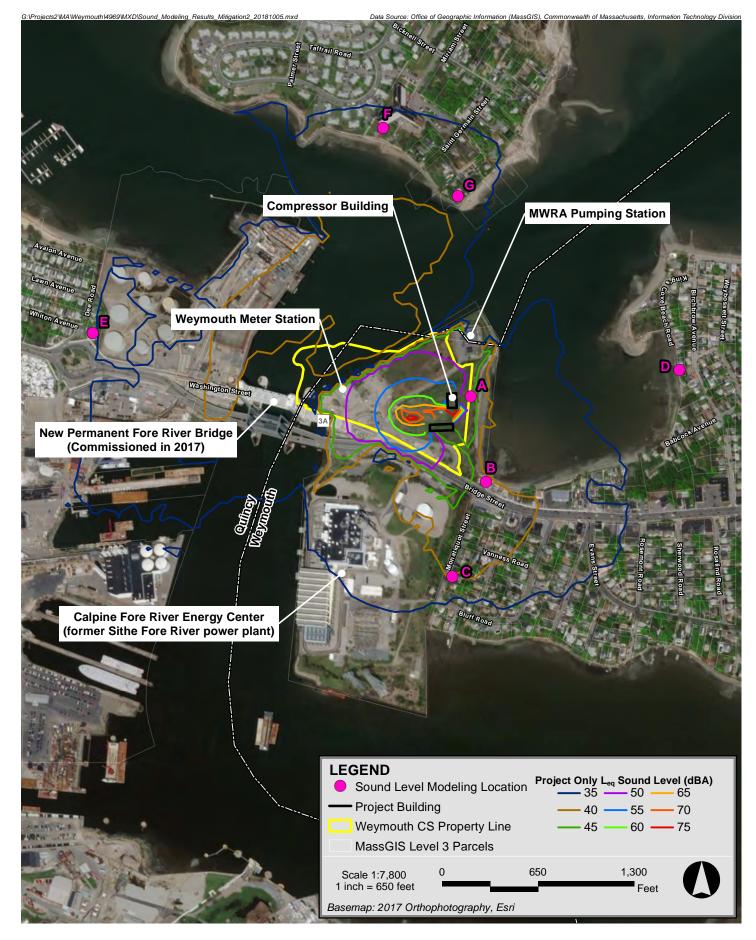

2. 'Nighttime' defined as the operational hours between 10 PM and 7 AM.

3. 'Increase Above Background' calculated from levels with greater precision than shown in this table, and then rounded to the nearest whole decibel.

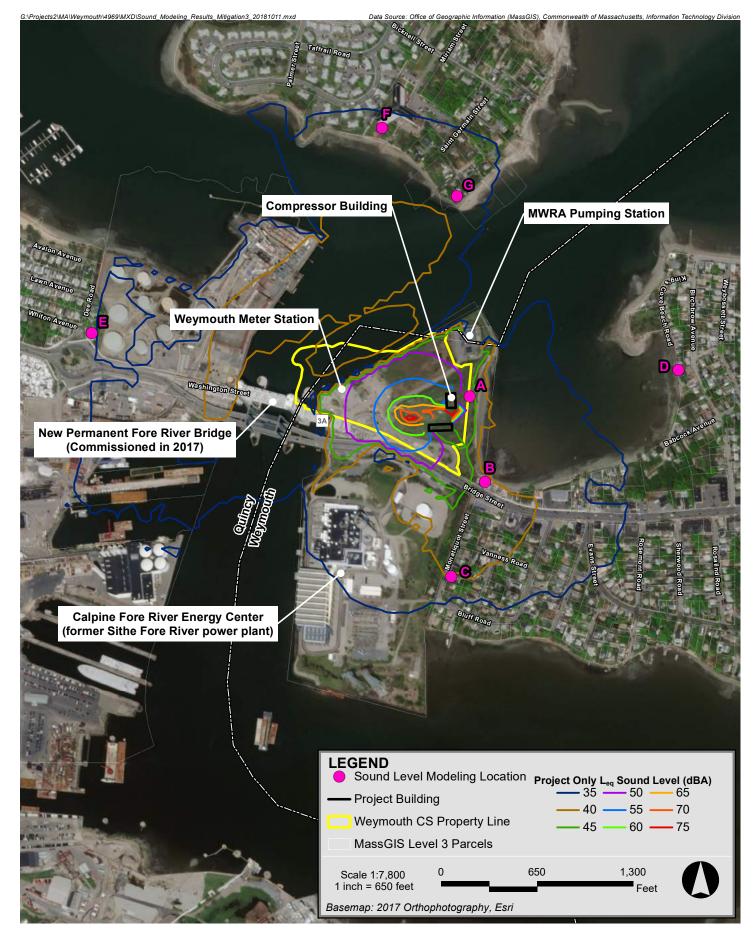
4. This is the Proposed Case.

Noise Source	Control Method	Case		
Aboveground piping	Acoustical pipe insulation; courtyard barrier wall—19 ft tall, 8.5-inch thick concrete	Base Case		
Gas cooler	Courtyard barrier wall—19 ft tall, 8.5-inch thick concrete	Base Case		
Gas turbine air intake	5-ft silencer; air intake filter; increased silencer reduction	Base Case + Mitigation Case 1		
Gas turbine exhaust	2-stage silencer; increased silencer reduction	Base Case + Mitigation Case 1		
Gas turbine compressor building	8.5-inch concrete block building; Double insulated roll- up door; no windows	Mitigation Case 1		
Gas turbine compressor building—air intake fans	5-ft silencers	Mitigation Case 1		
Lube oil cooler	Quieter model	Mitigation Case 1		
Lube oil cooler	Relocate behind 19-ft tall courtyard barrier wall	Mitigation Case 3		


Table 6-11 Noise Control Commitments – BANCT Analysis


Weymouth Compressor Station V

Weymouth, Massachusetts



Section 7.0

Other Sound Sources

7.0 OTHER SOUND SOURCES

7.1 Minor Sources

A few potential sources will not contribute any meaningful sound off-site either because they are so well controlled or because they have a low sound power level. These sources were not included in the operational sound model and are discussed below.

Two air conditioning (AC) condenser units to service the control room building. These are similar to residential AC units; they will be located adjacent to the control room building inside the courtyard wall, and thus are negligible sources in the community.

The horizontal exhaust ductwork between the compressor building and turbine exhaust stack will be well controlled through the use of 6-inch insulation lining the ductwork, and will contribute less than 30 dBA at the nearest property line. This is well below the other primary sources and thus was not included in the model.

7.2 Infrequent Intermittent Sources

There are some sources of sound related to maintenance activities at the Station that may occur from time to time, but not so regularly that they were included in the operational sound model. Additionally, it is important to note that intermittent sources occurring for maintenance purposes will not occur at the same time the Station is operating. The noteworthy sources are identified here and discussed with respect to frequency of occurrence, expected duration, and approximate expected sound level. There will not be any sirens located outdoors at this facility.

<u>Stand-by emergency generator</u>. The purpose of this 405 kW unit is to provide electricity to the Station in the event of a commercial power loss. This unit is expected to run once per month for one hour of routine maintenance and readiness testing. This testing will be done during normal weekday daytime business hours sometime between 7 AM and 5 PM. The MassDEP allows up to 100 hours/year for this type of testing.

<u>Case vent blowdown</u>. A compressor unit gas blowdown occurs when it is necessary to vent natural gas between the suction/discharge valves and compressor to the atmosphere via a case vent separator-silencer. A case vent blowdown occurs infrequently (less than 20 times per year), and persists for a duration of less than three minutes each. The case vent will be fitted with an exhaust silencer designed to limit sound to 49 dBA at 300 feet. The current configuration indicates the case vent separator-silencer will be approximately 100 feet from the east property line.

Section 8.0

Conclusion

8.0 CONCLUSION

Substantial noise mitigation measures totaling more than \$6.4 Million have been incorporated into the design of the proposed Project to minimize noise impacts in the community. Results of a complete sound level assessment demonstrate that noise levels from the Project will comply with the requirements set forth in the MassDEP Noise Policy, and have been reduced to the maximum extent practicable using a BANCT analysis.

Appendix A Sound Level Measurement Protocol and MassDEP Comments

Weymouth Natural Gas Compressor Station Project Algonquin Gas Transmission, LLC Weymouth, MA

Sound Level Measurement Protocol

June 26, 2018

Introduction

Epsilon Associates, Inc. ("Epsilon") will perform a sound level impact assessment to determine how the addition of a natural gas compressor station will affect community noise levels. As part of this effort, Epsilon will conduct a sound level measurement program to document existing ambient sound levels surrounding the location of the Weymouth Compressor Station ("the Project") proposed by Algonquin Gas Transmission, LLC ("Algonquin"). The Project will be located on property owned by Algonquin just east of the Fore River Bridge off Bridge Street, Weymouth, MA.

The purpose of this document is to describe the selection of baseline monitoring locations, measurement methodology, and acoustical equipment proposed. This protocol lays out the process for establishing ambient sound levels as a component of evaluating the Project for compliance with MassDEP Noise Policy DAQC 90-001). The protocol will be submitted to MassDEP for review and approval prior to commencement of this sound level measurement program.

Measurement Locations

To identify current noise levels in the area, a baseline study will be conducted by Epsilon. Background sound levels will be measured at six (6) discrete locations within the surrounding project area. These monitoring sites, described below, have been selected to establish an ambient sound pressure level at the nearest receptor locations in all relevant directions from the Project as well as at the property line.

• Location M1 has been selected for continuous monitoring to represent sound levels at the closest property line immediately east of the Project. This location is approximately 135 feet east of the center of the compressor station building. This location also represents existing sound levels along the walking path that goes through the public park located in the Fore River Basin south of the MWRA pumping station within the King's Cove conservation area. M1 will be located within the Project fence line as close as practical to the property line.

- Location M2 has been selected for continuous monitoring to represent sound levels at the nearest residences to the southeast. This location is at a Town-owned parcel along Bridge Street, approximately 865 feet from the center of the compressor station building.
- Location M3 has been selected for continuous monitoring to represent sound levels at the nearest residences to the south, which are set back from Bridge Street traffic. M3 will be located just within the Fore River Energy Center fence line near the intersection of Monatiquot Street and Bluff Road. This location is approximately 1,200 feet from the center of the compressor station building.
- Location M4 has been selected for continuous monitoring to represent sound levels at the nearest residences to the east along King's Cove Road. Permission from a homeowner here is required. This location is approximately 1,565 feet from the center of the compressor station building.
- Location M5 has been selected for continuous monitoring to represent sound levels at the nearest residences to the west. This location is in Quincy at a City-owned parcel along Washington Street approximately 2,860 feet from the center of the compressor station building.
- Location M6 has been selected for continuous monitoring to represent sound levels at the nearest residences to the north. The meter will be located in Quincy on the south lawn of the O'Brien Towers south of Bicknell Street. This location is approximately 1,815 feet from the center of the compressor station building.

Figure 1 shows the locations of the monitoring areas proposed for the baseline survey overlaid on an aerial orthophoto along with the location of the project property line, and the surrounding land use.

Duration/Time of Testing

Continuous A-weighted measurements (24 hours/day) will be made concurrently at all six locations over a 7-day period (168 hours per location). The continuous monitors will generally be unattended and data will be logged at 1-hour intervals. Both broadband A-weighted and linear octave band sound levels will be continuously collected and will include: Lmax, Leq, L1, L10, and L90. This approach is predicated on obtaining permission from the landowners to set up equipment on their property for one week.

In any instances where private property access is not granted, sound level measurements will be conducted at the nearest safe, publicly accessible point to the

desired measurement location. These measurements will be conducted for two consecutive 24-hour periods (weekdays), and one 24-hour period on a weekend. For the safety of the sound level meters, security guard personnel will take shifts watching over the equipment.

There are two purposes for the continuous monitoring. The first is to establish broadband ambient sound levels to evaluate the future change over background from the Project. The second is to identify octave band sound levels during this ambient condition from which we can determine whether there are any existing pure tones in the area around the site and if there is expected to be any future pure tones based on the addition of the modeling results to these levels. It is important to have personal observations of the noise sources in the area and that is why a period of personal observations is proposed for each location. These times correspond to the overnight period, and a midday period. The sound level meters will be logging the metrics on an hourly basis.

During the continuous measurement program, observations will be made by a field technician at each location during the two time periods mentioned below. Observations will be made at each location for approximately 10 – 15 minutes. These periods include:

- 1 week-day between 10 am and 5 pm (midday period)
- 1 week-night between 11 pm and 3 am (overnight period)

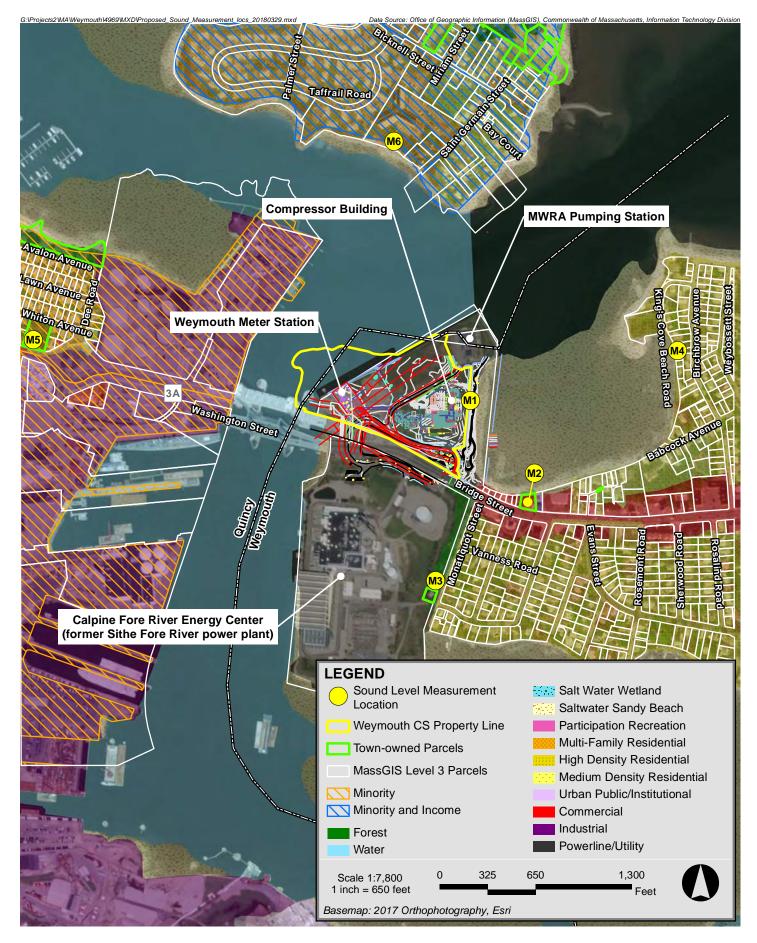
For these observations, any identifiable significant or anomalous interference sound will be excluded for the data set (e.g. emergency vehicle sirens immediately proximate to the site).

Sound Level Measurement Instrumentation

All acoustical instrumentation will conform to ANSI National Standards Institute (ANSI) S1.4 standard for Type 1 (precision) for acoustical measuring devices and to ANSI S1.11-1986 for Octave-Band and Fractional-Octave-Band Analog and Digital Filters. The instrumentation will be capable of measuring and logging the following descriptors in both A-weighted and linear octave band sound levels (6.3 Hz to 20 kHz) over 1-hour intervals (continuous): Lmax, L1, L10, L90, and Leq. In addition, broadband A-weighted and octave band sound level data will be collected in one-second time intervals. The sound level meter response shall be set to ANSI "slow". The microphone will be fitted with the manufacturer's windscreen and tripod-mounted approximately 1.5 meters above ground level. The instrumentation will be field-calibrated both before and after each measurement survey with calibrators meeting IEC 942 Class 1L and ANSI S1.40-1984. In addition, all instrumentation will have undergone an independent laboratory calibration traceable to NIST standards within the past 12 months. It is expected that this measurement program will utilize

Larson Davis 831 and/or Norsonic Nor140 sound level meters. All locations will log continuous octave band data.

Meteorological Considerations


Sound level data from periods of precipitation will be excluded from the analysis, as per the measurement protocol specified in ANSI S12.18-1994: "Procedures for Outdoor Measurement of Sound Pressure Level," (§4.4.1.2). Continuous wind speed, wind direction, temperature, and precipitation measurements will be made using an Epsilon 2-meter meteorological tower. Logging will be done on an hourly basis. Sound level data measured during steady wind speeds of 5 m/s or greater (~11 mph) will be excluded per ANSI S12.18-1994.

Future Sound Levels & Compliance Evaluation

The noise impacts associated with the Project will be predicted with the Cadna/A noise calculation software developed by DataKustik GmbH using the ISO 9613-2 international standard for sound propagation (Acoustics - Attenuation of sound during propagation outdoors - Part 2: General method of calculation). The model will consider topography, ground attenuation, drop-off with distance, atmospheric absorption, multiple reflections and screening due to structures. Future sound levels predicted from the model will be added to the measured nighttime L90 background sound levels at each location and the increase over existing levels will be evaluated with respect to the MassDEP noise policy. From the data collected during the 7-day period, ambient background for each monitoring location shall represent the lowest one-hour L90 reading during both daytime (7 AM-10 PM) and nighttime (10 PM-7 AM) periods. If the lowest L90 is an "outlier" (anomalous from other minimum values), it may be discarded and the next lowest L90 value used. Combined future levels will also be evaluated for any "pure tone" conditions as defined in the MassDEP noise policy.

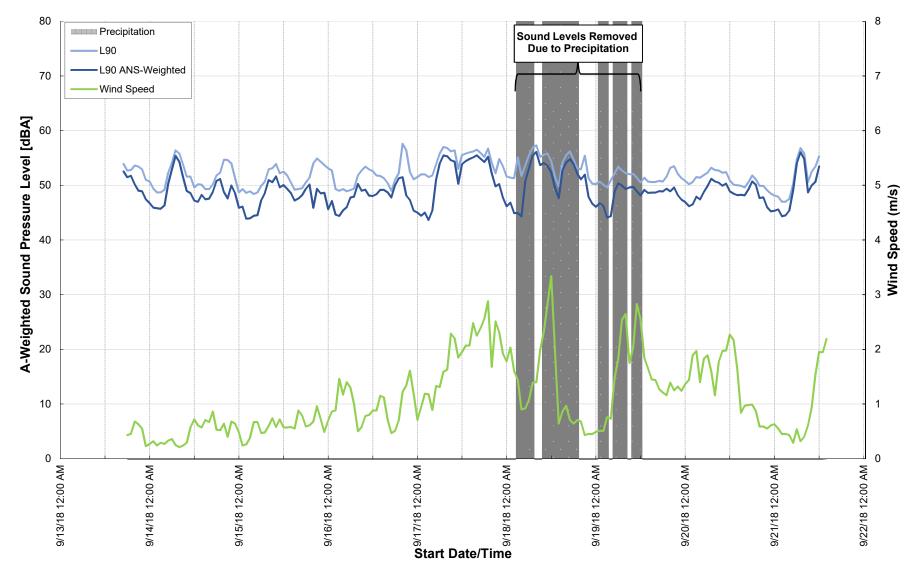
Statement of Qualifications

Epsilon staff has conducted numerous sound level monitoring and modeling studies for energy projects throughout the United States, and is a recognized leader in the industry. Robert O'Neal will be the Principal in charge of this work. Mr. O'Neal has over 30 years of experience, is a Board Certified member of the Institute of Noise Control Engineers (INCE), and has testified as an expert witness on matters of community noise impacts. He will be supported in the modeling and monitoring efforts by members of the Epsilon Acoustics Group.

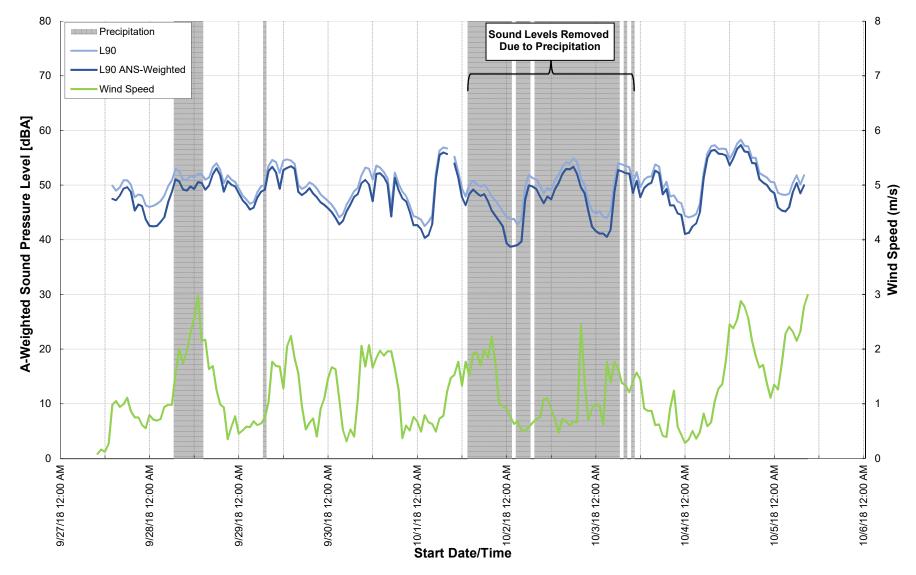
Weymouth Compressor Station

Weymouth, Massachusetts

Hi, Kate,


Tom is out this week so I am drafting a quick response to your noise monitoring protocol based on Tom's and the program's feedback. Please let me know if you have any questions and have a nice weekend.

Kate 617-556-1181

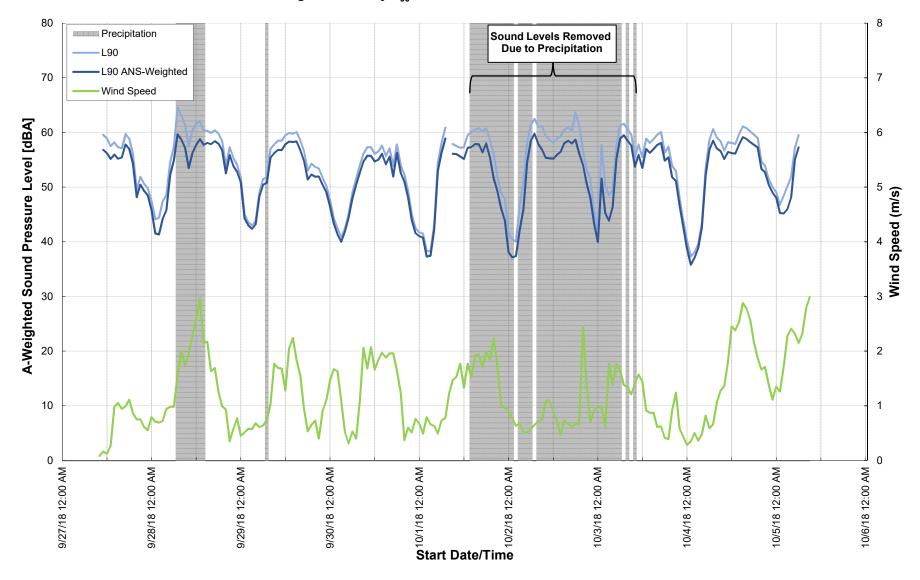
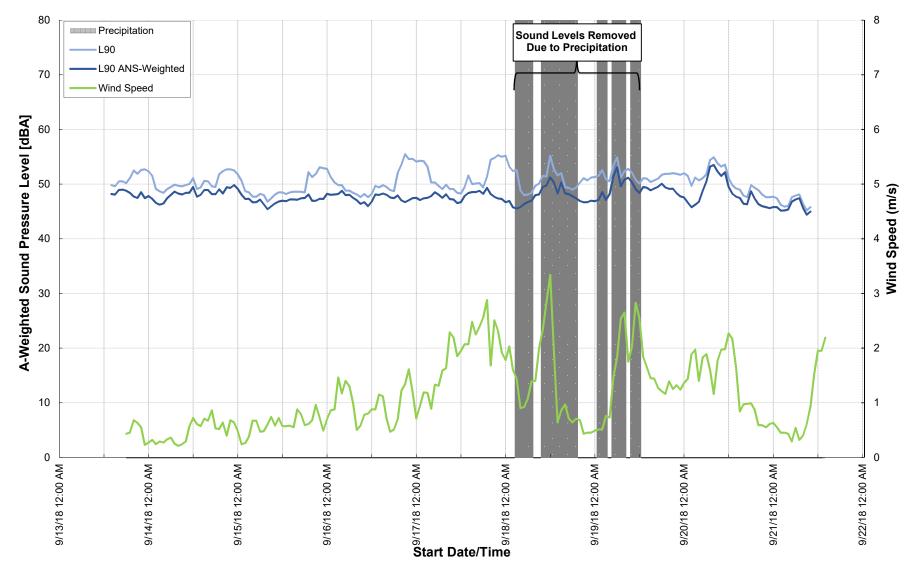
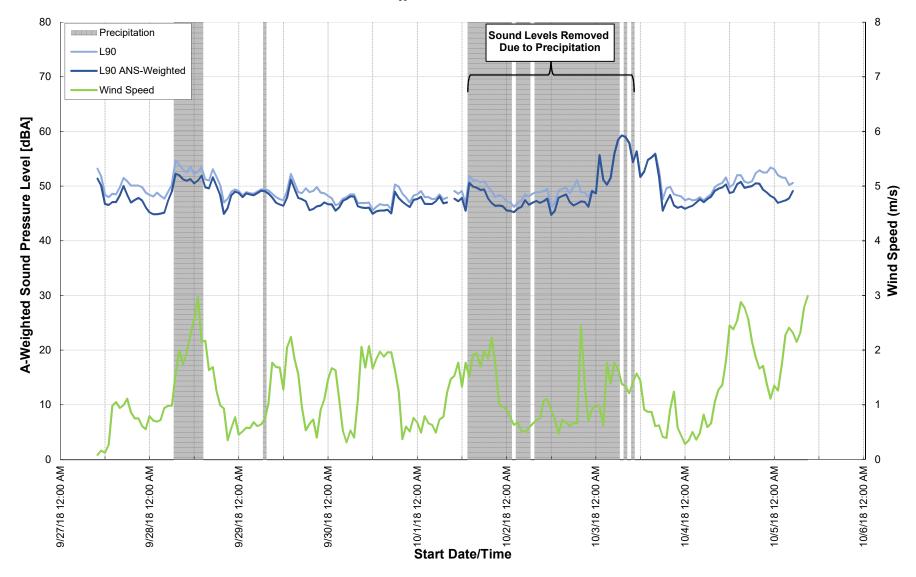

- 1. Page3 the proposed protocol states that any identifiable significant or anomalous interference sound will be excluded for the data set.
 - **DEP's response**: Anomalous events should be retained in the data set. Brief events are typically factored out when calculating the L90 background. Should you feel certain events interfere with your ability to calculate an L90 that is representative of the neighborhood, please consult with MassDEP prior to excluding the events.
- Page 4 the proposed protocol states that if the lowest L90 is determined to be an "outlier" (anomalous from other minimum values), it may be discarded and the next lowest L90 value used.
 - **DEP's response:** Prior to excluding the lowest L90 as an "outlier," please consult with MassDEP for concurrence.

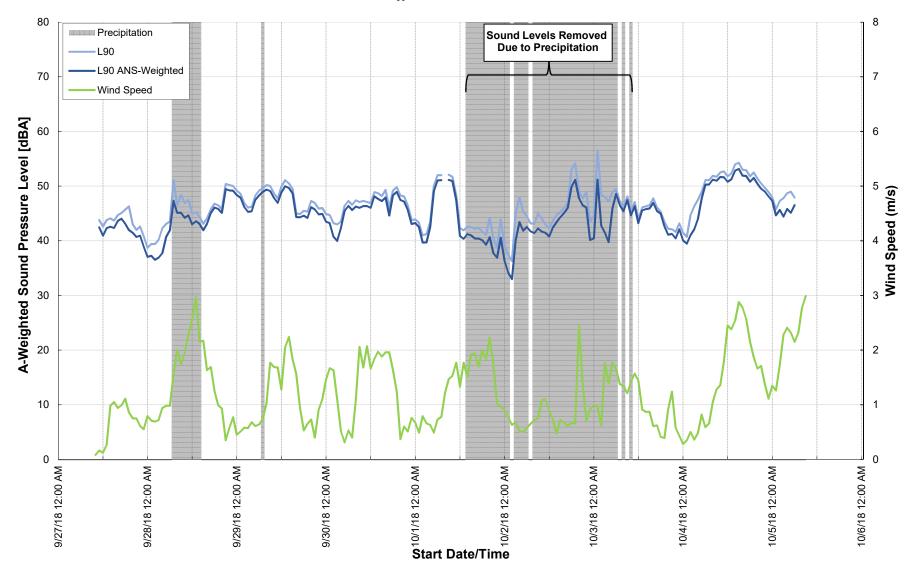
Additionally the department would like to reiterate that in evaluating sound in a plan approval for a new source, similar to the traditional "top-down" BACT process, the "top case" sound suppression/mitigation measures which deliver the lowest sound level increase above background are required to be implemented, unless these measures can be eliminated based upon technological or economic infeasibility. An applicant cannot "model out" of the use of the "top case" sound suppression/ mitigation measures by simply demonstrating that predicted sound levels at the property line when employing a less stringent sound suppression/mitigation strategy will result in a sound level increase of less than or equal to the 10 dBA (decibel, A –Weighted) above background sound level increase criteria contained in the MassDEP Noise Policy. A 10 dBA increase is the maximum increase allowed by MassDEP; it is not the sound level increase upon which the design of sound suppression/mitigation strategies and techniques should be based. Also, take into consideration that the city or town that the project is located in may have a noise ordinance (or similar) that may be more stringent than the criteria in the MassDEP Noise Policy.

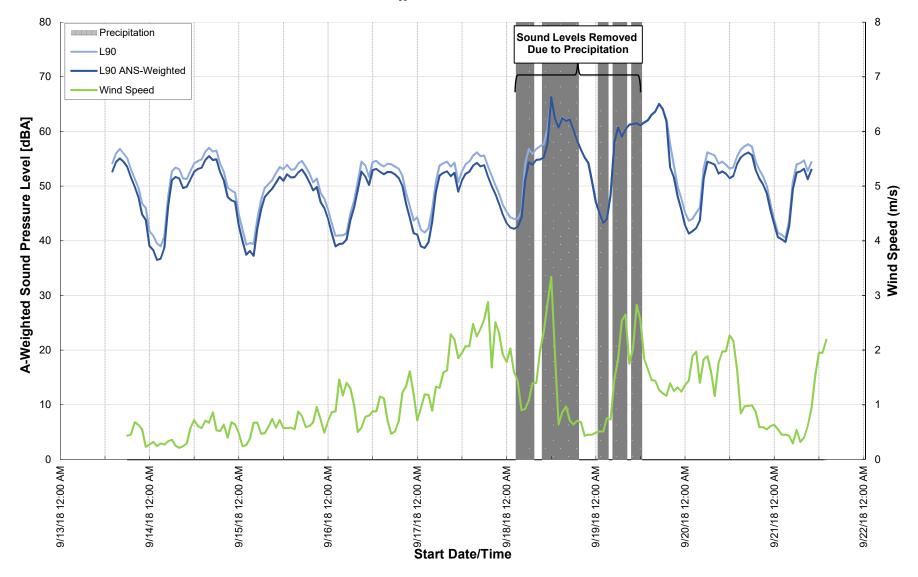
Appendix B Continuous Sound Level and Meteorological Measurement Data

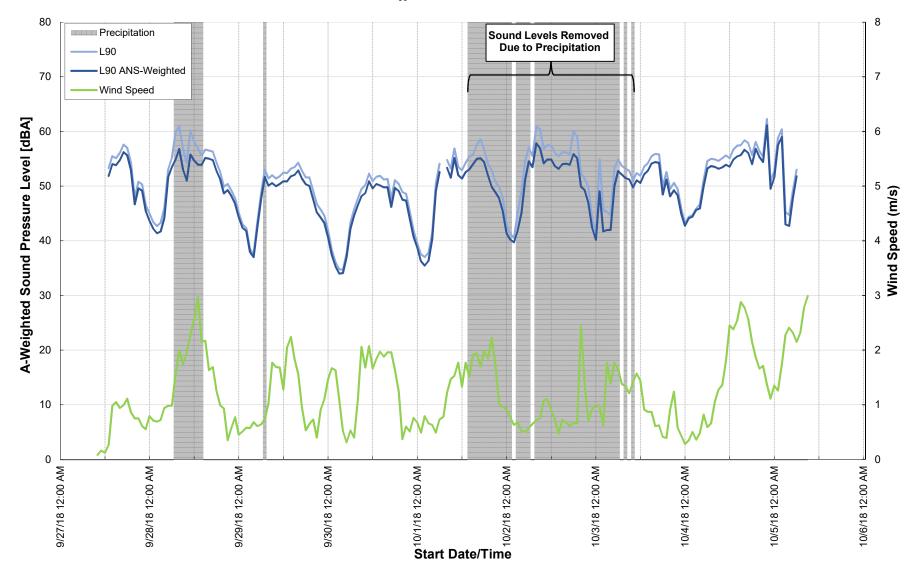
Figure B1-1 - Weymouth Compressor Station Project Long-Term Hourly L₉₀ Sound Pressure Levels- Location M1

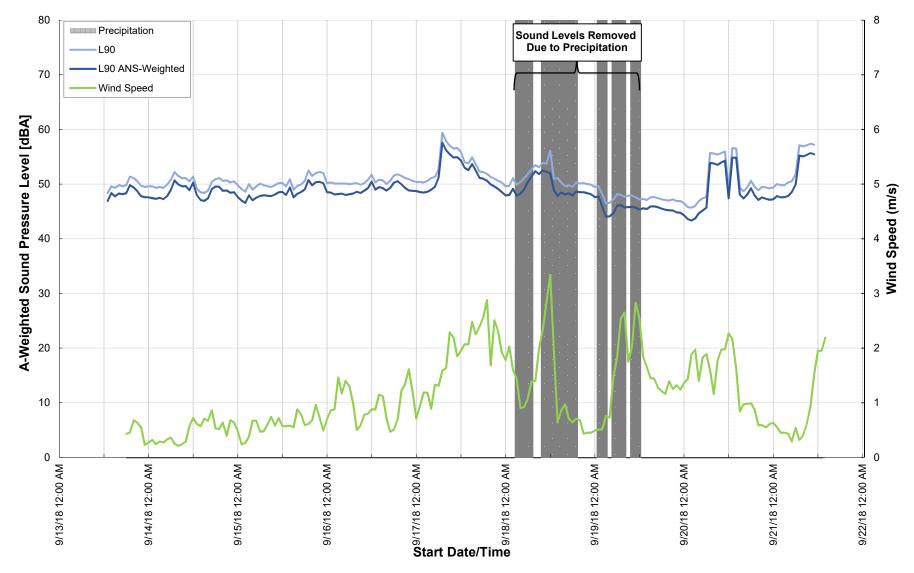
Figure B1-2 - Weymouth Compressor Station Project Long-Term Hourly L_{90} Sound Pressure Levels- Location M1


Figure B2-2 - Weymouth Compressor Station Project Long-Term Hourly L_{90} Sound Pressure Levels- Location M2


Figure B3-1 - Weymouth Compressor Station Project Long-Term Hourly L_{90} Sound Pressure Levels- Location M3


Figure B3-2 - Weymouth Compressor Station Project Long-Term Hourly L_{90} Sound Pressure Levels- Location M3


Figure B4-2 - Weymouth Compressor Station Project Long-Term Hourly L_{90} Sound Pressure Levels- Location M4

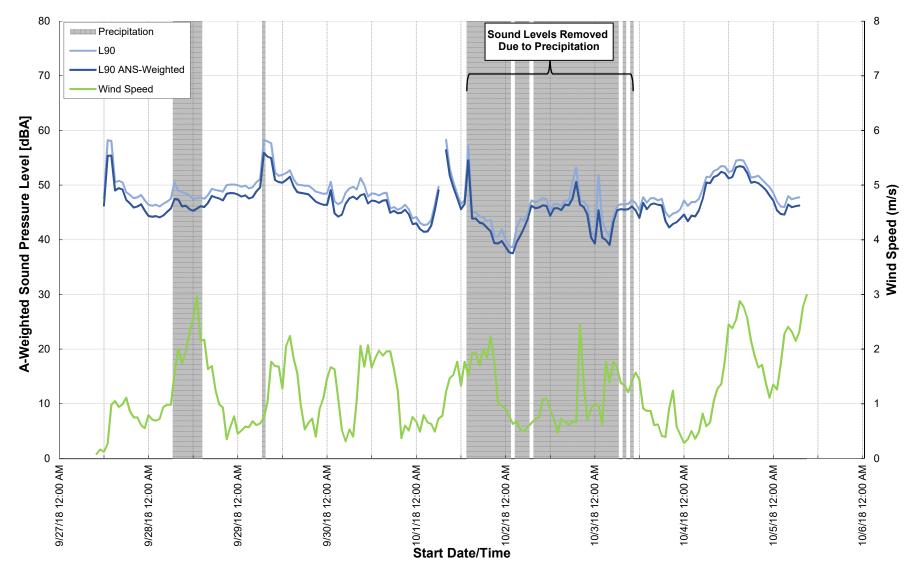

Figure B5-1 - Weymouth Compressor Station Project Long-Term Hourly L_{90} Sound Pressure Levels- Location M5

Figure B5-2 - Weymouth Compressor Station Project Long-Term Hourly L_{90} Sound Pressure Levels- Location M5

Figure B6-1 - Weymouth Compressor Station Project Long-Term Hourly L_{90} Sound Pressure Levels- Location M6

Figure B6-2 - Weymouth Compressor Station Project Long-Term Hourly L_{90} Sound Pressure Levels- Location M6

Appendix C Sound Level Instrumentation Calibration Certificates

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No.41002

Instrument: Model: Manufacturer: Serial number: Class (IEC 60942): Barometer type: Barometer s/n: Customer: Tel/Fox: Acoustical Calibrator CAL200 Larson Davis 7146 1 Epsilon Associates, Inc. 978-897-7100 /

Status:	Received	Sent	
In tolerance:	X	Х	
Out of tolerance:			
See comments:			
Contains non-accred	dited tests: Ye	es X No	

Address: 3 Mill & Main Place, Suite 250, Maynard, MA 01754

Tested in accordance with the following procedures and standards: Calibration of Acoustical Calibrators, Scantek Inc., Rev. 10/1/2010

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	Description S/N Cal. Da		Traceability evidence Cal. Lab / Accreditation	Cal. Due	
483B-Norsonic	SME Cal Unit	31052	Oct 30, 2017	Scantek, Inc./ NVLAP	Oct 30, 2018	
DS-360-SRS	Function Generator	33584	Oct 24, 2017	ACR Env./ A2LA	Oct 24, 2019	
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Oct 25, 2017	ACR Env. / A2LA	Oct 25, 2018	
HM30-Thommen	Meteo Station	1040170/39633	Oct 25, 2017	ACR Env./ A2LA	Oct 25, 2018	
140-Norsonic	Real Time Analyzer	1406423	Oct 31, 2017	Scantek / NVLAP	Oct 31, 2018	
PC Program 1018 Norsonic	Calibration software	v.5.1T	Validated Nov 2014	Scantek, Inc.	-	
4134-Brüel&Kjær	Microphone	173368	Nov 10, 2017	Scantek, Inc. / NVLAP	Nov 10, 2018	
1203-Norsonic	Preamplifier	14059	Feb 12, 2018	Scantek, Inc./ NVLAP	Feb 12, 2019	

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK)

Calibrated by:	/ Lydon Dawkins	Authorized signatory:	"Steven E. Marshall
Signature	Ledon Dawkin	Signature 🖌 🦕	town E Marshall
Date	7/5/2018	Date	7/6/2018

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Cal 2018\LDCAL200_7146_M1.doc

Page 1 of 2

Results summary: Device was tested and complies with following clauses of mentioned specifications:

CLAUSES ¹ FROM STANDARDS REFERENCED IN PROCEDURES:			COMMENTS
Manufacturer specifications			
Manufacturer specifications: Sound pressure level	X	•	
Manufacturer specifications: Frequency	X		
Manufacturer specifications: Total harmonic distortion	·X		· ·
Current standards			· · ·
ANSI S1.40:2006 B.3 / IEC 60942: 2003 B.2 - Preliminary inspection	·X		
ANSI S1.40:2006 B.4.4 / IEC 60942: 2003 B.3.4 - Sound pressure level	X		
ANSI \$1.40:2006 A.5.4 / IEC 60942: 2003 A.4.4 - Sound pressure level stability	•	-	
ANSI \$1.40:2006 B.4.5 / IEC 60942: 2003 B.3.5 - Frequency	X		
ANSI S1.40:2006 B.4.6 / IEC 60942: 2003 B.3.6 - Total harmonic distortion	X		

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

 2 $\,$ The tests marked with (*) are not covered by the current NVLAP accreditation.

Main measured parameters ³:

Measured ⁴ /Acceptable ⁵	easured ⁴ /Acceptable ⁵ Measured ⁴ /Acceptable ⁵		
Tone frequency (Hz):	Total Harmonic Distortion (%):	(dB);	
$1000.16 \pm 1.0/1000.0 \pm 10.0$	0.36 ± 0.10/ < 3	94.02 ± 0.12/94.0 ± 0.4	
$1000.11 \pm 1.0/1000.0 \pm 10.0$	0.44 ± 0.10/ < 3	$114.00 \pm 0.12/114.0 \pm 0.4$	

³ The stated level is valid at measurement conditions.

⁴ The above expanded uncertainties for frequency and distortion are calculated with a coverage factor k=2; for level k=2.00

5 Acceptable parameters values are from the current standards.

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
22.4 ± 1 .1	101.00 ± 0.000	56.1 ± 2.1

Tests made with following attachments to instrument:

Calibrator ½" Adaptor Type:

Other:

Adjustments: Unit was not adjusted.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger.

Compliance with any standard cannot be claimed based solely on the periodic tests.

Measured Data: in Acoustical Calibrator Test Report # 41002 of two pages.

Place of Calibration: Scantek, Inc.
6430 Dobbin; Road, Suite C
Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Cal 2018\LDCAL200_7146_M1.doc

Page 2 of 2

Calibration Certificate

Certificate Number 2018003831 Customer: Epsilon Associates Inc Suite 250 3 Mill and Main Place Maynard, MA 01754, United States

Procedure Number Technician Calibration Date Calibration Due Temperature HumIdity Static Pressure	Abraha 12 Apr	m Orteg 2018	± 0.01 °C ± 0.5 %RH ± 0.03 kPa	
	Technician Calibration Date Calibration Due Temperature Humidity	TechnicianAbrahauCalibration Date12 AprCalibration Due12 AprTemperature24.1Humidity35.6	TechnicianAbraham OrtegCalibration Date12 Apr 2018Calibration Due12 Apr 2019Temperature24.1 °CHumidity35.6 %RH	TechnicianAbraham OrtegaCalibration Date12 Apr 2018Calibration Due12 Apr 2019Temperature24.1°CHumidity35.6%RH± 0.5

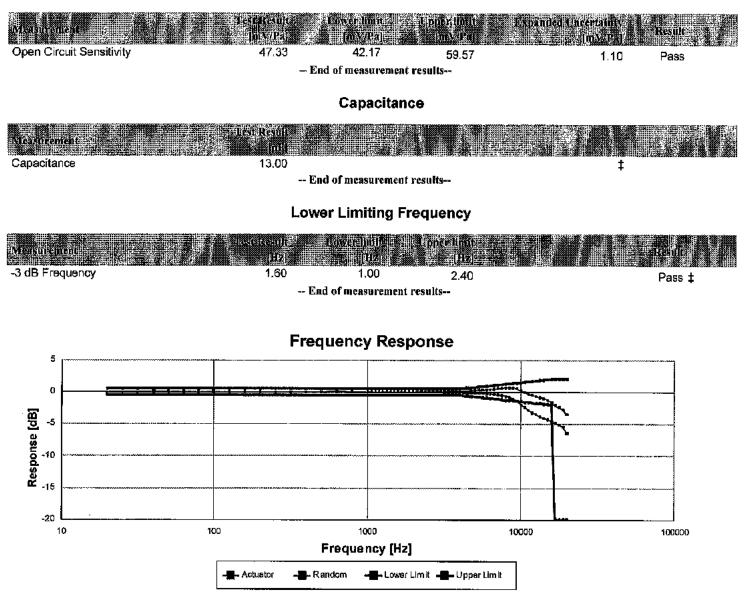
Evaluation Method Tested electrically using an electrostatic actuator.

Compliance Standards

Compliant to Manufacturer Specifications.

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.


This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to appress the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

and a stand a state of the second state of the	14 E - U	
Cal Date	Cal Due	Cal Standard
07/17/2017	07/17/2018	001230
08/30/2017	08/30/2018	001233
12/14/2017	12/14/2018	001274
12/07/2017	12/07/2018	001329
01/03/2018	01/03/2019	003030
04/12/2018	04/12/2019	006506
09/12/2017	09/12/2018	006507
04/24/2017	04/24/2018	006510
08/09/2017	08/09/2018	006519
09/12/2017	09/12/2018	006530
08/11/2017	08/11/2018	006531
	ACCREDITED Cart. 43822.01	CARSON DAV
	Cal Date 07/17/2017 08/30/2017 12/14/2017 12/07/2017 01/03/2018 04/12/2018 09/12/2017 04/24/2017 08/09/2017 08/09/2017	Cal Date Cal Due 07/17/2017 07/17/2018 08/30/2017 08/30/2018 12/14/2017 12/14/2018 12/07/2017 12/07/2018 01/03/2018 01/03/2019 04/12/2018 04/12/2019 09/12/2017 09/12/2018 04/24/2017 04/24/2018 08/09/2017 08/09/2018 09/12/2017 09/12/2018 08/11/2017 08/11/2018

Certificate Number 2018003831 Sensitivity

Data is normalized for 0 dB @ 251.19 Hz.

	Actual	Random allilo			Design of the
19.95	-0.04	-0.04	-0.50	0.50	Pass ‡
25.12	0.00	0.00	-0.50	0.50	Pass ‡
31.62	0.00	0.00	-0.50	0.50	Pass ±
39.81	0.02	0.02	-0.50	0.50	Pass ‡
50.12	0.02	0.02	-0.50	0.50	Pass #
63.10	0.02	0.02	-0.50	0.50	Pass ‡
79.43	0.02	0.02	-0.50	0.50	Pass ‡
100.00	0.02	0.02	-0.50	0.50	Pass ‡
125.89	0.01	0.01	-0.50	0.50	Pass ‡
158.49	0.01	0.01	-0.50	0.50	Pass ‡
199.53	0.01	0.01	-0.50	0.50	Pass ‡

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Certificate Number 2018003831						
Elequency [H2]	Actuator [JB]				Result	
				prer limit (dB)		
251.19	0.00	0.00	-0.50	0.50	Pass ‡	
316.23	0.00	0.00	-0.50	0.50	Pass ‡	
398.11	-0.01	0.00	-0.50	0.50	Pass ‡	
501.19	-0.01	0.00	-0.50	0.50	Pass ‡	
630.96	-0.02	0.16	-0.50	0.50	Pass ‡	
794.33	-0.02	0.00	-0.50	0.50	Pass ‡	
1,000.00	-0.02	0.00	-0.50	0.50	Pass ‡	
1,059.25	-0.03	0.00	-0.50	0.50	Pass ‡	
1,122.02	-0.03	0.00	-0.50	0.50	Pass ‡	
1,188.50	-0.03	0.00	-0.50	0.50	Pass ‡	
1,258.93	-0.03	0.00	-0.50	0.50	Pass ‡	
1,333.52	-0.03	0.00	-0.50	0.50	Pass ‡	
1,412.54	-0.03	0.00	-0.50	0.50	Pass ‡	
1,496.24	-0.03	0.00	-0.50	0.50	Pass ‡	
1,584.89	-0.03	0.01	-0.50	0.50	Pass ‡	
1,678.80	-0.04	0.00	-0.50	0.50	Pass ‡	
1,778.28	-0.04	0.00	-0.50	0.50	Pass ‡	
1,883.65	-0.04	0.01	-0.50	0.50	Pass ‡	
1,995.26	-0.04	0.01	-0.50	0.50	Pass ‡	
2,113.49	-0.05	0.00	-0.50	0.50	Pass ‡	
2,238.72	-0.05	0.01	-0.50	0.50	Pass ‡	
2,371.37	-0.03	0.03	-0.50	0.50	Pass ‡	
2,511.89	-0.03	0.04	-0.50	0.50	Pass ‡	
2,660.73	-0.04	0.03	-0.50	0.50	Pass ‡	
2,818.38	-0.04	0.04	-0.50	0.50	Pass ‡	
2,985.38	-0.05	0.04	-0.50	0.50	Pass ‡	
3,162.28	-0.07	0.04	-0.50	0.50	Pass ‡	
3, 349 .65 3, 548 .13	-0.07 -0.07	0.05 0.07	-0.50	0.50	Pass ‡	
3,758.37	-0.08	0.08	-0.50	0.50	Pass ‡	
3,981.07	-0.08	0.00	-0.50	0.50	Pass ‡	
4,216.97	-0.12	0.11	-0.50	0.50	Pass ‡	
4,466.84	-0.12	0.14	-0.63	0.56	Pass ‡	
4,731.51	-0.15	0.18	-0.60	0.63	Pass ‡	
5,011.87	-0.17	0.22	-0.70	0.69	Pass ‡ Pass ‡	
5,308.84	-0.19	0.27	-0.80	0.75	Pass ‡ Basa ‡	
5,623.41	-0.22	0.32	-0.80 -0.90	0.81	Pass ‡ Pass ‡	
5,956.62	-0.25	0.38	-0.90	0.88 0. 9 4	⊢ass ∔ Pass ‡	
6,309.57	-0.32	0.42	-1.00	1.00	Pass ‡	
6,683.44	-0.37	0.49	-1.10	1.06	Pass ‡	
7,079.46	-0.44	0.56	-1.10	1.13	⊢ass ∔ Pass ‡	
7,498.94	-0.54	0.62	-1.20	1.19	Pass ‡	
7,943.28	-0.68	0.65	-1.30	1.15	Pass ‡	
8,413.95	-0.85	0.67	-1.30	1.31	Pass ‡	
8,912.51	-1.06	0.66	-1.40	1.38	Pass ‡	
9,440.61	-1.38	0.54	-1.40	1.43	Pass ‡	
10,000.00	-1.96	0.18	-1.50	1.50	Pass ‡	
10,592.54	-2.39	-0.04	-1.60	1.56	Pass ‡	
11,220.19	-2.89	-0.33	-1.60	1.63	Pass ‡	
11,885.02	-3.25	-0.51	-1.70	1.68	Pass ‡	
12,589.25	-3.51	-0.61	-1.80	1.75	Pass ‡	
13,335.21	-3.88	-0.87	-1.80	1.81	Pass ‡	
14 125 38	-4 07	-1.00	1.00	1.01	Doco +	

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

-4.07

-1.90

-1.00

1.87

14,125.38

Pass ‡

Certificate Number 2018003831

Friquency (Hz)	Actuator (dD)	Random (dB) 👘 🖂	wer limit [dB] = 1;Dpj	wr limit (dB]	Result
14,962.36	-4.31	-1.24	-1.93	1.93	Pass ‡
15,848.93	-4.65	-1.64	-2.00	2.00	Pass ‡
16,788.04	-4.85	-2.07		2.00	Pass ‡
17,782.80	-5.17	-2.39		2.00	Pass ‡
18,836.49	-5.48	-2.75		2.00	Pass ‡
19,952.62	-6.40	-3.50		2.00	Pass ‡
		End of meansurements			

- End of measurement results--

Signatory: Abraham Ortega

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Calibration Certificate

Certificate Number 2018003665 Customer: Epsilon Associates Inc Suite 250 3 Mill and Main Place Maynard, MA 01754, United States

Model Number	831		Procedure Number	D000	1.8378	
Serial Number	000304	44	Technician	Ron H	larris	
Test Results	Pass		Calibration Date	10 Apr 2018		
Initial Condition	AS RE	CEIVED same as shipped	Calibration Due Temperature	10 Ap 23.3	r 2019 °C	± 0.25 °C
Description	Larson	Davis Model 831	Humidity	51.2	%RH	± 2.0 %RH
	Class '	1 Sound Level Meter	Static Pressure	86.9	kPa	± 0.13 kPa
	Firmwa	are Revision: 2.314				
		microphone capacitance. Data re mV/Pa.	eported in dB re 20 μPa assuming) a micro	phone s	sensitivity of 50.0
Compliance Stan	dards				-	·
		Calibration Certificate from proce				
		IEC 60651:2001 Type 1	ANSI S1.4-2014 Class 1			
		IEC 60804:2000 Type 1	ANSi S1.4 (R2006) Type	1		
		IEC 61252:2002	ANSI S1.11 (R2009) Clas	ss 1		
		IEC 61260:2001 Class 1	ANSI S1.25 (R2007)			

ANSI S1.43 (R2007) Type 1

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis Model 831 Sound Level Meter Manual, 1831.01 Rev O, 2016-09-19

IEC 61672:2013 Class 1

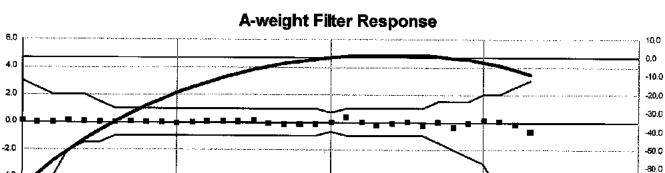
Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa; Reference Range: 0 dB gain

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.

arson Davis, a division of PCB Piezotronics, Inc 681 West 820 North 'rovo, UT 84601, United States '16-684-0001

Centricate Number 2018003665

Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 successfully completed by Physikalisch-Technische Bundesanstalt (PTB) on 2016-02-24 certificate number DE-15-M-PTB-0056.


The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3, for the environmental conditions under which the tests were performed. As evidence was publicly available, from an independent testing organization responsible for approving the results of pattern-evaluation tests performed in accordance with IEC 61672-2:2013 / ANSI/ASA S1.4-2014/Part 2, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1; the sound level meter submitted for testing conforms to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.

	Standards Used		
Description	Cal Date	Cal Due	Cal Standard
Hart Scientific 2626-S Humidity/Temperature Sensor	2017-06-11	2018-06-11	006943
SRS DS360 Ultra Low Distortion Generator	2017-06-29	2018-06-29	007118

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

1000

Frequency [Hz]

Lower Limit

10000

Upper Limit

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5

Deviation

Nominal

100

requency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	-Upper limit [dB]	Expanded Uncertainty [dB]	Result
10.00	-70.26	0.14	-inf	3.00	0.22	Pass
12.59	-63.37	0.03	-inf	2.50	0.22	Pass
15.85	-56.69	0.01	-4.00	2.00	0.22	Pass
19.95	-50.37	0.13	-2.00	2.00	0.22	Pass
25.12	-44.63	0.07	-1.50	2.00	0.22	Pass
31.62	-39.38	0.02	-1.50	1.50	0.22	Pass
39.81	-34.59	0.01	-1.00	1.00	0.22	Pass
50.12	-30.14	0.06	-1.00	1.00	0.22	Pass
63.10	-26 .17	0.03	-1.00	1.00	0.22	Pass
79.43	-22.47	0.03	-1.00	1.00	0.22	Pass
100.00	-19.17	-0.07	-1.00	1.00	0.22	Pass
125.89	-16.12	-0.02	-1.00	1.00	0.22	Pass
158.49	-13.32	0.08	-1.00	1.00	0.22	Pass
199.53	-10.82	0.08	-1.00	1.00	0.22	Pass
251.19	-8.56	0.04	-1.00	1.00	0.22	Pass
316.23	-6.46	0.14	-1.00	1.00	0.22	Pass
398.11	-4.87	-0.07	-1.00	1.00	0.22	Pass
501.19	-3.33	-0.13	-1.00	1.00	0.22	Pass
630.96	-2.04	-0.14	-1.00	1.00	0.22	Pass
794.33	-0.96	-0.16	-1.00	1.00	0.22	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.22	Pass
1,258.93	0.97	0.37	-1.00	1.00	0.22	Pass
1,584.89	1.01	0.01	-1.00	1.00	0.22	Pass
1,995.26	0.98	-0.22	-1.00	1.00	0.22	Pass
2,511.89	1.25	-0.05	-1.00	1.00	0.22	Pass
3,162.28	1.19	-0.02	-1.00	1.00	0.22	Pass
3,981.07	0.81	-0.19	-1.00	1.00	0.22	Pass
5,011.87	0.54	0.04	-1.50	1.50	0.22	Pass
6,309.57	-0.45	-0.35	-2.00	1.50	0.22	Pass
7,943.28	-1.19	-0.09	-2.50	1.50	0.22	Pass
10,000.00	-2.37	0.13	-3.00	2.00	0.22	Pass
12,589.25	-4.24	0.06	-5.00	2.00	0.22	Pass
15,848.93	-6.73	-0.13	-16.00	2.50	0.22	Pass
19,952.62	-9.93	-0.63	-inf	3.00	0.22	Pass

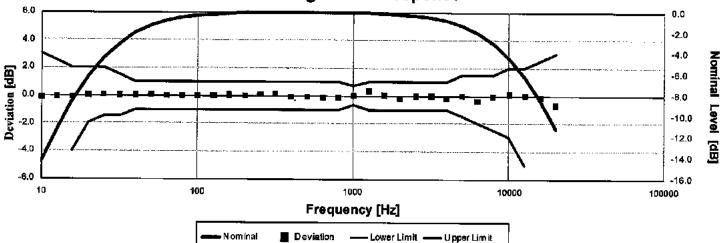
Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Deviation [dB]

-4.0

-6.0

10


Nominal

Level

-70.0

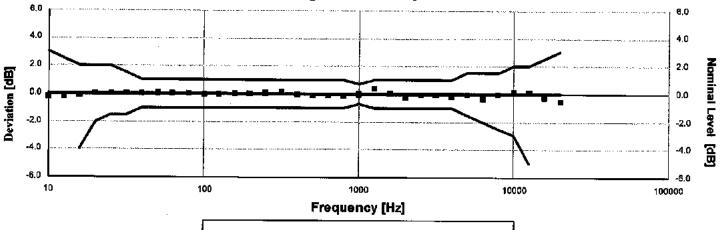
-80.0

100000

C-weight Filter Response

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

二、学习的 化乙酸盐 机成合金 化合金 建筑					, ANSI 51.4-2014 Pari Expanded	1: b.b
Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	Upper limit [dB]	Uncertainty [dB]	Result
10.00	-14.42	-0.12	- inf	3.00	0.22	Pass
12.59	-11.27	-0.07	-inf	2.50	0.22	Pass
15.85	-8.55	-0.05	-4.00	2.00	0.22	Pass
19.95	-6.16	0.04	-2.00	2.00	0.22	Pass
25.12	-4.34	0.06	-1.50	2.00	0.22	Pass
31.62	-2.95	0.05	-1.50	1.50	0.22	Pass
39.81	-1.96	0.04	-1.0 0	1.00	0.22	Pass
50.12	-1. 22	0.08	-1.00	1.00	0.22	Pass
63.10	-0.79	0.01	-1.00	1.00	0.22	Pass
79.43	-0.47	0.03	-1.00	1.00	0.22	Pass
100.00	-0.31	-0.01	-1.00	1.00	0.22	Pass
125.89	-0.19	0.01	-1.00	1.00	0.22	Pass
158.49	-0.05	0.05	-1.00	1.00	0.22	Pass
199.53	0.01	0.01	-1.00	1.00	0.22	Pass
251. 1 9	0.06	0.06	-1.00	1.00	0.22	Pass
316.23	0.17	0.17	-1.00	1.00	0.22	Pass
398.11	-0.04	-0.04	-1.00	1.00	0.22	Pass
501.19	-0.06	-0.06	-1.00	1.00	0.22	Pass
630.96	-0.11	-0.11	-1.00	1.00	0.22	Pass
7 94 .33	-0.11	-0.11	-1.00	1.00	0.22	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.22	Pass
1,258.93	0.34	0.34	-1.00	1.00	0.22	Pass
1,584.89	-0.05	0.05	-1.00	1.00	0.22	Pass
1,995.26	-0.39	-0.19	-1.00	1.00	0.22	Pass
2,511.89	-0.32	-0.02	-1.00	1.00	0.22	Pass
3,162.28	-0.52	-0.02	-1.00	1.00	0.22	Pass
3,981.07	-0.97	-0.17	-1.00	1.00	0.22	Pass
5,011.87	-1.31	-0.01	-1.50	1.50	0.22	Pass
6,309.57	-2.32	-0.32	-2.00	1.50	0.22	Pass
7,943.28	-3.08	-0.08	-2.50	1.50	0.22	Pass
10,000.00	-4.29	0.11	-3.00	2.00	0.22	Pass
12,589.25	-6.16	0.04	-5.00	2.00	0.22	Pass
15,848.93	-8.65	-0.15	-16.00	2.50	0.22	Pass
19,952.62	-11.86	-0.66	-inf	3.00	0.22	Pass
		End	of management was			


-- End of measurement results--

arson Davis, a division of PCB Piczotronics, Inc 681 West 820 North 'rovo, UT 84601, United States 16-684-0001

Nominal 🛛 Deviation — Lower Limit — Upper Limit

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	2.6.4410月2月1日的东西的东西的东西的	Expanded	Résult
10.00	- 0.2 1	-0.21	-inf	3.00	Uncertainty [dB] 0.22	Pass
12.59	-0,18	-0.18	-inf	2.50	0.22	Pass
15.85	-0.11	-0.11	-4.00	2.00	0.22	Pass
19.95	0.01	0.01	-2.00	2.00	0.22	Pass
25.12	0.01	0.01	-1.50	2.00	0.22	Pass
31.62	0.01	0.01	-1.50	1.50	0.22	Pass
39.81	0.01	0.01	-1.00	1.00	0.22	Pass
50.12	0.07	0.07	-1.00	1.00	0.22	Pass
63.10	0.01	0.01	-1.00	1.00	0.22	Pass
79.43	0.03	0.03	-1.00	1.00	0.22	Pass
100.00	-0.03	-0.03	-1.00	1.00	0.22	Pass
125.89	-0.03	-0.03	-1.00	1.00	0.22	Pass
158.49	0.03	0.03	-1.00	1.00	0.22	Pass
199.53	0.04	0.04	-1.00	1.00	0.22	Pass
251.19	0.07	0.07	-1.00	1.00	0.22	Pass
316.23	0.15	0.15	-1.00	1.00	0.22	Pass
398.11	-0.07	-0.07	-1.00	1.00	0.22	Pass
501.19	-0.10	-0.10	-1.00	1.00	0.22	Pass
630.96	-0.14	-0.14	-1.00	1.00	0.22	Pass
794.33	-0.13	-0.13	-1.00	1.00	0.22	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.22	Pass
1,258.93	0.37	0.37	-1.00	1.00	0.22	Pass
1,584.89	0.03	0.03	-1.00	1.00	0.22	Pass
1,995.26	-0.23	-0.23	-1.00	1.00	0.22	Pass
2,511.89	-0.03	-0.03	-1.00	1.00	0.22	Pass
3,162.28	-0.03	-0.03	-1.00	1.00	0.22	Pass
3,981.07	-0.17	-0.17	-1.00	1.00	0.22	Pass
5,011.87	-0.03	-0.03	-1.50	1.50	0.22	Pass
6,309.57	-0.33	-0.33	-2.00	1.50	0.22	Pass
7,943.28	-0.04	-0.04	-2.50	1.50	0.22	Pass
10,000.00	0.18	0.18	-3.00	2.00	0.22	Pass
12,589.25	0.08	0.08	-5.00	2.00	0.22	Pass
15,848.93	-0.26	~0.26	-16.00	2.50	0.22	Pass
19,952.62	-0.53	-0.53	-inf	3.00	0.22	Pass
			if measurement resu		V.22	

-- End of measurement results-

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

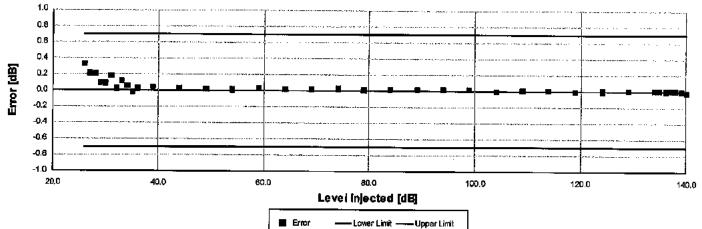
Page 5 of 24

High Level Stability

Electrical signal test of high level stability performed IEC 61672-1:2013 5.15 and ANSI \$1.4-2014 Part 1 Measurement	1: 5.15	2-3:2013 21 and ANS! wer limit [dB]Up;	ar limit (4D)	or compliance to Expanded certainty [dB]	Result	
High Level Stability	0.00	-0.10	0.10	0.01	Pass	
	End of m	easurement resu its —				
	Long-	Term Stability				
Electrical signal test of long term stability performed ISC 61672-1;2013 5.14 and ANSI S1.4-2014 Part 1		2-3:2013 15 and ANSI	S1.4-2014 Part 3: 15 f	or compliance to		
Test Duration (min)	est Result [dB] Lo	ver limit (dB) — Upp	er limit (dB) Unc	Expanded ærtainty [dB]	Result	
36	0.00	-0.10	0.10	0.01	Pass	
	End of m	easurement results				
	1 kHz Re	eference Levels	5			

Frequency weightings and time weightings at 1 kHz (reference is A weighted Fast) performed according to IEC 61672-3:2013 14 and ANS) \$1.4-2014 Part 3: 14 for compliance to IEC 61672-1:2013 5.5.9 and 5.8.3 and ANSI S1.4-2014 Part 1: 5.5.9 and 5.8.3

Mensurement	Test Result [dB] Low	wer Umit [đB] – Up		Expanded certainty [dB]	Result	
C weight	114.00	113.80	114.20	0.09	Pass	
Z weight	113.99	113.80	114.20	0.09	Pass	
Slow	114.00	113.90	114.10	0.09	Pass	
Impulse	114.00	113.90	114.10	0.09	Pass	
	- End of me	asurement results-				


d of measurement results

.

Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

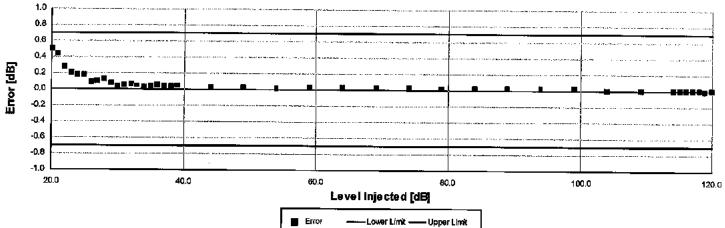
Leval (dB)	Error [dB]	Lower limit [dB]-	Upper limit (dB)	Expanded Uncertainty [dB]	Result
26.00	0.33	-0.70	0.70	0.09	Pass
27.00	0.21	-0.70	0.70	0.09	Pass
28.00	0,21	-0.70	0.70	0.09	Pass
29.00	0.10	-0.70	0.70	0.09	Pass
30.00	0.09	-0.70	0.70	0.09	Pass
31.00	0.18	-0.70	0.70	0.09	Pass
32.00	0.02	-0.70	0.70	0.09	Pass
33.00	0.12	-0.70	0.70	0.09	Pass
34.00	0.05	-0.70	0.70	0.09	Pass
35.00	-0.02	-0.70	0.70	0.09	Pass
36.00	0.02	-0.70	0.70	0.09	Pass
39.00	0.04	-0.70	0.70	0.09	Pass
44.00	0.02	-0.70	0.70	0.09	Pass
49.00	0.02	-0.70	0.70	0.09	Pass
54.00	0.01	-0.70	0.70	0.09	Pass
59.00	0.03	-0.70	0.70	0.09	Pass
64.00	0.02	-0.70	0.70	0.09	Pass
69.00	0.02	-0.70	0.70	0.09	Pass
74.00	0.02	-0.70	0.70	0.09	Pass
79.00	0.01	-0.70	0.70	0.09	Pass
84.00	0.02	~0.70	0.70	0.09	Pass
89.00	0.02	-0.70	0.70	0.09	Pass
94.00	0.02	-0.70	0.70	0.09	Pass
99.00	0.02	-0.70	0.70	0.09	Pass
104.00	0.00	-0.70	0.70	0.09	Pass
109.00	0.00	-0.70	0.70	0.09	Pass
114.00	0.00	-0.70	0.70	0.09	Pass
119.00	-0.01	-0.70	0.70	0.09	Pass
124.00	0.00	-0.70	0.70	0.09	Pass
129.00	0.00	-0.70	0.70	0.09	Pass
134.00	0.00	-0.70	0.70	0.09	Pass
135.00	0.00	-0.70	0.70	0.09	Pass
136.00	0.00	-0.70	0.70	0.09	Pass
137.00	0.00	-0.70	0.70	0.09	Pass
138.00	0.00	-0.70	0.70	0.09	Pass
139.00	-0.01	-0.70	0.70	0.09	Pass

arson Davis, a division of PCB Piezotronics, Inc 681 West 820 North rovo, UT 84601, United States

16-684-0001

Level [dB]	Error [dB] Lov	ver limit (dB) Uppe	r limit (dB) Un	Expanded certainty [dB]	Result	
140.00	-0.02	-0.70	0.70	0.09	Pass	
End of measurement results						

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001



1018-4-10T14:43:21

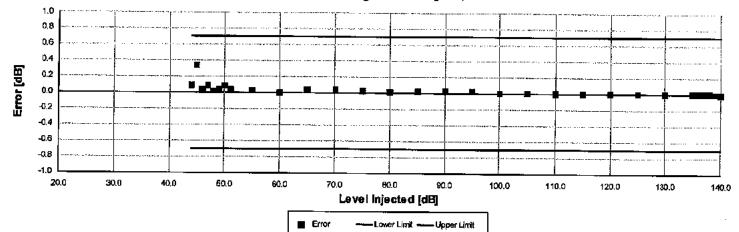
Page 8 of 24

Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 56, IEC 60804/2000 6.2, IEC 61252:2002 8, ANSI S1.4 (2006) 8.0, ANSI S1.4 2014 Part 4: 5, ANSI S1.4 (2006) 8.0, ANSI S1.4 2014 Part 4: 5, ANSI S1.4 (2006) 8.0, ANSI S1.4 2014 Part 4: 5, ANSI S1.4 (2006) 8.0, ANSI S1.4 2014 Part 4: 5, ANSI S1.4 (2006) 8.0, ANSI S1.4 2014 Part 4: 5, ANSI S1.4 (2006) 8.0, ANSI S1.4 2014 Part 4: 5, ANSI S1.4 2014 Part 4:

Level (19) Fords (01) Lower hunt (40) Tope runt (10) Result (10) Result (10) 20.00 0.50 -0.70 0.70 0.09 Pass 21.00 0.44 -0.70 0.70 0.09 Pass 21.00 0.28 -0.70 0.70 0.09 Pass 23.00 0.20 -0.70 0.70 0.09 Pass 24.00 0.18 -0.70 0.70 0.09 Pass 25.00 0.16 -0.70 0.70 0.09 Pass 26.00 0.18 -0.70 0.70 0.09 Pass 28.00 0.10 -0.70 0.70 0.09 Pass 28.00 0.04 -0.70 0.70 0.09 Pass 30.00 0.05 -0.70 0.70 0.09 Pass 31.00 0.05 -0.70 0.70 0.09 Pass 33.00 0.06 -0.70 0.70 0.09 Pass	5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2							
20.00 0.50 -0.70 0.70 0.09 Pass 21.00 0.44 -0.70 0.70 0.09 Pass 22.00 0.28 -0.70 0.70 0.09 Pass 23.00 0.20 -0.70 0.70 0.09 Pass 24.00 0.18 -0.70 0.70 0.09 Pass 25.00 0.18 -0.70 0.70 0.09 Pass 26.00 0.10 -0.70 0.70 0.09 Pass 27.00 0.10 -0.70 0.70 0.09 Pass 28.00 0.02 -0.70 0.70 0.09 Pass 30.00 0.04 -0.70 0.70 0.09 Pass 31.00 0.05 -0.70 0.70 0.09 Pass 33.00 0.06 -0.70 0.70 0.09 Pass 33.00 0.06 -0.70 0.70 0.09 Pass 34.00 0.06 -0.70 0.70 0.09 Pass 35.00 0.04	Level [JB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty (dB)	Result		
21.00 0.44 -0.70 0.70 0.09 Pass 22.00 0.28 -0.70 0.70 0.09 Pass 24.00 0.18 -0.70 0.70 0.09 Pass 25.00 0.18 -0.70 0.70 0.09 Pass 26.00 0.18 -0.70 0.70 0.09 Pass 26.00 0.10 -0.70 0.70 0.09 Pass 27.00 0.10 -0.70 0.70 0.09 Pass 28.00 0.08 -0.70 0.70 0.09 Pass 30.00 0.04 -0.70 0.70 0.09 Pass 31.00 0.05 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 35.00 0.06 -0.70 0.70 0.09 Pass 35.00 0.06 -0.70 0.70 0.09 Pass 35.00 0.06 -0.70 0.70 0.09 Pass 36.00 0.06	20.00	0.50	-0.70	0.70		Pass		
22.00 0.28 -0.70 0.70 0.09 Pass 23.00 0.20 -0.70 0.70 0.09 Pass 24.00 0.18 -0.70 0.70 0.09 Pass 25.00 0.118 -0.70 0.70 0.09 Pass 26.00 0.10 -0.70 0.70 0.09 Pass 28.00 0.10 -0.70 0.70 0.09 Pass 28.00 0.12 -0.70 0.70 0.09 Pass 28.00 0.08 -0.70 0.70 0.09 Pass 30.00 0.05 -0.70 0.70 0.09 Pass 31.00 0.05 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 34.00 0.06 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 34.00 0.06 -0.70 0.70 0.09 Pass 35.00 0.06 <td< td=""><td>21.00</td><td>0.44</td><td></td><td></td><td></td><td></td></td<>	21.00	0.44						
23.00 0.20 -0.70 0.70 0.09 Pass 24.00 0.18 -0.70 0.70 0.09 Pass 26.00 0.18 -0.70 0.70 0.09 Pass 26.00 0.10 -0.70 0.70 0.09 Pass 27.00 0.10 -0.70 0.70 0.09 Pass 28.00 0.12 -0.70 0.70 0.09 Pass 29.00 0.08 -0.70 0.70 0.09 Pass 30.00 0.04 -0.70 0.70 0.09 Pass 31.00 0.05 -0.70 0.70 0.09 Pass 32.00 0.06 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 34.00 0.03 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.06	22.00	0.28						
24.00 0.18 -0.70 0.70 0.09 Pass 25.00 0.18 -0.70 0.70 0.09 Pass 26.00 0.10 -0.70 0.70 0.09 Pass 27.00 0.10 -0.70 0.70 0.09 Pass 28.00 0.12 -0.70 0.70 0.09 Pass 30.00 0.04 -0.70 0.70 0.09 Pass 31.00 0.05 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 34.00 0.05 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 37.00 0.04 -0.70 0.70 0.09 Pass 39.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.05	23.00	0.20						
25.00 0.18 -0.70 0.70 0.09 Pass 26.00 0.10 -0.70 0.70 0.09 Pass 27.00 0.10 -0.70 0.70 0.09 Pass 28.00 0.12 -0.70 0.70 0.09 Pass 29.00 0.08 -0.70 0.70 0.09 Pass 30.00 0.04 -0.70 0.70 0.09 Pass 31.00 0.05 -0.70 0.70 0.09 Pass 32.00 0.06 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 34.00 0.05 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.06	24.00	0.18						
26.00 0.10 -0.70 0.70 0.09 Pass 27.00 0.10 -0.70 0.70 0.09 Pass 28.00 0.08 -0.70 0.70 0.09 Pass 30.00 0.04 -0.70 0.70 0.09 Pass 30.00 0.04 -0.70 0.70 0.09 Pass 32.00 0.06 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 34.00 0.03 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 37.00 0.04 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 44.00 0.03		0.18						
27.00 0.10 -0.70 0.70 0.09 Pass 28.00 0.12 -0.70 0.70 0.09 Pass 29.00 0.08 -0.70 0.70 0.09 Pass 30.00 0.04 -0.70 0.70 0.09 Pass 31.00 0.05 -0.70 0.70 0.09 Pass 32.00 0.06 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 34.00 0.03 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.06 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 69.00 0.03	26.00	0.10						
28.00 0.12 -0.70 0.70 0.09 Pass 29.00 0.08 -0.70 0.70 0.09 Pass 30.00 0.04 -0.70 0.70 0.09 Pass 31.00 0.05 -0.70 0.70 0.09 Pass 32.00 0.06 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 34.00 0.03 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 37.00 0.04 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.05 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 59.00 0.03	27 .00	0.10						
29.00 0.08 -0.70 0.70 0.09 Pass 30.00 0.04 -0.70 0.70 0.09 Pass 31.00 0.05 -0.70 0.70 0.09 Pass 32.00 0.06 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 34.00 0.03 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 37.00 0.04 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.05 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 64.00 0.03	28.00	0.12						
30.00 0.04 -0.70 0.70 0.09 Pass 31.00 0.05 -0.70 0.70 0.09 Pass 32.00 0.06 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 34.00 0.03 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 36.00 0.04 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.05 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 54.00 0.02 -0.70 0.70 0.09 Pass 64.00 0.03	29.00	0.08						
31.00 0.05 -0.70 0.70 0.09 Pass 32.00 0.06 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 33.00 0.03 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 37.00 0.04 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.05 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 59.00 0.03 -0.70 0.70 0.09 Pass 69.00 0.03 -0.70 0.70 0.09 Pass 69.00 0.03 -0.70 0.70 0.09 Pass 79.00 0.02	30.00	0.04						
32.00 0.06 -0.70 0.70 0.09 Pass 33.00 0.05 -0.70 0.70 0.09 Pass 34.00 0.03 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 37.00 0.04 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.05 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 49.00 0.03 -0.70 0.70 0.09 Pass 54.00 0.03 -0.70 0.70 0.09 Pass 69.00 0.03 -0.70 0.70 0.09 Pass 79.00 0.02	31.00	0.05						
33.00 0.05 -0.70 0.70 0.09 Pass 34.00 0.03 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 37.00 0.04 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.05 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 49.00 0.03 -0.70 0.70 0.09 Pass 54.00 0.02 -0.70 0.70 0.09 Pass 69.00 0.03 -0.70 0.70 0.09 Pass 74.00 0.03 -0.70 0.70 0.09 Pass 74.00 0.03 -0.70 0.70 0.09 Pass 89.00 0.03	32.00	0.06						
34.00 0.03 -0.70 0.70 0.09 Pass 35.00 0.04 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 37.00 0.04 -0.70 0.70 0.09 Pass 37.00 0.04 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.05 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 54.00 0.03 -0.70 0.70 0.09 Pass 54.00 0.03 -0.70 0.70 0.09 Pass 64.00 0.03 -0.70 0.70 0.09 Pass 74.00 0.02 -0.70 0.70 0.09 Pass 79.00 0.02	33.00	0.05	-0.70					
35.00 0.04 -0.70 0.70 0.09 Pass 36.00 0.06 -0.70 0.70 0.09 Pass 37.00 0.04 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.05 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 49.00 0.03 -0.70 0.70 0.09 Pass 54.00 0.02 -0.70 0.70 0.09 Pass 59.00 0.03 -0.70 0.70 0.09 Pass 64.00 0.03 -0.70 0.70 0.09 Pass 79.00 0.02 -0.70 0.70 0.09 Pass 79.00 0.02 -0.70 0.70 0.09 Pass 89.00 0.03	34.00	0.03	-0.70					
36.00 0.06 -0.70 0.70 0.09 Pass 37.00 0.04 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.05 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 49.00 0.03 -0.70 0.70 0.09 Pass 59.00 0.02 -0.70 0.70 0.09 Pass 69.00 0.03 -0.70 0.70 0.09 Pass 69.00 0.03 -0.70 0.70 0.09 Pass 74.00 0.03 -0.70 0.70 0.09 Pass 79.00 0.02 -0.70 0.70 0.09 Pass 84.00 0.02 -0.70 0.70 0.09 Pass 89.00 0.03	35.00	0.04						
37.00 0.04 -0.70 0.70 0.09 Pass 38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.05 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 49.00 0.03 -0.70 0.70 0.09 Pass 54.00 0.02 -0.70 0.70 0.09 Pass 59.00 0.02 -0.70 0.70 0.09 Pass 64.00 0.03 -0.70 0.70 0.09 Pass 64.00 0.03 -0.70 0.70 0.09 Pass 69.00 0.03 -0.70 0.70 0.09 Pass 74.00 0.03 -0.70 0.70 0.09 Pass 84.00 0.02 -0.70 0.70 0.09 Pass 89.00 0.03 -0.70 0.70 0.09 Pass 99.00 0.03	36.00	0.06						
38.00 0.05 -0.70 0.70 0.09 Pass 39.00 0.05 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 49.00 0.03 -0.70 0.70 0.09 Pass 54.00 0.02 -0.70 0.70 0.09 Pass 59.00 0.03 -0.70 0.70 0.09 Pass 64.00 0.03 -0.70 0.70 0.09 Pass 69.00 0.03 -0.70 0.70 0.09 Pass 74.00 0.03 -0.70 0.70 0.09 Pass 79.00 0.02 -0.70 0.70 0.09 Pass 84.00 0.02 -0.70 0.70 0.09 Pass 99.00 0.03	37.00	0.04						
39.00 0.05 -0.70 0.70 0.09 Pass 44.00 0.03 -0.70 0.70 0.09 Pass 49.00 0.03 -0.70 0.70 0.09 Pass 54.00 0.02 -0.70 0.70 0.09 Pass 59.00 0.03 -0.70 0.70 0.09 Pass 64.00 0.03 -0.70 0.70 0.09 Pass 69.00 0.03 -0.70 0.70 0.09 Pass 74.00 0.03 -0.70 0.70 0.09 Pass 74.00 0.02 -0.70 0.70 0.09 Pass 79.00 0.02 -0.70 0.70 0.09 Pass 84.00 0.02 -0.70 0.70 0.09 Pass 99.00 0.03 -0.70 0.70 0.09 Pass 99.00 0.03 -0.70 0.70 0.09 Pass 99.00 0.03	38.00	0.05						
44.000.03-0.700.700.09Pass49.000.03-0.700.700.09Pass54.000.02-0.700.700.09Pass59.000.03-0.700.700.09Pass64.000.03-0.700.700.09Pass69.000.03-0.700.700.09Pass74.000.03-0.700.700.09Pass79.000.02-0.700.700.09Pass84.000.02-0.700.700.09Pass99.000.03-0.700.700.09Pass99.000.03-0.700.700.09Pass104.000.01-0.700.700.09Pass114.000.01-0.700.700.09Pass114.000.00-0.700.700.09Pass	39.00	0.05	-0.70					
49.000.03-0.700.700.09Pass54.000.02-0.700.700.09Pass59.000.03-0.700.700.09Pass64.000.03-0.700.700.09Pass69.000.03-0.700.700.09Pass74.000.03-0.700.700.09Pass79.000.02-0.700.700.09Pass84.000.02-0.700.700.09Pass99.000.03-0.700.700.09Pass99.000.03-0.700.700.09Pass104.000.01-0.700.700.09Pass114.000.01-0.700.700.09Pass114.000.00-0.700.700.09Pass	44.00	0.03	-0.70					
54.00 0.02 -0.70 0.70 0.09 Pass 59.00 0.03 -0.70 0.70 0.09 Pass 64.00 0.03 -0.70 0.70 0.09 Pass 69.00 0.03 -0.70 0.70 0.09 Pass 74.00 0.03 -0.70 0.70 0.09 Pass 79.00 0.02 -0.70 0.70 0.09 Pass 84.00 0.02 -0.70 0.70 0.09 Pass 99.00 0.03 -0.70 0.70 0.09 Pass 104.00 0.01 -0.70 0.70 0.09 Pass 109.00 0.01 -0.70 0.70 0.09 Pass 109.00 0.01 <td></td> <td>0.03</td> <td>-0.70</td> <td></td> <td></td> <td></td>		0.03	-0.70					
59.00 0.03 -0.70 0.70 0.09 Pass 64.00 0.03 -0.70 0.70 0.09 Pass 69.00 0.03 -0.70 0.70 0.09 Pass 74.00 0.03 -0.70 0.70 0.09 Pass 79.00 0.02 -0.70 0.70 0.09 Pass 84.00 0.02 -0.70 0.70 0.09 Pass 89.00 0.03 -0.70 0.70 0.09 Pass 99.00 0.03 -0.70 0.70 0.09 Pass 99.00 0.03 -0.70 0.70 0.09 Pass 104.00 0.03 -0.70 0.70 0.09 Pass 109.00 0.01 -0.70 0.70 0.09 Pass 109.00 0.01 -0.70 0.70 0.09 Pass 109.00 0.01 -0.70 0.70 0.09 Pass 114.00 0.00 </td <td></td> <td>0.02</td> <td>-0.70</td> <td></td> <td></td> <td></td>		0.02	-0.70					
64.000.03-0.700.700.09Pass69.000.03-0.700.700.09Pass74.000.03-0.700.700.09Pass79.000.02-0.700.700.09Pass84.000.02-0.700.700.09Pass89.000.03-0.700.700.09Pass94.000.03-0.700.700.09Pass99.000.03-0.700.700.09Pass104.000.01-0.700.700.09Pass109.000.01-0.700.700.09Pass114.000.00-0.700.700.09Pass114.000.00-0.700.700.09Pass114.000.00-0.700.700.09Pass		0.03	-0.70					
69.000.03-0.700.700.09Pass74.000.03-0.700.700.09Pass79.000.02-0.700.700.09Pass84.000.02-0.700.700.09Pass89.000.03-0.700.700.09Pass94.000.03-0.700.700.09Pass99.000.03-0.700.700.09Pass104.000.01-0.700.700.09Pass109.000.01-0.700.700.09Pass114.000.00-0.700.700.09Pass114.000.01-0.700.700.09Pass		0.03	-0.70	0.70				
74.000.03-0.700.700.09Pass79.000.02-0.700.700.09Pass84.000.02-0.700.700.09Pass89.000.03-0.700.700.09Pass94.000.03-0.700.700.09Pass99.000.03-0.700.700.09Pass104.000.01-0.700.700.09Pass109.000.01-0.700.700.09Pass114.000.00-0.700.700.09Pass114.000.01-0.700.700.09Pass			-0.70	0.70				
79.000.02-0.700.700.09Pass84.000.02-0.700.700.09Pass89.000.03-0.700.700.09Pass94.000.03-0.700.700.09Pass99.000.03-0.700.700.09Pass104.000.01-0.700.700.09Pass109.000.01-0.700.700.09Pass114.000.00-0.700.700.09Pass		0.03	-0.70	0.70				
84.00 0.02 -0.70 0.70 0.09 Pass 89.00 0.03 -0.70 0.70 0.09 Pass 94.00 0.03 -0.70 0.70 0.09 Pass 99.00 0.03 -0.70 0.70 0.09 Pass 104.00 0.01 -0.70 0.70 0.09 Pass 109.00 0.01 -0.70 0.70 0.09 Pass 114.00 0.00 -0.70 0.70 0.09 Pass		0.02	-0.70	0.70				
89.00 0.03 -0.70 0.70 0.09 Pass 94.00 0.03 -0.70 0.70 0.09 Pass 99.00 0.03 -0.70 0.70 0.09 Pass 104.00 0.01 -0.70 0.70 0.09 Pass 109.00 0.01 -0.70 0.70 0.09 Pass 114.00 0.00 -0.70 0.70 0.09 Pass 114.00 0.00 -0.70 0.70 0.09 Pass		0.02	-0.70	0.70				
94.00 0.03 -0.70 0.70 0.09 Pass 99.00 0.03 -0.70 0.70 0.09 Pass 104.00 0.01 -0.70 0.70 0.09 Pass 109.00 0.01 -0.70 0.70 0.09 Pass 114.00 0.00 -0.70 0.70 0.09 Pass		0.03	-0.70	0.70				
99.00 0.03 -0.70 0.70 0.09 Pass 104.00 0.01 -0.70 0.70 0.09 Pass 109.00 0.01 -0.70 0.70 0.09 Pass 114.00 0.00 -0.70 0.70 0.09 Pass 114.00 0.00 -0.70 0.70 0.09 Pass		0.03	-0.70	0.70				
104.000.01-0.700.700.09Pass109.000.01-0.700.700.09Pass114.000.00-0.700.700.09Pass115.000.01-0.700.700.09Pass		0.03	-0.70	0.70				
109.00 0.01 -0.70 0.70 0.09 Pass 114.00 0.00 -0.70 0.70 0.09 Pass 115.00 0.01 -0.70 0.70 0.09 Pass		0.01	-0.70	0.70				
114.00 0.00 -0.70 0.70 0.09 Pass		0.01	-0.70					
			-0.70					
	115.00	0.01	-0.70					

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Level [dB]	Errór (dB) Law	er limit [ðB]; >Upp	er Linit (dB) Uni	Expanded crtainty [dB]	Result
116.00	0.00	-0.70	0.70	0.09	Pass
117.00	0.01	-0.70	0.70	0.09	Pass
118.00	0.01	-0.70	0.70	0.09	Pass
119.00	-0.01	-0.70	0.70	0.09	Pass
120.00	0.00	-0.70	0.70	0.09	
		asurement results	0.10	0.09	Pass



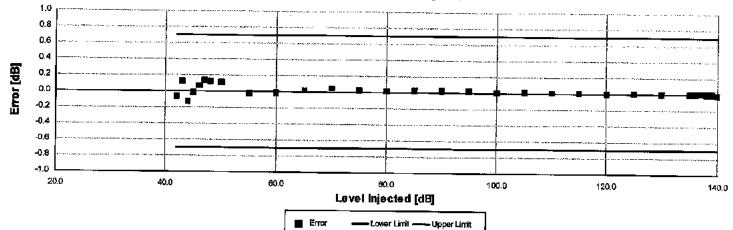
018-4-10T14:43:21

Page 10 of 24

1/1 Octave Log Linearity: 1,000.00 Hz

1/1 octave level linearity at normal range with 0 dB gain performed according to IEC 61260:2001 4.6, ANSI S.11 (R2009) 4.6

Level[aB]	Error (dB), L	ower limit [dB] Up	er limit [dB]	Expanded	Result
44.00	0.09		u i i i i i i i i i i i i i i i i i i i	certainty [dB]	
45.00	0.34	-0.70	0.70	0.09	Pass
46.00	0.04	-0.70	0.70	0.09	Pass
47.00	0.09	-0.70	0.70	0.09	Pass
48.00	0.02	-0.70	0.70	0.10	Pass
49.00		-0.70	0.70	0.10	Pass
50.00	0.04	-0.70	0.70	0.10	Pass
51.00	0.08	-0.70	0.70	0.09	Pass
55.00	0.04	-0.70	0.70	0.09	Pass
	0.03	-0.70	0.70	0.09	Pass
60.00	0.00	-0.70	0.70	0.09	Pass
65.00	0.03	-0.70	0.70	0.09	Pass
70.00	0.04	-0.70	0.70	0.09	Pass
75.00	0.02	-0.70	0.70	0.09	Pass
80.00	0.01	-0.70	0.70	0.09	Pass
85.00	0.02	-0.70	0.70	0.09	Pass
90.00	0.02	-0.70	0.70	0.09	Pass
95.00	0.02	-0.70	0.70	0.09	Pass
100.00	0.00	-0.70	0.70	0.09	Pass
105.00	0.01	-0.70	0.70	0.09	Pass
110.00	0.00	-0.70	0.70	0.09	Pass
115.00	0.00	-0.70	0.70	0.09	Pass
120.00	0.00	-0.70	0.70	0.09	Pass
125.00	0.00	- 0 .70	0.70	0.09	Pass
130.00	0.00	-0.70	0.70	0.09	Pass
135.00	0.00	-0.70	0.70	0.09	Pass
136.00	0.00	-0.70	0.70	0.09	Pass
137.00	0.00	-0.70	0.70	0.09	Pass
138.00	0.00	-0.70	0.70	0.09	Pass
139.00	-0.01	-0.70	0.70	0.09	Pass
140.00	-0.02	-0.70	0.70	0.09	Pass
	End of m	casurement results			


-- End of measurement results--

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

1/3 Octave Log Linearity: 1,000.00 Hz

1/	3 octave level linearity at normal range with 0 dB gain performed accord	ling to IEC 61260-2001 4.6. ANSI S 11 (R2009) 4.6
100 million		"g to 1200.2001 T.O. ANOLO. [[[2003] 4.0

Level [dB]	Error [dB] La	wer limit (dB) Up	ser limit (dB)	Expanded	Result
42.00	-0.07	-0.70	u si	certainty [dB]	전 18월 18일 - 19일 전 19일 - 19일 - 19일 19일 - 19일 - 19 19일 - 19일 - 19g - 19g - 19g
43.00	0.12	-0.70	0.70	0.09	Pass
44.00	-0.12	-0.70	0.70	0.10	Pass
45.00	-0.01	-0.70	0.70	0.10	Pass
46.00	0.07		0.70	0.10	Pass
47.00	0.13	-0.70	0.70	0.09	Pass
48.00	0.13	-0.70	0.70	0.09	Pass
50.00	0.12	-0.70	0.70	0.09	Pass
55.00	-0.03	-0.70	0.70	0.09	Pass
60.00		-0.70	0.70	0.09	Pass
65.00	-0.02 0.01	-0.70	0.70	0.09	Pass
70.00		-0.70	0.70	0.09	Pass
75.00	0.04	-0.70	0.70	0.09	Pass
80.00	0.02	-0.70	0.70	0.09	Pass
85.00	0.02	-0.70	0.70	0.09	Pass
90.00	0.03	-0.70	0.70	0.09	Pass
95.00	0.02	-0.70	0.70	0.09	Pass
100.00	0.02	-0.70	0.70	0.09	Pass
	0.01	-0.70	0.70	0.09	Pass
105.00	0.01	-0.70	0.70	0.09	Pass
110.00	0.00	-0.70	0.70	0.09	Pass
115.0D	0.00	-0.70	0.70	0.09	Pass
120.00	0.00	-0.70	0.70	0.09	Pass
125.00	0.00	-0.70	0.70	0.09	Pass
130.00	0.00	-0.70	0.70	0.09	Pass
135.00	0.00	-0.70	0.70	0.09	Pass
136.00	0.00	-0.70	0.70	0.09	Pass
137.00	0.00	-0.70	0.70	0.09	Pass
138.00	0.00	-0.70	0.70	0.09	Pass
139.00	-0.01	-0.70	0.70	0.09	Pass
140.00	-0.02	-0.70	0.70	0.09	Pass
	End of m	easurement results			

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Slow Detector

Toneburst response performed according to IEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

		End of m	leasurement results				
	2	-27.16	-29.99	-25.99	0.09	Pass	
137.00	200	-7.04	-7.92	-6.92	0.09	Pass	
	n del trata de la constante de	warmasan ing katala kata			certamity (up)		
Amplitude [dB]	ruration [ms]	st Kesult [dB] La	wer limit [dB] Up	per limit [dB]		Result	
					Renanded		1. A. M. I.

Fast Detector

Toneburst response performed according to JEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

		End of n	neasurement results			
	0.25	-27.30	-29.99	-25.9 9	0.09 Pa	
	2.00	-18.27	-19.49	-16.99	0.09 Pa	S S
137.00	200.00	-1.03	-1.48	-0.48	0.09 Pa	88
		CARA CONTRACTOR	ower limit [dB] Up	oerslimit (dB) Ur	Expanded ncertainty [dB]	ùlf

Sound Exposure Level

Toneburst response performed according to IEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

Amplitude (dB)	Duration [ms] Tes	t Result [dB] La	wer limit (dB) – Up	per limit (dB) Un	Expanded certainty [dB]	Result
137.00	200.00 2.00 0.25	-7.01 -27.03 -36.14	-7.49 -28.49 -39.02	-6.49 -25.99 -35.02	0.09 0.09 0.09	Pass Pass Pass
			444mramant vaculta	-00.02	0.09	F885

-- End of measurement results--

Peak C-weight

C-weighted peak sound level performed according to IEC 61672-3:2013 19 and ANSI S1.4-2014 Part 3: 19 for compliance to IEC 61672-1:2013 5.13 and ANSI S1.4-2014 Part 1: 5.13

Leve[[dB]		Test Result [dB] I	ower limit [dB] – U	pper Muis [dB] The	Expanded ertainty [dB]	Result
135.00	31.50	138.21	135.50	139.50	0.09	Pass
135.00	500.00	138.57	137.50	139.50	0.09	Pass
135.00	8,000.00	137.63	136.40	140.40	0.10	Pass
135.00, Negative	500.00	137.17	136.40	138.40	0.09	Pass
135.00, Positive	500.00	137.17	136.40	138.40	0.09	Pass
		- End of 1	measurement results-	-		

)18-4-10T14:43:21

Peak Z-weight

Z-weighted peak sound level performed according to IEC 60851:2001 9.4.4 and ANSI S1.4:1983 (R2008) 8.4.4

Amplitude [dB] Du	ration[µs]	Test	Result [dB] Lo	wer limit [dB] U	pper limit [dB] 💷	Expanded	Result
					Un	certainty [dB]	NCUII
136.00	100	Negative Pulse	136.36	134.01	138.01	0.09	Pass
	100	Positive Pulse	136.36	134.01	138.01	0.09	Pass
126.00	100	Negative Pulse	126.35	124.00	128.00	0.09	Pass
	100	Positive Pulse	126.36	124.00	128.00	0.09	Pass
116.00	100	Negative Pulse	116.36	114.00	118.00	0.09	
	100	Positive Pulse	116.36	114.00	118.00		Pass
106.00	100	Negative Pulse	105.33	103.98		0.09	Pass
	100				107.98	0.09	Pass
	100	Positive Pulse	106.33	103.99	107.99	0.09	Pass
			- End of measure	ement results			

Overload Detector

Overload indication performed according to IEC 61672-3:2013 20 and ANSI S1.4-2014 Part 3: 20 for compliance to IEC 61672-1:2013 5.11, IEC 60804:2000 9.3.5, IEC 61252:2002 11, ANSI S1.4 (R2006) 5.8, and ANSI S1.4-2014 Part 1: 5.11, ANSI S1.25 (R2007) 7.6, ANSI S1.43 (R2007) 7

Measurement	Test Result [dB] Los	ver limit (dB) 🛛 U	pper limit (dB) Un	Expanded certainty [dB]	Result
Positive	141.00	140.00	142.00	0.09	Pass
Negative	140.80	140.00			
Difference			142.00	0.09	Pass
Duiarende	0.20	-1.50	1.50	0.10	Pass
	End of measure	ment results		0.10	

Peak Rise Time

Peak rise time performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

.

Amplitude [dB] Duratio	in (jus)		st Result (dB) 🛛 L	ower limit [dB] Up	per limit [dB] Unc	Expanded ertainty [dB]	Result
139.00	40	Negative Pulse	138.52	137.00	139.00	0.09	Pass
		Positive Pulse	138.53	137.00	139.00	0.09	Pass
	30	Negative Pulse	137.58	137.00	139.00	0.09	Pass
		Positive Pulse	137.58	137.00	139.00	0.09	Pass
			- End of measurer	nent results-		0.08	1 499

:018-4-10T14:43:21

Positive Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB] Exp	anded Uncertainty [dB]	Result
138.00	3	OVLD	± 0.50	0.09	Pass
	5	ÓVLD	± 1.00	0.09	Pass
	10	ÓVLÐ	± 1.50	0.09	Pass
128.00	3	-0.12	± 0.50	0.10	Pass
	5	-0.13	± 1.00	0.09	Pass
	10	OVLD	± 1.50	0.09	Pass
118.00	3	-0.13	± 0.50	0.10	Pass
	5	-0.11	± 1.00	0.09	Pass
	10	-0.16	± 1.50	0.09	Pass
108.00	3	-0.14	± 0.50	0.13	Pass
	5	-0.13	± 1.00	0.09	Pass
	10	-0.25	± 1.50	0.09	Pass
		End of mea	surement results-		

Negative Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured accor	ding to IEC 60651:200	1 9.4.2 and ANSI S1.4	:1983 (R2006) 8.4.2		
	Crest Factor	[est Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
138.00	19245595, <u>Walio</u> ni 2016 - S 3	OVLD	± 0.50	0.09	Pass
	5	OVLD	± 1.00	0.09	Pass
	10	ÓVLD	± 1.50	0.09	Pass
128.00	3	-0.12	± 0.50	0.09	Pass
	5	-0.12	± 1.00	0.09	Pass
	10	OVLD	± 1.50	0.09	Pass
118.00	3	-0.13	± 0.50	0.09	Pass
	5	-0.13	± 1.00	0.09	Pass
	10	-0.16	± 1.50	0.09	Pass
108.00	3	-0.14	± 0.50	0.09	Pass
	5	-0.14	± 1.00	0.09	Pass
	10	-0.25	± 1.50	0.09	Pass
		— End of m	easurement results—		

Tone Burst

2kHz tone burst tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Tone	ourst response measured :	according to IEC 60651;200	1 9.4.2 and ANSi S1.4;1983 (R2006) 8.4.2
110011271-00	20 TO TO WAS THE REPORT OF THE REPORT OF THE	TONE TO THE PARTY OF A CASE OF A PARTY OF A	

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB] Expan	ded Uncertainty [dB]	Result
138.00	3	OVLD	± 0.50	0.09	Pass
128.00	5	OVLD	± 1.00	0.09	Pass
	3	-0.06	± 0.50	0.12	Pass
	5	0.01	± 1.00	0.09	Pass
118.00	3	-0.05	± 0.50	0.09	Pass
	5	-0.03	± 1.00	0.09	Pass
108.00	3	-0.06	± 0.50	0.09	Pass
	5	-0.06	± 1.00	0.09	Pass
		End of meas	urement results		

Larson Davis, a division of PCB Piezotronics, Inc. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Certificate Number 2018/03565

Impulse Detector - Repeat

Impulse Detector measured according to IEC 60651:2001 9.4.3 and ANSI S1.4:1983 (R2006) 8.4.3

Amplitude (dB) Repiti	tion Rate [Hz] Te	t Result [tB] La	wer limit [dB] 🔹 Upp	er limit [dB] 👘 🖓 🖓	Expanded certainty [dB]	Result	
140	100.00	-2.74	-3.71	-1. 71	0.09	Pass	
	20.00	-7.81	-9.57	-5.57	0.09	Pass	
9	2.00	-8.87	-10.76	-6.76	0.09	Pass	
Step	2.00	4.95	4.00	6.00	0.11	Pass	
End of measurement results							

Impulse Detector - Single

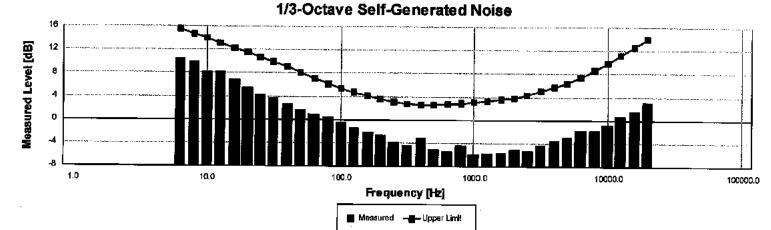
Impulse Detector measured according to IEC 60651:2001 9.4.3 and ANSI S1.4:1983 (R2006) 8.4.3

Amplitude [dB]	Duration (ms) Tes	t Résult (JB) L	ower Hull(JdB) - Up	ger limit [dB] Un	Expanded certainty [dB]	Result	
140	20.00	-3.64	-5.11	-2.11	0.09	Pass	
	5.00	-8.87	-10.76	-6.76	0.10	Pass	
	2.00	-12.56	-14.55	-10.55	0.11	Pass	
Step	2.00	9.99	9.00	11.00	0.11	Pass	
— End of measurement results							

Gain

Gain measured according to IEC 61672-3:2013 17.3 and 17.4 and ANSI S1.4-2014 Part 3: 17.3 and 17.4

Measurement	Test Result [dB] Lo	wer limit [dB] – Up	per limit [dB]. Un	Expanded Sertainty [dB]	Result
0 dB Gain	94.03	93.92	94.12	0.09	Pass
0 dB Gain, Linearity	28.97	28.32	29.72	0.10	Pass
20 dB Gain	94.03	93.92	94.12	0.09	Pass
20 dB Gain, Linearity	23.76	23.32	24.72	0.12	Pass
OBA Low Range	94.02	93.92	94.12	0.09	Pass
OBA Normal Range	94.02	93.20	94.80	0.09	Pass
	End of m	essurement resulter.			


of measurement results--

arson Davis, a division of PCB Piezotronics, Inc. 681 West 820 North rovo, UT 84601, United States 16-684-0001

Certificate Number 2018003665

The SLM is set to low range and 20 dB gain.

Fréquency [Hz]	Test Result [dB]		Result
6.30	10.53	15.50	Pass
8.00	10.03	14.70	Pass
10.00	8.27	13.90	Pass
12.50	8.22	13.10	Pass
16.00	6.80	12.30	Pass
20.00	5.49	11.50	Pass
25.00	4.20	10.70	Pass
31.50	3.82	9.90	Pass
40.00	2.73	9.10	Pass
50.00	1.72	8.10	Pass
63.00	1.03	7,10	Pass
80.00	0.47	6.10	Pass
100.00	-0.45	5.30	Pass
125.00	-1.41	4.70	Pass
160.00	-2.16	4.10	Pass
200.00	-2.58	3.60	Pass
250.00	-3.79	3.10	Pass
315.00	-4.41	2.70	Pass
400.00	-3.16	2.60	Pass
500.00	-5.03	2.60	Pass
630.00	-5.50	2.70	Pass
800.00	-4.33	2.80	Pass
1,000.00	-5.99	3.00	Pass
1,250.00	-5.79	3.20	Pass
1,600.00	-5.51	3.50	Pass
2,000.00	-5.00	3.80	Pass
2,500.00	-5.18	4.30	Pass
3,150.00	-4.44	4.90	Pass
4,000.00	-3.50	5.70	Pass
5,000.00	-3.05	6.40	Pass
6,300.00	-1.80	7.40	Pass
8,000.00	-1.77	8.60	Pass
10,000.00	-0.75	9.80	Pass
12,500.00	0.72	11.20	Pass
16,000.00	1.42	12.60	Pass
20,000.00	3.02	14.00	Pass
	End of measureme	ent results	

Certificate NUMBER 2010003000

Broadband Noise Floor

Self-generated noise measured according to IEC 61672-3:2013 11.2 and ANSI S1.4-2014 Part 3: 11.2

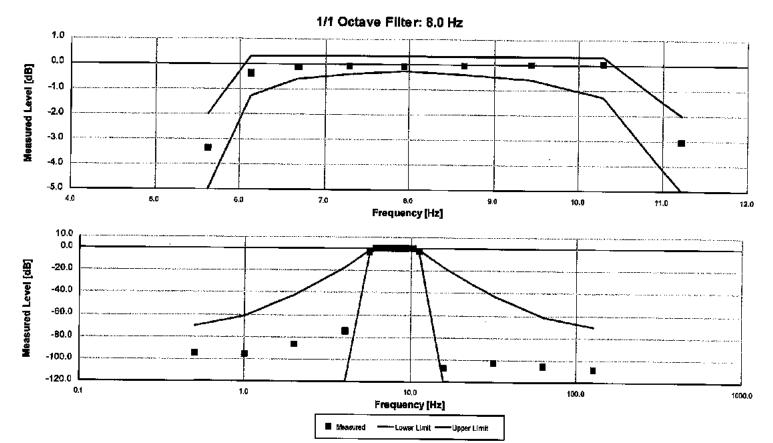
Messurement	Test Result [dB]	Upper limit (dB)	Result
A-weight Noise Floor	8.50	15.00	Pass
C-weight Noise Floor	12,57	17.30	Pass
Z-weight Noise Floor	21,32	24.50	Pass

-- End of measurement results--

Total Harmonic Distortion

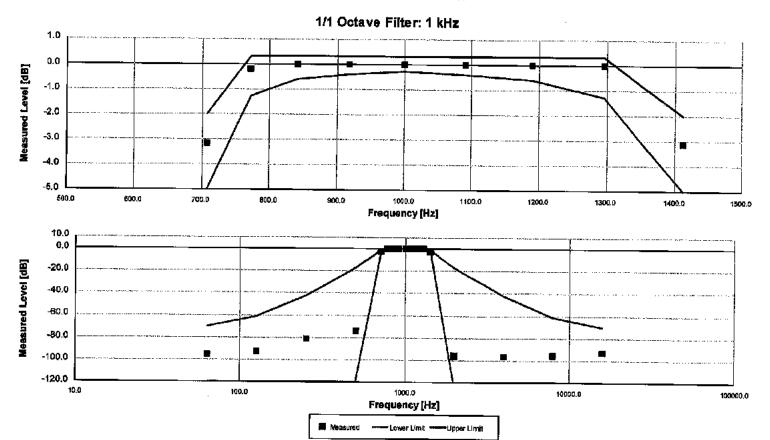
Measured using 1/3-Octave filters

Measurement.	Test Result [dB] Lo	wer Limit [dB] U	gpér Límit (dB) Ur	Expanded certainty [dB]	Result
10 Hz Signal	137.53	137.20	138.80	0.09	Pass
THD	-70.57		-60.00	0.01	Pass
	· · · ·		-00.00	0.01	1 099
THD+N	-64.74		-60.00	0.01	Pass
End of measurement results					


Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2018-4-10714:43:21

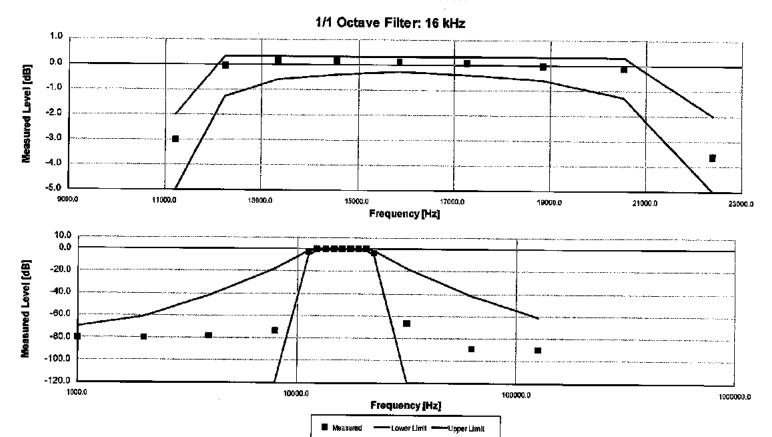
Page 18 of 24



The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI \$1.11:2004

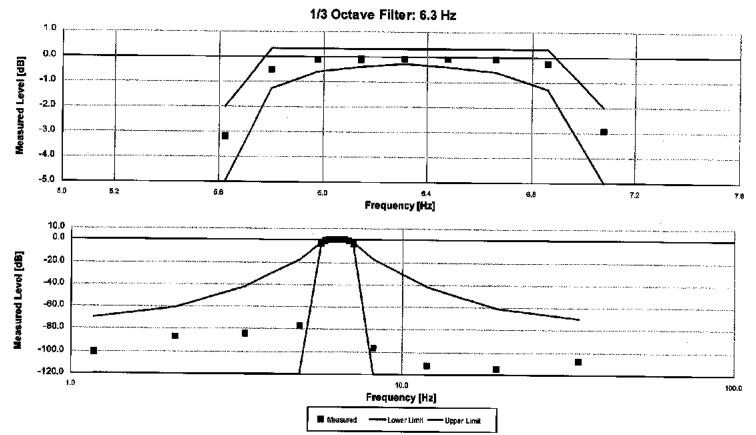
Frequency [H2]	Test Result [dB]	Lower limit.[dB].	Upper limit.[dB]	Expanded Uncertainty [dB]	Result
0.50	-94.69	-i nf	-70.00	2.40	Pass
1.00	-95.07	-inf	-61.00	2.20	Pass
2.00	-86.67	-inf	-42.00	0.24	Pass
3.98	-74.26	-inf	-17.50	0.23	Pass
5. 62	-3.37	-5.00	-2.00	0.09	Pass
6.13	-0.39	-1.30	0.30	0.09	Pass
6.68	-0.14	-0.60	0.30	0.09	Pass
7.29	-0.11	-0.40	0.30	0.09	Pass
7.94	-0.08	-0.30	0.30	0.09	Pass
8.66	-0.05	-0.40	0.30	0.09	Pass
9.44	-0.01	-0.60	0.30	0.09	Pass
10.29	0.04	-1.30	0.30	0.09	Pass
11.22	-3.05	-5.00	-2.00	0.09	Pass
15.85	-106.72	-i nf	-17.50	1.30	Pass
31.62	-102.80	-inf	-42.00	1.70	Pass
63.10	-105.30	-inf	-61.00	1.10	Pass
125.89	-107.76	-inf	-70.00	1.80	Pass
	End	of measurement res	ults		

The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004


Frequency [Hz]	Test Result [JB]	Lówer limit [dB]	Upper limit (dB)	Expanded Uncertainty [dB]	Result
63.10	-95.45	-i nf	-70.00	0.28	Pass
125.89	-92.44	-inf	-61.00	0.32	Pass
251.19	-81.01	-inf	-42.00	0.18	Pass
501.19	-74.00	-inf	-17.50	0.09	Pass
707.95	-3.15	-5.00	-2.00	0.09	Pass
771.79	-0.23	-1.30	0.30	0.09	Pass
841.40	-0.02	-0.60	0.30	0.09	Pass
917.28	-0.01	-0.40	0.30	0.09	Pass
1,000.00	0.00	-0.30	0.30	0.09	Pass
1,090,18	-0.03	-0.40	0.30	0.09	Pass
1,188.50	-0.02	~0.60	0.30	0.09	Pass
1,295.69	0.00	-1.30	0.30	0.09	Pass
1,412.54	-3.14	-5.00	-2.00	0.09	Pass
1,995.26	-95.88	-inf	-17.50	0.26	Pass
3,981.07	-95.95	-inf	-42.00	0.26	Pass
7,943.28	-95.17	-inf	-61.00	0.31	Pass
15,848.93	-92.52	-inf	-70.00	0.24	Pass
	- End o	f measurement rest			

arson Davis, a division of PCB Piczotronics, Inc 681 West 820 North rovo, UT 84601, United States '16-684-0001

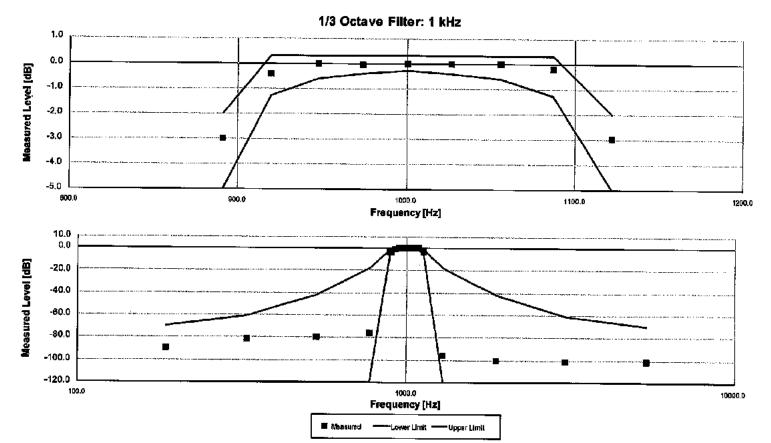
018-4-10T14:43;21



The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004

Fraquency [Hz]	Test Result/[dB] Lov	ver limit (d h) Up	per limit (dB)	Expanded certainty [dB]	Result
1,000.00	-79.82	-inf	-70.00	O.11	Pass
1,995.26	-79.80	-inf	-61.00	0.09	Pass
3,981.07	-77.78	-inf	-42.00	0.10	Pass
7,943.28	-73.55	-inf	-17.50	0.10	Pass
11,220.18	-3.00	-5.00	-2.00	0.09	Pass
12,232.07	-0.07	-1.30	0.30	0.09	Pass
13,335.21	0.15	-0.60	0.30	0.09	Pass
14,537.84	0.12	-0.40	0.30	0.09	Pass
15,848.93	0.10	-0.30	0.30	0.09	Pass
17,278.26	0.05	-0.40	0.30	0.09	Pass
18,836.49	-0.04	-0.60	0.30	0.09	Pass
20,535.25	-0.14	-1.30	0.30	0.09	Pass
22,387.21	-3.62	-5.00	-2.00	0.09	Pass
31,622.78	-66.47	-inf	-17.50	0.09	Pass
63,095.73	-89.20	-inf	-42.00	0.10	Pass
125,892.54	-89.81	-inf	-61.00	0.09	Pass
	End of me	asurement results-	-		

The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004

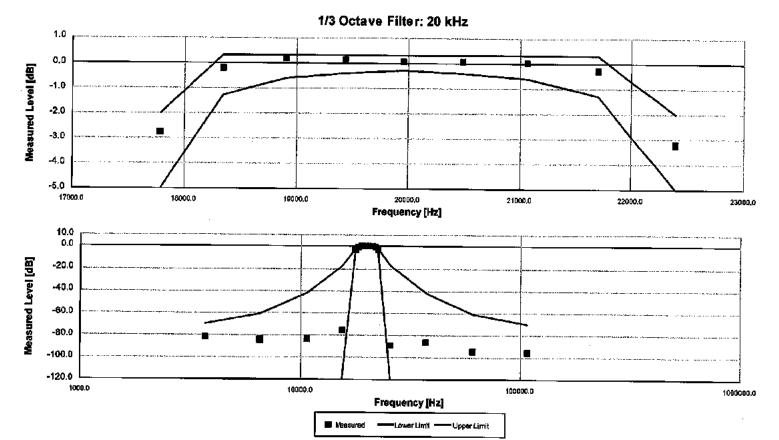

Frequency [Hz]	Test Result [dB] Lo	wer limit (dB) 🛛 Up	per limit (dB) Un	Expanded certainty [dB]	Regult
1.17	-100.70	-inf	-70.00	0.36	Pass
2.07	-87.18	-inf	-61.00	0.11	Pass
3.35	-84.27	-inf	-42.00	0.09	Pass
4.87	-76.74	-inf	-17.50	0.10	Pass
5.62	-3.18	-5.00	-2.00	0.09	Pass
5.80	-0.53	-1.30	0.30	0.09	Pass
5.98	-0.12	-0.60	0.30	0.09	Pass
6.15	-0.11	-0.40	0.30	0.09	Pass
6.31	-0.10	-0.30	0.30	0.09	Pass
6.48	-0.10	-0.40	0.30	0.09	Pass
6.66	-0.08	-0.60	0.30	0.09	Pass
6.86	-0.26	-1.30	0.30	0.09	Pass
7.08	-2.91	-5.00	-2.00	0.09	Pass
8.17	-96.28	-inf	-17.50	0.34	Pass
11.87	-111.66	-inf	-42.00	1.70	Pass
19.27	-114.93	-inf	-61.00	2.50	Pass
34.02	-107.32	-inf	-70.00	2.10	Pass
	— End of m	easurement results-			

2018-4-10T14:43:21

Certificate Mittiper 2018003665

The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004

Frequency.[Hz]	Test Result [dB] Lou	ver limit [dB] — Up	per limit [dB]	Expanded certainty [dB]	Result
185.46	-89.65	-inf	-70.00	0.17	Pass
327.48	-81.33	-inf	-61.00	0.12	Pass
531.43	-79.90	-inf	-42.00	0.25	Pass
772.57	-76.2 4	-inf	-17.50	0.09	Pass
891.25	-3.00	-5.00	-2.00	0.09	Pass
919.58	-0.40	-1.30	0.30	0.09	Pass
947.19	0.00	-0.60	0.30	0.09	Pass
974.02	-0.04	-0.40	0.30	0.09	Pass
1,000.00	0.00	-0.30	0.30	0.09	Pass
1,026.67	0.00	-0.40	0.30	0.09	Pass
1,055.75	-0.02	-0.60	0.30	0.09	Pass
1,087.46	-0.22	-1.30	0.30	0.09	Pass
1,122.02	-2.96	-5.00	-2.00	0.09	Pass
1,294.37	-95.88	-inf	-17.50	0.25	Pass
1,881.73	-100.75	-inf	-42.00	0.40	Pass
3,053.65	-101.60	-inf	-61.00	0.44	Pass
5,391.95	-101.27	-inf	-70.00	0.40	Pass
	- End of m	asurement results-			


arson Davis, a division of PCB Piezotronics, Inc 681 West 820 North brovo, UT 84601, United States '16-684-0001

018-4-10T14:43:21

Page 23 of 24

The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004

Frequency [Hz]	Test Result [dB] Lo	wer limit (dB) – Up	per limit (dB). Lin	Expanded certainty [dB]	Result
3,700.45	-82.10	-inf	-70.00	0.11	Pass
6,534.02	-83.95	-inf	-61.00	0.11	Pass
10,603.35	-83.03	-inf	-42.00	0.13	Pass
15,414.88	-75.51	-inf	-17.50	0.09	Pass
17,782.79	-2.76	-5.00	-2.00	0.09	Pass
18,347.97	-0.21	-1.30	0.30	0.09	Pass
18,898.93	0.17	-0.60	0.30	0.09	Pass
19,434.23	0.12	-0.40	0.30	0.09	Pass
19,952.62	0.07	-0.30	0.30	0.09	Pass
20,484.85	0.06	-0.40	0.30	D.09	Pass
21,065.07	0.01	-0.60	0.30	0.09	Pass
21,697.62	-0.28	-1.30	0.30	0.09	Pass
22,387.21	~3.22	-5.00	-2.00	0.09	Pass
25,826.16	-89.17	-inf	-17.50	0.12	Pass
37,545.40	-85.93	-inf	-42.00	0.11	Pass
60,928.37	-94.03	-inf	-61.00	0.12	Pass
107,583.52	-95.02	-inf	-70.00	0.11	Pass
	— End of m	easurement results-		0.11	,

-- End of Report--

Signatory: <u>Ron Harris</u>

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2018-4-10T14:43:21

Page 24 of 24

Calibration Certificate

Certificate Number 2018000298

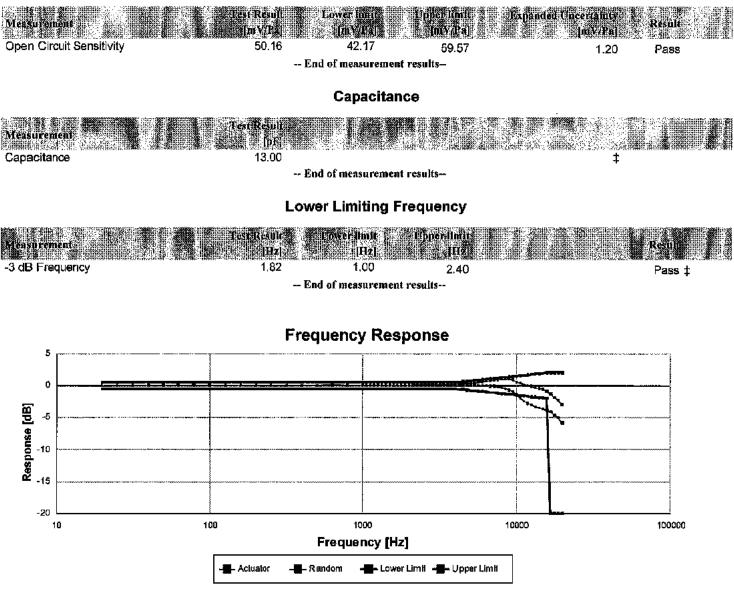
Customer: **Epsilon Associates Inc** Suite 250 **3 Clock Tower Place** Maynard, MA 01754, United States

Model Number	377C20	Procedure Number	D0001.8	8387	
Serial Number	162996	Technician	Abrahar	n Orteg	a
Test Results	Pass	Calibration Date	5 Jan 2	018	
Initial Condition	As Manufactured	Calibration Due 5 Jan 2019			
	As Manuactured	Temperature	23.2	°C	± 0.01 °C
Description	1/2 inch Microphone - RI - 0V	Humidity	34.5	%RH	± 0.5 %RH
•		Static Pressure	100.43	kPa	± 0.03 kPa
Evaluation Metho	d Tested electrically using an ele	ectrostatic actuator.			

Compliance Standards Compliant to Manufacturer Specifications.

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a t do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.


This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Description	Cal Date	Cal Due	Cal Standard
Larson Davis Model 2900 Real Time Analyzer	07/17/2017	07/17/2018	001230
Microphone Calibration System	08/30/2017	08/30/2018	001233
1/2" Preamplifier	12/14/2017	12/14/2018	001274
Agilent 34401 A DMM	12/07/2017	12/07/2018	001329
Larson Davis CAL250 Acoustic Calibrator	01/03/2018	01/03/2019	003030
1/2" Preamplifier	04/12/2017	04/12/2018	006506
Larson Davis 1/2" Preamplifier 7-pin LEMO	09/12/2017	09/12/2018	006507
1/2 inch Microphone - RI - 200V	04/24/2017	04/24/2018	006510
1/2 inch Microphone - RI - 200V	08/09/2017	08/09/2018	006519
Larson Davis 1/2" Preamplifier 7-pin LEMO	09/12/2017	09/12/2018	006530
Larson Davis 1/2" Preamplifier 7-pin LEMO	08/11/2017	08/11/2018	006531
arson Davis, a division of PCB Piezotronics, Inc 681 West 820 North rovo, UT 84601, United States 16-684-0001		ACCREDITED Lort A0522.01	CARSON DAV

Certificate Number 2018000298 Sensitivity

Data is normalized for 0 dB @ 251.19 Hz.

- Erequency [Hz]	Actuation (CB)	Random (dB)	venlimit (dBj 🛃 Cp	per limit [dB];	Result a
19.95	-0.03	-0.03	-0.50	0.50	Pass ‡
25.12	0.00	0.00	-0.50	0.50	Pass ‡
31.62	0.01	0.01	-0.50	0.50	Pass ‡
39.81	0.02	0.02	-0.50	0.50	Pass ‡
50.12	0.02	0.02	-0.50	0.50	Pass ‡
63.10	0.02	0.02	-0.50	0.50	Pass ‡
79.43	0.02	0.02	-0.50	0.50	Pass ‡
100.00	0.02	0.02	-0.50	0.50	Pass ‡
125.89	0.01	0.01	-0.50	0.50	Pass ‡
158.49	0.01	0.01	-0.50	0.50	Pass ‡
199.53	0.01	0.01	-0.50	0.50	Pass ‡

ne and the rest is the best states and the second		Certificate Number	2018000298		INTERNET CONTRACTOR
Frequency [Hz]	Artuator [dB]	Random [dB] 1	ower: liniit (dB) Cp	per limit (dB)	Result 2. s
251.19	0.00	0.00		ZANDANI SINATA BRAKUMUN	Pass ‡
316.23	0.00	0.00	-0.50 -0.50	0.50 0.50	Pass ‡
398.11	-0.01	0.00			Pass ‡
501.19	-0.01	0.00	-0.50	0.50	⊢ass ∔ Pass ‡
630.96	-0.02	0.16	-0.50	0.50 0.50	⊢ass ∔ Pass ‡
794.33	-0.01	0.01	-0.50		Pass ‡
1,000.00	-0.02	0.01	-0.50 0.50	0.50 0.50	
1,059.25	-0.02	0.01	-0.50	0.50	Pass ‡ Pass ‡
1,122.02	-0.02	0.01	-0.50	0.50	Pass ‡
1,188.50	-0.02	0.01	-0.50	0.50	Pass ‡
1,258.93	-0.01	0.02	-0.50	0.50	Pass ‡
1,333.52	-0.02	0.02	-0.50	0.50	Pass ‡
1,412.54	-0.02	0.02	-0.50	0.50	Pass ±
1,496.24	-0.02	0.02	-0.50	0.50	Pass ‡
1,584.89	-0.02	0.02	-0.50	0.50	Pass ‡
1,678.80	-0.02	0.02	-0.50	0.50	Pass ‡
1,778.28	-0.02	0.02	-0.50	0.50	Pass ‡
1,883.65	-0.02	0.03	-0.50	0.50	Pass ‡
1,995.26	-0.01	0.04	-0.50	0.50	Pass ‡
2,113.49	-0.01	0.04	-0.50	0.50	Pass ‡
2,238.72	-0.01	0.05	-0.50	0.50	Pass ‡
2,371.37	-0.01	0.05	-0.50	0.50	Pass ‡
2,511.89	0.01	0.08	-0.50	0.50	Pass ‡
2,660.73	0.01	0.08	-0.50	0.50	Pass ‡
2,818.38	0.01	0.09	-0.50	0.50	Pass ‡
2,985.38	0.01	0.10	-0.50	0.50	Pass ‡
3,162.28	0.01	0.12	-0.50	0.50	Pass ‡
3,349.65	0.02	0.14	-0.50	0.50	Pass ‡
3,548.13	0.03	0.17	-0.50	0.50	Pass ‡
3,758.37	0.03	0.19	-0.50	0.50	Pass ‡
3,981.07	0.03	0.22	-0.50	0.50	Pass ‡
4,216.97	0.03	0.26	-0.63	0.56	Pass ‡
4,466.84	0.01	0.29	~0.60	0.63	Pass ‡
4,731.51	0.01	0.34	-0.70	0.69	Pass ‡
5,011.87	0.01	0.40	-0.80	0.75	Pass ‡
5,308.8 4	0.01	0.47	-0.80	0.81	Pass ‡
5,623.41	0.00	0.54	-0.90	0.88	Pass ‡
5,956.62	-0.01	0.62	-0.90	0.94	Pass ‡
6,309.57	-0.03	0.71	-1.00	1.00	Pass ‡
6,683.44	-0.08	0.78	-1.10	1.06	Pass ‡
7,079.46	-0.13	0.87	-1.10	1.13	Pass ‡
7,498.94	-0.21	0.95	-1.20	1.19	Pass ‡
7,943.28	-0.32	1.01	-1.30	1.25	Pass ‡
8,413.95	-0.47	1.05	-1.30	1.31	Pass ‡
8,912.51	-0.68	1.04	-1.40	1.38	Pass ‡
9,440.61	-1.01	0.91	-1.40	1.43	Pass ‡
10,000.00	-1.55	0.59	-1.50	1.50	Pass ‡
10,592.54	-1.96	0.39	-1.60	1.56	Pass ‡
11,220.19	-2.47	0.09	-1.60	1.63	Pass ‡
11,885.02	-2.80	-0.06	-1.70	1.68	Pass ‡
12,589.25	-3.03	-0.13	-1.80	1.75	Pass ‡
13,335.21	-3.34	-0.33	-1.80	1.81	Pass ‡
14,125.38	-3.49	-0.42	-1.90	1.87	Pass ‡

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Result Result Result Result Result Result									
SE requences H2	ActuatoridBl	Random [dB]	ver fimit dels sulfin	we finicalitel	Result				
				ær limit [dB]					
					· · · · · · · · · · · · · · · · · · ·				
14,962.36	-3.63	-0.56	-1.93	1.93	Pass ‡				
15.848.93	-3,90	-0.89	-2.00	2.00	Pass ±				
•	-0.00	-0.00	-2.00	2.00	rasa 4				
16,788.04	-4.12	-1.34		2.00	Pass ‡				
•									
17,782.80	-4.59	-1.81		2.00	Pass ±				
10 000 40	4.00	0.00		6.50	D				
10,030.49	-4.99	-2.20		2.00	Pass I				
19 952 62	-5.83	-2.93		2.00	Pase +				
18,002.04	-0.00	~~.~~		2.00	- dog 🕇				
		— End of measuremen	t results						
17,782.80 18,836.49 19,952.62	-4.59 -4.9 9 -5.83	-1.81 -2.26 -2.93 — End of measuremen	t results	2.00 2.00 2.00	Pass ‡ Pass ‡ Pass ‡				

Signatory! Abraham Ortega

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

ţ,

1/5/2018 4:00:31PM

Page 4 of 4

Calibration Certificate

Certificate Number 2018000271 Customer: Epsilon Associates Inc Suite 250 3 Clock Tower Place Maynard, MA 01754, United States

Model Number	831	Procedure Number	D0001	.8378	
Serial Number	0003751	Technician	Ron H	arris	
Test Results	Pass	Calibration Date	5 Jan	2018	
Initial Condition	AS RECEIVED same as shipped	Calibration Due	5 Jan	2019	
	AUTRED came as ampled	Temperature	23.39	°C	± 0.25 °C
Description	Larson Davis Model 831	Humidity	50	%RH	± 2.0 %RH
	Class 1 Sound Level Meter	Static Pressure	86.92	kPa	± 0.13 kPa
	Firmware Revision: 2.314				
Evaluation Metho	d Tested electrically using Larson D₂	avis PRM831 S/N 029562 and a	12 0 pE	canaci	tor to simulate

Tested electrically using Larson Davis PRM831 S/N 029562 and a 12.0 pF capacitor to simulate microphone capacitance. Data reported in dB re 20 µPa assuming a microphone sensitivity of 50.0 mV/Pa.

Compliance Standards

Compliant to Manufacturer Specifications and the following standards when combined with Calibration Certificate from procedure D0001.8384:

IEC 60651:2001 Type 1 IEC 60804:2000 Type 1 IEC 61252:2002 IEC 61260:2001 Class 1 IEC 61672:2013 Class 1 ANSI S1.4-2014 Class 1 ANSI S1.4 (R2006) Type 1 ANSI S1.11 (R2009) Class 1 ANSI S1.25 (R2007) ANSI S1.43 (R2007) Type 1

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ In the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

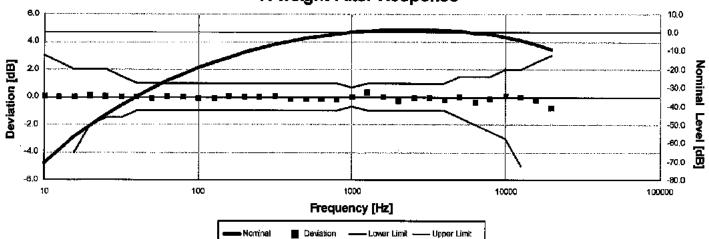
The uncertainties were computed in accordance with the ISO Gulde to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis Model 831 Sound Level Meter Manual, 1831.01 Rev O, 2016-09-19

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level; 114 dB re 20 µPa; Reference Range: 0 dB gain

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.

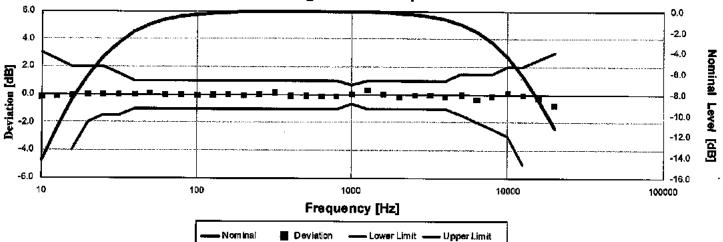

Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 successfully completed by Physikalisch-Technische Bundesanstalt (PTB) on 2016-02-24 certificate number DE-15-M-PTB-0056.

The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3, for the environmental conditions under which the tests were performed. As evidence was publicly available, from an independent testing organization responsible for approving the results of pattern-evaluation tests performed in accordance with IEC 61672-2:2013 / ANSI/ASA S1.4-2014/Part 2, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1; the sound level meter submitted for testing conforms to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1; the sound level meter submitted for testing conforms to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1; the sound level meter submitted for testing conforms to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1; the sound level meter submitted for testing conforms to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1; the sound level meter submitted for testing conforms to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.

DescriptionCal DateCal DueCal StandardSRS DS360 Ultra Low Distortion Generator2017-01-192018-01-19006239Hart Scientific 2626-S Humidity/Temperature Sensor2017-06-112018-06-11006943		Standards Use	l Carlos	
	Description	Cal Date	Cal Due	Cal Standard
Hart Scientific 2626-S Humidity/Temperature Sensor 2017-06-11 2018-06-11 006943	SRS DS360 Ultra Low Distortion Generator	2017-01-19	2018-01-19	006239
	Hart Scientific 2626-S Humidity/Temperature Sensor	2017-06-11	2018-06-11	006943

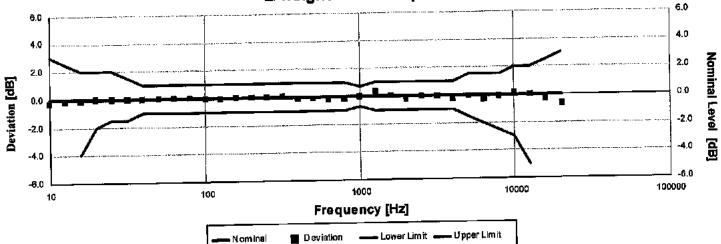
A-weight Filter Response

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5


IEC 61672-1:2013 5.5; IE	C 60651:2001 6.1 and 9	1.2.2; IEC 60804:200	0 5; ANSI S1.4:1983 ((R2006) 5.1 and 8.2.1		1: 5.5
Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	Upper limit [dB]	Expandéd Uncertainty (dB)	Result
10.00	-70.34	0.06	-inf	3.00	0.22	Pass
12.59	-63.41	-0.01	-inf	2.50	0.22	Pass
15.85	-56.70	0.00	-4.00	2.00	0.22	Pass
19.95	-50.39	0.11	-2.00	2.00	0.22	Pass
25.12	-44.66	0.04	-1.50	2.00	0.22	Pass
31.62	-39.41	-0.01	-1.50	1.50	0.22	Pass
39.81	-34.61	-0.01	-1.00	1.00	0.22	Pass
50.12	-30.24	-0.04	-1.00	1.00	0.22	Pass
63.10	-26.16	0.04	-1.00	1.00	0.22	Pass
79.43	-22.46	0.04	-1.00	1.00	0.22	Pass
100.00	-19.14	-0.04	-1.00	1.00	0.22	Pass
125.89	-16.15	-0.05	-1.00	1.00	. 0.22	Pass
158.49	-13.34	0.06	-1.00	1.00	0.22	Pass
199.53	-10.87	0.03	-1.00	1.00	0.22	Pass
251.19	-8.60	0.00	-1.00	1.00	0.22	Pass
316.23	-6.51	0.09	-1.00	1.00	0.22	Pass
398.11	-4.93	-0.13	-1.00	1.00	.0.22	Pass
501.19	-3.35	-0.15	-1.00	1.00	0.22	Pass
630.96	-2.06	-0.16	-1.00	1.00	0.22	Pass
794.33	-0.98	-0.18	-1.00	1.00	0.22	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.22	Pass
1,258.93	0.94	0.34	-1.00	1.00	0.22	Pass
1,584.89	0.99	-0.01	-1.00	1.00	0.22	Pass
1,995.26	0.95	-0.25	-1.00	1.00	0.22	Pass
2,511.89	1.21	-0.09	-1.00	1 .00	0.22	Pass
3,162.28	1.15	-0.05	-1.00	1.00	0.22	Pass
3,981.07	0.77	-0.23	-1.00	1.00	0.22	Pass
5,011.87	0.51	0.01	-1.50	1.50	0.22	Pass
6,309.57	-0.48	-0.38	-2.00	1.50	0.22	Pass
7,943.28	-1.22	-0.12	-2.50	1.50	0.22	Pass
10,000.00	-2.42	0.08	-3.00	2.00	0.22	Pass
12,589.25	-4.32	-0.02	-5.00	2.00	0.22	Pass
15,848.93	-6.82	-0.22	-16.00	2.50	0.22	Pass
19,952.62	-10.07	-0.77	-inf	3.00	0.22	Pass
		Fnd	of modeuramant rac	ulte.		

-- End of measurement results--

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5


Frequency [Hz]	Test Result [cfB]	Deviation [dB]	Lower limit [dB]	Dpper limit [dB]	Expanded	Result
10.00	-14.47	-0.17	-inf	3.00	Uncertainty [dB] 0.22	Pass
12.59	-11.34	-0.14	-inf	2.50	0.22	Pass
15.85	-8.54	-0.04	-4.00	2.00	0.22	Pass
19.95	-6.18	0.02	-2.00	2.00	0.22	Pass
25.12	-4.36	0.04	-1.50	2.00	0.22	Pass
31.62	-2.99	0.01	-1.50	1.50	0.22	Pass
39.81	-1.98	0.02	-1.00	1.00	0.22	Pass
50.12	-1.20	0.10	-1.00	1.00	0.22	Pass
63.10	-0.79	0.01	-1.00	1.00	0.22	Pass
79.43	-0.47	0.03	-1.00	1.00	0.22	Pass
100.00	-0.33	-0.04	-1.00	1.00	0.22	Pass
125.89	-0.22	-0.02	-1.00	1.00	0.22	Pass
158.49	-0.07	0.03	-1.00	1.00	0.22	Pass
199.53	-0.03	-0.03	-1.00	1.00	0.22	Pass
251.19	0.02	0.02	-1.00	1.00	0.22	Pass
316.23	0.12	0.12	-1.00	1.00	0.22	Pass
398.11	-0.10	-0.10	-1.00	1.00	0.22	Pass
501.19	-0.09	-0.09	-1.00	1.00	0.22	Pass
630.96	-0.13	-0.13	-1.00	1.00	0.22	Pass
794.33	-0.14	-0 .14	-1.00	1.00	0.22	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.22	Pass
1,258.93	0.32	0.32	-1.00	1.00	0.22	Pass
1,584.89	-0.07	0.03	-1.00	1.00	0.22	Pass
1,995.26	-0.42	-0.22	-1.00	1.00	0.22	Pass
2,511.89	-0.35	-0.05	-1.00	1.00	0.22	Pass
3,162.28	-0.55	-0.05	-1.00	1.00	0.22	Pass
3,981.07	-1.01	-0.21	-1.00	1.00	0.22	Pass
5,011.87	-1.33	-0.03	-1.50	1.50	0.22	Pass
6,309.57	-2.35	-0.35	-2.00	1.50	0.22	Pass
7,943.28	-3.11	-0.11	-2.50	1.50	0.22	Pass
10,000.00	-4.33	0.07	-3.00	2.00	0.22	Pass
12,589.25	-6.24	-0.04	-5.00	2.00	0.22	Pass
15,848.93	-8.75	-0.25	-16.00	2.50	0.22	Pass
19,952.62	-12.00	-0.80	-inf	3.00	0.22	Pass
		End	of measurement rear	alta		

-- End of measurement results--

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5, IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1963 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

IEC 61672-1:2013 5.5; IE	C 60651:2001 6.1 and 9.2.2;	·····································		1997 B.	Expanded	Result
Frequency [Hz]	Test Result [dB] De	viation [dB] L	ower/limit[dB] • Upp		certainty [dB]	
10.00	-0.26	-0.26	-inf	3.00	0.22	Pass
12.59	-0.17	-0.17	-inf	2.50	0.22	Pass
15.85	-0.09	-0.09	-4.00	2.00	0.22	Pass
19.95	-0.01	-0.01	-2.00	2.00	0.22	Pass
25.12	-0.01	-0.01	-1.50	2.00	0.22	Pass
31.62	-0.01	-0.01	-1.50	1.50	0.22	Pass
39.81	-0.01	-0.01	-1.00	1.00	0.22	Pass
50.12	0.04	0.04	-1.00	1.00	0.22	Pass
63.10	0.01	0.01	-1.00	1.00	0.22	Pass
79.43	0.03	0.03	-1.00	1.00	0.22	Pass
100.00	-0.02	-0.02	-1.00	1.00	0.22	Pass
125.89	-0.05	-0.05	-1.00	1.00	0.22	Pass
158.49	0.01	0.01	-1.00	1.00	0.22	Pass
199.53	0.01	0.01	-1.00	1.00	0.22	Pass
251.19	0.04	0.04	-1.00	1.00	0.22	Pass
316.23	0.10	0.10	-1.00	1.00	0.22	Pass
398.11	-0.12	-0.12	-1.00	1.00	0.22	Pass
501.19	-0.12	-0.12	-1.00	1.00	0.22	Pass
630.96	-0.15	-0.15	-1.00	1.00	0.22	Pass
794.33	-0.15	-0.15	-1.00	1.00	0.22	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.22	Pass
1,258.93	0.35	0.35	-1.00	1.00	0.22	Pass
1,584.89	0.01	0.01	-1.00	1.00	0.22	Pass
1,995.26	-0.26	-0.26	-1.00	1.00	0.22	Pass
2,511.89	-0.06	-0.06	-1.00	1.00	0.22	Pass
3,162.28	-0.06	-0.06	-1.00	1.00	0.22	Pass
3,981.07	-0.21	-0.21	-1.00	1.00	0.22	Pass
5,011.87	-0.05	-0.05	-1.50	1.50	0.22	Pass
6,309.57	-0.35	-0.35	-2.00	1.50	0.22	Pass
7,943.28	-0.08	-0.08	-2.50	1.50	0.22	Pass
•	0.13	0.13	-3.00	2.00	0.22	Pass
10,000.00 12,589.25	0.01	0.01	-5.00	2.00	0.22	Pass
•	-0.35	-0.35	-16.00	2.50	0.22	Pass
15,848.93	-0.66	-0.66	-inf	3.00	0.22	Pass
19,952.62	-0.00		f massurament results	_		

-- End of measurement results--

High Level Stability

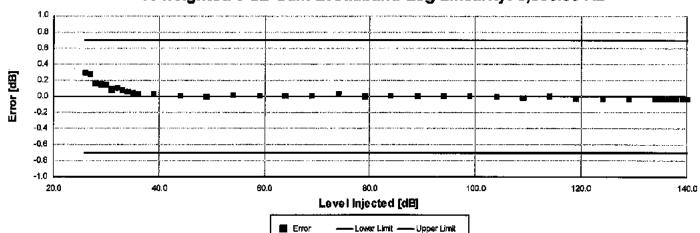
Electrical signal test of high level stability performed according to IEC 61672-3:2013 21 and ANSI S1.4-2014 Part 3: 21 for compliance to IEC 61672-1:2013 5.15 and ANSI S1.4-2014 Part 1: 5.15										
Messurement	Test Result (dB) - Lov	ver limit [dB]	er limit (dB) Unc	ertainty [dB]	Result					
High Level Stability	0.00	-0.10	0.10	0.01	Pass					
	End of measurement results									
	Long-Term Stability									
Electrical signal test of long term stability performe	-	2-3:2013 15 and ANSI	S1.4-2014 Part 3: 15 ft	or compliance to						
ISC 61672-1:2013 5.14 and ANSI S1.4-2014 Part 1: 5.14 Test Result [dB] Lower limit [dB] Upper limit [dB] Expanded Uncertainty [dB]										
1 cm barenewante ta test total and the astrophytic test reacting to the reacti	0.00	-0.10	0.10	0.01	Pass					

- End of measurement results--

1 kHz Reference Levels

Frequency weightings and time weightings at 1 kHz (reference is A weighted Fast) performed according to IEC 61672-3:2013 14 and ANSI S1.4-2014 Part 3: 14 for compliance to IEC 61672-1:2013 5.5.9 and 5.8.3 and ANSI S1.4-2014 Part 1: 5.5.9 and 5.8.3

End of measurement results—							
Impulse	113.98	113.88	114.08	0.09	Pass		
Slow	113.98	113.88	114.08	0.09	Pass		
Z weight	113.97	113.78	11 4 .18	0.09	Pass		
C weight	113.98	113.78	114.18	0.09	Pass		
Measurement	Test Result [dB] Lo	werlimit [dB] Up	per limit (dB) – Un	Expanded certainty [dB]	Result.		


arson Davis, a division of PCB Piezotronics, Inc 681 West 820 North 'rovo, UT 84601, United States '16-684-0001

018-1-5T13:56:14

Page 6 of 24

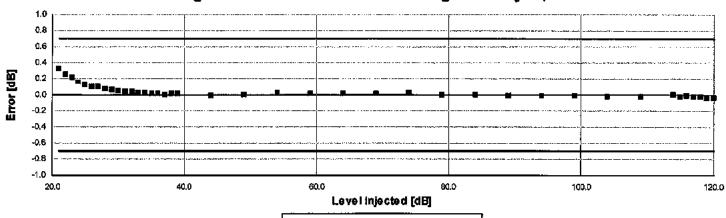
A-weighted 0 dB Gain Broadband Log Linearity: 8,000.00 Hz

Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

Level (dB)	Error [dB] Lo	wer limit [dB] Up	per limit [dB]	Expanded	Result
			SCO STRUCTURE D	ncertainty [dB]	
26.00	0.29	-0.70	0.70	0.09	Pass
27.00	0.28	-0.70	0.70	0.09	Pass
28.00	0.16	-0.70	0.70	0.09	Pass
29.00 30.00	0.15	-0.70	0.70	0.09	Pass
	0.14	-0.70	0.70	0.09	Pass
31.00	0.09	-0.70	0.70	0.09	Pass
32.00	0.10	-0.70	0.70	0.09	Pass
33.00	0.08	-0.70	0.70	0.09	Pass
34.00	0.06	-0.70	0.70	0.09	Pass
35.00	0.04	-0.70	0.70	0.09	Pass
36.00	0.03	-0.70	0.70	0.09	Pass
39.00	0.03	-0.70	0.70	0.09	Pass
44.00	0.01	-0.70	0.70	0.09	Pass
49.00	0.00	-0.70	0.70	0.09	Pass
54.00	0.02	-0.70	0.70	0.09	Pass
59.00	0.01	-0.70	0.70	0.09	Pass
64.00	0.01	-0.70	0.70	0.09	Pass
69.00	0.01	-0.70	0.70	0.09	Pass
74.00	0.03	-0.70	0.70	0.09	Pass
79.00	0.00	-0.70	0.70	0.09	Pass
84.00	0.00	-0.70	0.70	0.09	Pass
89.00	0.01	-0.70	0.70	0.09	Pass
94.00	0.00	-0.70	0.70	0.09	Pass
99.00	0.01	-0.70	0.70	0.09	Pass
104.00	-0.01	-0.70	0.70	0.09	Pass
109.00	-0.02	-0.70	0.70	0.09	Pass
114.00	0.00	-0.70	0.70	0.09	Pass
119.00	-0.03	-0.70	0.70	0.09	Pass
124.00	-0.03	-0.70	0.70	0.09	Pass
129.00	-0.03	-0.70	0.70	0.09	Pass
134.00	-0.03	-0.70	0.70	0.09	Pass
135.00	-0.03	-0.70	0.70	0.09	Pass
136.00	-0.03	-0.70	0.70	0.09	Pass
137.00	-0.03	-0.70	0.70	0.09	Pass
138.00	-0.03	-0.70	0.70	0.09	Pass
139.00	-0.03	-0.70	0.70	0.09	Pass

Level [dB]	Error [dB] Lów	er limit (dB) - Uppe		Expanded certainty [dB]				
140.00	-0.03	-0.70	0.70	0.09 Pass				
End of measurement results								

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001



2018-1-5T13:56:14

Page 8 of 24

Certificate Number 2018000271

- Lower Limit ------ Upper Limit

A-weighted 20 dB Gain Broadband Log Linearity: 8,000.00 Hz

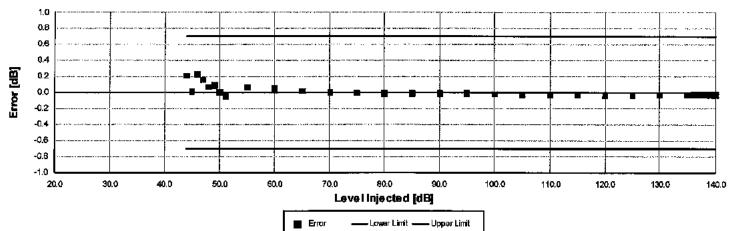
Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

Error

Level [dB]		/erlimit [dB]=//Up	er limit (49 1)	Expanded	Result
21.00	0.33	-0.70	ep a production of the second s	ncertainty [dB]	
21.00			0.70	0.09	Pass
23.00	0.26 0.22	-0.70 -0.70	0.70 0.70	0.09	Pass
	0.22			0.09	Pass
24.00 25.00	0.13	-0.70 -0.70	0.70 0.70	0.09	Pass
26.00	0.13	-0.70		0.09	Pass Daar
27.00	0.10	-0.70	0.70 0.70	0.09	Pass
28.00	0.10	-0.70		0.09	Pass
			0.70	0.09	Pass
29.00	0.06 0.06	-0.70	0.70	0.09	Pass
30.00		-0.70	0.70	0.09	Pass
31.00	0.04	-0.70	0.70	0.09	Pass
32.00	0.04	-0.70	0.70	0.09	Pass
33.00	0.03	-0.70	0.70	0.09	Pass
34.00	0.03	-0.70	0.70	0.09	Pass
35.00	0.01	-0.70	0.70	0.09	Pass
36.00	0.01	-0.70	0.70	0.09	Pass
37.00	0.01	-0.70	0.70	0.09	Pass
38.00	0.01	-0.70	0.70	0.09	Pass
39.00	0.01	-0.70	0.70	0.09	Pass
44.00	0.00	-0.70	0.70	0.09	Pass
49.00	0.00	-0.70	0.70	0.09	Pass
54.00	0.03	-0.70	0.70	0.09	Pass
59.00	0.02	-0.70	0.70	0.09	Pass
64.00	0.01	-0.70	0.70	0.09	Pass
69.00	0.02	-0.70	0.70	0.09	Pass
74.00	0.03	-0.70	0.70	0.09	Pass
79.00	0.00	-0.70	0.70	0.09	Pass
84.00	0.00	-0.70	0.70	0.09	Pass
89.00	0.00	- 0.7 0	0.70	0.09	Pass
94.00	-0.01	-0.70	0.70	0.09	Pass
99.00	-0.01	-0.70	0.70	0.09	Pass
104.00	-0.02	-0.70	0.70	0.09	Pass
109.00	-0.02	-0.70	0.70	0.09	Pass
114.00	0.00	-0.70	0.70	0.09	Pass
115.00	-0.02	-0.70	0.70	0.09	Pass
116.00	-0.01	-0.70	0.70	0.09	Pass

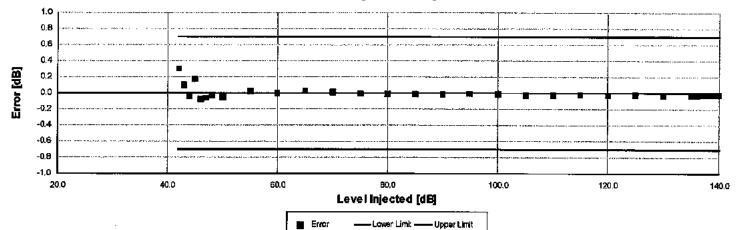
Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North

Certificate Number 20180002/1


Level [dB]	Errón (dB) Lowe	er limit (dB) – Upp	er.limit.[dB] Une	Expanded ertainty [dB]	Result				
117.00	-0.02	-0.70	0.70	0.09	Pass				
118.00	-0.02	-0.70	0.70	0.09	Pass				
119.00	-0.03	-0.70	0.70	0.09	Pass				
120.00	-0.03	-0.70	0.70	0.09	Pass				
End of measurement results									

2018-1-5T13:55:14

1/1 octave level linearity at normal range with 0 dB gain performed according to IEC 61260:2001 4.6, ANSI S.11 (R2009) 4.6


Level[dB]	Error.[dB] La	wer limit [dB] Up	ner limit (dR)	Expanded	Result
			UN CONTRACTOR CONTRACTOR	certainty [dB]	
44.00	0.21	-0.70	0.70	0.09	Pass
45.00	0.02	-0.70	0.70	0.09	Pass
46.00	0.23	-0.70	0.70	0.09	Pass
47.00	0.16	-0.70	0.70	0.10	Pass
48.00	0.07	-0.70	0.70	0.10	Pass
49.00	0.09	-0.70	0.70	0.10	Pass
50.00	0.00	-0.70	0.70	0.09	Pass
51.00	-0.05	-0.70	0.70	0.09	Pass
55.00	0.06	-0.70	0.70	0.09	Pass
60.00	0.05	-0.70	0.70	0.09	Pass
65.00	0.02	-0.70	0.70	0.09	Pass
70.00	0.00	-0.70	0.70	0.09	Pass
75.00	-0.01	-0.70	0.70	0.09	Pass
80.00	-0.02	-0.70	0.70	0.09	Pass
85.00	-0.01	-0.70	0.70	0.09	Pass
90.00	-0.01	-0.70	0.70	0.09	Pass
95.00	-0.01	-0.70	0.70	0.09	Pass
100.00	-0.02	-0.70	0.70	0.09	Pass
105.00	-0.03	-0.70	0.70	0.09	Pass
1 10.00	-0.03	-0.70	0.70	0.09	Pass
115.00	-0.03	-0.70	0.70	0.09	Pass
120.00	~0.04	-0.70	0.70	0.09	Pass
125.00	-0.04	-0.70	0.70	0.09	Pass
130.00	-0.03	-0.70	0.70	0.09	Pass
135.00	-0.03	-0.70	0.70	0.09	Pass
136.00	-0.03	-0.70	0.70	0.09	Pass
137.00	-0.03	-0.70	0.70	0.09	Pass
138.00	-0.03	-0.70	0.70	0.09	Pass
139.00	-0.03	-0.70	0.70	0.09	Pass
140.00	-0.03	-0.70	0.70	0.09	Pass
	End of n	nessurement results			

-- End of measurement results--

1/3 Octave Log Linearity: 1,000.00 Hz

1/3 octave level linearity at normal range with 0 dB gain performed according to IEC 61260:2001 4.6, ANSI S.11 (R2009) 4.6

Level[dB]	Error.[dB]	Lower limit [dB] Uppe	r limit (dB)	Expanded Result
42.00	0.30	-0.70	0.70	0.09 Pass
43.00	0.10	-0.70	0.70	0.10 Pass
44.00	-0.04	-0.70	0.70	0.10 Pass
45.00	0.17	-0.70	0.70	0.10 Pass
46.00	-0.08	-0.70	0.70	0.09 Pass
47.00	-0.06	-0.70	0.70	0.09 Pass
48.00	-0.03	-0.70	0.70	0.09 Pass
50.00	-0.06	-0.70	0.70	0.09 Pass
55.00	0.02	-0.70	0.70	0.09 Pass
60.00	0.00	-0.70	0.70	0.09 Pass
65.00	0.03	-0.70	0.70	0.09 Pass
70.00	0.01	-0.70	0.70	0.09 Pass
75.00	-0.01	-0.70	0.70	0.09 Pass
80.00	-0.02	-0.70	0.70	0.09 Pass
85.00	-0.02	-0.70	0.70	0.09 Pass
90.00	-0.02	-0.70	0.70	0.09 Pass
95.00	-0.01	-0.70	0.70	0.09 Pass
100.00	-0.02	-0.70	0.70	0.09 Pass
105.00	-0.03	-0.70	0.70	0.09 Pass
110.00	-0.03	-0.70	0.70	0.09 Pass
115.00	-0.02	-0.70	0.70	0.09 Pass
120.00	-0.04	-0.70	0.70	0.09 Pass
125.00	-0.03	-0.70	0.70	0.09 Pass
130.00	-0.03	-0.70	0.70	0.09 Pass
135.00	-0.03	-0.70	0.70	0.09 Pass
136.00	-0.02	-0.70	0.70	0.09 Pass
137.00	-0.02	-0.70	0.70	0.09 Pass
138.00	-0.02	-0.70	0.70	0.09 Pass
139.00	-0.02	-0.70	0.70	0.09 Pass
140.00	-0.02	-0.70	0.70	0.09 Pass
		measurement results		

-- End of measurement results--

arson Davis, a division of PCB Piezotronics, Inc 681 West 820 North 'rovo, UT 84601, United States '16-684-0001

Page 12 of 24

Slow Detector

Ampiltude [dB]	Duration [ms]	Test Result [dB] 1	ower limit (dB) – Uj	oper limit (dB) Un	Expanded certainty [dB]	Result
137.00	200	-7.55	-7.92	-6.92	0.09	Pass
	2	-27.16	-29.99	-25.99	0.09	Pass
		— End of 1	measurement results-			
		Fa	st Detector			
	-	61672-3:2013 18 and Al 8.4.2 and ANSI S1.4-201		18 for compliance to IE0	C 61672-1:2013 5.	9,
mplitude [dB]	Duration [116]	Test Result [dB] L	ower limit [dB] Up	per limit (dB). Uni	Expanded ertainty [dB]	Result
137.00	200.00	-1.09	-1.48	-0.48	0.09	Pass
	2.00	-18.35	-19.49	-16.99	0.09	Pass
	0.25	-27.31	-29.99 neasurement results—	-25.99	0.09	Pass
ourst response perf	ormed according to IEC	61677 9-2049 19 and A		19 fou compliance to 15		
0651:2001 9.4.2, A		8.4.2 and ANSI S1.4-201				.9,
		8.4.2 and ANSI S1.4-201	4 Part 1: 5.9	are limit filb	C 61672-1:2013 5 Expanded retainty [dB]	.9, Result
	NSI S1.4:1983 (R2006) Duration (ms) 200.00	8.4.2 and ANSI S1.4-201 Test Result [dB] L -7.01	4 Part 1: 5.9 ower limit [dR] 10p -7.49	per limit (dB) -6.49	Expanded	Result Pass
mplitude [dB]	NSI S1.4:1983 (R2006) Duration (ms) 200.00 2.00	8.4.2 and ANSI \$1.4-201 Test Result [dB] L -7.01 -27.04	4 Part 1: 5.9 ower limit [dB] /Up -7.49 -28.49	per limit (dB) -6.49 -25.99	Expanded sertainty [dB] 0.09 0.09	Result Pass Pass
mplitude [dB]	NSI S1.4:1983 (R2006) Duration (ms) 200.00	8.4.2 and ANSI \$1.4-201 Test Result [dB] 12 -7.01 -27.04 -36.15	4 Part 1: 5.9 over limit [dB]	oper: Hants (dB) -6.49 -25.99 -35.02	Expanded sertainty [dB] 0.09	Result Pass
mplitude [dB]	NSI S1.4:1983 (R2006) Duration (ms) 200.00 2.00	8.4.2 and ANSI \$1.4-201 Test Result [dB] 12 -7.01 -27.04 -36.15	4 Part 1: 5.9 ower limit [dB] /Up -7.49 -28.49	oper: Hants (dB) -6.49 -25.99 -35.02	Expanded sertainty [dB] 0.09 0.09	Result Pass Pass
amplitude [dB]	NSI S1.4:1983 (R2006) Duration (ms) 200.00 2.00	8.4.2 and ANSI \$1.4-201 Test Result [dB] E -7.01 -27.04 -36.15 End of n	4 Part 1: 5.9 over limit [dB]	oper: Hants (dB) -6.49 -25.99 -35.02	Expanded sertainty [dB] 0.09 0.09	Result Pass Pass
mplitude (dB) 137.00 ghted peak sound le	NSI S1.4:1983 (R2006) Durătluă (dus) 200.00 2.00 0.25	8.4.2 and ANSI \$1.4-201 Test Result [dB] E -7.01 -27.04 -36.15 End of n Pe ng to IEC 61672-3:2013 15	4 Part 1: 5.9 ower limit [dB]	per limit (dB) -6.49 -25.99 -35.02	Expanded. sertminty [dB] 0.09 0.09 0.09	Result Pass Pass
mplitudt (dB) 137.00 ghted peak sound k 1672-1:2013 5.13 ar	NSI S1.4:1983 (R2006) Duration (dds) 200.00 2.00 0.25 evel performed accordined ANSI S1.4-2014 Page	8.4.2 and ANSI \$1.4-201 Test Result [dB] E -7.01 -27.04 -36.15 End of n Pe og to IEC 61672-3:2013 18 t 1: 5.13	4 Part 1: 5.9 ower limit [dB] 10p -7.49 -28.49 -39.02 neasurement results eak C-weight 9 and ANSI S1.4-2014	per limit (dB) -6.49 -25.99 -35.02 Part 3: 19 for compliant	Expanded retrainty (dB) 0.09 0.09 0.09	Regult Pass Pass Pass
smplitude (dB) 137.00 ghted peak sound k 1672-1:2013 5.13 ar	NSI S1.4:1983 (R2006) Durătluă (dus) 200.00 2.00 0.25	8.4.2 and ANSI \$1.4-201 Test Result [dB] E -7.01 -27.04 -36.15 End of n Pe og to IEC 61672-3:2013 18 t 1: 5.13	4 Part 1: 5.9 ower limit [dB] Up -7.49 -28.49 -39.02 neasurement results eak C-weight 9 and ANSI S1.4-2014	oper: Hants (dB) -6.49 -25.99 -35.02 Part 3: 19 for compliant	Expanded certainty (dB) 0.09 0.09 0.09 ce to Expanded	Result Pass Pass
amplitude (dB) 137.00 ghted peak sound la 1672-1:2013 5.13 a rel (dB)	NSI S1.4:1983 (R2006) Duration (dds) 200.00 2.00 0.25 evel performed accordined ANSI S1.4-2014 Page	8.4.2 and ANSI \$1.4-201 Test Result [dB] E -7.01 -27.04 -36.15 End of n Pe og to IEC 61672-3:2013 18 t 1: 5.13	4 Part 1: 5.9 ower limit [dB] 10p -7.49 -28.49 -39.02 neasurement results eak C-weight 9 and ANSI S1.4-2014	oper: Hants (dB) -6.49 -25.99 -35.02 Part 3: 19 for compliant	Expanded retrainty (dB) 0.09 0.09 0.09	Regult Pass Pass Pass
Amplitude (dB) 137.00 ghted peak sound le 1672-1:2013 5.13 a rel (dB)	NSI S1.4:1983 (R2006) Duration (ms) 200.00 2.00 0.25 evel performed accordin nd ANSI S1.4-2014 Par Frequency [Hz] 31.50	8.4.2 and ANSI \$1.4-201 Test Result [dB] E -7.01 -27.04 -36.15 End of n Pe ig to IEC 61672-3:2013 18 t1: 5.13 Test Result [dB] E 138.22	4 Part 1: 5.9 ower limit [dB] 10p -7.49 -28.49 -39.02 neasurement results eak C-weight 9 and ANSI S1.4-2014 ower limit [dB] 0; 135.50	per: lient: [dB] -6.49 -25.99 -35.02 Part 3: 19 for compliant per: limit: [dB]* Us 139.50	Expanded sertainty [dB] 0.09 0.09 0.09 0.09 ce to Expanded securities certainty [dB] 0.09	Result Pass Pass Pass Result
Amplitude (dB) 137.00 ighted peak sound le	NSI S1.4:1983 (R2006) Durătluit (tus) 200.00 2.00 0.25 evel performed accordin nd ANSI S1.4-2014 Pau Frequency [Hz]	8.4.2 and ANSI \$1.4-201 Test Result [dB] L -7.01 -27.04 -36.15 End of 1 Pe ig to IEC 61672-3:2013 19 t 1: 5.13 Test Result [dB] L	4 Part 1: 5.9 over: limit [dB] [17] -7.49 -28.49 -39.02 neasurement results eak C-weight 9 and ANSI S1.4-2014 over: limit [dB] [3]	per: limit/(dB) -6.49 -25.99 -35.02 Part 3: 19 for compliant per: limit [dB]	Expanded sertainty [dB] 0.09 0.09 0.09 0.09	Regult Pass Pass Pass

-- End of measurement results-

137.16

137.16

136.40

136.40

138.40

138.40

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

500.00

500.00

0.09

0.09

2018-I-5T13:56:14

135.00, Negative

135.00, Positive

Page 13 of 24

Pass

Pass

Peak Z-weight

Z-weighted peak sound level performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Amplitude [dB] Dur	ation[µs]	Test]	Result [dB] Lio	wer limit [dB] U	per limit (dB)	Expanded	Result
136.00	100	Negative Pulse	136.34	133.99	137.99	ertainty [dB]	6.99 8 .27% (1
130.00	100	Positive Pulse	136.35	134.01	138.01	0.09 0.09	Pass Pass
126.00	100	Negative Pulse	126.36	124.01	128.01	0.09	Pass
	100	Positive Pulse	126.34	124.01	128.01	0.09	Pass
116.00	100	Negative Pulse	11 6 .37	114.02	118.02	0.09	Pass
	100	Positive Pulse	116.34	114.01	118.01	0.09	Pass
106.00	100	Negative Pulse	106.35	104.01	108.01	0.09	Pass
	100	Positive Pulse	106.35	104.00	108.00	0.09	Pass
			End of mossnro	mant rogulte			

-- End of measurement results--

Overload Detector

Overload indication performed according to IEC 61672-3:2013 20 and ANSI S1.4-2014 Part 3: 20 for compliance to IEC 61672-1:2013 5.11, IEC 60804:2000 9.3.5, IEC 61252:2002 11, ANSI S1.4 (R2006) 5.8, and ANSI S1.4-2014 Part 1: 5.11, ANSI S1.25 (R2007) 7.6, ANSI S1.43 (R2007) 7

Measurement	Test Result [dB] Lon	er limit (dB) U	pper limit (dB). Un	Expanded sertainty.[dB]	Result		
Positive	141.10	140.00	142.00	0.09	Pass		
Negative	141.00	140.00	142.00	0.09	Pass		
Difference	0.10	-1.50	1.50	0.10	Pass		
End of measurement results							

Peak Rise Time

Peak rise time performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Amplitude [dB] Duratio	m-[113]	n	st Result [JB] L	zower limit [dB] – Up	per limit [dB]- Unc	Expanded ertainty [dB]	Result	
137.00	40	Negative Pulse	136.52	135.02	137.02	0.09	Pass	
		Positive Pulse	136.52	135.00	137.00	0.09	Pass	
	30	Negative Pulse	135.59	135.02	137.02	0.09	Pass	
		Positive Pulse	135.55	135.00	137.00	0.09	Pass	
End of measurement results								

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2018-1-5T13:56:14

Page 14 of 24

Positive Pulse Crest Factor

200 µs puise tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured accord	ing to IEC 60651:2001	9.4.2 and ANSI S1.4:19	83 (R2006) 8.4.2		
* 251913/97139653/6554/37059732 (Street St. 4.12) (St. 4.12)		Test Result [dB]	Limits (dB) Expa	nded Uncertainty [dB]	Result
138.00	<u>3</u>	OVLD	± 0.50	0.09	Pass
130.00	5	OVLD	± 1.00	0.09	Pass
	10	OVLD	± 1.50	0.09	Pass
400.00	3	-0.08	± 0.50	0.10	Pass
128.00	5	-0.06	± 1.00	0.09	Pass
	10	-0.08 OVLD	± 1.50	0.09	Pass
110.00	3	-0.09	± 0.50	0.10	Pass
118.00	5		± 1.00	0.09	Pass
		-0.07	± 1.50	0.09	Pass
(00.00	10	-0.04 -0.08	± 0.50	0.13	Pass
108.00	3	-	± 1.00	0.09	Pass
	5	-0.08	± 1.50	0.09	Pass
	10	-0.11 End of me	asurement results		

Negative Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured accord	ing to IEC 60651:200	1 9.4.2 and ANS) S1.4:						
Amplitude [dB] C	rest Factor	fest Result [dB]	Linite (CB)	Lypanded Uncertainty (dB)	Result			
138.00	<u>an mana an </u>	OVLD	± 0.50	0.09	Pass			
138.00	5	OVLD	± 1.00	0.09	Pass			
	10	OVLD	± 1.50	0.09	Pass			
400.00	3	-0.08	± 0.50	0.09	Pass			
128.00	5	-0.07	± 1.00	0.09	Pass			
		OVLD	± 1.50	0.09	Pass			
	10		± 0.50	0.09	Pass			
118.00	3	-0.08	± 1.00	0.09	Pass			
	5	-0.09		0.09	Pass			
	10	-0.04	± 1.50	0.09	Pass			
108.00	3	-0.07	± 0.50	0.09	Pass			
	5	-0.08	± 1.00		Pass			
	10	-0.11	± 1.50	0.09	1 000			
— End of measurement results								

Tone Burst

2kHz tone burst tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

hund managed according to JEC 60851:2001 9.4.2 and ANSI S1.4:1983 (F	(2006) 8.	4.2
- as here managed maggined econding to Int. BUDD12001 9.4.2 and ANOLY 1.7. 1999 V		

Tone burst response measured ac	cording to IEC 60651:	2001 9.4.2 and ANSI S	1.4:1983 (R2006) 8.4.2		
PTTMEREPUTATION AND A LOCAL AND A COMPANY A A COMPANY AND A COMPANY A		est Result [AB]	Limits [dB] Exp	anded Uncertainty [dB]	Result
138.00	3	OVLD	± 0.50	0.09	Pass
100.00	5	OVLD	± 1.00	0.09	Pass
409.00	3	-0.06	± 0.50	0.12	Pass
128.00	5	-0.06	± 1.00	0.09	Pass
((0.00	2	-0.06	± 0.50	0.09	Pass
118.00	3	+	± 1.00	0.09	Pass
	5	0.00		0.09	Pass
108.00	3	-0.07	± 0.50	0.09	Pass
	5	-0.03	± 1.00	0.03	
		- End of meas	arement results—		

Impulse Detector - Repeat

Impulse Detector measured acc	cording to IEC 60651;2	2001 9.4.3 and ANSI	\$1.4:1983 (R2006) 8.4.3			
					Expanded	CERTERNAL
Amplitude [dB] Repith	tion Rate IIIzi - Tee	t Result IdBl I I	wer limit IdBl 🛸 Linne	r limir (AR)		Result
				Un Un	certainty [dB]	9 3 2 3 3 3 3 4
140	100.00	-2.82	-3.71	-1.71	0.09	Pass
	20.00	-7.57	-9.57	-5.57	D.09	Pass
	2.00	-8.91	-10.76	-6.76		
-			+		0.09	Pass
Step	2.00	4.99	4.00	6.00	0.11	Pass
		— End of n	neasurement results			

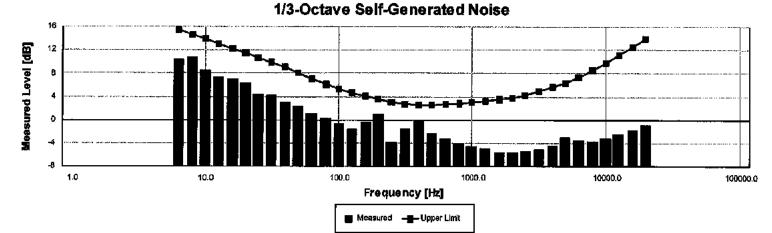
Impulse Detector - Single

Impulse Detector measured acc	ording to IEC 60651:2	001 9.4.3 and ANSI	S1.4:1983 (R2006) 8.4.	3		
Amplitude [dB]	Duration [ms] Tes	t Result [dB] L	ower limit [dB] Up	ael Umir (dB)	Expanded sertainty [dB]	Result
140	20.00	-3.66	-5.11	-2.11	0.09	Pass
	5.00	-8.95	-10.76	-6.76	0.10	Pass
	2.00	-12.61	-14.55	-10.55	0.11	Pass
Step	2.00	10.08	9.00	11.00	0 .11	Pass
End of measurement results						

Gain

Gain measured according to IEC 61672-3:2013 17.3 and 17.4 and ANSI S1.4-2014 Part 3: 17.3 and 17.4

Measurement	Test Rtsulf [dB] Lov	ver limit [dB] — Up		Expanded certainty [dB]	Result
0 dB Gain	94.02	93.89	94.09	0.09	Pass
0 dB Gain, Linearity	28.95	28.29	29.69	0.10	Pass
20 dB Gain	94.01	93.8 9	94.09	0.09	Pass
20 dB Gain, Linearity	23.72	23.29	24.69	0.12	Pass
OBA Low Range	94.00	93.89	94.09	0.09	Pass
OBA Normal Range	93.99	93.20	94.80	0.09	Pass
-	End of me	easurement results			


and of measurement results

:018-1-5T13:56:14

Page 16 of 24

The SLM is set to low range and 20 dB gain.

Frequency [Hz]	Test Result.[dB]	Upper limit [dB]	Result
6.30	10.52	15.50	Pass
8.00	10.77	14.70	Pass
10.00	8.61	13.90	Pass
12.50	7.40	13.10	Pass
16.00	7.04	12.30	Pass
20.00	6.39	11.50	Pass
25.00	4.48	10.70	Pass
31.50	4.30	9.90	Pass
40.00	3.07	9.10	Pass
50.00	2.29	8.10	Pass
63.00	1,10	7.10	Pass
80.00	0.21	6.10	Pass
100.00	-0.51	5.30	Pass
125.00	-1.53	4.70	Pass
160.00	-0.37	4.10	Pass
200.00	1.01	3.60	Pass
250.00	-3.83	3.10	Pass
315.00	-1.56	2.70	Pass
400.00	-0.10	2.60	Pass
500.00	-2.24	2.60	Pass
630.00	-3.16	2.70	Pass
800.00	-4.12	2.80	Pass
1,000.00	-4.55	3.00	Pass
1,250.00	-4.92	3.20	Pass
1,600.00	-5.67	3.50	Pass
2,000.00	-5.64	3.80	Pass
2,500.00	-5.35	4.30	Pass
3,150.00	-5.00	4.90	Pass
4,000.00	-4.45	5.70	Pass
5,000.00	-3.08	6.40	Pass
6,300.00	-3.57	7.40	Pass
8,000.00	-3.75	8.60	Pass
10,000.00	-3.21	9.80	Pass
12,500.00	-2.55	11.20	Pass
16,000.00	-1.72	12.60	Pass
20,000.00	-0.88	14.00	Pass
	- End of measuren	nent results	

Broadband Noise Floor

Self-generated noise measured according to IEC 61672-3:2013 11.2 and ANSI S1.4-2014 Part 3: 11.2

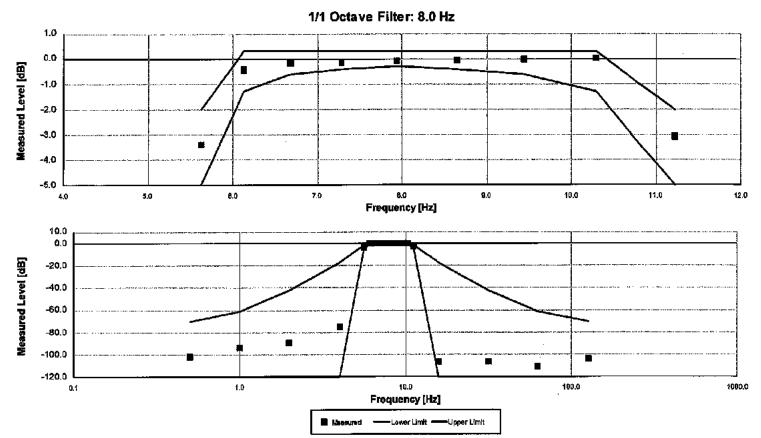
 Self-generated noise measured according 	to IEC 61672-3:2013 11.2 and ANSI 51.4	-2014 Faild, II.2 Decembric of the structure of the second structure of the second structure of the second structure of the second	
		- In stand	Result
Measurement	Test Result [dB]	Upper limit [dB];	
		15.00	Pass
A-weight Noise Floor	8.07		• • • •
C-weight Noise Floor	13.13	17.30	Pass
	22.48	24.50	Pass
Z-weight Noise Floor	22.40	FF	

-- End of measurement results--

Total Harmonic Distortion

Measured using 1/3-Octave filters

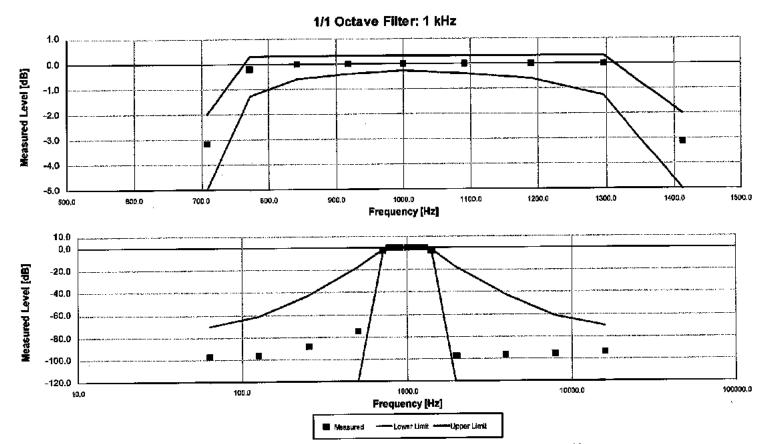
Measured using 1/3-Octave filters		teranterari de la construcción de l			7980199327 2 000
		ver Limit [dB] U	nner filmit (dB)	Expanded	Result
Measurement	Ten Result [dB] Loy		Zeren Karalan dar kara kara kara kara kara kara kara	certainty [dB]	Baaa
	137.45	137.20	138.80	0.09	Pass
10 Hz Signal	••···		-60.00	0.01	Pass
THD	-73.84		•••		Pass
THD+N	-66.52		-60.00	0.01	F/855
		f measurement result	F		
	EBU 0	T Incash culcut learn	a		


Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2018-1-5T13:56:14

Page 18 of 24

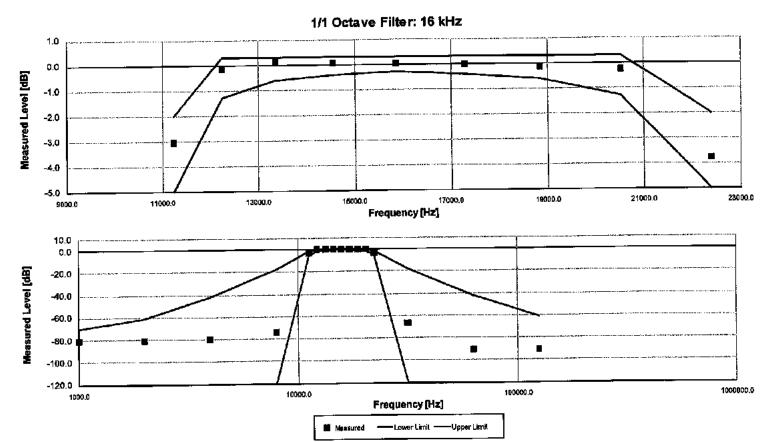
The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004


Frequency [Hz]	Ten Result [dB] Low	er limit [dB] — Up	er limit (dB) Und	Expanded sertainty [dB]	Result
0.50	-101.96	1999 - Serent State of Serence - Inf	-70.00	2.40	Pass
1.00	-93.80	-inf	-61.00	2.20	Pass
2.00	-89.14	-inf	-42.00	0.24	Pass
3.98	-75.04	-inf	-17.50	0.23	Pass
5.62	-3.41	-5.00	-2.00	0.09	Pass
6.13	-0.43	-1.30	0.30	0.09	Pass
6.68	-0.18	-0.60	0.30	0.09	Pass
7.29	-0.14	-0.40	0.30	0.09	Pass
7.94	-0.11	-0.30	0.30	0.09	Pass
8.66	-0.07	-0.40	0.30	0.09	Pass
9.44	-0.02	-0.60	0.30	0.09	Pass
10.29	0.02	-1.30	0.30	0.09	Pass
11.22	-3.06	-5.00	-2.00	0.09	Pass
15.85	-106.16	-inf	-17.50	1.30	Pass
31.62	-106.39	-inf	-42.00	1.70	Pass
63.10	-110.94	-inf	-61.00	1.10	Pass
125.89	-103.30	-i nf	-70.00	1.80	Pass
	End of me	asurement results-	-		

2018-1-ST13:56:14

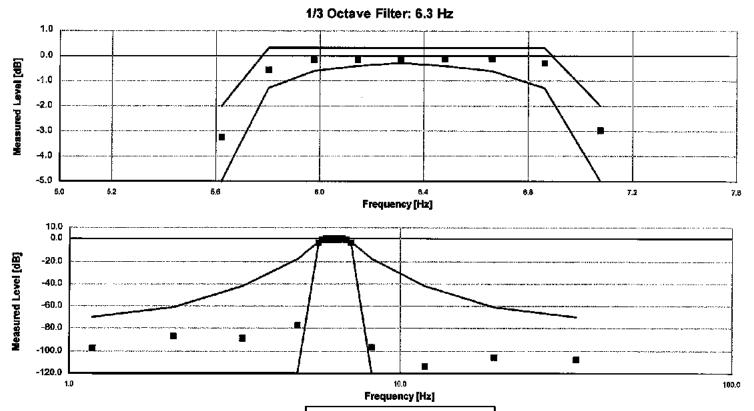
Certificate Number 2018/00/271

The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004


Frequency.[Hz]	Test Result [dB] Low	er limit (dB)-«Up)	er limit (dB); . Uni	Expanded tertaibly [dB]	Result
63.10	-96.84	-inf	-70.00	0.28	Pass
125.89	-96.48	-inf	-61.00	0.32	Pass
251.19	-88,19	-inf	-42.00	0.18	Pass
501.19	-74.64	-inf	-17.50	0.09	Pass
707.95	-3.16	-5.00	-2.00	0.09	Pass
771.79	-0.23	-1.30	0.30	0.09	Pass
841.40	-0.03	-0.60	0.30	0.09	Pass
917.28	-0.02	-0.40	0.30	0.09	Pass
1,000.00	0.00	-0.30	0.30	0.09	Pass
1,090.18	-0.03	-0.40	0.30	0.09	Pass
1,188.50	-0.03	-0.60	0.30	0.09	Pass
1,295.69	0.00	-1.30	0.30	0.09	Pass
1,412.54	-3.14	-5.00	-2.00	0.09	Pass
1,995.26	-96.88	-inf	-17.50	0.26	Pass
3,981,07	-96.65	-Inf	-42.00	0.26	Pass
7,943.28	-95.74	-inf	-61.00	0.31	Pass
15,848.93	-93.79	-inf	-70.00	0.24	Pass
	- End of me	asurement results-			

en van gesternen staten i sterne als die sterne in die

2018-1-5T13;56:14


The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004

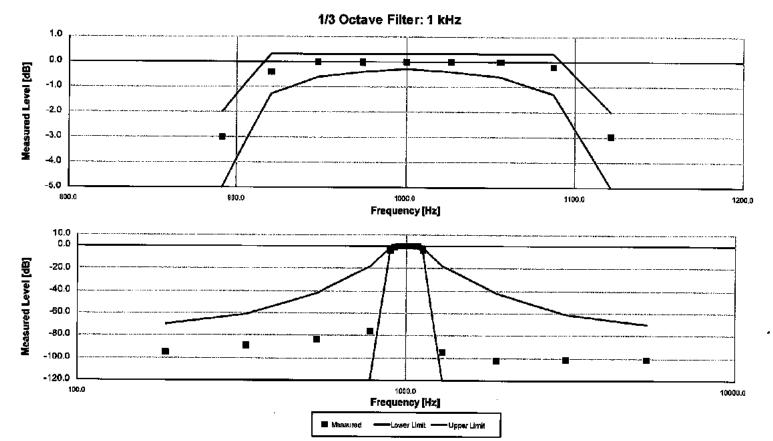
e SLM is set to normal range and c c Frequency [Hz]	Test Result [dB] Los	the second s	per llinif [dB]	Expanded	Result
		-inf	-70.00	certainty [dB] 0.11	Pass
1,000.00	-80.58				Pass
1,995.26	-80.51	-inf	-61.00	0.09	
3,981.07	-80.30	-inf	-42.00	0.10	Pass
7,943.28	-73.77	-inf	-17.50	0.10	Pass
11,220.18	-3.04	-5.00	-2.00	0.09	Pass
12,232.07	-0.12	-1.30	0.30	0.09	Pass
13,335.21	0.09	-0.60	0.30	0.09	Pass
14,537.84	0.07	-0.40	0.30	0.09	Pass
15,848.93	0.03	-0.30	0.30	0.09	Pass
17,278.26	-0.02	-0.40	0.30	0.09	Pass
18,836.49	-0.14	-0.60	0.30	0.09	Pass
20,535.25	-0.26	-1.30	0.30	0.09	Pass
22,387.21	-3.76	-5.00	-2.00	0.09	Pass
-	-66.76	-inf	-17.50	0.09	Pass
31,622.78	-90.86	-inf	-42.00	0.10	Pass
63,095.73 125,892.54	-91.09	-inf	-61.00	0.09	Pass
120,002.07		easurement results-	-		

2018-1-5T13:56:14

Measured — Lower Limit — Upper Limit

The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004

Frequency [Hz]	Test Result [dB] Lo	wer limit [dB] — Up	por llinit (d B)	Expanded certainty [dB]	Résult
1.17	-97.44	-inf	-70.00	0.36	Pass
2.07	-87.17	-inf	-61.00	0.11	Pass
3.35	-88.21	-inf	-42.00	0.09	Pass
4.87	-76.78	-inf	-17.50	0.10	Pass
5.62	-3.23	-5.00	-2.00	0.09	Pass
5.80	~ 0 . 58	-1.30	0.30	0.09	Pass
5.98	-0.16	-0.60	0.30	0.09	Pass
6 .15	-0.16	-0.40	0.30	0.09	Pass
6.31	-0.14	-0.30	0.30	0.09	Pass
6.48	-0.13	-0.40	0.30	0.09	Pass
6.66	-0.12	-0.60	0.30	0.09	Pass
6.86	-0.30	-1.30	0.30	0.09	Pass
7.08	-2.95	-5.00	-2.00	0.09	Pass
8.17	-96.74	-inf	-17.50	0.34	Pass
11.87	-113.95	-inf	-42.00	1,70	Pass
19.27	-105.83	-inf	-61.00	2.50	Pass
34.02	-107.82	-inf	-70.00	2.10	Pass
	End of m	easurement results-			

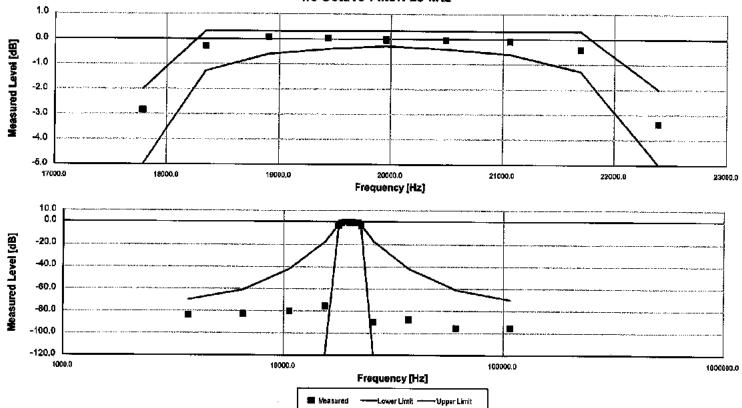


018-1-5T13:56:14

Page 22 of 24

D0001.8407 Rev B

The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004


Frequency [Hz]	Test Result [dB] 1	ower limit [dB] Up	per limic (dB)	Expanded certainty (dB)	Result
185.46	-95.07	-inf	-70.00	0.17	Pass
327.48	-89.22	-inf	-61.00	0.12	Pass
531.43	-83.10	-inf	-42.00	0.25	Pass
772.57	-76.23	-inf	-17.50	0.09	Pass
891.25	~3.00	-5.00	-2.00	0.09	Pass
919.58	-0.41	-1.30	0.30	0.09	Pass
947.19	0.00	-0.60	0.30	0.09	Pass
974.02	-0.04	-0.40	0.30	0.09	Pass
1,000.00	0.00	-0.30	0.30	0.09	Pass
1,026.67	0.00	-0.40	0.30	0.09	Pass
1,055.75	-0.01	-0.60	0.30	0.09	Pass
1,087.46	-0.23	-1.30	0.30	0.09	Pass
1,122.02	-2.97	-5.00	-2.00	0.09	Pass
1,294.37	-94.99	-inf	-17.50	0.25	Pass
1,881.73	-101.97	-inf	-42.00	0.40	Pass
3,053.65	-101.07	-inf	-61.00	0.44	Pass
5,391.95	-101,01	-inf	-70.00	0.40	Pass
	End of 1	measurement results-	-	••••	

2018-1-5T13;56;14

The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61280:2001 and ANSI S1.11:2004

Frequenty [Hz]	Test Result [dB]	· Lower limit [dB]	Upper lineit [dB]	Expanded Uncertainty [dB]	Result	
3,700.45	-83.51	-inf	-70.00	0.11	Pass	33
6,534.02	-82.27	-inf	-61.00	0.11	Pass	
10,603.35	-79.65	-inf	-42.00	0.13	Pass	
15,414.88	-75.72	-inf	-17.50	0.09	Pass	
17,782.79	-2.83	-5.00	-2.00	0.09	Pass	
18,347.97	-0.31	-1.30	0.30	0.09	Pass	
18,898.93	0.08	-0.60	0.30	0.09	Pass	
19,434.23	0.02	-0.40	0.30	0.09	Pass	
19,952.62	-0.03	-0.30	0.30	0.09	Pass	
20,484.85	-0.05	-0.40	0.30	0.09	Pass	
21,065.07	-0.11	-0.60	0.30	0.09	Pass	
21,697.62	-0.41	-1.30	0.30	0.09	Pass	
22,387.21	-3.36	-5.00	-2.00	0.09	Pass	
25,826.16	-89.51	-inf	-17.50	0.12	Pass	
37,545.40	-87.53	-inf	-42.00	0.11	Pass	
60,928.37	-94.95	-inf	-61.00	0.12	Pass	
107,583.52	-94.92	-inf	-70.00	0.11	Pass	
	End	l of measurement rest	ults—			

- End of Report--

Signatory: Ron Harris

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2018-1-5T13:56:14

Page 24 of 24

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No.41311

Instrument: Model: Manufacturer: Serial number: Composed of:

Microphone 377B20 **PCB** Piezotronics 110889

ate Calibro	ated: 8/1 !	5 /2018 Cal	Due:
Status:		Received	Sent
In toleranc	e:	X	· X
Out of tole	rance:		
See comme	ents:		
Contains n	on-accred	ited tests:	res <u>X</u> No
Address:	3 Mill &	Main Place, S	uite 250

Customer: Tel/Fax:

Epsilon Associates, Inc. 978-461-6235/978-897-0099

Maynard, MA 01754

Tested in accordance with the following procedures and standards: Calibration of Measurement Microphones, Scantek, Inc., Rev. 2/25/2015

Instrumentation used for calibration: N-1504 Norsonic Test System:

Instrument - Manufacturer	Description	S/N	Cal. Date	Traceability evidence	
	Description	3/14		Cal. Lab / Accreditation	Cal. Due
483B-Norsonic	SME Cal Unit	31061	Jul 30, 2018	Scantek, Inc./ NVLAP	Jul 30, 2019
DS-360-SRS	Function Generator	88077	Sep 15, 2016	ACR Env./ A2LA	Sep 15, 2018
34401A-Agilent Technologies	Digital Voltmeter	MY47011118	Sep 20, 2017	ACR Env./ AZLA	Sep 20, 2018
HM30-Thommen	Meteo Station	1040170/39633	Oct 25, 2017	ACR Env./ A2LA	Oct 25, 2018
PC Program 1017 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	
1253-Norsonic	Calibrator	28326	Nov 10, 2017	Scantek, Inc./ NVLAP	Nov 10, 2018
1203-Norsonic	Preamplifier	92268	Oct 18, 2017	Scantek, Inc./ NVLAP	Oct 18, 2018
4180-Brüel&Kjær	Microphone	2246115	Oct 24, 2017	DANAK / DPLA	Oct 24, 2019

Instrumentation and test results are traceable to SI - BIPM through standards maintained by NPL (UK) and NIST (USA)

Calibrated by:	Jereny Gotwalt	Authorized signatory:	Steven E. Marshall
Signature	- With	Signature	Strien Ellaring
Date	8/15/18	Date	8/16/2018

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Callbration Lab\Mic 2018\PCB377B20_110889_M1.doc

Page 1 of 2

				1	MEASUREMENT
	CLAUSES / METHODS ¹ FROM PROCEDURES		NOT MET	NOT	EXPANDED
				TESTED	UNCERTAINTY
				<u>.</u>	(coverage factor 2)
Open circuit sensi	tivity (insert voltage method, 250 Hz)	X			See below
		ľ.			63 - 200Hz: 0.3 dB
		· ·			200 – 8000 Hz: 0.2 dB
	Actuator response	x			8 – 10 kHz: 0.5 dB
					10 – 20 kHz: 0.7 dB
Į					20 – 50 kHz: 0.9 dB
					50 – 100 kH2: 1.2 dB
Frequency					63 – 200Hz: 0.3 dB
response		x	•		200 – 4000 Hz: 0.2 dB
1	FF/Diffuse field responses		· .		4 – 10 kHz; 0.6 dB
				1 . J	10 – 20 kHz: 0.9 dB
					20 – 50 kHz: 2.2 dB
	· · · · · · · · · · · · · · · · · · ·				50 – 100 kHz: 4.4 dB
					31.5 - 125 Hz: 0.16 dB
	Scantek, Inc. acoustical method			x	250, 1000 Hz: 0.12 dB
	sourcey management method	1 1		│ ^ .	2 - 8 kHz: 0.8 dB
			12.5 – 16 kHz: 2.4 dB		

Results summary: Device was tested and complies with following clauses of mentioned specifications:

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

2 Results are normalized to the reference conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Note: The free field/diffuse field characteristics were calculated based on the measured actuator response and adjustment coefficients as provided by the manufacturer. The uncertainties reported for these characteristics may include assumed uncertainty components for the adjustment coefficients.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
21.5 ± 1.0	100.09 ± 0.020	48.1 ± 2.0

Main measured parameters:

Tone frequency (Hz)	Measured ⁴ /Acceptable Open circuit sensitivity (dB re 1V/Pa)	Sensitivity (mV/Pa)
250	-26.99 ± 0.12/ 26.0 ±1.5	44.72

⁴ The reported expanded uncertainty is calculated with a coverage factor k=2.00

Tests made with following attachments to instrument and auxiliary devices:

Protection grid mounted for sensitivity measurements		
Actuator type: G.R.A.S. RA0014	 <u>.</u>	

Measured Data: Found on Microphone Test Report # 41311 of one page.

Place of Calibration: Scantek, Inc.

6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2018\PCB377B20_110889_M1.doc

Page 2 of 2

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No.41310

Instrument:	Sound Level Meter
Model:	831
Manufacturer:	Larson Davis
Serial number:	0001993
Tested with:	Microphone 377B20 s/n 110889
	Preamplifier PRM831 s/n 015260
Typę (class):	1
Customer:	Epsilon Associates, Inc.
Tel/Fax:	978-461-6235 / 978-897-0099

Status:	-	Received	Sent
In toleran	ce:	X	. X
Out of tol	erance:	·.	
See comm	ents:		
Contains i	non-accred	lited tests:	Yes <u>X</u> No
Calibratio	n service: _	Basic X	Standard
Address:	3 Mill &	Main Place,	Suite 250
		d, MA 01754	

Tested in accordance with the following procedures and standards:

- Calibration of Sound Level Meters, Scantek Inc., Rev. 6/26/2015
- SLM & Dosimeters Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

instrument - Manufacturer	Description	C (1)	C-L D-L-	Traceability evidence	
insu unient - Manufacturer	Description	S/N	Cal. Date	Cal. Lab / Accreditation	Cal. Due
483B-Norsonic	SME Cal Unit	31061	Jul 30, 2018	Scantek, Inc./ NVLAP	Jul 30, 2019
DS-360-SRS	Function Generator	88077	5ep 15, 2016	ACR Env./ A2LA	Sep 15, 2018
34401A-Agilent Technologies	Digital Voltmeter	MY47011118	Sep 20, 2017	ACR Env./ A2LA	Sep 20, 2018
HM30-Thommen	Meteo Station	1040170/39633	Oct 25, 2017	ACR Env./ A2LA	Oct 25, 2018
PC Program 1019 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, inc.	-
1251-Norsonic	Calibrator	30878	Nov 10, 2017	Scantek, Inc./ NVLAP	Nov 10, 2018

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
21.3	100.06	47.2

Signature Signature Signature Marshall	Calibrated by:	Jeremy Gotwalt	Authorized signatory:	Steven E. Marshall
Date 8/16/2018 Date 8/16/2018	Signature	matter	Signature	Steven Charson
	Date	8/15/18	Date	8/16/2018

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2018\LD831_0001993_M1.doc

Page 1 of 2

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES ¹ FROM JEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB]
INDICATION AT THE CALIBRATION CHECK FREQUENCY - IEC61672-3 ED.2 CLAUSE 10	Passed	0.15
SELF-GENERATED NOISE - IEC 61872-3 ED.2 CLAUSE 11	Passed	0.3
FREQUENCY WEIGHTINGS: A NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.2
FREQUENCY WEIGHTINGS: C NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.2
FREQUENCY WEIGHTINGS: Z NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.2
FREQUENCY AND TIME WEIGHTINGS AT 1 KHZ JEC 61672-3 ED 2.0 CLAUSE 14	Passed	0.2
LEVEL LINEARITY ON THE REFERENCE LEVEL RANGE - IEC 61672-3 ED.2 CLAUSE 16	Passed	0.25
LEVEL LINEARITY INCLUDING THE LEVEL RANGE CONTROL - IEC 61672-3 ED.2.0 CLAUSE 17	Passed	0.25
TONEBURST RESPONSE - IEC 61672-3 ED.2.0 CLAUSE 18	Passed	0.3
PEAK C SOUND LEVEL - IEC 61672-3 ED.2.0 CLAUSE 19	Passed	0.35
OVERLOAD INDICATION - IEC 61672-3 ED.2.0 CLAUSE 20	Passed	0.25
HIGH LEVEL STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 21	Passed	0.1
LONG TERM STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 15	Passed	0.1
FILTER TEST 1/10CTAVE: RELATIVE ATTENUATION - IEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
FILTER TEST 1/3OCTAVE: RELATIVE ATTENUATION - IEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
COMBINED ELECTRICAL AND ACOUSTICAL TEST - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	See test report

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

² Parameters are certified at actual environmental conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Comments: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2, to demonstrate that the model of sound level meter fully conforms to the requirements in the IEC 61672-2, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger.

Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

Microphone: PCB Piezotronics 377B20 s/n 110889 for acoustica	il test	
Preamplifier: Larson Davis PRM831 s/n 0001993 for all tests		
Other: line adaptor ADP005 (18pF) for electrical tests	······································	
Accompanying acoustical calibrator: none		· ·
Windscreen: none		

Measured Data: in Test Report # 41310 of 9+1 pages.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2018\LD831_0001993_M1.doc

Page 2 of 2

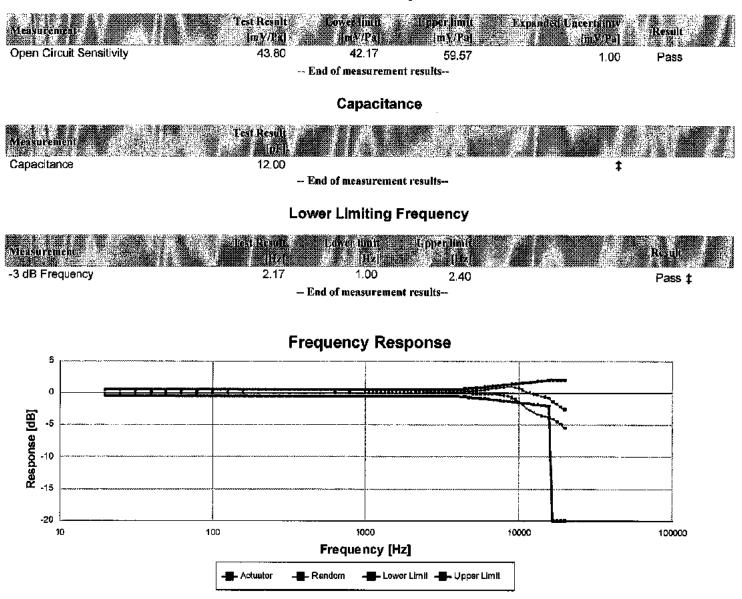
Calibration Certificate

Customer: Epsilon Associates Inc Suite 250 3 Clock Tower Place Maynard, MA 01754, United States

Model Number	377C20	Procedure Number D0001.6			
Serial Number	165015	Technician	Abrahai	n Orteg	а
Test Results	Pass	Calibration Date	19 Oct :	2017	
	As Manufactured	Calibration Due	19 Oct :	2018	
Initial Condition	arial Number 165015 ast Results Pass atial Condition As Manufactured escription 1/2 inch Microphone - RI - 0V valuation Method Tested electrically using an electric	Temperature	23.5	°C	± 0.01 °C
Description	1/2 inch Microphone - RI - 0V	Humidity	28.2	%RH	±0.5 %RH
-		Static Pressure	101.27	kPa	± 0.03 kPa
Evaluation Method Tested electrically using an electro		atic actuator.			
Compliance Standards Compliant to Manufacturer Spec		tions.			

Issuing lab cartifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a t do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.


This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Description	Cal Date	Cal Due	Cal Standard
Larson Davis Modei 2900 Real Time Analyzer	07/17/2017	07/17/2018	001230
Microphone Calibration System	08/30/2017	08/30/2018	001233
1/2" Preamplifier	12/15/2016	12/15/2017	001274
Agilent 34401A DMM	12/06/2016	12/06/2017	001329
Larson Davis CAL250 Acoustic Calibrator	01/04/2017	01/04/2018	003030
1/2" Preamplifier	04/12/2017	04/12/2018	006506
Larson Davis 1/2" Preamplifier 7-pin LEMO	09/12/2017	09/12/2018	006507
1/2 inch Microphone - RI - 200V	04/24/2017	04/24/2018	006510
1/2 inch Microphone - R1 - 200V	08/09/2017	08/09/2018	006519
Larson Davis 1/2" Preamplifier 7-pin LEMO	09/12/2017	09/12/2018	006530
Larson Davis 1/2" Preamplifier 7-pin LEMO	08/11/2017	08/11/2018	006531
Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001	ACT NRA	ACCREDITED Dat. ASS22.01	CARSON DAVI A PCB PIEZOTRONICS D

Certificate Number 2017011095 Sensitivity

Data is normalized for 0 dB @ 251.19 Hz.

Trequency [Hz]	Actuator [dB]	Random (dB)	wer limit (dB)= 👘 Up	per limit (dB)	Result
19.95	-0.02	-0.02	-0.50	0.50	Pass ‡
25.12	0.00	0.00	-0.50	0.50	Pass ‡
31.62	0.02	0.02	-0.50	0.50	Pass ‡
39.81	0.02	0.02	-0.50	0.50	Pass ‡
50.12	0.02	0.02	-0.50	0.50	Pass ‡
63.10	0.02	0.02	-0.50	0.50	Pass ‡
79.43	0.02	0.02	-0.50	0.50	Pass ‡
100.00	0.01	0.01	-0.50	0.50	Pass ‡
125.89	0.01	0.01	-0.50	0.50	Pass ‡
158.49	0.01	0.01	-0.50	0.50	Pass ‡
199.53	0.00	0.00	-0.50	0.50	Pass ‡

		2017011095
C 1 00000000000007 (2000005)	200 CONTRACT CONT	COLOR PROPERTY AND A DOMONIC A

energia esta antica de la constituía de las		Certificate Number 2	2017011095	STATES STREET,	and a second
Frequency [Hz]	Actuator [i]]]	Rendom [dB] L	ower limit [dB] 👘 🖓	per limit (dB]	Result
251.19	0.00	0.00	-0.50	0.50	Pass ‡
316.23	-0.01	0.00 0.00	-0.50	0.50	Pass ‡
398.11	-0.01		-0.50	0.50	Pass #
501.19	-0.01	0.00	-0.50	0.50	Pass ‡
630.96	-0.02	0.16	-0.50	0.50	Pass ‡
794.33	-0.01	0.01	-0.50	0.50	Pass ‡
1,000.00 1,059.25	-0.02	0.01	-0.50	0.50	Pass ‡
1,122.02	-0.02	0.01	-0.50	0.50	Pass ‡
1,122.02	-0.02 -0.02	0.01	-0.50	0.50	Pass ‡
1,258.93		0.01	-0.50	0.50	Pass ‡
	-0.02	0.01	-0.50	0.50	Pass ‡
1,333.52	-0.03	0.01	-0.50	0.50	Pass ‡
1,412.54 1,496.24	-0.03 -0.03	0.01	-0.50	0.50	Pass #
1,584.89	-0.03	0.01	-0.50	0.50	Pass ‡
		0.01	-0.50	0.50	Pass ‡
1,678.80	-0.03	0.01	-0.50	0.50	Pass ±
1,778.28	-0.03	0.01	-0.50	0.50	Pass ‡
1,883.65	-0.03 -0.03	0.02	-0.50	0.50	Pass ‡
1,995.26	-0.03	0.02	-0.50	0.50	Pass ‡
2,113.49 2,238.72	-0.03	0.02	-0.50	0.50	Pass #
2,236.72	-0.03	0.03	-0.50	0.50	Pass ‡
		0.04	-0.50	0.50	Pass ‡
2,511.89	-0.02	0.05	-0.50	0.50	Pass ‡
2,660.73	-0.02	0.05	-0.50	0.50	Pass ‡
2,818.38	-0.02	0.06	-0.50	0.50	Pass ‡
2,985.38	-0.03	0.06	-0.50	0.50	Pass ‡
3,162.28	-0.03 -0.02	0.08	-0.50	0.50	Pass ‡
3,349.65	-0.02	0.10	-0.50	0.50	Pass ‡
3,548.13		0.10	-0.50	0.50	Pass ‡
3,758.37	-0.04 -0.04	0.12 0.15	-0.50	0.50	Pass ‡
3,981.07 4,216.97	-0.04	0.19	-0.50	0.50	Pass ‡
4,466.84	-0.05	0.19	-0.63	0.56	Pass ‡
4,400.04 4,731.51	-0.05	0.23	-0.60	0.63	Pass ‡
5,011.87	-0.08	0.32	-0.70	0.69	Pass ‡
5,308.84	-0.08	0.32	-0.80	0.75	Pass ‡
5,623.4 1	-0.08	0.38	-0.80	0.81	Pass ‡
5,956.62	-0.11	0.45	-0.90	0.88	Pass ‡
6,309.57	-0.13	0.61	-0.90	0.94	Pass ‡
6,683.44	-0.13	0.69	-1.00 -1.10	1.00	Pass ‡
7,079.46	-0.21	0.79		1.06	Pass ‡
7,498.94	-0.29	0.87	-1.10	1.13	Pass ‡
7,943.28	-0.39	0.94	-1.20 -1.30	1.19	Pass ‡ Pass ‡
8,413.95	-0.51	1.01		1.25	-
8,912.51	-0.70	1.02	-1.30	1.31	Pass ‡
9,440.61	-1.03	0.89	-1.40 -1.40	1.38	Pass ‡ Pass ‡
10,000.00	-1.38	0.76	-1.40	1.43	Pass ‡ Pass ‡
10,592.54	-1.85	0.70	-1.50 -1.60	1.50 1.56	Pass ‡
11,220.19	-2.43	0.13	-1.60		Pass ‡
11,885.02	-2.72	0.02	-1.60 -1.70	1.63	Pass ‡ Pass ‡
12,589.25	-3.07	-0.17	-1.80	1.68	Pass ‡ Pass ‡
13,335.21	-3.33	-0.32	-1.80	1.75 1.81	Pass ‡
14,125.38	-3.55	-0.32			
14,120.00	-0.04	-0.47	-1.90	1.87	Pass ‡

		Certificate Number 20	017011095		
The second second second	AND ALL FIDT	, Random [dB] Lo	verslimit (dB) – Ep		
Ercellneney [Erc]	Actuator long	 Panéo III (PD) 	verumit labj e p	per limit (dB)	A MARINE STATE
14,962.36	-3.65	-0.58	-1.93	1.93	Pass ‡
15,848.93	-3.83	-0.82	-2.00	2.00	Pass ‡
16,788.04	-4.12	-1.34		2.00	Pass ‡
17,782.80	-4.44	-1.66		2.00	Pass ‡
18,836.49	-4.85	-2.12		2.00	Pass ‡
19,952.62	-5.44	-2.54		2.00	Pass ‡
		End of magnetic manage	6		

-- End of measurement results--

Signatory: Abraham Ortega

Calibration Certificate

Customer: Epsilon Associates Inc Suite 250 3 Clock Tower Place Maynard, MA 01754, United States

Model Number Serial Number Test Results	831 0003752 Pass	Procedure Number Technician Calibration Date	D0001 Ron H 12 Oc		
Initial Condition	AS RECEIVED same as shipped	Calibration Due Temperature	12 Oc 23.59		± 0.25 °C
Description	Larson Davis Model 831 Class 1 Sound Level Meter Firmware Revision: 2.314	Humidity Static Pressure	50.5 86.47	√RH kPa	± 2.0 %RH ± 0.13 kPa
Evaluation Metho	d Tested electrically using Larson Davis i microphone capacitance. Data reported mV/Pa.	PRM831 S/N 029563 and a I in dB re 20 μPa assuming	i 12.0 pF i a micro	capaci phone s	tor to simulate sensitivity of 50.0
Compliance Stand	dards Compliant to Manufacturer Specification Calibration Certificate from procedure D	ns and the following standa 0001.8384:	rds whe	n combi	ned with

IEC 60651:2001 Type 1 IEC 60804:2000 Type 1 IEC 61252:2002 IEC 61260:2001 Class 1 IEC 61672:2013 Class 1

ANSI S1.4-2014 Class 1 ANSI S1.4 (R2006) Type 1 ANSI S1.11 (R2009) Class 1 ANSI S1.25 (R2007) ANSI S1.43 (R2007) Type 1

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis Model 831 Sound Level Meter Manual, I831.01 Rev O, 2016-09-19

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa; Reference Range: 0 dB gain

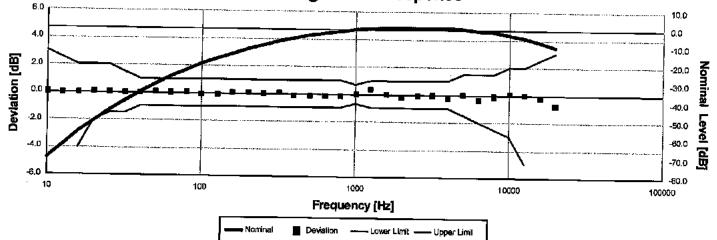
Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.

arson Davis, a division of PCB Piezotronics, Inc 681 West 820 North rovo, UT 84601, United States 16-684-0001

017-10-12T14:17:28

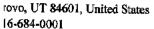
Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 successfully completed by Physikalisch-Technische Bundesanstatt (PTB) on 2016-02-24 certificate number DE-15-M-PTB-0056.

The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3, for the environmental conditions under which the tests were performed. As evidence was publicly available, from an independent testing organization responsible for approving the results of pattern-evaluation tests performed in accordance with IEC 61672-2:2013 / ANSI/ASA S1.4-2014/Part 2, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1; the sound level meter submitted for testing conforms to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.


Description	andards Used		
SRS DS360 Ultra Low Distortion Generator	Owi Date	Cal Due	Cal Standard
Hart Scientific 2626-S Humidity/Temperature Sensor	2017-01-19	2018-01-19	006239
temperature Sensor	2017-06-11	2018-06-11	006943

Ţ

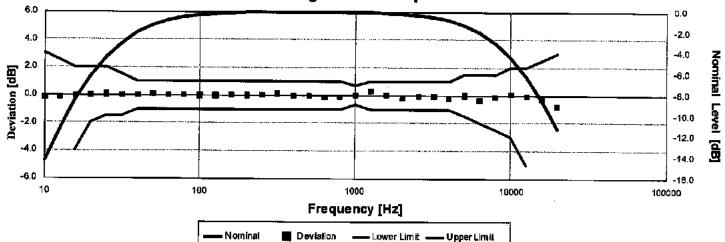
A-weight Filter Response



Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; (EC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

Frequency [H2].	Test Result [dB]	Deviation [dB]	Lower limit [dB] 🛛 L	pperUmit (dB) 🔐	Expanded +	Result
10.00	-70.35	0.05	-inf		certainty [dB]	
12.59	-63.42	-0.02	-inf	3.00 2.50	0.22	Pass
15.85	-56.70	0.00	-4.00	2.00	0.22	Pass
19.95	-50.40	0.10	-2.00	2.00	0.22	Pass
25.12	-44.66	0.04	-1.50	2.00	0.22	Pass
31.62	-39.40	0.00	-1.50	1.50	0.22	Pass
39.81	-34.61	-0.01	-1.00	1.00	0.22	Pass
50.12	-30.12	0.08	-1.00	1.00	0.22	Pass
63.10	-26.15	0.05	-1.00	1.00	0.22	Pass
79.43	-22.45	0.05	-1.00	1.00	0.22	Pass
100.00	-19.16	-0.06	-1.00	1.00	0.22	Pass
125.89	-16.14	-0.04	-1.00	1.00	0.22	Pass
158.49	-13.32	0.08	-1.00	1.00	0.22	Pass
199.53	-10.84	0.06	-1.00	1.00	0.22	Pass
251.19	-8.59	0.01	-1.00	1.00	0.22	Pass
316.23	-6.49	0.11	-1.00	1.00	0.22	Pass
398.11	-4.92	-0.12	-1.00	1.00	0.22	Pass
501.19	-3.34	-0.14	-1.00	1.00	0.22	Pass
630.96	-2.04	-0.14	-1.00	1.00	0.22	Pass
794.33	-0.96	-0.16	-1.00	1.00	0.22	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.22	Pass
1,258.93	0.96	0.36	-1.00	1.00	0.22	Pass
1,584.89	1.01	0.01	-1.00	1.00	0.22	Pass
1,995.26	0.97	-0.23	-1.00	1.00	0.22	Pass
2,511.89	1.23	-0.07	-1.00	1.00	0.22	Pass
3,162.28	1.17	-0.03	-1.00	1.00	0.22	Pass
3,981.07	0.79	-0.21	-1.00	1.00	0.22	Pass
5,011.87	0.53	0.03	-1.50	1.50	0.22	Pass
6,309.57	-0.46	-0.36	-2.00	1.50	0.22	Pass
7,943.28	-1.20	-0.10	-2.50	1.50	0.22	Pass
10,000.00	-2.40	0.10	-3.00	2.00	0.22	Pass
12,589.25	-4.30	0.00	-5.00	2.00	0.22	Pass
15,848.93	-6.80	-0.20	-16.00	2.50	0.22	Pass
19,952.62	-10.05	-0.75	-10.00 -inf	3.00	0.22	Pass
		- End of		3.00	0.22	Pass

- End of measurement results--

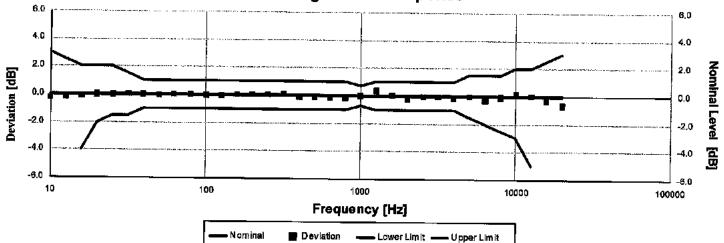

arson Davis, a division of PCB Piezotronics, Inc 581 West 820 North

C-weight Filter Response

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result-[dB] B		Lower limit [dB]. Upp	ar limit (dD)	Expanded	INE ENERGY IN
				U. S.	icertainty [dB]	Result
10.00	-14.47	-0.17	-inf	3.00	0.22	Pass
12.59	-11.33	-0.13	-inf	2.50	0.22	Pass
15.85	-8.54	-0.04	-4.00	2.00	0.22	Pass
19.95	-6.18	0.02	-2.00	2.00	0.22	Pass
25.12	-4.36	0.04	-1.50	2.00	0.22	Pass
31.62	-2.97	0.03	-1.50	1.50	0.22	Pass
39.81	-1.98	0.02	-1.00	1.00	0.22	Pass
50.12	-1.23	0.07	-1.00	1.00	0.22	Pass
63.10	-0.78	0.02	-1.00	1.00	0.22	Pass
79.43	-0.46	0.04	-1.00	1.00	0.22	Pass
100.00	-0.32	-0.02	-1.00	1.00	0.22	Pass
125.89	-0.22	-0.02	-1.00	1.00	0.22	Pass
158.49	-0.07	0.03	-1.00	1.00	0.22	Pass
199.53	-0.01	-0.01	-1.00	1.00	0.22	Pass
251.19	0.03	0.03	-1.00	1.00	0.22	Pass
316.23	0.13	0.13	-1.00	1.00	0.22	Pass
398.11	-0.08	-0.08	-1.00	1.00	0.22	Pass
501.19	-0.07	-0.07	-1.00	1.00	0.22	Pass
630.96	-0.12	-0.12	-1.00	1.00	0.22	Pass
794.33	-0.13	-0.13	-1.00	1.00	0.22	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.22	Pass
1,258.93	0.32	0.32	-1.00	1.00	0.22	Pass
1,584.89	-0.07	0.03	-1.00	1.00	0.22	Pass
1,995.26	-0.41	-0.21	-1.00	1.00	0.22	Pass
2,511.89	-0.35	-0.05	-1.00	1.00	0.22	Pass
3,162.28	-0.54	-0.04	-1.00	1.00	0.22	Pass
3,981.07	-1.01	-0.21	-1.00	1.00	0.22	Pass
5,011.87	-1.32	-0.02	-1.50	1.50	0.22	Pass
6,309.57	-2.34	-0.34	-2.00	1.50	0.22	Pass
7,943.28	-3.11	-0.11	-2.50	1.50	0.22	Pass
10,000.00	-4.32	0.08	-3.00	2.00	0.22	Pass
12,589.25	-6.23	-0.03	-5.00	2.00	0.22	Pass
15,848.93	-8.74	-0.24	-16.00	2.50	0.22	Pass
19,952.62	-12.00	-0.80	-inf	3.00	0.22	Pass
• •		End of	manus and man-l4-	0.00	0.62	1 000

-- End of measurement results--


arson Davis, a division of PCB Piezotronics, Inc. 681 West 820 North

rovo, UT 84601, United States '16-684-0001

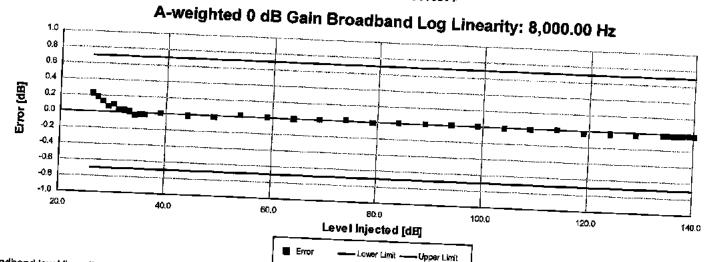
Z-weight Filter Response

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Deviation [dH]	Lower limit (dB)	Upper limit [dB]	Expanded	Result
10.00	-0.26	-0.26	-inf	3.00	Incertainty [dB]	
12.59	-0.15	-0.15	-inf	2.50	0.22	Pass
15.85	-0.10	-0.10	-4.00	2.00	0.22	Pass
19.95	-0.01	-0.01	-2.00	2.00	0.22	Pass
25.12	-0.01	-0.01	-1.50	2.00	0.22	Pass
31.62	0.00	0.01	-1.50	1.50	0.22	Pass
39.81	-0.01	-0.01	-1.00	1.00	0.22	Pass
50.12	-0.02	-0.02	-1.00	1.00	0.22	Pass
63.10	0.03	0.03	-1.00	1.00	0.22	Pass
79.43	0.04	0.04	-1.00	1.00	0.22	Pass
100.00	-0.01	-0.01	-1.00	1.00	0.22	Pass
125.89	-0.05	-0.05	-1.00	1.00	0.22	Pass
158.49	0.02	0.02	-1.00	1.00	0.22	Pass
199.53	0.02	0.02	-1.00	1.00	0.22 0.22	Pass Base
251.19	0.03	0.03	-1.00	1.00		Pass
316.23	0.11	0.11	-1.00	1.00	0.22 0.22	Pass Pass
398.11	-0.11	-0.11	-1.00	1.00	0.22	Pass
501.19	-0.11	-0.11	-1.00	1.00	0.22	Pass
630.96	-0.15	-0.15	-1.00	1.00	0.22	Pass
794.33	-0.15	-0.15	-1.00	1.00	0.22	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.22	Pass
1,258.93	0.36	0.36	-1.00	1.00	0.22	Pass
1,584.89	0.01	0.01	-1.00	1.00	0.22	Pass
1,995.26	-0.25	-0.25	-1. 00	1.00	0.22	Pass
2,511.89	-0.06	-0.06	-1.00	1.00	0.22	Pass
3,162.28	-0.06	-0.06	-1.00	1.00	0.22	Pass
3,981.07	-0.21	-0.21	-1.00	1.00	0.22	Pass
5,011.87	-0.04	-0.04	-1.50	1.50	0.22	Pass
6,309.57	-0.35	-0.35	-2.00	1.50	0.22	Pass
7,943.28	-0.07	-0.07	-2.50	1.50	0.22	Pass
10,000.00	0.14	0.14	-3.00	2.00	0.22	Pass
12,589.25	0.01	0.01	-5.00	2.00	0.22	Pass
15,848.93	-0.35	-0.35	-16.00	2.50	0.22	Pass
19,952.62	-0.66	-0.66	-inf	3.00	0.22	Pass

-- End of measurement results-

High Level Stability


Electrical signal test of high level stability perfo IEC 61672-1:2013 5.15 and ANSI S1.4-2014 P	'art 1 : 5.15			Expanded	SC (STATE)	
Measurement	Test Result [dB] Lot	ver limit (dB)s . Opp	er limit [dB] Unc	ertainty [dB]	Result	
High Level Stability	0.00	-0.10	0.10	0.01	Pass	
	End of me	asurement results				
	Long-1	Ferm Stability				
Electrical signal test of long term stability perfo	med according to IEC 61672	-3:2013 15 and ANSI	S1.4-2014 Part 3: 15 fc	or compliance to		
ISC 61872-1:2013 5.14 and ANSI S1.4-2014 F Test Duration [min]	'art 1: 5. 14	rer limit (dB] . Opp	er limit (dR)	Expanded. ertainty [dB]	Real t a	
34	0.03	-0.10	0.10	0.01	Pass	
	- End of me	asurement results				
	1 kHz Re	erence Levels	;			
Frequency weightings and time weightings at 1 S1.4-2014 Part 3: 14 for compliance to IEC 616	kHz (reference is A weighted 372-1:2013 5.5.9 and 5.8.3 ar	nd ANSI S1.4-2014 Pa	rt 1: 5.5.9 and 5.8.3	2013 14 and ANS	 	793.007 7

Measurement	Test Result [dB] Lu	wer limit [dB] — Up	per limit (dB)	Expanded certainty [dB]	Result
C weight	113.98	11 3.7 8	114.18	0.09	Pass
Z weight	113.97	113.78	114.18	0.09	Pass
Slow	113.98	113.88	114.08	0.09	Pass
impulse	113.98	113.88	114.08	0.09	Pass
	End of m	easurement results			

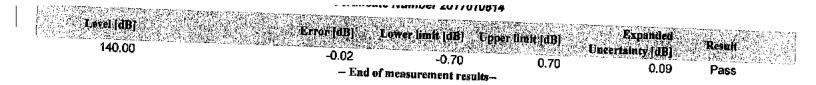
)17-10-12T14:17:28

Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 3: 16 for compliance to IE I eval (RR)

[.eval [dB]	Error [dB] j	《华丽·诺·科兰尔·克里尔·西尔巴尔尔尔尔	3.0, ANSI 51,43 (R200)			
26.00		mer Umit [AB] – L	Pper limit (dB)	Expanded	Result	
27.00	0.22	-0.70	0.70	icertainty [dB]		
28.00	0.18	-0.70	0.70	0.09	Pass	
29.00	0.13	-0.70	0.70	0.09	Pass	
30.00	0.07	-0.70	0.70	0.09	Pass	
31.00	0.09	-0.70	0.70	0.09	Pass	
32.00	0.03	-0.70	0.70	0.09	Pass	
33.00	0.02	-0.70	0.70	0.09	Pass	
34.00	0.01	-0.70	0.70	0.09	Pass	
35.00	-0.03	-0.70	0.70	0.09	Pass	
36.00	-0.02	-0.70	0.70	0.09	Pass	
39.00	-0.02	-0.70	0.70	0.09	Pass	
44.00	0.01	-0.70	0.70	0.09	Pass	
49.00	-0.01	-0.70	0.70	0.09	Pass	
54.00	-0.02	-0.70	0.70	0.09	Pass	
59.00	0.01	-0.70	0.70	0.09	Pass	
64.00	0.00	-0.70	0.70	0.09	Pass	
69.00	0.00	-0.70	0.70	0.09	Pass	
74.00	0.01	-0.70	0.70	0.09	Pass	
79.00	0.02	-0.70	0.70	0.09	Pass	
84.00	0.00	-0.70	0.70	0.09	Pass	
89.00	0.00	-0.70	0.70	0.09	Pass	
94.00	0.01	-0.70	0.70	0.09	Pass	
99.00	0.01	-0.70	0.70	0.09	Pass	
104.00	0.01	-0.70	0.70	0.09	Pass	
109.00	-0.01	-0.70	0.70	0.09	Pass	
114.00	0.00	-0.70	0.70	0.09	Pass	
119.00	0.00	-0.70	0.70	0.09	Pass	
124.00	-0.03	-0.70	0.70	0.09	Pass	
129.00	-0.03	-0.70	0.70	0.09	Pass	
134.00	-0.03	-0.70	0.70	0.09	Pass	
135.00	-0.02	-0.70	0.70	0.09	Pass	
136.00	-0.02	-0.70	0.70	0.09	Pass	
137.00	-0.02	-0.70	0.70	0.09	Pass	
138.00	-0.02	-0.70	0.70	0.09	Pass	
139.00	-0.02	-0.70	0.70	0.09	Pass	
	-0.02	-0.70	0.70	0.09	Pass	
			w	0.00	Deen	

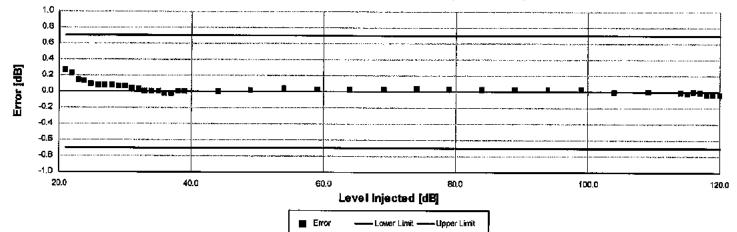
on Davis, a division of PCB Piezotronics, Inc

West 820 North


o, UT 84601, United States 684-0001

0.09

Pass

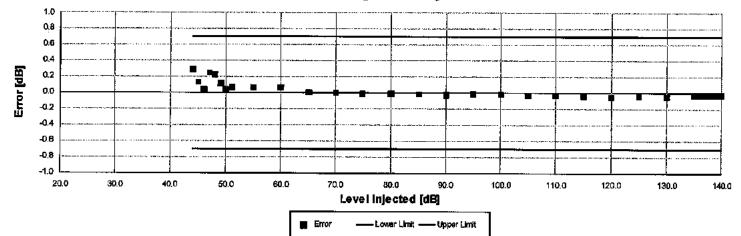

son Davis, a division of PCB Piezotronics, Inc 11 West 820 North vo, UT 84601, United States -684-0001

Page 8 of 24

A-weighted 20 dB Gain Broadband Log Linearity: 8,000.00 Hz

Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

Level [dB]	Bertor([dB]) Lic	wer limit (dB) - Up		Expanded	Result
21.00	0.26	-0.70	0.70	certainty [dB] 0.09	Pass
22.00	0.22	-0.70	0.70	0.09	Pass
23.00	0.14	-0.70	0.70	0.09	Pass
24.00	0.13	-0.70	0.70	0.09	Pass
25.00	0.09	-0.70	0.70	0.09	Pass
26.00	0.07	-0.70	0.70	0.09	Pass
27.00	0.08	-0.70	0.70	0.09	Pass
28.00	0.08	-0.70	0.70	0.09	Pass
29.00	0.06	-0.70	0.70	0.09	Pass
30.00	0.06	-0.70	0.70	0.09	Pass
31.00	0.05	-0.70	0.70	0.09	Pass
32.00	0.03	-0.70	0.70	0.09	Pass
33.00	0.01	-0.70	0.70	0.09	Pass
34.00	0.01	-0.70	0.70	0.09	Pass
35.00	0.01	-0.70	0.70	0.09	Pass
36.00	-0.02	-0.70	0.70	0.09	Pass
37.00	-0.02	-0.70	0.70	0.09	Pass
38.00	0.00	-0.70	0.70	0.09	Pass
39.00	0.00	-0.70	0.70	0.09	Pass
44.00	0.01	-0.70	0.70	0.09	Pass
49.00	0.01	-0.70	0.70	0.09	Pass
54.00	0.04	-0.70	0.70	0.09	Pass
59.00	0.02	-0.70	0.70	0.09	Pass
64.00	0.02	-0.70	0.70	0.09	Pass
69.00	0.03	-0.70	0.70	0.09	Pass
74.00	0.04	-0.70	0.70	0.09	Pass
79.00	0.02	-0.70	0.70	0.09	Pass
84.00	0.03	-0.70	0.70	0.09	Pass
89.00	0.03	-0.70	0.70	0.09	Pass
94.00	0.03	-0.70	0.70	0.09	Pass
99.00	0.03	-0.70	0.70	0.09	Pass
104.00	-0.01	-0.70	0.70	0.09	Pass
109.00	0.00	-0.70	0.70	0.09	Pass
114.00	-0.01	-0.70	0.70	0.09	Pass
115.00	-0.03	-0.70	0.70	0.09	Pass
116.00	0.01	-0.70	0.70	0.09	Pass

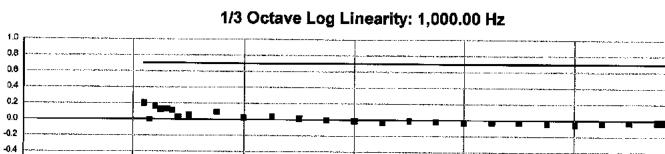

Léve[[dB]	Ecror (dB) Low	/ær límit (dB) – Tipp	er lima [dB] Unc	Expanded ertainty (dB)	Reault
117.00 118.00	-0.01 -0.03	-0.70	0.70	0.09	Pass
119.00	-0.03	~0.70 -0.70	0.70 0.70	0.09 0.09	Pass Pass
120.00	-0.04	-0.70	0.70	0.09	Pass
	- End of me	asurement results-			

arson Davis, a division of PCB Piezotronics, Inc 681 West 820 North rovo, UT 84601, United States 16-684-0001

017-10-12T14:17:28

1/1 Octave Log Linearity: 1,000.00 Hz

1/1 octave level linearity at normal range with 0 dB gain performed according to IEC 61260:2001 4.6, ANSI S.11 (R2009) 4.6


Levěj(dB)			er linit [dB]	Expanded certainty [dB]	Result
44.00	0.29	-0.70	0.70	0.09	Pass
45.00	0.13	-0.70	0.70	0.09	Pass
46.00	0.04	-0.70	0.70	0.09	Pass
47.00	0.24	-0.70	0.70	0.10	Pass
48.00	0.23	-0.70	0.70	0.10	Pass
49.00	0.11	-0.70	0.70	0.10	Pass
50.00	0.04	-0.70	0.70	0.09	Pass
51.00	0.07	-0.70	0.70	0.09	Pass
55.00	0.06	-0.70	0.70	0.09	Pass
60.00	0.06	-0.70	0.70	0.09	Pass
65.00	0.01	-0.70	0.70	0.09	Pass
70.00	0.00	-0.70	0.70	0.09	Pass
75.00	-0.02	-0.70	0.70	0.09	Pass
80.00	-0.01	-0.70	0.70	0.09	Pass
85.00	-0.02	-0.70	0.70	0.09	Pass
90.00	-0.02	-0.70	0.70	0.09	Pass
95.00	-0.01	-0.70	0.70	0.09	Pass
100.00	-0.02	-0.70	0.70	0.09	Pass
105.00	-0.03	-0.70	0.70	0.09	Pass
110.00	-0.03	-0.70	0.70	0.09	Pass
115.00	-0.03	-0.70	0.70	0.09	Pass
120.00	-0.05	-0.70	0.70	0.09	Pass
125.00	-0.04	-0.70	0.70	0.09	Pass
130.00	-0.04	-0.70	0.70	0.09	Pass
135.00	-0.03	-0.70	0.70	0.09	Pass
136.00	-0.03	-0.70	0.70	0.09	Pass
137.00	-0.02	-0.70	0.70	0.09	Pass
138.00	-0.02	-0.70	0.70	0.09	Pass
139.00	-0.03	-0.70	0.70	0.09	Pass
140.00	-0.02	-0.70	0.70	0.09	Pass
	End of m	easurement results-			

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

3017-10-12T14:17:28

80.0

Level injected (dB)

- Lower Limit ----- Upper Limit

100.0

120.D

140.0

1/3 octave level linearity at normal range with 0 dB gain performed according to IEC 61260:2001 4.6, ANSI S.11 (R2009) 4.6

Елгог

60.0

Level [dB]	* Error(ab) - Lo	wer limit [dB] Up	penlimit (dB)	Expanded certainty [dB]	Result
42.00	0.20	-0.70	0.70	0.09	Pass
43.00	-0.01	-0.70	0.70	0.10	Pass
44.00	0.16	-0.70	0.70	0.10	Pass
45.00	0.12	-0.70	0.70	0.10	Pass
46.00	0.13	-0.70	0.70	0.09	Pass
47.00	0.11	-0.70	0.70	0.09	Pass
48.00	0.02	-0.70	0.70	0.09	Pass
50.00	0.05	-0.70	0.70	0.09	Pass
55.00	0.09	-0.70	0.70	0.09	Pass
60.00	0.02	-0.70	0.70	0.09	Pass
65.00	0.03	-0.70	0.70	0.09	Pass
70.00	0.01	-0.70	0.70	0.09	Pass
75.00	-0.01	-0.70	0.70	0.09	Pass
80.00	-0.02	-0.70	0.70	0.09	Pass
85.00	-0.03	-0.70	0.70	0.09	Pass
90.00	-0.02	-0.70	0.70	0.09	Pass
95.00	-0.02	-0.70	0.70	0.09	Pass
100.00	-0.03	-0.70	0.70	0.09	Pass
105.00	-0.04	-0.70	0.70	0.09	Pass
110.00	~0.03	-0.70	0.70	0.09	Pass
115.00	-0.04	-0.70	0.70	0.09	Pass
120.00	-0.05	-0.70	0.70	0.09	Pass
125.00	-0.04	-0.70	0.70	0.09	Pass
130.00	-0.04	-0.70	0.70	0.09	Pass
135.00	-0.03	-0.70	0.70	0.09	Pass
136.00	-0.02	- 0.7 0	0.70	0.09	Pass
137.00	-0.02	-0.70	0.70	0.09	Pass
138.00	-0.02	-0.70	0.70	0.09	Pass
139.00	-0.02	-0.70	0.70	0.09	Pass
140.00	-0.02	-0.70	0.70	0.09	Pass
	End of m	easurement results		+	

-- End of measurement results--

Larson Davis, a division of PCB Piczotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2017-10-12T14:17:28

Error (dB)

-0.6 -----0.8 ----1.0 -----20.0

40.0

Slow Detector

Toneburst response performed according to IEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

Amplitude (dB)	ration (ms) 👘 T	est Result JdBJ / Do	wer Limit (dB) 👘 Up	perdimit (dB),	Expanded	Result	
137.00	200	-7.56	-7.92	-6.92	0.09	Pass	
	2	-27.16	-29.99	-25.99	0.09	Pass	
- End of measurement results							

Fast Detector

Toneburst response performed according to IEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

	Duration [ms]	it Result (dB) E	ower limit (d.B) – Upp	er ilmit (dB). Un	Expanded Sertainty [dB]	Result
137.00	200.00 2.00 0.25	-1.04 -18.13 -27.31	-1.48 -19.49 -29.99	-0.48 -16.99 -25.99	0.09 0.09 0.09	Pass Pass Pass
		— End of n	ncasurement results			

Sound Exposure Level

Toneburst response performed according to IEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

Amplitude [dB]	Duration [ms] Tes	Result [dB] L	ower.limit(dB) Up	ver llinit (dD) Un	Expanded: certainty [dB]	Result	
137.00	200.00	-7.01	-7.49	-6.49	0.09	Pass	en trad
	2.00	-27.04	-28.49	-25.99	0.09	Pass	
	0.25	-36.15	-39.02	-35.02	0.09	Pass	
		- End of a	nessurement results				

- End of measurement results--

Peak C-weight

C-weighted peak sound level performed according to IEC 61672-3:2013 19 and ANSI S1.4-2014 Part 3: 19 for compliance to IEC 61672-1:2013 5.13 and ANSI S1.4-2014 Part 1: 5.13

Leveli	Frequency (Hz)	Test Result [dB] I.	ower_limit:[dB] L	pper,limi: [dB] Vac	Expanded ertainty (dB)	Result
135.00	31.50	138.22	135.50	139.50	0.09	Pass
135.00	500.00	138.66	137.50	139.50	0.09	Pass
135.00	8,000.00	137.76	136.40	140.40	0.10	Pass
135.00, Negative	500.00	137.15	136.40	138.40	0.09	Pass
135.00, Positive	500.00	137.15	136.40	138.40	0.09	Pass
		End of n	neasurement results-	-		· •

Page 13 of 24

017-10-12T14;17;28

Peak Z-weight

Z-weighted peak sound level performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Amplitude [dB] Dur	aflon [us]	Test	Result [AB] Lo	wor limit [dB] 🗧 Uj	oper limit IdBl	Expanded	Résult
Propagy Stranger and Stranger					. Un	expanded certainty [dB]	
136.00	100	Negative Pulse	136.34	134.01	138.01	0.09	Pass
	100	Positive Pulse	136.34	134.00	138.00	0.09	Pass
126.00	100	Negative Pulse	126.34	124.02	128.02	0.09	Pass
	100	Positive Pulse	126.35	124.00	128.00	0.09	Pass
116.00	100	Negative Pulse	116.38	114.05	118.05	0.09	Pass
	100	Positive Pulse	116.35	114.02	118.02	0.09	Pass
106.00	100	Negative Pulse	106.36	104.04	108.04	0.09	Pass
	100	Positive Pulse	106.38	104.02	108.02	0.09	Pass
			End of measure	ment results			

Overload Detector

Overload indication performed according to IEC 61672-3:2013 20 and ANSI S1.4-2014 Part 3: 20 for compliance to IEC 61672-1:2013 5.11, IEC 60804:2000 9.3.5, IEC 61252:2002 11, ANSI S1.4 (R2006) 5.8, and ANSI S1.4-2014 Part 1: 5.11, ANSI S1.25 (R2007) 7.6, ANSI S1.43 (R2007) 7

Measurement		ver limit (dB). U	pper-timit (dB) Un	Expanded certainty [dB]	Result
Positive	141.00	140.00	142.00	0.09	Pass
Negative	140.90	140.00	142.00	0.09	Pass
Difference	0.10	-1.50	1.50	0.10	Pass
- End of measurement results-					

Peak Rise Time

Peak rise time performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Amplitude [dB] Duratio	n [jus] "	ц. Т	est Result [dB] L	ower limit.(dB) · · Upp	er limic [dB]	Expanded certainty [dB]	Result
137.00	40	Negative Pulse	136.53	135.04	137.04	0.09	Pass
		Positive Pulse	136.50	134.99	136.99	0.09	Pass
	30	Negative Pulse	135.61	135.04	137.04	0.09	Pass
		Positive Pulse	135.58	134.99	136.99	0.09	Pass
End of measurement results							

Positive Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

1.1.15%10.2.14至17度。19月1日,19月1日	Crest Eactor	lear Result (dB)	Linits (dB)	Expanded Uncertainty [dB]	Result
138.00	3	OVLD	± 0.50	0.09	Pass
	5 10		± 1.00	0.09	Pass
128.00	3	OVLD -0.08	± 1.50 ± 0.50	0.09	Pass
	5	-0.07	± 1.00	0.10 0.09	Pass Pass
118.00	10 3	OVLD	± 1.50	0.09	Pass
	5	-0.09 -0.08	± 0.50 ± 1.00	0.10	Pass
100.00	10	-0.06	± 1.50	0.09 0.09	Pass Pass
108.00	3 5	-0.08	± 0.50	0.13	Pass
	10	-0.10 -0.13	± 1.00	0.09	Pass
			± 1.50 surement results	0.09	Pass

Negative Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Clest Factor measured accord	fing to IEC 60651:200	01 9.4.2 and ANSI S1.4	1983 (R2006) 8.4.2		
Amplitude [dB]	rest Factor	Test Result [dB]	Limits (dB)	Expanded Uncertainty [dB]	
138.00	3			Contraction of the second s	· Resplix
	Š	OVLD	± 0.50	0.09	Pass
	10		± 1.00	0.09	Pass
128.00	3	OVLD	± 1.50	0.09	Pass
120.00	-	-0.06	± 0.50	0.09	Pass
	5	-0.05	± 1.00	0.09	Pass
118.00	10	OVLD	± 1.50	0.09	Pass
110.00	3	-0.08	± 0.50	0.09	Pass
	5	-0.07	± 1.00	0.09	Pass
108.00	10	-0.04	± 1.50	0.09	Pass
108.00	3	-0.05	± 0.50	0.09	
	5	-0.07	± 1.00	0.09	Pass Deco
	- 10	-0.09	± 1.50		Pass
		End of me	asurement results-	0.09	Pass

Tone Burst

2kHz tone burst tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

one burst response measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Ampiltude [dB]	rest Factor	ese Republican	Linin IARI	ded Upcertainty [dB]	
138.00	3	OVLD	± 0.50		Result
100.50	5	OVLD	± 1.00	0.09	Pass
128.00	3	-0.07	± 0.50	0.09 0.12	Pass Pass
118.00	5	-0.03	± 1.00	0.09	Pass
	5	-0.07	± 0.50	0.09	Pass
108.00	3	0.01 -0.07	± 1.00 ± 0.50	0.09	Pass
	5	-0.02	± 0.50 ± 1.00	0.09	Pass
			arement results-	0.09	Pass

rson Davis, a division of PCB Piezotronics, Inc 31 West 820 North rvo, UT 84601, United States 5-684-0001

7-10-12T14:17:28

met Forder

Impulse Detector - Repeat

Impulse Detector measured a	ttion Rato [Hz] Ten		\$1.4:1983 (R2006) 8.4. Wer limit [dB] Upr	er Unit filb)	Expanded	Result
140	100.00	-2.76	- 3.7 1	Charles and the second seco	certainty [dB]	
	20.00	-7.72	-9.57	-1.71	0.09	Pass
	2.00	-8.72	-10.76	-5.57	0.09	Pass
Step	2.00	5.07	4.00	-6.76	0.09	Pass
		End of m	casurement results-	6.00	0.11	Pass

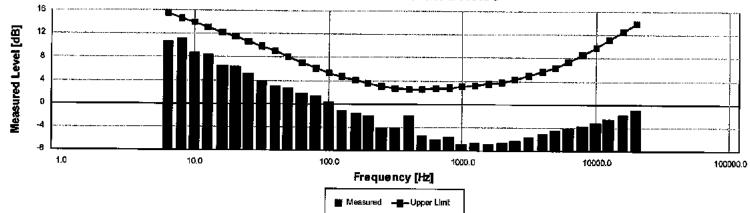
Impulse Detector - Single

Impulse Detector measured acco Amplitude (dB)	nding to IEC 60651: "Aration [ms] Te	2001 9.4.3 and ANSI K Résulfidej	S1.4:1983 (R2006) 8.4 Wei: limit: (dB) (SUp	ner limit /aBi	Expanded	Result
140	20.00	-3.67	-5.11	-2.11	cortainty [dB]	
	5.00	-8.79	-10.76	-6.76	0.09 0.10	Pass
Step	2.00 2.00	-12.83 9.73	-14.55	-10.55	0.10	Pass Pass
			9.00 easurement results	11.00	0.11	Pass

Gain

Gain measured according to IEC 61672-3:2013 17.3 and 17.4 and ANSI S1.4-2014 Part 3: 17.3 and 17.4

Measurement 0 dB Gain 0 dB Gain, Linearity 20 dB Gain 20 dB Gain, Linearity OBA Low Range OBA Normal Range	94.02 28.92 94.01 23.72 94.00 94.00 94.00	er limit (dH) (ip 93.90 28.30 93.90 23.30 93.90 93.90 93.20 surement results-	per limit (dB) 94.10 29.70 94.10 24.70 94.10 94.10 94.80	Expanded ertainity (dB) 0.09 0.10 0.09 0.12 0.09 0.09 0.09	Result Pass Pass Pass Pass Pass Pass
--	---	---	---	--	--



7-10-12T14;17:28

i

1/3-Octave Self-Generated Noise

The SLM is set to low range and 20 dB gain.

Prequency [Ez]	Test.Result/[dB]	Upper limic (dB)	Resulf
6.30	10.73	15.50	Pass
8.00	11.25	14.70	Pass
10.00	8.72	13.90	Pass
12.50	8.40	13.10	Pass
16.00	6.51	12.30	Pass
20.00	6.37	11.50	Pass
25.00	5.13	10.70	Pass
31.50	3.88	9.90	Pass
40.00	3.01	9.10	Pass
50.00	2.67	8.10	Pass
63.00	1.85	7.10	Pass
80.00	1.27	6.10	Pass
100.00	0.33	5.30	Pass
125.00	-1.06	4.70	Pass
160.00	-1.60	4.10	Pass
200.00	-1.98	3.60	Pass
250.00	-3.95	3.10	Pass
315.00	- 4 .04	2.70	Pass
400.00	-1.95	2.60	Pass
500.00	-5.48	2.60	Pass
630.00	-6.12	2.70	Pass
800.00	-5.60	2.80	Pass
1,000.00	-6.74	3.00	Pass
1,250.00	-6.69	3.20	Pass
1,600.00	-6.80	3.50	Pass
2,000.00	-6.56	3.80	Pass
2,500.00	-6.20	4.30	Pass
3,150.00	-5.53	4.90	Pass
4,000.00	-4.99	5.70	Pass
5,000.00	-4.32	6.40	Pass
6,300.00	-4.00	7.40	Pass
8,000.00	-3.70	8.60	Pass
10,000.00	-3.20	9.80	Pass
12,500.00	-2.51	11.20	Pass
16,000.00	-1.72	12.60	Pass
20,000.00	-0.84	14.00	Pass
	End of measureme	nt results	

-- End of measurement results--

arson Davis, a division of PCB Piezotronics, Inc 681 West 820 North rovo, UT 84601, United States '16-684-0001

017-10-12T14:17:28

Broadband Noise Floor

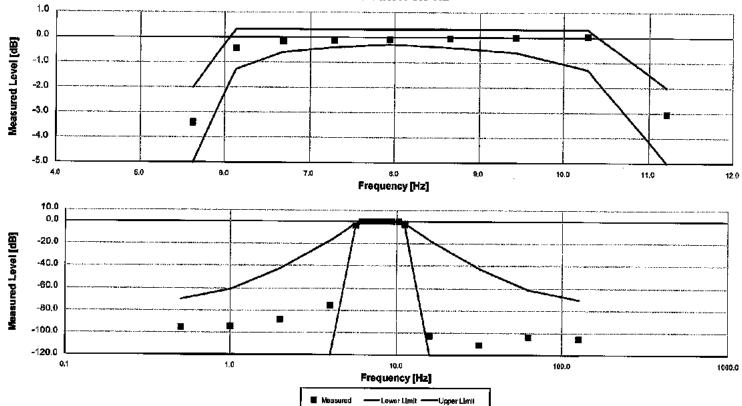
· ·· —• · · • • • • • •

Self-generated noise measured according to IEC 61672-3:2013 11.2 and ANSI \$1.4-2014 Part 3: 11.2

Anterna and the loss the deal of a	4000/ding to 100 010/2-0,2010 11,2 ditu Aing 31,4-20		
Mcasurement	Test Result [[JB]] ¹² .n*	为你们是我们的,我们的我们的是你们的你们是你们的你们的你们的?""你们,你们们不是你们的?""你们的,你就是你们。" 第二章 "你们,你们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们	Result
A-weight Noise Floor	6.98	15.00	Pass
C-weight Noise Floor	12.74	17.30	
-		11.00	Pass
Z-weight Noise Floor	22.57	24.50	Pass

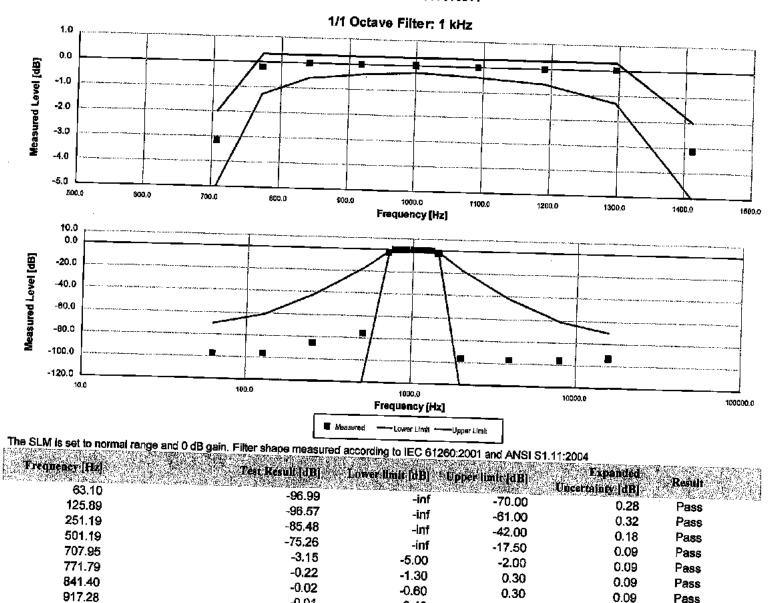
- End of measurement results-

Total Harmonic Distortion


Measured using 1/3-Octave filters						
Measurement				Expanded		
тарази гешен	Test Result [dB]))wer Limit [dB] U	p per:Lim it (dB)	certainty (dB)	Result	
10 Hz Signal	137.49	137.20	138.80	0.09	Pass	
THD	-75.49		-60.00	0.01	Pass	
THD+N	-67.21		-60.00	0.01	Pass	
End of measurement recults						

-- End of measurement results--

1/1 Octave Filter: 8.0 Hz


The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004

Frequency [Hz]	Test Result [dB] Low	- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	per limic (d R). Un	Expanded certainty [dB]	Result
0.50	-95.48	-inf	-70.00	2.40	Pass
1.00	-94.45	-inf	-61.00	2.20	Pass
2.00	-88.34	-inf	-42.00	0.24	Pass
3.98	-75.74	-inf	-17.50	0.23	Pass
5.62	-3.42	-5.00	-2.00	0.09	Pass
6.13	-0.44	-1.30	0.30	0.09	Pass
6.68	-0.18	-0.60	0.30	0.09	Pass
7.29	-0.14	-0.40	0.30	0.09	Pass
7.94	-0.10	-0.30	0.30	0.09	Pass
8.66	-0.07	-0.40	0.30	0.09	Pass
9.44	-0.02	-0.60	0.30	0.09	Pass
10.29	0.03	-1.30	0.30	0.09	Pass
11.22	-3.06	-5.00	-2.00	0.09	Pass
15.85	-102.44	-inf	-17.50	1.30	Pass
31.62	-110.49	-inf	-42.00	1.70	Pass
63.10	-103.48	-inf	-61.00	1.10	Pass
125.89	-105.57	-inf	-70.00	1.80	Pass
	— End of me	asurement results-			

Securicale Number 2017010814

-95.85	-inf
	··• 01 01
-93.13	-inf

-0.40

-0.30

-0.40

-0.60

-1.30

-5.00

-inf

-inf

0.30

0.30

0.30

0.30

0.30

-2.00

-17.50

-42.00

-61.00

-70.00

-0.01

0.01

-0.03

-0.02

0.01

-3.13

-96.27

-96.64

-- End of measurement results--

rson Davis, a division of PCB Piezotronics, Inc 81 West 820 North ovo, UT 84601, United States 6-684-0001

1,000.00

1,090.18

1,188.50

1,295.69

1,412.54

1,995.26

3,981.07

7,943.28

15,848.93

0.09

0.09

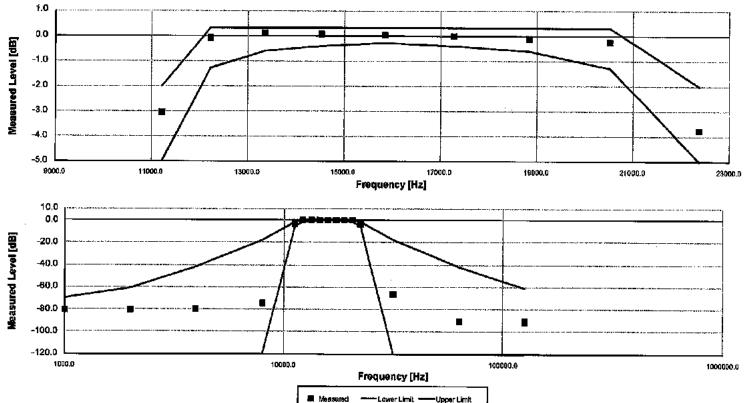
0.09

0.09

0.09

0.09

0.26

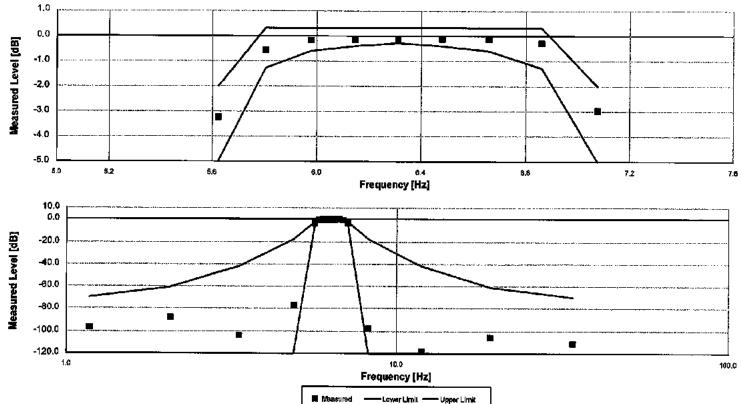

0.26

0.31

0.24

Pass

1/1 Octave Filter: 16 kHz

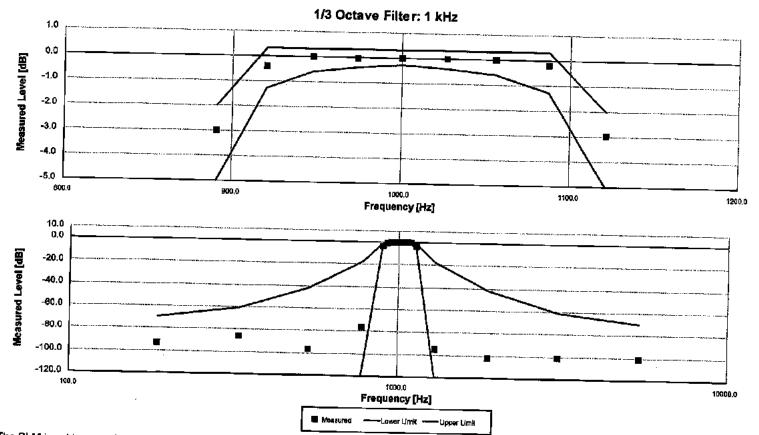


		Frequency [HZ]			
	🗰 Measured	Lower Limit Upp	er Limit		
The SLM is set to normal range and 0 dB	gain. Filter shape measured acco	rding to IEC 61260:2		004	
				Expanded	
Frequency [Hz]	Test Result [dB] 5 . Lov	ver limit (dB) 2. Up	per limit (d B)	ertainty [dB]	Result
1,000.00	-80.71	-inf	-70.00	0.11	Pass
1,995.26	-80.48	-inf	-61.00	0.09	Pass
3,981.07	-79.97	-inf	-42.00	0.10	Pass
7,943.28	-74.50	-inf	-17.50	0.10	Pass
11,220.18	-3.03	-5.00	-2.00	0.09	Pass
12,232.07	-0.11	-1.30	0.30	0.09	Pass
13,335.21	0.10	-0.60	0.30	0.09	Pass
14,537.84	0.07	-0.40	0.30	0.09	Pass
15,848.93	0.04	-0.30	0.30	0.09	Pass
17,278.26	-0.02	-0.40	0.30	0.09	Pass
18,836.49	-0.13	-0.60	0.30	0.09	Pass
20,535.25	-0.25	-1.30	0.30	0.09	Pass
22,387.21	-3.75	-5.00	-2.00	0.09	Pass
31,622.78	-66.77	-inf	-17.50	0.09	Pass
63,095.73	-91.04	-inf	-42.00	0.10	Pass
125,892.54	-91.20	-inf	-61.00	0.09	Pass
	End of me	asurement results-			

1/3 Octave Filter: 6.3 Hz

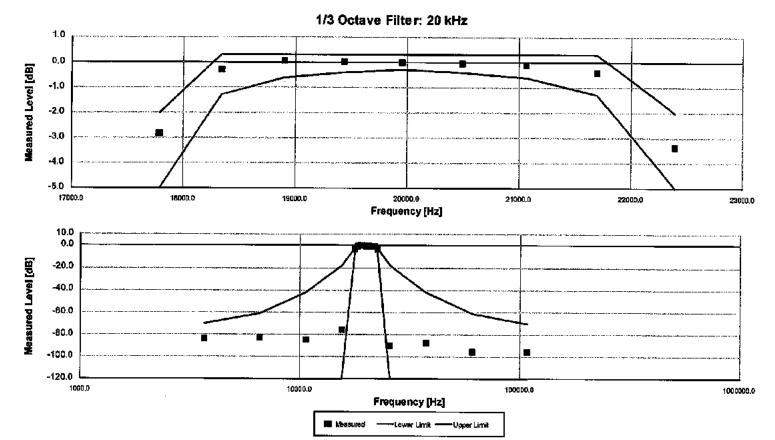
The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004

Frequency [Hz]>	Tei Reill (dB) Lo	ver limit [dB]; Up	per limit (dB). Un	Expanded certainty [dB]	Result
1.17	-96. 56	-inf	-70.00	0.36	Pass
2.07	-88.08	-inf	-61.00	0.11	Pass
3.35	-103.50	-inf	-42.00	0.09	Pass
4.87	-76.83	-inf	-17.50	0.10	Pass
5.62	-3.23	-5.00	-2.00	0.09	Pass
5.80	-0.58	-1.30	0.30	0.09	Pass
5.98	-0.16	-0.60	0.30	0.09	Pass
6.15	-0. 16	-0.40	0.30	0.09	Pass
6.31	-0.14	-0.30	0.30	0.09	Pass
6.48	-0.13	-0.40	0.30	0.09	Pass
6.66	-0.12	-0.60	0.30	0.09	Pass
6.86	-0.30	-1.30	0.30	0.09	Pass
7.08	-2.95	-5.00	-2.00	0.09	Pass
8.17	-97.44	-inf	-17.50	0.34	Pass
11.87	-118.24	-inf	-42.00	1.70	Pass
19.27	-105.62	-inf	-61.00	2.50	Pass
34.02	-111.07	-inf	-70.00	2.10	Pass
	End of me	asurement results			


-- End of measurement results--

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2017-10-12T14;17;28



The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004

Frequency [H2]		ver limit (dRj. – Lip	per limit IdB1	Expanded	Result
185.46	-93.12	11.22、11.22、12、12、12、12、12、12、12、12、12、12、12、12、1	un en	certainty [dB]	ARCOULL .
327.48	-86.36	-inf	-70.00	0.17	Pass
531.43	-96.90	-inf -inf	-61.00	0.12	Pass
772.57	-76.22	-au -inf	-42.00	0.25	Pass
891.25	-3.00	-5.00	-17.50	0.09	Pass
919.58	-0.41	-1.30	-2.00 0.30	0.09	Pass
947.19	0.00	-0.60	0.30	0.09	Pass
974.02	-0.04	-0.40	0.30	0.09	Pass
1,000.00	0.00	-0.30	0.30	0.09	Pass
1,028.67	0.00	-0.40	0.30	0.09	Pass
1,055.75	-0.01	-0.60	0.30	0.09	Pass
1,087.46	-0.23	-1.30	0.30	0.09	Pass Pass
1,122.02	-2.96	-5.00	-2.00	0.09	Pass
1,294.37 1,881.73	-95.38	-inf	-17.50	0.25	Pass
3,053.65	-102.20	-inf	-42.00	0.40	Pass
5,391.95	-101.67	-inf	-61.00	0.44	Pass
0,001.00	-101.21	-ínf	-70.00	0.40	Pass
	End of mea	surement results-			

The SLM is set to normal range and 0 dB gain. Filter shape measured according to IEC 61260:2001 and ANSI S1.11:2004

Frequency (Hz]	Test Result [dB]	er limit [dB] [©] Up	per limit (dB)	Expanded sertainty [dB]	Result	
3,700.45	-83.56	-inf	- 70.00	0.11	Pass	2784
6,534.02	-82.94	-inf	-61.00	0.11	Pass	
10,603.35	-84.18	-inf	-42.00	0.13	Pass	
15,414.88	-75.67	-inf	-17.50	0.09	Pass	
17,782.79	-2.83	-5.00	-2.00	0.09	Pass	
18,347.97	-0.30	-1.30	0.30	0.09	Pass	
18,898.93	0.08	-0.60	0.30	0.09	Pass	
19,434.23	0.02	-0.40	0.30	0.09	Pass	
19,952.62	-0.03	-0.30	0.30	0.09	Pass	
20,484.85	-0.05	-0.40	0.30	0.09	Pass	
21,065.07	-0.11	-0.60	0.30	0.09	Pass	
21,697.62	-0.41	-1.30	0.30	0.09	Pass	
22,387.21	-3.36	-5.00	-2.00	0.09	Pass	
25,826.16	-89.68	-inf	-17.50	0.12	Pass	
37,545.40	-87.51	-ínf	-42.00	0.11	Pass	
60,928.37	-94.94	-inf	-61.00	0.12	Pass	
107,583.52	-94.89	-inf	-70.00	0.11	Pass	
	- End of mea	surement results-				

-- End of Report--

Signatory: Ron Harris

arson Davis, a division of PCB Piezotronics, Inc 681 West 820 North 'rovo, UT 84601, United States '16-684-0001

017-10-12T14:17:28

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No.41004

Instrument: Model: Manufacturer: Serial number: Composed of:

Microphone 377B20 PCB Piezotronics 112245

ate Calibra	ted: 7/5/2018	Cal D	ue: 7/5/2019	ł
Status:	Receiv	/ed	Sent	
In tolerance	27 - X		X	
Out of toler	ance:		•	_
See comme	nts:			
Contains no	n-accredited tes	ts:Y	es <u>X</u> No	•
Address:	3 Mill & Main P	lace, Su	jite 250,	

Maynard, MA 01754

Customer:Epsilon Associates, Inc.Tel/Fax:978-897-7100/

Tested in accordance with the following procedures and standards: Calibration of Measurement Microphones, Scantek, Inc., Rev. 2/25/2015

Instrumentation used for calibration: N-1504 Norsonic Test System:

instrument - Manufacturer	Berneufnation	5 (N)	Cal. Date	Traceability evidence	Cal. Due
instrument - Manufacturer	Description	S/N	cal. Date	Cal. Lab / Accreditation	
4838-Norsonic	SME Cal Unit	31052	Oct 30, 2017	Scantek, inc./ NVLAP	Oct 30, 2018
DS-360-SR5	Function Generator	33584	Oct 24, 2017	ACR Env./ A2LA	Oct 24, 2019
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Oct 25, 2017	ACR Env. / A2LA	Oct 25, 2018
HM30-Thommen	Meteo Station	1040170/39533	Oct 25, 2017	ACR Env./ A2LA	Oct 25, 2018
PC Program 1017 Norsonic	Calibration software	v.6.1 T	Validated Nov 2014	Scantek, Inc.	
1253-Norsonic	Calibrator	28326	Nov 10, 2017	Scantek, Inc./ NVLAP	Nov 10, 2018
1203-Norsonic	Preamplifier	14059	Feb 12, 2018	Scantek, Inc./ NVLAP	Feb 12, 2019
4180-Brüel&Kjær	Microphone	2246115	Oct 24, 2017	· DANAK / DPLA	Oct 24, 2019

Instrumentation and test results are traceable to SI - BIPM through standards maintained by NPL (UK) and NIST (USA)

Signature Lolon Dawken Signature Steven E Marshall Date 7/5/2018 Date 7/6/2018	Calibrated by:	/ Lydon Dawkins	Authorized signatory:	Steven E. Marshall
	Signature	Ledon Dawkin	Signature y	Steven & Marshall
	Date			7/6/2018

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2018\PC8377B20_112245_M1.doc

Page 1 of 2

CLAUSES / METHODS ¹ FROM PROCEDURES		MET ^{2,3}	NOT MET	NOT TESTED	MEASUREMENT EXPANDED UNCERTAINTY (coverage factor 2)
Open circuit set	nsitivity (insert voltage method, 250 Hz)	X			See below
	Actuator response	x			63 200Hz: 0.3 dB 200 8000 Hz: 0.2 dB 8 10 kHz: 0.5 dB 10 20 kHz: 0.7 dB 20 50 kHz: 0.9 dB 50 100 kHz: 1.2 dB
Frequency response	FF/Diffuse field responses	x _			63 – 200Hz: 0.3 dB 200 – 4000 Hz: 0.2 dB 4 – 10 kHz: 0.6 dB 10 – 20 kHz: 0.9 dB 20 – 50 kHz: 2.2 dB 50 – 100 kHz: 4.4 dB
	Scantek, Inc. acoustical method			x	31.5 – 125 Hz: 0.16 dB 250, 1000 Hz: 0.12 dB 2 – 8 kHz: 0.8 dB 12.5 – 16 kHz: 2.4 dB

Results summary: Device was tested and complies with following clauses of mentioned specifications:

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

² Results are normalized to the reference conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Note: The free field/diffuse field characteristics were calculated based on the measured actuator response and adjustment coefficients as provided by the manufacturer. The uncertainties reported for these characteristics may include assumed uncertainty components for the adjustment coefficients.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
22.3 ± 1.0	100.99 ± 0.020	55.0 ± 2.4

Main measured parameters:

Tone frequency (Hz)	Measured ⁴ /Acceptable Open circuit sensitivity (dB re 1V/Pa)	Sensitivity (mV/Pa)
250	-25.15 ± 0.12/ -26.0 ±1.5	55.27

⁴ The reported expanded uncertainty is calculated with a coverage factor k=2.00

Tests made with following attachments to instrument and auxiliary devices:

Protection grid mounted for sensitivity measurements	r.	
Actuator type: G.R.A.S. RA0014		

Measured Data: Found on Microphone Test Report # 41004 of one page.

Place of Calibration: Scantek, Inc.

6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 <u>callab@scantekinc.com</u>

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2018\PCB377B20_112245_M1.doc

Page 2 of 2

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No.41003

Instrument: Model:	Sound Level Meter 831
Manufacturer:	Larson Davis
Serial number:	0002154
Tested with:	Microphone 377820 s/n 112245
	Preamplifier PRM831 s/n 016477
Type (class):	1
Customer:	Epsilon Associates, Inc.
Tel/Fax:	978-897-7100 /

Date Calibrat	ed:7/5/2018 Ca	l Due: 7/5/2019
Status:	Received	Sent
In tolerance:	. X	X
Out of tolera	nce:	
See comment	ts:	
Contains non	-accredited tests:	_Yes X_No
Calibration se	ervice: <u>Basic X</u>	Standard
Address: 3	Mill & Main Place,	, Suite 250,
N	Aaynard, MA 01754	1

Tested in accordance with the following procedures and standards: Calibration of Sound Level Meters, Scantek Inc., Rev. 6/26/2015 SLM & Dosimeters – Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	s/N		Traceability evidence	Cal. Due
			Cal. Date	Cal. Lab / Accreditation	
483B-Norsonic	SME Cal Unit	31052	Oct 30, 2017	Scantek, Inc./ NVLAP	Oct 30, 2018
DS-360-SRS	Function Generator	33584	Oct 24, 2017	ACR Env./ A2LA	Oct 24, 2019
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Oct 25, 2017	ACR Env. / A2LA	Oct 25, 2018
HM30-Thommen	Meteo Station	1040170/39633	Oct 25, 2017	ACR Env./ A2LA	Oct 25, 2018
PC Program 1019 Norsonic	Calibration software	v.6.1⊤	Validated Nov 2014	Scantek, Inc.	· -
1251-Norsonic	Calibrator	30878	Nov 10, 2017	Scantek, Inc./ NVLAP	Nov 10, 2018

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
21.4	100.75	52.4

Calibrated by:	/ Lydon Dawkins	Authorized signatory:	Steven E. Marshall
Signature	Judon Daullen	Signature	Struen E Marshall
Date	7/5/2018	Date	7/6/201B

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2018\LD831_0002154_M1.doc

Page 1 of 2

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES ¹ FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) (dB)
INDICATION AT THE CALIBRATION CHECK FREQUENCY - IEC61672-3 ED.2 CLAUSE 10	Passed	0.15
SELF-GENERATED NOISE - IEC 61672-3 ED.2 CLAUSE 11	Passed	0.30
FREQUENCY WEIGHTINGS: A NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: C NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: Z NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY AND TIME WEIGHTINGS AT 1 KHZ IEC 61672-3 ED.2.0 CLAUSE 14	Passed	0.20
LEVEL LINEARITY ON THE REFERENCE LEVEL RANGE - IEC 61672-3 ED.2 CLAUSE 16	Passed	0.25
LEVEL LINEARITY INCLUDING THE LEVEL RANGE CONTROL - IEC 61672-3 ED.2.0 CLAUSE 17	Passed	0.25
TONEBURST RESPONSE - IEC 61672-3 ED.2.0 CLAUSE 18	Passed	0.30
PEAK C SOUND LEVEL - IEC 61672-3 ED.2.0 CLAUSE 19	Passed	0.35
OVERLOAD INDICATION - IEC 61672-3 ED.2.0 CLAUSE 20	Passed	0.25
HIGH LEVEL STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 21	Passed	0.10
LONG TERM STABILITY TEST - IEC 61672-3 ED 2.0 CLAUSE 15	Passed	0.10
FILTER TEST 1/10CTAVE: RELATIVE ATTENUATION - IEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
FILTER TEST 1/3OCTAVE: RELATIVE ATTENUATION - IEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
COMBINED ELECTRICAL AND ACOUSTICAL TEST - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	See test report

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

2 Parameters are certified at actual environmental conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Comments: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2, to demonstrate that the model of sound level meter fully conforms to the requirements in the IEC 61672-2, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger.

Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

Microphone: I	CB Piezotronics 377B	20 s/n 112245 for acoustical test		
Preamplifier: 1	arson Davis PRM831	s/n 016477 for all tests		
Other: line adap	tor ADP005 (18pF) for	electrical tests	•	
Accompanying a	coustical calibrator:	Larson Davis CAL200 s/n 7146		
Windscreen:	none			

Measured Data: In Test Report #

41003 of 9 + 1 pages.

Place of Calibration: Scantek, inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2018\LD831_0002154_M1.doc

Page 2 of 2

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No.39496

Instrument: Model: Manufacturer: Serial number: Composed of:

Microphone 377B20 **PCB Piezotronics** LW130579

Date Calibrated:	10/19/2017 Cal	Due: 10/19/2018
Status:	Received	Sent
In tolerance:	X	X
Out of tolerance	e:	
See comments:		
Contains non-a	ccredited tests:	Yes X No
Address: 3 N	fill & Main Place, :	Suite 250,

Customer: **Epsilon Associates, Inc.** Tel/Fax: 978-897-7100/

Maynard, MA 01754

Tested in accordance with the following procedures and standards: Calibration of Measurement Microphones, Scantek, Inc., Rev. 2/25/2015

Instrumentation used for calibration: N-1504 Norsonic Test System:

Instrument - Manufacturer	Description	s/N	Cal. Date	Traceability evidence	Cal. Due
manualturer			Cal. Date	Cal. Lab / Accreditation	
483B-Norsonic	SME Cal Unit	31052	Oct 26, 2016	Scantek, Inc./ NVLAP	Oct 26, 2017
DS-360-SRS	Function Generator	33584	Oct 20, 2015	ACR Env./ A2LA	Oct 20, 2017
34401A-Agilent Technologies	Digital Voltmeter	MY41022043	Sep 9, 2017	ACR Env. / A2LA	Sep 9, 2018
HM30-Thommen	Meteo Station	1040170/39633	Nov 1, 2016	ACR Env./ A2LA	Nov 1, 2017
PC Program 1017 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	-
1253-Norsonic	Callbrator	28326	Nov 10, 2016	Scantek, Inc./ NVLAP	Nov 10, 2017
1203-Norsonic	Preamplifier	14059	Feb 13, 2017	Scantek, Inc./ NVLAP	Feb 13, 2018
4180-Brüel&Kjær	Microphone	2246115	Oct 26, 2015	NPL-UK / UKAS	Oct 26, 2017

Instrumentation and test results are traceable to SI - BIPM through standards maintained by NPL (UK) and NIST (USA)

Calibrated by:	/ Lydon Dawking	Authorized signatory:	///illiam DoGallagher,
Signature	Lindon Daviking	Signature	Ulinh Mallar
Date	10/19/2017	Date	10/24/2017
			······································

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2017\PCB377B20_LW130579_M1.doc

Page 1 of 2

	CLAUSES / METHODS ¹ FROM PROCEDURES	MET ^{2,3}	NOT MET	NOT TESTED	MEASUREMENT EXPANDED UNCERTAINTY (coverage factor 2)
Open circuit sens	sitivity (insert voltage method, 250 Hz)	X			See below
	Actuator response	x			63 – 200Hz: 0.3 dB 200 – 8000 Hz: 0.2 dB 8 – 10 kHz: 0.5 dB 10 – 20 kHz: 0.7 dB 20 – 50 kHz: 0.9 dB 50 – 100 kHz: 1.2 dB
Frequency response	FF/Diffuse field responses	x			63 – 200Hz: 0.3 dB 200 – 4000 Hz: 0.2 dB 4 – 10 kHz: 0.6 dB 10 – 20 kHz: 0.9 dB 20 – 50 kHz: 2.2 dB 50 – 100 kHz: 4.4 dB
	Scantek, Inc. acoustical method			x	31.5 - 125 Hz: 0.16 dB 250, 1000 Hz: 0.12 dB 2 - 8 kHz: 0.8 dB 12.5 - 16 kHz: 2.4 dB

Results summary: Device was tested and complies with following clauses of mentioned specifications:

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

² Results are normalized to the reference conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Note: The free field/diffuse field characteristics were calculated based on the measured actuator response and adjustment coefficients as provided by the manufacturer. The uncertainties reported for these characteristics may include assumed uncertainty components for the adjustment coefficients.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
23.2 ± 1.0	100.75 ± 0.020	43.5 ± 2.2

Main measured parameters:

Tone frequency (Hz)	Measured ⁴ /Acceptable Open circuit sensitivity (dB re 1V/Pa)	Sensitivity (mV/Pa)
250	-26.87 ± 0.12/ -26.0 ±1.5	45.36

⁴ The reported expanded uncertainty is calculated with a coverage factor k=2.00

Tests made with following attachments to instrument and auxiliary devices:

Protection grid mounted for sensitivity measurements	
Actuator type: G.R.A.S. RA0014	

Measured Data: Found on Microphone Test Report # 39496 of one page.

Place of Calibration: Scantek, Inc.

6430 Dobbin Road, Suite C	Ph/Fax: 410-290-7726/ -9167
Columbia, MD 21045 USA	<u>callab@scantekinc.com</u>

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2017\PCB377B20_LW130579_M1.doc

Page 2 of 2

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No.39495

a second and second
instrument: Model:	Sound Level Meter 831		
Manufacturer:	Larson Davis		
Serial number:	0003047		
Tested with:	Microphone 377B20 s/n LW130579 Preamplifier PRM831 s/n 023825		
Type (class):	1		
Customer:	Epsilon Associates, Inc.		
Tel/Fax:	978-897-7100 /		

 Date Calibrated: 10/23/2017 Cal Due: 10/23/2018

 Status:
 Received
 Sent

 In tolerance:
 X
 X

 Out of tolerance:
 See comments:
 Contains non-accredited tests: ___Yes X_ No

 Calibration service:
 Basic X_ Standard

 Address:
 3 Mill & Main Place, Suite 250,

 Maynard, MA 01754

Tested in accordance with the following procedures and standards: Calibration of Sound Level Meters, Scantek Inc., Rev. 6/26/2015 SLM & Dosimeters – Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	S/N		Traceability evidence	Cal. Due
			Cal. Date	Cal. Lab / Accreditation	
4838-Norsonic	SIVIE Cal Unit	31052	Oct 26, 2015	Scantek, Inc./ NVLAP	Oct 26, 2017
DS-360-SRS	Function Generator	61646	Sep 20, 2017	ACR Env. / A2LA	Sep 20, 2018
34401A-Agilent Technologies	Digital Voltmeter	MY41022043	Sep 9, 2017	ACR Env. / A2LA	Sep.9, 2018
HM30-Thommen	Meteo Station	1040170/39633	Nov 1, 2015	ACR Env./ A2LA	Nov 1, 2017
PC Program 1019 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	-
1251-Norsonic	Calibrator	30878	Nov 10, 2016	Scantek, Inc./ NVLAP	Nov 10, 2017

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
22.9	101.01	50.8

Calibrated by:	🖌 Lydon Dawkins	Authorized signatory:	👔 William D	')Gallaghery
Signature	Ladon Dawkub	Signature	Williak	Ballon_
Date	10/25/2017	Date	10/2+1	2017
				- 1

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2017\LD831_0003047_M1.doc

Page 1 of 2

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES ¹ FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB
INDICATION AT THE CALIBRATION CHECK FREQUENCY - IEC61672-3 ED.2 CLAUSE 10	Passed	0.15
SELF-GENERATED NOISE - IEC 61672-3 ED.2 CLAUSE 11	Passed	0.30
FREQUENCY WEIGHTINGS: A NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: C NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: Z NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY AND TIME WEIGHTINGS AT 1 KHZ JEC 61672-3 ED.2.0 CLAUSE 14	Passed	0.20
LEVEL LINEARITY ON THE REFERENCE LEVEL RANGE - IEC 61672-3 ED.2 CLAUSE 16	Passed	0.25
LEVEL LINEARITY INCLUDING THE LEVEL RANGE CONTROL - IEC 61672-3 ED.2.0 CLAUSE 17	Passed	0.25
TONEBURST RESPONSE - IEC 61672-3 ED.2.0 CLAUSE 18	Passed	0.30
PEAK C SOUND LEVEL - IEC 61672-3 ED.2.0 CLAUSE 19	Passed	0.35
OVERLOAD INDICATION - IEC 61672-3 ED.2.0 CLAUSE 20	Passed	0.25
HIGH LEVEL STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 21	Passed	0.10
LONG TERM STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 15	Passed	0.10
FILTER TEST 1/10CTAVE: RELATIVE ATTENUATION - JEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
FILTER TEST 1/3OCTAVE: RELATIVE ATTENUATION - IEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
COMBINED ELECTRICAL AND ACOUSTICAL TEST - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	See test report

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

² Parameters are certified at actual environmental conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Comments: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2, to demonstrate that the model of sound level meter fully conforms to the requirements in the IEC 61672-2, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger.

Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

Microphone: PCB Piezotronics 3778	20 s/n LW130579 for acoustical test
Preamplifier: Larson Davis PRM831	s/n 023825 for all tests
Other: line adaptor ADP005 (18pF) for	electrical tests
Accompanying acoustical calibrator:	Larson Davis CAL200 s/n 7147
Windscreen: none	

Measured Data: in Test Report #

39495 of 9 + 1 pages.

Place of Calibration: Scantek, Inc. 5430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2017\LD831_0003047_M1.doc

Page 2 of 2

Certificate of Calibration and Conformance

This document certifies that the instrument referenced below meets published specifications per Procedure PRD-P263; ANSI S1.4-1983 (R 2006) Type 1; S1.4A-1985; S1.43-1997 Type 1; S1.11-2004 Octave Band Class 0; S1.25-1991; IEC 61672-2002 Class 1; 60651-2001 Type 1; 60804-2000 Type 1; 61260-2001 Class 0; 61252-2002.

Manufacturer:	Larson Davis	Temperature:	78.2	°F
Model Number:	831		25.67	°C
Serial Number:	2544	- Rel. Humidity:	20.3	— %
Customer:	TMS Rental	Pressure:	1004.9	
Description:	Sound Leve	el Meter	1004.9	— hPa
Note:	As Fou	und/As Left: In Tolerance		
	· · · · · · · · · · · · · · · · · · ·			

Upon receipt for testing, this instrument was found to be:

Within the stated tolerance of the manufacturer's specification.

Calibration Date:	3/23/2018		Calibration Due:
-------------------	-----------	--	------------------

Calibration Standards Used:

Manufacturer	Model	Serial Number	Cal Due
Stanford Research Systems	D\$360	123270	4/25/2018

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at The Modal Shop and/or Larson Davis Corporate Headquarters. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. Calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of The Modal Shop.

Technician:

Adam Magee

Signature:

THE MODAL SHOP A PCB GROUP CO.

Helend man

3149 East Kemper Road Cincinnati, OH. 45241 Phone: (513) 351-9919 (800) 860-4867 www.modalshop.com

PRD-F242 revB July 25, 2016

Page 1 of 1

沙力	MODAL SHOP NC.	~(Certificate	of Calibra	tion~		3149 East K Cincinnati, (Ph : 513-3 Fax: 513-4 www.moda	ОН 4524 351-9919 458-2172			
Model Nu	arer: PCB mber: 377B20			Customer: Address:		TMS Rent	al				
Serial Nun Asset ID: Descriptio	nber: 125687 44387 n: Random Mic	rophone		Calibration Due Date:	n Date:	Feb 20, 20	018 16:03:28				
Sensitivity	-25.72	1 kHz -25.73	• • • • • • • • • •	Temperatu Humidity:		80 (27) 43	°F (°C) %				
Cal. Resul	51.77 Its: In Tolera	51.68 ince	mV/Pa	Ambient P Polarizatio		997.4 0	mbar VDC				
5		·····									
o 🖵			· - · · · · · · · · · · · · · · · · · ·								
				╶┋╼╌╍╼╶╡╾╍╌╉╼╼╪╌╾┾╼╌┾╼╞╼╤╪							
_ /				╁╾╌┼╾╹┋╍┊╸┼╺┼╶┼╴┨	·····		┝╼┉╾┝╍╌╅╌╶┦╌╎╌╎╴╴				
	equency Response Chara										
	aracteristic for the micro essure response recorded			ver curve is me							
-10											
	nsitivity : The stated sen pical preamplifier the ser			y. When used with a							
1	ncar prearitymiser are ser	Instantity will	DE 0.2 dB IOWON								
-15 + 10			100	100	M		10000				
Traceabili Notes:	Calibration re This certifica This calibrati	esults relate the may not ion is perfo	med in compliance	librated. pt in full, without writ with ISO 9001, ISO 17	7025 and AN	SI Z540.					
	Calibration re This certifica This calibrati	esults relate the may not ion is perfo t uncertaint	e only to the items ca be reproduced, except med in compliance of y (250 Hz sensitivity	librated. pt in full, without writ	7025 and AN	SI Z540.	0.25 dB				
	Calibration r This certifica This calibrati Measurement Calibrated pe	esults relate te may not ion is perfo t uncertaint or procedure	e only to the items ca be reproduced, excep med in compliance y (250 Hz sensitivity e PRD-P204.	librated. pt in full, without writ with ISO 9001, ISO 17	7025 and AN	SI Z540.	0.25 dB				
Notes:	Calibration re This certifica This calibrati Measurement Calibrated pe As Found / A	esults relate the may not ion is perfo t uncertaint or procedure as Left: In T Freq	e only to the items ca be reproduced, excep mned in compliance y (250 Hz sensitivity e PRD-P204. Volerance Juency Response	librated. pt in full, without writ with ISO 9001, ISO 17 e calibration) at 95% c with reference to be	7025 and ANS onfidence lev	SI Z540. el: I z					
Notes:	Calibration re This certifica This calibrati Measurement Calibrated pe : As Found / A Frequency	esults relats te may not ion is perfo t uncertaint or procedure as Left: In 7 Freq Upper	e only to the items ca be reproduced, excep rmed in compliance y (250 Hz sensitivity e PRD-P204. Colerance Juency Response Frequency U	librated. pt in full, without writ with ISO 9001, ISO 17 a calibration) at 95% c with reference to le Upper Frequency	7025 and AN onfidence lev wel at 250 H Upper	SI Z540. el: Hz Frequency	Upper				
Notes:	Calibration re This certifica This calibrati Measurement Calibrated pe As Found / A	esults relate the may not ion is perfo t uncertaint or procedure as Left: In T Freq	e only to the items ca be reproduced, excep rmed in compliance y (250 Hz sensitivity e PRD-P204. Colerance puency Response Frequency U (Hz)	librated. pt in full, without writ with ISO 9001, ISO 17 e calibration) at 95% c with reference to be	7025 and ANS onfidence lev	SI Z540. el: I z					
Notes:	Calibration re This certifica This calibrati Measurement Calibrated pe calibrated pe c	esults relats te may not ion is perfo t uncertaint or procedure as Left: In 7 Freq Upper (dB) -0.24 -0.21	e only to the items ca be reproduced, excep rined in compliance of y (250 Hz sensitivity e PRD-P204. Folerance Juency Response Frequency U (Hz) 630 800	librated. pt in full, without writ with ISO 9001, ISO 17 a calibration) at 95% c with reference to le Upper Frequency (dB) (Hz) 0.13 4500 0.06 5000	7025 and AN onfidence lev evel at 250 H Upper (dB) 0.05 0.10	SI Z540. el: Hz Frequency	Upper				
Notes:	Calibration re This certifica This calibrati Measurement Calibrated pe : As Found / A Frequency (H2) 20 25 31.5	esults relats te may not ion is perfo t uncertaint or procedure as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05	e only to the items ca be reproduced, excep rmed in compliance y (250 Hz sensitivity e PRD-P204. Colerance Frequency Response Frequency U (Hz) 630 800 1000	librated. pt in full, without writ with ISO 9001, ISO 17 calibration) at 95% c with reference to le Upper Frequency (dB) (Hz) 0.13 4500 0.06 5000 0.01 5600	7025 and AN onfidence lev evel at 250 H Upper (dB) 0.05 0.10 0.20	SI Z540. el: Hz Frequency	Upper				
Notes:	Calibration re This certifica This calibrati Measurement Calibrated pe : As Found / A Frequency (H2) 20 25 31.5 40	esults relats te may not ion is perfo t uncertaint or procedure as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05 0.07	e only to the items ca be reproduced, exceptioned in compliance of y (250 Hz sensitivity e PRD-P204. Folerance Frequency C (Hz) 630 800 1000 1120	librated. pt in full, without writ with ISO 9001, ISO 17 a calibration) at 95% c with reference to le Jpper Frequency (dB) (Hz) 0.13 4500 0.06 5000 0.01 5600 -0.01 6300	7025 and AN onfidence lev evel at 250 H Upper (dB) 0.05 0.10 0.20 0.30	SI Z540. el: Hz Frequency	Upper				
Notes:	Calibration re This certifica This calibrati Measurement Calibrated pe : As Found / A Frequency (H2) 20 25 31.5 40 50	esults relats te may not ion is perfo t uncertaint or procedure as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05 0.07 0.11	e only to the items ca be reproduced, exceptioned in compliance of y (250 Hz sensitivity e PRD-P204. Folerance Frequency Response Frequency U (Hz) 630 800 1000 1120 1250	librated. pt in full, without writ with ISO 9001, ISO 17 calibration) at 95% c with reference to le Jpper Frequency (dB) (Hz) 0.13 4500 0.06 5000 0.01 5600 -0.01 6300 0.02 7100	7025 and AN onfidence lev evel at 250 H Upper (dB) 0.05 0.10 0.20	SI Z540. el: Hz Frequency	Upper				
Notes:	Calibration re This certifica This calibrati Measurement Calibrated pe : As Found / A Frequency (H2) 20 25 31.5 40	esults relats te may not ion is perfo t uncertaint or procedure as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05 0.07	e only to the items ca be reproduced, excep rmed in compliance of y (250 Hz sensitivity e PRD-P204. Colerance Frequency Response Frequency U (Hz) 630 800 1006 1120 1250 1400	librated. pt in full, without writ with ISO 9001, ISO 17 a calibration) at 95% c with reference to le Jpper Frequency (dB) (Hz) 0.13 4500 0.06 5000 0.01 5600 -0.01 6300	7025 and AN onfidence lev wel at 250 H Upper (dB) 0.05 0.10 0.20 0.30 0.35	SI Z540. el: Hz Frequency	Upper				
Notes:	Calibration re This certifica This calibrati Measurement Calibrated pe calibrated pe c	esults relate te may not ion is perfo t uncertaint er procedum as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05 0.07 0.11 0.05 0.01 0.01	e only to the items ca be reproduced, exceptioned in compliance of y (250 Hz sensitivity e PRD-P204. Colerance Frequency Response Frequency U (Hz) 630 800 1000 1120 1250 1400 1600	librated. pt in full, without writ with ISO 9001, ISO 13 a calibration) at 95% c with reference to le Jpper Frequency (dB) (Hz) 0.13 4500 0.06 5600 0.01 5600 0.01 5600 0.02 7100 0.03 8000 0.03 9000 0.04 10000	7025 and AN onfidence lev evel at 250 H Upper (dB) 0.05 0.10 0.20 0.30 0.35 0.46 0.55 0.42	SI Z540. el: Hz Frequency	Upper				
Notes:	Calibration re This certifica This calibrati Measurement Calibrated pe calibrated pe c	esults relats te may not ion is perfo t uncertaint er procedum as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05 0.07 0.11 0.05 0.01 0.01 0.01	e only to the items ca be reproduced, except med in compliance to y (250 Hz sensitivity e PRD-P204. Colerance Frequency U (Hz) 630 800 1000 1120 1250 1400 1600 1800 2000	librated. pt in full, without writ with ISO 9001, ISO 13 a calibration) at 95% c with reference to le Jpper Frequency (dB) (Hz) 0.13 4500 0.06 (Hz) 0.01 5600 0.01 5600 0.01 6300 0.02 7100 0.03 8000 0.03 9000 0.04 10000 0.06 11200	7025 and AN onfidence lev evel at 250 H Upper (dB) 0.05 0.10 0.20 0.30 0.35 0.46 0.55 0.42 -0.13	SI Z540. el: Hz Frequency	Upper				
Notes:	Calibration re This certifica This calibrati Measurement Calibrated pe : As Found / A Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160	esults relats te may not ion is perfo t uncertaint er procedure as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05 0.07 0.11 0.05 0.01 0.01 0.01	e only to the items ca be reproduced, excep- rmed in compliance to y (250 Hz sensitivity e PRD-P204. Colerance Frequency U (Hz) 630 800 1000 1120 1250 1400 1600 1800 2000 2240	librated. pt in full, without writ with ISO 9001, ISO 13 a calibration) at 95% c with reference to le Jpper Frequency (dB) (Hz) 0.13 4500 0.06 5000 0.01 5600 0.01 5600 0.01 6300 0.02 7100 0.03 8000 0.03 8000 0.04 10000 0.04 11200 0.02 12500	7025 and AN onfidence lev evel at 250 H Upper (dB) 0.05 0.10 0.20 0.30 0.35 0.46 0.55 0.42	SI Z540. el: Hz Frequency	Upper				
Notes:	Calibration re This certifica This calibrati Measurement Calibrated pe : As Found / A Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160 200	esults relats te may not ion is perfo t uncertaint er procedure as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05 0.07 0.11 0.05 0.01 0.01 0.01 0.01 0.01	e only to the items ca be reproduced, excep- rmed in compliance to y (250 Hz sensitivity e PRD-P204. Folerance Frequency U (Hz) 630 800 1000 1120 1250 1400 1600 1800 2000 2240 2500	librated. pt in full, without writ with ISO 9001, ISO 13 a calibration) at 95% c with reference to le Jpper Frequency (dB) (Hz) 0.13 4500 0.06 5000 0.01 5600 0.01 5600 0.01 6300 0.02 7100 0.03 8000 0.03 8000 0.04 10000 0.04 11200 0.02 12500 -0.04	7025 and AN onfidence lev evel at 250 H Upper (dB) 0.05 0.10 0.20 0.30 0.35 0.46 0.55 0.42 -0.13	SI Z540. el: Hz Frequency	Upper				
Notes:	Calibration m This certifica This calibrati Measurement Calibrated pe : As Found / A Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160 200 250	esults relats te may not ion is perfo t uncertaint er procedure as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05 0.07 0.11 0.01 0.01 0.01 0.01 0.01 0.01	e only to the items ca be reproduced, excep- rmed in compliance of y (250 Hz sensitivity e PRD-P204. Folerance Frequency U (Hz) 630 800 1000 1120 1250 1400 1600 1800 2000 2240 2500 2800	librated. pt in full, without writ with ISO 9001, ISO 13 c calibration) at 95% c with reference to le Jpper Frequency (dB) (Hz) 0.13 4500 0.06 5000 0.01 5600 -0.01 6300 0.02 7100 0.03 8000 0.03 8000 0.04 10000 0.04 10000 0.06 11200 0.02 12500 -0.04 -0.03	7025 and AN onfidence lev evel at 250 H Upper (dB) 0.05 0.10 0.20 0.30 0.35 0.46 0.55 0.42 -0.13	SI Z540. el: Hz Frequency	Upper				
Notes:	Calibration m This certifica This calibrati Measurement Calibrated pe : As Found / A Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160 200 250 315	esults relats te may not ion is perfo t uncertaint er procedum as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05 0.07 0.11 0.05 0.01 0.01 0.01 0.01 0.01	e only to the items ca be reproduced, excep- rmed in compliance of y (250 Hz sensitivity e PRD-P204. Colerance prequency U (Hz) 630 800 1000 1120 1250 1400 1600 1800 2000 2240 2500 2800 3150	librated. pt in full, without writ with ISO 9001, ISO 13 a calibration) at 95% c with reference to le Jpper Frequency (dB) (Hz) 0.13 4500 0.06 5000 0.01 5600 0.01 5600 0.01 6300 0.02 7100 0.03 8000 0.03 8000 0.04 10000 0.04 11200 0.02 12500 -0.04	7025 and AN onfidence lev evel at 250 H Upper (dB) 0.05 0.10 0.20 0.30 0.35 0.46 0.55 0.42 -0.13	SI Z540. el: Hz Frequency	Upper				
Notes:	Calibration m This certifica This calibrati Measurement Calibrated pe : As Found / A Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160 200 250	esults relats te may not ion is perfo t uncertaint er procedure as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05 0.07 0.11 0.01 0.01 0.01 0.01 0.01 0.01	e only to the items ca be reproduced, excep- rmed in compliance in y (250 Hz sensitivity e PRD-P204. Folerance Frequency U (Hz) 630 800 1000 1120 1250 1400 1600 1800 2000 2240 2500 2800 3150 3550	librated. pt in full, without writ with ISO 9001, ISO 13 calibration) at 95% c with reference to le Jpper Frequency (dB) (Hz) 0.13 4500 0.06 5000 0.01 5600 -0.01 6300 0.02 7100 0.03 8000 0.03 8000 0.04 10000 0.04 10000 0.04 12500 -0.04 -0.03 0.04	7025 and AN onfidence lev evel at 250 H Upper (dB) 0.05 0.10 0.20 0.30 0.35 0.46 0.55 0.42 -0.13	SI Z540. el: Hz Frequency	Upper				
Notes:	Calibration m This certifica This calibrati Measurement Calibrated pe : As Found / A Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 250 315	esults relats te may not ion is perfo t uncertaint er procedure as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05 0.07 0.11 0.01 0.01 0.01 0.01 0.01 0.01	e only to the items ca be reproduced, excep- rmed in compliance of y (250 Hz sensitivity e PRD-P204. Colerance prequency (Hz) 630 800 1006 1120 1250 1400 1600 1800 2000 2240 2500 3150 3550 4000 Barmeyer	librated. pt in full, without writ with ISO 9001, ISO 13 calibration) at 95% c with reference to le Jpper Frequency (dB) (Hz) 0.13 4500 0.06 5000 0.01 5600 -0.01 6300 0.02 7100 0.03 8000 0.02 7100 0.03 8000 0.04 10000 0.04 10000 0.04 11200 0.02 12500 -0.04 -0.03 0.04 0.06 0.03 Reference	7025 and AN onfidence lev evel at 250 H Upper (dB) 0.05 0.10 0.20 0.30 0.35 0.46 0.55 0.42 -0.13 -0.44 Equipment	SI Z540. el: Frequency (Hz)	Upper (dB)				
Notes: User Note:	Calibration m This certifica This calibrati Measurement Calibrated pe : As Found / A Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 250 315	esults relats te may not ion is perfo t uncertaint er procedure as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05 0.07 0.11 0.01 0.01 0.01 0.01 0.01 0.01	e only to the items ca be reproduced, excep- rmed in compliance is y (250 Hz sensitivity e PRD-P204. Colerance prequency U (Hz) 630 800 1006 1120 1250 1400 1600 1800 2000 2240 2500 2800 3150 3550 4000	librated. pt in full, without writ with ISO 9001, ISO 13 calibration) at 95% c with reference to le Jpper Frequency (dB) (Hz) 0.13 4500 0.06 5000 0.01 5600 -0.01 6300 0.02 7100 0.03 8000 0.02 7100 0.03 8000 0.04 10000 0.04 10000 0.04 12500 -0.04 -0.03 0.04 -0.03 0.04 -0.03 0.04 -0.03 0.04 -0.03 0.04 -0.03 0.04 -0.03 0.04 -0.03 -0.04 -0.04 -0.03 -0.04 -0.04 -0.03 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.05 -0.04 -0.04 -0.05 -0.04 -0.04 -0.05 -0.04 -0.05 -0.04 -0.05 -0.04 -0.05 -0.04 -0.05 -0.04 -0.05 -0.04 -0.05 -0.04 -0.05 -0.04 -0.05 -0.04 -0.05 -0.05 -0.04 -0.05 -0.05 -0.04 -0.05 -0.	7025 and AN onfidence lev evel at 250 E Upper (dB) 0.05 0.10 0.20 0.30 0.35 0.46 0.55 0.42 -0.13 -0.44	SI Z540. el: Iz Frequency (Hz)	Upper	Due Da: 9/6/201			
Notes:	Calibration m This certifica This calibrati Measurement Calibrated pe : As Found / A Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 250 315	esults relats te may not ion is perfo t uncertaint er procedure as Left: In 7 Freq Upper (dB) -0.24 -0.21 -0.05 0.07 0.11 0.01 0.01 0.01 0.01 0.01 0.01	e only to the items ca be reproduced, excep- rmed in compliance of y (250 Hz sensitivity e PRD-P204. Colerance prequency (Hz) 630 800 1006 1120 1250 1400 1600 1800 2000 2240 2500 3150 3550 4000 Barmeyer	librated. pt in full, without writ with ISO 9001, ISO 13 calibration) at 95% c with reference to le Jpper Frequency (dB) (Hz) 0.13 4500 0.06 5000 0.01 5600 0.01 5600 0.02 7100 0.03 8000 0.02 7100 0.03 8000 0.04 10000 0.04 10000 0.04 11200 0.02 12500 0.04 0.03 8eference - Manuf.	7025 and AN onfidence lev evel at 250 H Upper (dB) 0.05 0.10 0.20 0.30 0.35 0.46 0.55 0.42 -0.13 -0.44 Equipment Model	SI Z540. el: Frequency (Hz)	Upper (dB)				

. d .

Certificate of Calibration and Conformance

This document certifies that the instrument referenced below meets published specifications per Procedure PRD-P263; ANSI S1.4-1983 (R 2006) Type 1; S1.4A-1985; S1.43-1997 Type 1; S1.11-2004 Octave Band Class 0; S1.25-1991; IEC 61672-2002 Class 1; 60651-2001 Type 1; 60804-2000 Type 1; 61260-2001 Class 0; 61252-2002.

Manufacturer:	Larson Davis	Temperature:	72.1	°F
Model Number:	831		22.28	°C
Serial Number:	3307	Rel. Humidity:	41.8	%
Customer:	TMS Rental	Pressure:	1000.2	mbars
Description:	Sound Lev	1000.2	hPa	
Note:	As For	und/As Left: In Tolerance		

Upon receipt for testing, this instrument was found to be:

2/16/2018

Within the stated tolerance of the manufacturer's specification.

Calibration Date:

Calibration Due:

Calibration Standards Used:

Manufacturer	Model	Serial Number	Cal Due
Stanford Research Systems	DS360	123270	4/25/2018

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at The Modal Shop and/or Larson Davis Corporate Headquarters. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. Calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of The Modal Shop.

Technician:

Adam Magee

Signature:

THE MODAL SHOP A PCB GROUP CO.

Adult Man

3149 East Kemper Road Cincinnati, OH. 45241 Phone: (513) 351-9919 (800) 860-4867 www.modalshop.com

PRD-F242 revB July 25, 2016

Page 1 of 1

17 I N		~(Certifica	ate of	Calibra	tion~		3149 East Komper Rc Cinchrnati, OH 4524 Ph : 513-351-9919 Fax: 513-458-217 www.modalshop.com			
Manufacturer Model Numbe Serial Number	er: 377B20	6			Custome: Address:		TMS Ren	ntal			
Asset ID: Description:	Random Mi	crophone			Calibrati Due Date		Mar 23, 2	018 10:44:28			
Sensitivity:	250 Hz -26.07	1 kHz -26.09	dB re. 1V/	Pa	Temperat Humidity		73 (23) 26	°F (°C) %			
	49.74	49.62	mV/Pa		Ambient]		1005				
Cal. Results:	In Tolera						•	mbar			
5 		ince			Polarizati	on Voltage	: 0	VDC			
······································	····				┉╼╁╌╌╁┯┾┉	·					
······································	··· [┉╇┉┈╴╂┈┉╶┽┉┉┼╲┈╷		·····	~~····································	·					
0		╺┅┿╼╼╬╍┊┊┼╺┙									
······································	····				╌ <u></u> ┼┈╵┝╼╹ <u></u> ┤╴┼┈┾╼ ╽	······					
eg -5 -		┉┥┈┙┙┙						<u> </u>			
character	y Response Chara istic for the micro	ctenstics : T	he upper curve is	s the random	incidence		·····	······································			
-10 - pressure o	response recorded	by electrost	FORECTION grid. T	be lower curv	ve is the	·····	······				
\$ 100 100 100 100 100 100 100 100 100 10								┼╌╆╼╋┊┍┿╬╴╌╼╍╴┤┤			
Sensitivit	ty : The stated sen	sitivity is the	open-circuit sen	sitivity. Whe	n used with a			┥━━━╋╍╌╏╍┉╽╾┙─╀╓╼╍╍┉╻╴╴╴╴╴ ╵┏┈ ━ ╋╍╌┤─╖┲╼╵╴╴╴╴			
-15 - typical pr	reamplifier the sen	sitivity will l	be 0.2 dB lower.	-							
10		······			10	·····					
	Measurement	on is perform uncertainty	ned in complia (250 Hz sensit	ince with IS	O 9001, ISO 1	tten permissio 7025 and AP	JSI 7540				
	Calibrated per	r procedure	PRD- P204,	uvity canora	ation) at 95% c	confidence le	vel:	0.30 dB			
User Note:	Calibrated per As Found / As		PRD-P204,	uvity canora	ation) at 95% c	confidence le	vel:	0.30 dB			
User Note:	Calibrated per	s Left: In T Frequ	PRD-P204, olerance, ency Respon	se with re	ation) at 95% o ference to le	confidence le vel at 250 l	vel: Hz				
User Note:	Calibrated per As Found / As Frequency (Hz)	s Left: In T Frequ Upper (dB)	PRD-P204,		ation) at 95% c ference to le Frequency	confidence le vel at 250 l Upper	vel: Iz Frequency	Upper			
User Note:	Calibrated per As Found / As Frequency (Hz) 20	s Left: In T Frequ Upper (dB) -0.17	PRD-P204, olerance, ency Respon Frequency (Hz) 630	se with re Upper (dB) 0.13	ation) at 95% of ference to le Frequency (Hz) 4500	confidence le vel at 250 l	vel: Hz				
User Note:	Calibrated per As Found / As Frequency (Hz) 20 25	E Left: In T Freque Upper (dB) -0.17 -0.27	PRD-P204, olerance, ency Respon Frequency (Hz) 630 800	se with re Upper (dB) 0.13 0.06	ation) at 95% of ference to le Frequency (Hz) 4500 5000	vel at 250 l Upper (dB) -0.09 -0.07	vel: Iz Frequency	Upper			
User Note:	Calibrated per As Found / As Frequency (Hz) 20	s Left: In T Frequ Upper (dB) -0.17	PRD-P204, olerance, ency Respon Frequency (Hz) 630 800 1000	se with re Upper (dB) 0.13 0.06 0.00	ation) at 95% of ference to le Frequency (Hz) 4500 5000 5600	vel at 250 l Upper (dB) -0.09 -0.07 -0.02	vel: Iz Frequency	Upper			
User Note:	Calibrated per As Found / As Frequency (Hz) 20 25 31.5 40 50	E Left: In T Freque Upper (dB) -0.17 -0.27 -0.14	PRD-P204, olerance, ency Respon Frequency (Hz) 630 800	se with re Upper (dB) 0.13 0.06 0.00 -0.01	ation) at 95% of ference to le Frequency (Hz) 4500 5000 5600 6300	vel at 250 l Upper (dB) -0.09 -0.07 -0.02 0.03	vel: Iz Frequency	Upper			
User Note:	Calibrated per As Found / As Frequency (Hz) 20 25 31.5 40 50 63	s Left: In T Freque Upper (dB) -0.17 -0.27 -0.14 -0.07 -0.03 0.02	PRD-P204, olerance, ency Respon Frequency (Hz) 630 800 1000 1120 1250 1400	se with re Upper (dB) 0.13 0.06 0.00 -0.01 0.02 0.03	ation) at 95% of ference to le Frequency (Hz) 4500 5000 5600	vel at 250 l Upper (dB) -0.09 -0.07 -0.02	vel: Iz Frequency	Upper			
User Note:	Calibrated per As Found / As Frequency (Hz) 20 25 31.5 40 50 63 80	s Left: In T Freque Upper (dB) -0.17 -0.27 -0.14 -0.07 -0.03 0.02 0.02 0.00	PRD-P204, olerance, ency Respon Frequency (Hz) 630 800 1000 1120 1250 1400 1600	se with re Upper (dB) 0.13 0.06 0.00 -0.01 0.02 0.03 0.01	ation) at 95% c ference to le Frequency (Hz) 4500 5000 5600 6300 7100	vel at 250 l Upper (dB) -0.09 -0.07 -0.02 0.03 0.01	vel: Iz Frequency	Upper			
User Note:	Calibrated per As Found / Ar Frequency (Hz) 20 25 31.5 40 50 63 80 100	s Left: In T Freque Upper (dB) -0.17 -0.27 -0.14 -0.07 -0.03 0.02 0.00 0.00	PRD-P204, olerance, ency Respon Frequency (Hz) 630 800 1000 1120 1250 1400 1600 1800	se with re: Upper (dB) 0.13 0.06 0.00 -0.01 0.02 0.03 0.04 0.02	ation) at 95% c ference to le Frequency (Hz) 4500 5600 5600 6300 7100 8000 9000 10000	vel at 250 1 Upper (dB) -0.09 -0.07 -0.02 0.03 0.01 0.02 0.14 -0.05	vel: Iz Frequency	Upper			
User Note:	Calibrated per As Found / Ar Frequency (Hz) 20 25 31.5 40 50 63 80 100 125	s Left: In T Freque Upper (dB) -0.17 -0.27 -0.14 -0.07 -0.03 0.02 0.00 0.00 0.00	PRD-P204, olerance, ency Respon Frequency (Hz) 630 800 1000 1120 1250 1400 1600 1600 1800 2000	se with re Upper (dB) 0.13 0.06 0.00 -0.01 0.02 0.03 0.04 0.02 0.04	ation) at 95% c ference to le Frequency (Hz) 4500 5600 6300 7100 8000 9000 10000 11200	vel at 250 l Upper (dB) -0.09 -0.07 -0.02 0.03 0.01 0.02 0.14 -0.05 -0.57	vel: Iz Frequency	Upper			
User Note:	Calibrated per As Found / Ar Frequency (Hz) 20 25 31.5 40 50 63 80 100	s Left: In T Frequ Upper (dB) -0.17 -0.27 -0.14 -0.07 -0.03 0.02 0.00 0.00 0.00 0.00	PRD-P204, olerance, ency Respon Frequency (Hz) 630 800 1000 1120 1250 1400 1600 1800 2000 2240	se with re Upper (dB) 0.13 0.06 0.00 -0.01 0.02 0.03 0.01 0.02 0.04 -0.01	ation) at 95% c ference to le Frequency (Hz) 4500 5600 5600 6300 7100 8000 9000 10000	vel at 250 1 Upper (dB) -0.09 -0.07 -0.02 0.03 0.01 0.02 0.14 -0.05	vel: Iz Frequency	Upper			
User Note:	Calibrated per As Found / As Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160 200 250	s Left: In T Freque Upper (dB) -0.17 -0.27 -0.14 -0.07 -0.03 0.02 0.00 0.00 0.00	PRD-P204, olerance, ency Respon Frequency (Hz) 630 800 1000 1120 1250 1400 1600 1600 1800 2000	se with re Upper (dB) 0.13 0.06 0.00 -0.01 0.02 0.03 0.04 0.02 0.04	ation) at 95% c ference to le Frequency (Hz) 4500 5600 6300 7100 8000 9000 10000 11200	vel at 250 l Upper (dB) -0.09 -0.07 -0.02 0.03 0.01 0.02 0.14 -0.05 -0.57	vel: Iz Frequency	Upper			
User Note:	Calibrated per As Found / As Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160 200 250 315	s Left: In T Freque (dB) -0.17 -0.27 -0.14 -0.07 -0.03 0.02 0.00 0	PRD-P204, alerance, ency Respon Frequency (Hz) 630 800 1000 1120 1250 1400 1600 1800 2000 2240 2506 2800 3150	se with re Upper (dB) 0.13 0.06 0.00 -0.01 0.02 0.04 -0.01 -0.02 -0.01 -0.08 -0.07 -0.02	ation) at 95% c ference to le Frequency (Hz) 4500 5600 6300 7100 8000 9000 10000 11200	vel at 250 l Upper (dB) -0.09 -0.07 -0.02 0.03 0.01 0.02 0.14 -0.05 -0.57	vel: Iz Frequency	Upper			
User Note:	Calibrated per As Found / As Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160 200 250 315 400	s Left: In T Freque (dB) -0.17 -0.27 -0.14 -0.07 -0.03 0.02 0.00	PRD-P204, olerance, ency Respon Frequency (Hz) 630 800 1000 1120 1250 1250 1400 1600 1800 2000 2240 2500 2800 3150 3550	se with re Upper (dB) 0.13 0.06 0.00 -0.01 0.02 0.03 0.01 0.02 0.04 -0.01 -0.08 -0.07 -0.02 -0.04	ation) at 95% c ference to le Frequency (Hz) 4500 5600 6300 7100 8000 9000 10000 11200	vel at 250 l Upper (dB) -0.09 -0.07 -0.02 0.03 0.01 0.02 0.14 -0.05 -0.57	vel: Iz Frequency	Upper			
	Calibrated per As Found / Ar Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160 200 250 315 400 500	s Left: In T Freque Upper (dB) -0.17 -0.27 -0.14 -0.07 -0.03 0.02 0.00 0.	PRD-P204, alerance, ency Respon Frequency (Hz) 630 800 1000 1120 1250 1400 1600 1800 2000 2240 2506 2800 3150	se with re Upper (dB) 0.13 0.06 0.00 -0.01 0.02 0.04 -0.01 -0.02 -0.01 -0.08 -0.07 -0.02	ation) at 95% c ference to le Frequency (Hz) 4500 5600 6300 7100 8000 9000 10000 11200 12500	vel at 250 l Upper (dB) -0.09 -0.07 -0.02 0.03 0.01 0.02 0.14 -0.05 -0.57 -0.97	vel: Hz Frequency (Hz)	Upper			
1	Calibrated per As Found / Ar Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 500	s Left: In T Freque Upper (dB) -0.17 -0.27 -0.14 -0.07 -0.03 0.02 0.00 0.	PRD-P204, olerance, ency Respon Frequency (Hz) 630 800 1000 1120 1250 1400 1600 1800 2000 2240 2506 2800 3150 3550 4000	se with re Upper (dB) 0.13 0.06 0.00 -0.01 0.02 0.03 0.01 0.02 0.04 -0.01 -0.08 -0.07 -0.02 -0.04	ation) at 95% c ference to le Frequency (Hz) 4500 5600 5600 5600 6300 7100 8000 9000 10000 11200 12500 Reference I	vel at 250 1 Upper (dB) -0.09 -0.07 -0.02 0.03 0.01 0.02 0.14 -0.05 -0.57 -0.97	vel: Hz Frequency (Hz)	Upper			
	Calibrated per As Found / Ar Frequency (Hz) 20 25 31.5 40 50 63 80 100 125 160 200 250 315 400 500	s Left: In T Freque Upper (dB) -0.17 -0.27 -0.14 -0.07 -0.03 0.02 0.00 0.	PRD-P204, olerance, ency Respon Frequency (Hz) 630 800 1000 1120 1250 1400 1600 1800 2000 2240 2506 2800 3150 3550 4000	se with re Upper (dB) 0.13 0.06 0.00 -0.01 0.02 0.03 0.01 0.02 0.04 -0.01 -0.08 -0.07 -0.02 -0.04	ation) at 95% c ference to le Frequency (Hz) 4500 5600 6300 7100 8000 9000 10000 11200 12500	vel at 250 l Upper (dB) -0.09 -0.07 -0.02 0.03 0.01 0.02 0.14 -0.05 -0.57 -0.97	vel: Hz Frequency (Hz)	Upper			

Appendix D Logan International Airport NWS Data

National Oceanic & Atmospheric Administration National Environmental Satellite, Data, and Information Service

Local Climatological Data Hourly Observations September 2018 G

National Centers for Environmental Information 151 Patton Avenue Asheville, North Carolina 28801

Current Location: Elev: 12 ft. Lat: 42.3606° N Lon: -71.0097° W

Station: BOSTON, MA US 14739

Generated	on	09/25/2018

Da	Time	Sta- tion	Sky	Visi-	Weather Type (see documentation)		Bulb mp		Bulb mp	Dew Te	Point mp	Rel Hum	Wind Speed	Wind Dir	Wind Gusts	Station Press	Press.	Net 3- Hr	Sea Level	Report	Precip Total	Alti- meter
t e	(LST)	Туре	Conditions	bility	AU AW MW	(F)	(C)	(F)	(C)	(F)	(C)	%	(MPH)	(Deg)	(MPH)	(inHg)	Tend	Change (inHg)	Press. (inHg)	Туре	(in)	Setting (inHg)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
13	0012	7	SCT:04 7 OVC:08 41	10.00		67	19.4	66	18.8	65	18.3	93	5	020		30.25				FM-16		30.28
13	0054	7	BKN:07 39 BKN:07 47 OVC:08 65	5.00	RA:02 BR:1 RA RA	67	19.4	66	18.8	65	18.3	93	5	020		30.25	5	+0.01	30.28	FM-15	0.02	30.28
13	0100	4	41	4.97	RA	67	19.4	66	18.8	65	18.3	93	5	020		30.26	5	+0.01	30.28	FM-12		
13	0104	7	SCT:04 7 OVC:08 41	3.00	RA:02 BR:1 RA RA	67	19.4	66	18.8	65	18.3	93	6	360		30.25				FM-16	0.03	30.28
13	0113	7	SCT:04 6 BKN:07 22 OVC:08 41	2.50	RA:02 BR:1 RA RA	67	19.4	66	18.8	65	18.3	93	5	330		30.26				FM-16	0.06	30.29
13	0116	7	BKN:07 6 BKN:07 22 OVC:08 43	2.50	VCTS:7 +RA:02 BR:1 RA RA	67	19.4	66	18.8	65	18.3	93	6	330		30.26				FM-16	0.07	30.29
13	0129	7	BKN:07 8 BKN:07 24 OVC:08 90	3.00	RA:02 BR:1 RA RA	67	19.4	66	18.8	65	18.3	93	5	020		30.25				FM-16	0.11	30.28
13	0136	7	SCT:04 8 BKN:07 22 OVC:08 90	3.00	+RA:02 BR:1 RA RA	66	18.9	65	18.2	64	17.8	93	7	060		30.24				FM-16	0.13	30.27
13	0138	7	SCT:04 8 BKN:07 55 OVC:08 90	2.50	+RA:02 BR:1 RA RA	66	18.9	65	18.2	64	17.8	93	7	060		30.24				FM-16	0.14	30.27
13	0152	6	FEW:02 8 BKN:07 55 OVC:08 90	3.00	+RA:02 BR:1 RA RA	66	19.0	65	18.2	64	18.0	94	6	040		30.25				FM-16		30.28
13	0154	7	FEW:02 8 BKN:07 55 OVC:08 100	3.00	+RA:02 BR:1 RA RA	66	18.9	65	18.5	65	18.3	96	6	030		30.25			30.27	FM-15	0.22	30.28
13	0243	7	BKN:07 20 BKN:07 33 OVC:08 110	7.00	-RA:02 RA RA	66	18.9	65	18.2	64	17.8	93	5	020		30.25				FM-16	0.05	30.28
13	0254	7	BKN:07 19	7.00	-RA:02 RA RA	66	18.9	65	18.2	64	17.8	93	3	010		30.25			30.28	FM-15	0.05	30.28
13	0330	7	FEW:02 19 BKN:07 120	5.00	RA:02 BR:1 RA RA	66	18.9	65	18.2	64	17.8	93	7	020		30.24				FM-16	0.04	30.27
13	0354	7	BKN:07 110	5.00	RA:02 BR:1 RA RA	66	18.9	65	18.2	64	17.8	93	7	010		30.25	6	+0.00	30.28	FM-15	0.07	30.28
13	0400	4	007.04.0	4.97	IIRA	66	18.9	65	18.2	64	17.8	93	7	010		30.26	6	+0.00	30.28	FM-12		
13	0404	7	SCT:04 6 SCT:04 70 BKN:07 110	4.00	RA:02 BR:1 RA RA	66	18.9	65	18.2	64	17.8	93	7	350		30.26				FM-16	0.02	30.29
13	0414	7	BKN:07 6 BKN:07 12 OVC:08 110	4.00	RA:02 BR:1 RA RA	66	18.9	65	18.2	64	17.8	93	8	330		30.27				FM-16	0.04	30.30
13	0454	7	BKN:07 7 BKN:07 12 OVC:08 110	3.00	-RA:02 BR:1 RA RA	66	18.9	65	18.2	64	17.8	93	7	020		30.27			30.30	FM-15	0.08	30.30
13	0501	7	FEW:02 7 BKN:07 14 OVC:08 21	9.00	-RA:02 RA RA	66	18.9	65	18.2	64	17.8	93	7	020		30.27				FM-16	0.01	30.30
13	0531	6	FEW:02 14 OVC:08 21	10.00		66	18.9	65	18.2	64	17.8	93	7	030		30.27				FM-16		30.30
13	0554	6	FEW:02 12 OVC:08 21	4.00	BR:1	65	18.3	64	17.7	63	17.2	93	7	040		30.27			30.30	FM-15	Т	30.30

														1								
13	0612	6	FEW:02 11 SCT:04 20 OVC:08 32	10.00		66	18.9	64	17.9	63	17.2	90	8	020		30.27				FM-16		30.30
13	0652	6	FEW:02 12 OVC:08 20	10.00		66	19.0	64	17.9	63	17.0	88	5	010		30.28				FM-16		30.31
13	0654	7	FEW:02 12 OVC:08 20	10.00		67	19.4	65	18.1	63	17.2	87	5	010		30.28	1	-0.03	30.31	SY-MT	0.00	30.31
13	0754	7	FEW:02 12 OVC:08 23	10.00		68	20.0	65	18.3	63	17.2	84	0	000		30.30			30.32	FM-15	0.00	30.33
13	0854	7	FEW:02 12 OVC:08 24	10.00		68	20.0	65	18.3	63	17.2	84	6	090		30.30			30.33	FM-15	0.00	30.33
13	0923	7	FEW:02 12 SCT:04 24 OVC:08 31	10.00		69	20.6	65	18.5	63	17.2	81	6	130		30.30				FM-16		30.33
13	0954	7	FEW:02 12 BKN:07 31 OVC:08 38	10.00		69	20.6	65	18.5	63	17.2	81	7	060		30.30	0	-0.02	30.33	FM-15	0.00	30.33
13	1000	4	15	9.94		69	20.6	65	18.5	63	17.2	81	7	060		30.31	9	0.02	30.33	FM-12		
13	1009	7	BKN:07 22 OVC:08 33	10.00		69	20.6	65	18.5	63	17.2	81	7	080		30.30				FM-16		30.33
13	1054	7	BKN:07 19 OVC:08 30	10.00		69	20.6	66	18.8	64	17.8	84	7	080		30.29			30.32	FM-15	0.00	30.32
13	1154	7	FEW:02 12 OVC:08 19	10.00		70	21.1	66	18.7	63	17.2	79	8	070		30.27			30.30	FM-15	0.00	30.30
13	1254	7	FEW:02 12 OVC:08 23	10.00		70	21.1	65	18.4	62	16.7	76	8	070		30.27	6	+0.03	30.29	FM-15	0.00	30.30
13	1300	4	15	9.94		70	21.1	65	18.4	62	16.7	76	8	070		30.28	6	+0.03	30.29	FM-12		
13	1354	7	FEW:02 10 BKN:07 17 OVC:08 23	10.00		70	21.1	65	18.1	61	16.1	73	6	090		30.27			30.29	FM-15	0.00	30.30
13	1454	7	FEW:02 10 SCT:04 18 OVC:08 24	10.00		70	21.1	65	18.4	62	16.7	76	5	VRB		30.27			30.29	FM-15	0.00	30.30
13	1554	7	FEW:02 11 OVC:08 24	10.00		70	21.1	65	18.4	62	16.7	76	6	080		30.26	6	+0.01	30.29	FM-15	0.00	30.29
13	1600	4	15	9.94		70	21.1	65	18.4	62	16.7	76	6	080		30.27	6	+0.01	30.29	FM-12		
13	1619	7	FEW:02 12 SCT:04 25 BKN:07 34	10.00		70	21.1	65	18.4	62	16.7	76	5	090		30.26				FM-16		30.29
13	1654	7	SCT:04 25 SCT:04 41	10.00		70	21.1	65	18.4	62	16.7	76	5	070		30.25			30.28	FM-15	0.00	30.28
13	1754	7	FEW:02 25 SCT:04 39 SCT:04 75	10.00		68	20.0	64	18.0	62	16.7	81	6	150		30.25			30.27	FM-15	0.00	30.28
13	1854	7	FEW:02 23 FEW:02 40 SCT:04 75	10.00		68	20.0	64	17.7	61	16.1	78	6	160		30.25	5	+0.01	30.28	FM-15	0.00	30.28
13	1900	4	26	9.94		68	20.0	64	17.7	61	16.1	78	6	160		30.26	5	+0.01	30.28	FM-12		
13	1954	7	FEW:02 25 FEW:02 70	10.00		68	20.0	64	17.7	61	16.1	78	5	200		30.26			30.29	FM-15	0.00	30.29
13	2054	7	FEW:02 13 SCT:04 22 BKN:07 130	10.00		69	20.6	65	18.2	62	16.7	78	3	260		30.26			30.29	FM-15	0.00	30.29
	2154	7	SCT:04 22			67	19.4	64	17.8	62	16.7	84	5	190		30.25	0	-0.00		FM-15	0.00	30.28
13	2200	4	26	9.94		67	19.4	64	17.8	62	16.7	84	5	190		30.26	9	0.00		FM-12	0.00	00.07
13	2254	7	SCT:04 22	10.00		66	18.9	64	17.5	62	16.7	87	0	000		30.24				FM-15	0.00	30.27
13	2354	7	CLR:00	10.00		65	18.3	63	17.3	62	16.7	90	0	000		30.24 30.24	E	10.02		FM-15	0.00	30.27
14	0054 0100	7	CLR:00	10.00 9.94		66 66	18.9 18.9	64 64	17.5 17.5	62 62	16.7 16.7	87 87	0	000		30.24	6 6	+0.02		FM-15 FM-12	0.00	30.27
14	0154	7	CLR:00	10.00		66	18.9	64	17.5	62	16.7	87	5	300		30.23		+0.02		FM-12	0.00	30.26
14	0254	7	OVC:08 37	10.00		66	18.9	64	17.9	63	17.2	90	5	300		30.23				FM-15	0.00	30.26
14	0352	6	OVC:08 27	10.00		66	19.0	64	17.9	63	17.0	88	5	280		30.24		L		FM-16		30.27
14	0354	7	OVC:08 27	10.00		67	19.4	65	18.1	63	17.2	87	3	280		30.24	3	-0.00	30.27	FM-15	0.00	30.27
-	•		•		·		•							•	· · · · · · · ·		•		•	•		

	0.400			0.04	1	07	40.4	05	40.4		47.0	07	•	000	г	00.05		0.00	00.07	EN4 40		
14	0400	4	26	9.94		67	19.4	65	18.1	63	17.2	87	3	280		30.25	3	-0.00		FM-12	0.00	00.00
14	0454	7	OVC:08 27	10.00		67	19.4	65	18.1	63	17.2	87	3	010		30.25			30.27	FM-15	0.00	30.28
14	0554	7	OVC:08 30	8.00		67	19.4	65	18.4	64	17.8	91	0	000		30.26	0	0.04	30.28	FM-15	0.00	30.29
14	0654	7	OVC:08 31 26	7.00 6.84		68	20.0	66	18.6 18.6	64	17.8	87	3	360		30.26	2	-0.01	30.29 30.29	FM-15 FM-12	0.00	30.29
14	0700 0754	4	BKN:07 35	7.00		68 71	20.0 21.7	66 67	10.0	64 64	17.8 17.8	87 79	3	360 030		30.27 30.25	2	-0.01	30.29	FM-12	0.00	30.28
14			FEW:02 20																			
14	0854	7	BKN:07 35	9.00		73	22.8	68	20.0	65	18.3	76	3	060		30.25			30.28	FM-15	0.00	30.28
4.4	0054	7	FEW:02 18	10.00		74	<u></u>	<u></u>	20.2	05	40.0	74	<u> </u>	100		20.05	0	.0.01	20.00		0.00	20.00
14	0954	7	BKN:07 33	10.00		74	23.3	68	20.2	65	18.3	74	6	100		30.25	6	+0.01	30.28	FM-15	0.00	30.28
14	1000	4	15	9.94		74	23.3	68	20.2	65	18.3	74	6	100		30.26	6	+0.01	30.28	FM-12		
14	1054	7	FEW:02 18	10.00		73	22.8	68	20.0	65	18.3	76	10	080		30.24			30.27	FM-15	0.00	30.27
			BKN:07 33 SCT:04 18																			
14	1154	7	BKN:07 33	10.00		72	22.2	68	20.1	66	18.9	82	14	090		30.24			30.27	FM-15	0.00	30.27
			FEW:02 5																			
14	1225	7	SCT:04 15	7.00		72	22.2	68	20.1	66	18.9	82	11	100		30.24				FM-16		30.27
			BKN:07 34																			
14	1250	7	BKN:07 5 BKN:07 15	6.00	HZ:7 FU HZ	72	22.0	68	20.1	66	19.0	83	10	080		30.23				FM-16		30.26
17	1200	'	BKN:07 45	0.00		12	22.0	00	20.1	00	13.0	00	10	000		50.25						30.20
			BKN:07 5																			
14	1254	7	BKN:07 15	5.00	HZ:7 FU HZ	71	21.7	68	19.9	66	18.9	84	11	080		30.23	6	+0.02	30.26	FM-15	0.00	30.26
14	1300	4	BKN:07 45	4.97	HZ	71	21.7	68	19.9	66	18.9	84	11	080		30.24	6	+0.02	30.26	FM-12		
14	1300		BKN:07 3	-					19.9	00							0	+0.02	30.20			
14	1301	7	OVC:08 45	5.00	BR:1	70	21.1	67	19.7	66	18.9	87	10	090		30.23				FM-16		30.26
14	1210	7	BKN:07 3	1.50V	PD:1 II	70	21.1	67	19.7	66	18.9	87	9	000		20.22				FM-16		30.26
14	1319	'	OVC:08 45	1.500	BR:1	70	21.1	67	19.7	00	10.9	07	9	080		30.23				FIVI-TO		30.20
	4050		FEW:02 3	4 501		70	01.0	00	40.0	0.4	10.0	00	•	070		00.00				EN4 40		00.05
14	1352	6	SCT:04 45 BKN:07 85	1.500	HZ:7 HZ	70	21.0	66	19.0	64	18.0	83	8	070		30.22				FM-16		30.25
			FEW:02 3																			
14	1354	7	SCT:04 45	6.00	IFU IHZ	70	21.1	67	19.4	65	18.3	84	8	070		30.22			30.24	FM-15	0.00	30.25
			BKN:07 85																			
14	1454	7	FEW:02 3 SCT:04 40	5.00	IFU IHZ	70	21.1	67	19.4	65	18.3	84	10	070		30.20			30.23	FM-15	0.00	30.23
14	1404	'	BKN:07 85	5.00	ורט וחב	10	21.1	07	19.4	05	10.5	04	10	070		30.20			30.23		0.00	30.23
			FEW:02 6																			
14	1554	7	SCT:04 33	10.00		70	21.1	67	19.4	65	18.3	84	10	080		30.20	6	+0.04	30.22	FM-15	0.00	30.23
	4000		SCT:04 85	0.04		70	01.4	07	40.4	05	40.0	0.4	40	000		00.04	0	.0.04	00.00	EN 40		
14	1600	4	5	9.94		70	21.1	67	19.4	65	18.3	84	10	080		30.21	6	+0.04	30.22	FM-12		
14	1654	7	FEW:02 8 SCT:04 35	10.00		69	20.6	66	18.8	64	17.8	84	8	090		30.20			30.23	FM-15	0.00	30.23
		-	SCT:04 85							•			•									
		_	FEW:02 8										-									
14	1754	7	FEW:02 35 SCT:04 75	10.00		67	19.4	65	18.4	64	17.8	91	6	070		30.20			30.22	FM-15	0.00	30.23
			FEW:02 8																			
14	1854	7	FEW:02 35	10.00		67	19.4	65	18.1	63	17.2	87	7	090		30.20	7	+0.00	30.22	FM-15	0.00	30.23
			FEW:02 75						_													
14	1900	4	8	9.94		67	19.4	65	18.1	63	17.2	87	7	090		30.21	7	+0.00	30.22	FM-12		
14	1954	7	FEW:02 8	10.00		67	19.4	65	18.4	64	17.8	91	6	110		30.20			30.23	FM-15	0.00	30.23
			FEW:02 35										-									
14 14	2054 2154	7	FEW:02 8 CLR:00	10.00		66 66	18.9 18.9	<u>65</u> 64	18.2 17.9	64 63	17.8 17.2	93 90	3	120 160	├	30.20 30.20	1	-0.01	30.23	FM-15 FM-15	0.00	30.23 30.23
14	2154	4		9.94		66	18.9	64	17.9	63	17.2	90	3	160		30.20	1	-0.01		FM-15	0.00	50.23
14	2254	7	CLR:00	10.00		65	18.3	64	17.3	63	17.2	93	0	000		30.21	1	0.01		FM-15	0.00	30.23
14	2354	7	CLR:00	10.00		66	18.9	64	17.9	63	17.2	90	0	000		30.20				FM-15	0.00	30.23
			FEW:02 6																		0.00	
15	0041	7	BKN:07 25	10.00		65	18.3	64	17.7	63	17.2	93	3	150		30.20				FM-16		30.23
15	0052	6	BKN:07 6	10.00		66	19.0	64	17.9	63	17.0	88	3	140	I T	30.19				FM-16		30.22
		Ŭ	BKN:07 25					• •								00.10						

15	0054	7	BKN:07 6	10.00		66	18.9	64	17.9	63	17.2	90	3	160	30.19	6	+0.01	30.22	FM-15	0.00	30.22
15	0100	4	BKN:07 25 5	9.94		66	18.9	64	17.9	63	17.2	90	3	160	30.20	6	+0.01	30.22	FM-12		
15	0135	7	OVC:08 4	8.00		65	18.3	64	17.7	63	17.2	93	3	150	30.19	0	10.01	00.22	FM-16		30.22
15	0152	6	SCT:04 4	7.00		64	18.0	63	17.4	63	17.0	94	3	140	30.18				FM-16		30.21
15	0154	7	SCT:04 4	7.00		65	18.3	64	17.7	63	17.2	93	0	000	30.18			30.21	FM-15	0.00	30.21
15	0252	6	BKN:07 3	5.00	BR:1	64	18.0	63	17.4	63	17.0	94	5	160	30.18				FM-16		30.21
15	0254	7	BKN:07 3	5.00	BR:1	64	17.8	63	17.1	62	16.7	93	5	150	30.18			30.20	FM-15	0.00	30.21
15	0304	7	BKN:07 2	1.25	BR:1	64	17.8	63	17.4	63	17.2	96	5	160	30.17				FM-16		30.20
15	0310	7	VV:09 2	0.25	FG:2 FG	64	17.8	63	17.4	63	17.2	96	0	000	30.17				FM-16		30.20
15	0318	7	VV:09 1	0.00	FG:2 FG	64	17.8	63	17.4	63	17.2	96	3	180	30.17				FM-16		30.20
15	0328	7	VV:09 3	0.25	FG:2 FG	63	17.2	62	16.9	62	16.7	97	3	190	30.17				FM-16		30.20
15	0339	7	BKN:07 3 OVC:08 7	0.50	FG:2 FG	64	17.8	63	17.1	62	16.7	93	3	160	30.17				FM-16		30.20
15	0344	7	OVC:08 7	1.00	BR:1	64	17.8	63	17.4	63	17.2	96	0	000	30.17				FM-16		30.20
15	0348	7	OVC:08 7	3.00	BR:1	64	18.0	63	17.4	63	17.0	94	3	140	30.17				FM-16		30.20
15	0354	7	OVC:08 7	4.00	BR:1	65	18.3	64	17.7	63	17.2	93	3	150	30.17	6	+0.02	30.20	FM-15	0.00	30.20
15	0400	4	8	3.73		65	18.3	64	17.7	63	17.2	93	3	150	30.18	6	+0.02	30.20	FM-12	т	20.21
15 15	0454 0544	7	OVC:08 5 OVC:08 3	4.00	BR:1 BR:1	65 65	18.3 18.3	64 64	18.0 18.0	64 64	17.8 17.8	97 97	0	000 150	30.18 30.19			30.21	FM-15 FM-16	Т	30.21 30.22
15	0554	7	OVC:08 3	2.00	BR:1	65	18.3	64	18.0	64	17.8	97	3	170	30.19			30.22	FM-15	0.00	30.22
15	0615	7	OVC:08 3	0.75	BR:1	65	18.3	64	18.0	64	17.8	97	6	160	30.19			30.22	FM-16	0.00	30.22
15	0626	7	OVC:08 3		FG:2 FG	65	18.3	64	18.0	64	17.8	97	6	140	30.20				FM-16		30.23
15	0652	7	VV:09 2	0.12V s	FG:2 s FG s	64	18.0	64	17.8	64	18.0	100	7	130	30.20				FM-16		30.23
15	0654	7	VV:09 2	0.12s	FG:2 s FG s	65	18.3	64	18.0	64	17.8	97	7	130	30.20	1	-0.01	30.22	FM-15	0.00	30.23
15	0700	4	2	0.12	IIFG	65	18.3	64	18.0	64	17.8	97	7	130	30.21	1	-0.01	30.22	FM-12	0.00	00.20
15	0717	7	VV:09 2	0.12s		65	18.3	64	18.0	64	17.8	97	6	130	30.19				FM-16		30.22
15	0754	7	OVC:08 2	0.12s	FG:2 s FG s	65	18.3	64	18.0	64	17.8	97	5	120	30.19			30.22	FM-15	0.00	30.22
15	0854	7	OVC:08 3	0.12	BR:1	66	18.9	65	18.2	64	17.8	93	3	150	30.20			30.22	FM-15	0.00	30.23
15	0916	6	OVC:08 4	1.00	BR:1	66	18.9	65	18.2	64	17.8	93	3	150	30.20				FM-16		30.23
15	0952	6	OVC:08 5	1.00	BR:1	66	19.0	65	18.2	64	18.0	94	3	150	30.20				FM-16		30.23
15	0954	7	OVC:08 5	1.00	BR:1	67	19.4	65	18.4	64	17.8	91	3	150	30.20	6	+0.00	30.22	FM-15	0.00	30.23
15	1000	4	5	0.99		67	19.4	65	18.4	64	17.8	91	3	150	30.21	6	+0.00	30.22	FM-12		
15	1007	7	OVC:08 6	2.50	BR:1	67	19.4	65	18.4	64	17.8	91	5	150	30.20				FM-16		30.23
15	1045	7	OVC:08 6	3.00	BR:1	68	20.0	66	18.6	64	17.8	87	6	120	30.19			00.00	FM-16		30.22
15	1054	7	OVC:08 6	3.00	BR:1	68	20.0	66	18.6	64	17.8	87	6	120	30.19			30.22	FM-15	0.00	30.22
15	1154	6	OVC:08 9 BKN:07 10	3.00	BR:1	70	21.1	67	19.4	65	18.3	84	0	000	30.18			30.21	FM-15	0.00	30.21
15	1204	6	OVC:08 16	3.00	BR:1	70	21.1	67	19.4	65	18.3	84	3	110	 30.18				FM-16		30.21
15	1221	6	SCT:04 10 OVC:08 16	3.00		70	21.1	67	19.4	65	18.3	84	5	130	30.18				FM-16		30.21
15	1254	7	FEW:02 11 OVC:08 16	3.00		71	21.7	67	19.6	65	18.3	81	6	120	30.18	7	+0.02	30.20	SY-MT	0.00	30.21
15	1354	6	BKN:07 22 BKN:07 50	3.00		72	22.2	68	20.1	66	18.9	82	9	100	30.16			30.19	FM-15	0.00	30.19
15	1404	6	SCT:04 22 SCT:04 50	3.00		72	22.2	68	20.1	66	18.9	82	8	110	30.16				FM-16		30.19
15	1454	6	FEW:02 23	8.00		71	21.7	67	19.6	65	18.3	81	9	090	30.16			30.19	FM-15	0.00	30.19
15	1554	6	FEW:02 25	10.00		71	21.7	67	19.2	64	17.8	79	9	080	30.15	6	+0.02		FM-15	0.00	30.18
15	1654	6	FEW:02 25	10.00		70	21.1	66	19.0	64	17.8	82	10	110	30.16				FM-15	0.00	30.19
15	1754	6	FEW:02 20	10.00		69	20.6	65	18.5	63	17.2	81	9	110	30.15				FM-15	0.00	30.18
15	1854	6	FEW:02 20	10.00		68	20.0	65	18.3	63	17.2	84	7	120	30.15	7	+0.00		FM-15	0.00	30.18
15	1954	6	CLR:00	10.00		67	19.4	65	18.1	63	17.2	87	5	150	30.16				FM-15	0.00	30.19
15	2054	6	CLR:00	10.00		67	19.4	64	17.8	62	16.7	84	6	170	30.16		0.00		FM-15	0.00	30.19
15	2154	7	CLR:00	10.00		66	18.9	64	17.5	62	16.7	87	0	000	30.16	1	-0.00		FM-15	0.00	30.19
15	2200	4		9.94		66	18.9	64	17.5	62	16.7	87 97	0 7	000	30.17	1	-0.00		FM-12	0.00	20.10
15	2254	1	FEW:02 10	10.00		67	19.4	65	18.1	63	17.2	87	1	220	30.15			30.18	FM-15	0.00	30.18

			1											r	I						
15	2354	7	FEW:02 10	10.00	65	18.3	63	17.3	62	16.7	90	7	200		30.15				FM-15	0.00	30.18
16	0054	7	FEW:02 10	10.00	64	17.8	62	16.8	61	16.1	90	7	200		30.14	8	+0.01	30.17	FM-15	0.00	30.17
16	0100	4	15	9.94	64	17.8	62	16.8	61	16.1	90	7	200		30.15	8	+0.01	30.17	FM-12		
16	0154	7	CLR:00	10.00	65	18.3	63	17.3	62	16.7	90	7	220		30.14			30.16	FM-15	0.00	30.17
16	0254	7	CLR:00	10.00	64	17.8	62	16.8	61	16.1	90	6	220		30.14			30.16	FM-15	0.00	30.17
16	0354	7	FEW:02 3	10.00	64	17.8	62	16.8	61	16.1	90	7	220		30.15	3	-0.00	30.17	FM-15	0.00	30.18
16	0400	4	2	9.94	64	17.8	62	16.8	61	16.1	90	7	220		30.16	4	0.00	30.17	FM-12		
16	0454	7	CLR:00	10.00	63	17.2	62	16.6	61	16.1	93	6	230		30.16				FM-15	0.00	30.19
16	0554	7	FEW:02 60	10.00	65	18.3	63	17.3	62	16.7	90	0	000		30.17				FM-15	0.00	30.20
16	0654	7	CLR:00	8.00	67	19.4	65	18.1	63	17.2	87	0	000		30.17	1	-0.02		FM-15	0.00	30.20
16	0700	4	02.100	7.46	67	19.4	65	18.1	63	17.2	87	0	000		30.18	1	-0.02	30.19	FM-12	0.00	00.20
16	0754	7	CLR:00	10.00	70	21.1	66	19.0	64	17.8	82	5	220		30.17		0.02		FM-15	0.00	30.20
16	0854	7	FEW:02 50	9.00	74	23.3	69	20.5	66	18.9	76	5	140		30.18			30.21	FM-15	0.00	30.21
16	0054	7	FEW:02 40	10.00	76	24.4	70	20.9	66	18.9	72	6	140		30.18	0	-0.01	30.21	FM-15	0.00	30.21
16	1000	4	41	9.94	76	24.4	70	20.9	66	18.9	72	6	140		30.18	9	0.01	30.21	FM-12	0.00	30.21
																9	0.01			0.00	20.20
16	1054	7	FEW:02 40	10.00	77	25.0	70	21.0	66	18.9	69	9	130		30.17				FM-15	0.00	30.20
16	1154	7	FEW:02 40	10.00	81	27.2	71	21.8	66	18.9	61	7	130		30.17	0	. 0. 00	30.19	FM-15	0.00	30.20
16	1254	7	FEW:02 40	10.00	81	27.2	72	22.4	68	20.0	65	8	100		30.16	6	+0.02		SY-MT	0.00	30.19
16	1354	6	FEW:02 45	10.00	79	26.1	71	21.7	67	19.4	67	10	110		30.15				FM-15	0.00	30.18
16	1454	6	FEW:02 40	10.00	80	26.7	69	20.6	63	17.2	56	13	110		30.14				FM-15	0.00	30.17
16	1554	7	FEW:02 40	10.00	80	26.7	67	19.4	59	15.0	49	13	110		30.14	6	+0.01		FM-15	0.00	30.17
16	1600	4	41	9.94	80	26.7	67	19.4	59	15.0	49	13	110		30.15	6	+0.01		FM-12		
16	1654	7	FEW:02 30	10.00	77	25.0	69	20.7	65	18.3	66	10	100		30.14				FM-15	0.00	30.17
16	1754	7	FEW:02 120	10.00	74	23.3	68	19.8	64	17.8	71	8	110		30.14			30.17	FM-15	0.00	30.17
16	1854	7	CLR:00	10.00	74	23.3	68	19.8	64	17.8	71	6	140		30.15	3	-0.01	30.18	FM-15	0.00	30.18
16	1900	4		9.94	74	23.3	68	19.8	64	17.8	71	6	140		30.16	3	-0.01		FM-12		
16	1954	7	CLR:00	10.00	73	22.8	69	20.3	66	18.9	79	6	190		30.17			30.19	FM-15	0.00	30.20
16	2054	7	CLR:00	10.00	73	22.8	70	21.0	68	20.0	84	7	200		30.17				FM-15	0.00	30.20
16	2154	6	CLR:00	10.00	71	21.7	68	20.2	67	19.4	87	6	190		30.18	1	-0.03	30.20	FM-15	0.00	30.21
16	2254	6	CLR:00	10.00	70	21.1	67	19.7	66	18.9	87	7	190		30.17				FM-15	0.00	30.20
16	2354	6	CLR:00	10.00	69	20.6	67	19.5	66	18.9	90	9	200		30.17				FM-15	0.00	30.20
17	0052	6	FEW:02 4	10.00	68	20.0	66	18.6	64	18.0	88	8	190		30.16			00.10	FM-16	0.00	30.19
17	0054	6	FEW:02 4	10.00	68	20.0	66	19.0	65	18.3	90	8	190		30.16	8	+0.02	30.18	FM-15	0.00	30.19
17	0140	6	BKN:07 4	7.00	68	20.0	67	19.3	66	18.9	93	8	200		30.15	0	10.02	00.10	FM-16	0.00	30.18
17	0154	6	OVC:08 4	6.00 BR:1	68	20.0	67	19.3	66	18.9	93	8	190		30.13			30.17	FM-15	0.00	30.17
17	0217	6	OVC:08 3	2.50 BR:1	68	20.0	67	19.3	66	18.9	93	9	190		30.14			30.17	FM-16	0.00	30.17
17	0240	6	OVC:08 2	3.00 BR:1	68	20.0	67	19.3	66	18.9	93	9	200		30.14			20.40	FM-16	0.00	30.17
17	0254	6	OVC:08 2	3.00 BR:1	68	20.0	67	19.3	66	18.9	93	9	200		30.13			30.16	FM-15	0.00	30.16
17	0341	6	OVC:08 2	1.50 BR:1	68	20.0	67	19.3	66	18.9	93	7	210		30.13		.0.00	00.15	FM-16	0.00	30.16
17	0354	6	OVC:08 2	1.50 BR:1	68	20.0	67	19.3	66	18.9	93	8	200		30.13	6	+0.03	30.15		0.00	30.16
17	0439	6	OVC:08 3	7.00	 68	20.0	67	19.3	66	18.9	93	11	200		30.12			00.15	FM-16	0.00	30.15
17	0454	6	OVC:08 4	7.00	68	20.0	67	19.3	66	18.9	93	9	200		30.12			30.15	FM-15	0.00	30.15
17	0516	6	OVC:08 5	7.00	68	20.0	67	19.3	66	18.9	93	10	220		30.13				FM-16		30.16
17	0554	6	BKN:07 7	8.00	69	20.6	66	19.2	65	18.3	87	11	220		30.13			30.16	FM-15	0.00	30.16
17	0614	6	SCT:04 8	9.00	69	20.6	66	19.2	65	18.3	87	10	220		30.13				FM-16		30.16
17	0654	6	FEW:02 9 FEW:02 35	10.00	70	21.1	67	19.4	65	18.3	84	8	220		30.12	8	+0.00	30 15	FM-15	0.00	30.15
	0004		FEW:02 200			2	01	10.4	00	10.0	0 7	5	220		00.12	5	10.00		1 101-10	0.00	00.10
	a n	_	FEW:02 9				a		a -	1.0.5											
17	0754	6	SCT:04 41 SCT:04 250	10.00	73	22.8	69	20.3	66	18.9	79	9	210		30.12			30.14	FM-15	0.00	30.15
17	0854	6	FEW:02 46	10.00	75	23.9	70	21.0	67	19.4	76	11	230		30.10			30.13	FM-15	0.00	30.13
		L _	BKN:07 250			20.0		21.0	0,	10.1			200		30.10					0.00	
17	0954	6	FEW:02 50 SCT:04 250	10.00	79	26.1	71	21.4	66	18.9	65	10	240		30.09	8	+0.03	30.12	FM-15	0.00	30.12
17	1054	6	FEW:02 50 SCT:04 250	10.00	82	27.8	70	21.3	64	17.8	55	9	230		30.07			30.09	FM-15	0.00	30.10
L			30	I I	1			I I					1 1					1			

			FEW:02 50																			
17	1154	6	BKN:07 250	10.00		82	27.8	70	21.0	63	17.2	53	10	220		30.05			30.07	FM-15	0.00	30.08
17	1254	6	FEW:02 40 FEW:02 95 BKN:07 210	10.00		83	28.3	70	21.2	63	17.2	51	15	210		30.02	8	+0.07	30.05	FM-15	0.00	30.05
17	1354	6	FEW:02 40 FEW:02 95 BKN:07 210	10.00		83	28.3	69	20.6	61	16.1	48	14	240		30.00			30.03	FM-15	0.00	30.03
17	1454	6	FEW:02 33 FEW:02 130 BKN:07 210	10.00		83	28.3	69	20.6	61	16.1	48	17	210		29.98			30.01	FM-15	0.00	30.01
17	1554	6	FEW:02 33 SCT:04 130 BKN:07 210	10.00		82	27.8	70	21.0	63	17.2	53	15	230	22	29.97	6	+0.05	30.00	FM-15	0.00	30.00
17	1654	6	FEW:02 75 SCT:04 130 BKN:07 210	10.00		80	26.7	69	20.6	63	17.2	56	13	230		29.97			29.99	FM-15	0.00	30.00
17	1754	6	FEW:02 75 SCT:04 130 BKN:07 210	10.00		77	25.0	69	20.7	65	18.3	66	8	210		29.96			29.98	FM-15	0.00	29.99
17	1854	6	FEW:02 75 SCT:04 130 BKN:07 210	10.00		75	23.9	70	21.0	67	19.4	76	10	200		29.95	8	+0.02	29.98	FM-15	0.00	29.98
17	1954	6	SCT:04 130 OVC:08 200	10.00		74	23.3	69	20.8	67	19.4	79	10	210		29.94			29.97	FM-15	0.00	29.97
17	2054	6	SCT:04 130 OVC:08 200	10.00		74	23.3	70	21.2	68	20.0	82	10	210		29.94			29.96	FM-15	0.00	29.97
17	2154	6	SCT:04 130 OVC:08 200	10.00		73	22.8	70	21.0	68	20.0	84	8	210		29.93	8	+0.02	29.95	FM-15	0.00	29.96
17	2243	6	BKN:07 12	10.00		73	22.8	70	21.3	69	20.6	87	10	210		29.93				FM-16		29.96
17	2252	6	SCT:04 12	10.00		73	23.0	71	21.7	70	21.0	89	10	200		29.92				FM-16		29.95
17	2254	6	SCT:04 12	10.00		73	22.8	70	21.7	69	20.6	87	10	210		29.92			29.95	FM-15	0.00	29.95
17	2354	6	FEW:02 75 SCT:04 90 BKN:07 110		-RA:02 RA RA	73	22.8	70	21.3	69	20.6	87	11	220		29.92			29.94	FM-15	<u>0.00</u> Т	29.93
10	0054	6		10.00		73	22.8	71	21.7	70	21.1	00	9	220		29.90	8	+0.02	20.02	EM 15	Т	20.02
18 18	0054 0154	6	OVC:08 95 BKN:07 75	10.00 3.00	-RA:02 RA RA RA:02 BR:1 RA RA	73	22.0	71 71	21.7	70	21.1	90 94	9 7	220		29.90	0	+0.02	29.93 29.91	FM-15 FM-15	0.03	29.93 29.92
18	0245	6	OVC:08 85 BKN:07 13	9.00		72	22.2	71	21.5	70	21.1	94	0	000		29.87			20.01	FM-16	0.00	29.90
			OVC:08 90																			
18	0254	6	OVC:08 12	8.00	-RA:02 RA RA	72	22.2	71	21.5	70	21.1	94	0	000		29.87			29.89	FM-15	0.01	29.90
18	0316	6	OVC:08 9	8.00	-RA:02 RA RA	72	22.2	71	21.5	70	21.1	94	0	000		29.86	-			FM-16		29.89
18	0354	7	OVC:08 8	3.00	-RA:02 BR:1 RA RA	71	21.7	70	20.9	69	20.6	94	7	080		29.84	8	+0.06	29.87	SY-MT	0.03	29.87
18	0454	6	OVC:08 6	3.00	-RA:02 BR:1 RA RA	71	21.7	70	21.3	70	21.1	96	6	090		29.82			29.85	FM-15	0.12	29.85
18	0509	6	FEW:02 4 SCT:04 9 OVC:08 17	5.00	BR:1	71	21.7	70	21.3	70	21.1	96	9	110		29.81				FM-16		29.84
18	0538	7	FEW:02 4 BKN:07 12 OVC:08 17	5.00	BR:1	71	21.7	70	21.3	70	21.1	96	9	100		29.79				FM-16	т	29.82
18	0546	7	FEW:02 4 BKN:07 12 OVC:08 17	2.00	BR:1	71	21.7	70	20.9	69	20.6	94	9	110		29.79				FM-16	т	29.82
18	0554	7	FEW:02 4 OVC:08 12	6.00	BR:1	71	21.7	70	21.3	70	21.1	96	10	110		29.79			29.81	FM-15	Т	29.82
18	0654	7	BKN:07 12 OVC:08 22	9.00	-RA:02 RA RA	74	23.3	72	22.2	71	21.7	91	10	180		29.76	8	+0.08	29.78	FM-15	0.02	29.79
18	0700	4	15	8.70	IIRA	74	23.3	72	22.2	71	21.7	91	10	180		29.77	8	+0.08	29.78	FM-12		
			BKN:07 13										-									
18	0754	7	BKN:07 29 OVC:08 34	10.00		76	24.4	73	22.9	72	22.2	88	13	200		29.72			29.75	FM-15	Т	29.75
18	0838	7	BKN:07 15 OVC:08 22	10.00		77	25.0	74	23.5	73	22.8	88	11	200		29.70				FM-16	Т	29.73

10	0054	7	BKN:07 15	10.00		77	25.0	74	00 F	70	00.0	00	4.4	200		20.70			00.70	FM-15	т	29.73
18	0854	7	OVC:08 21 BKN:07 17				25.0		23.5	73	22.8	88	14	200		29.70			29.72		1	
18	0952	6	OVC:08 26	5.00	VCTS:7 -RA:02 BR:1 RA RA	75	24.0	74	23.1	73	23.0	94	18	200		29.67				FM-16		29.70
18	0954	7	BKN:07 17 OVC:08 26	5.00	-RA:02 BR:1 RA RA	76	24.4	74	23.3	73	22.8	91	15	200		29.66	8	+0.09	29.69	FM-15	0.05s	29.69
18	1000	4	15	4.97	RA	76	24.4	74	23.3	73	22.8	91	15	200		29.67	8	+0.09	29.69	FM-12		
18	1000	7	BKN:07 14 BKN:07 19 OVC:08 26	2.50	-RA:02 BR:1 RA RA	76	24.4	74	23.3	73	22.8	91	18	190		29.67				FM-16	0.03	29.70
18	1003	7	BKN:07 14 BKN:07 19 OVC:08 24	0.75	VCTS:7 -RA:02 BR:1 RA RA	76	24.4	74	23.3	73	22.8	91	32	VRB	48	29.69				FM-16	0.03	29.72
18	1005	7	BKN:07 11 OVC:08 17	0.50	+RA:02 FG:2 FG RA RA	74	23.3	72	22.2	71	21.7	91	22	350	48	29.68				FM-16	0.03	29.71
18	1009	6	FEW:02 12 BKN:07 17	0.50	+RA:02 FG:2 FG RA RA	71	21.7	70	20.9	69	20.6	94	16	010	48	29.69				FM-16		29.72
18	1020	7	SCT:04 12 OVC:08 19	1.00	TS:7 +RA:02 BR:1 RA TS RA	70	21.1	69	20.7	69	20.6	97	7	020		29.69				FM-16	0.43	29.72
18	1031	7	SCT:04 5 SCT:04 12 OVC:08 16	2.00	TS:7 -RA:02 BR:1 RA TS RA	71	21.7	70	20.9	69	20.6	94	10	360		29.69				FM-16	0.48	29.72
18	1049	7	FEW:02 5 BKN:07 16 OVC:08 30	1.50	+RA:02 BR:1 RA RA	70	21.0	69	20.4	68	20.0	94	0	000		29.70				FM-16	0.54	29.73
18	1052	6	FEW:02 5 BKN:07 16 OVC:08 30	0.75V	+RA:02 BR:1 RA RA	70	21.0	69	20.4	68	20.0	94	0	000		29.70				FM-16		29.73
18	1054	7	FEW:02 5 BKN:07 16 OVC:08 30	0.75	+RA:02 BR:1 RA RA	70	21.1	69	20.7	69	20.6	97	5	040		29.69			29.72	FM-15	0.63	29.72
18	1059	7	FEW:02 5 BKN:07 26 OVC:08 75	1.25	TS:7 -RA:02 BR:1 RA TS RA	70	21.1	69	20.4	68	20.0	93	5	010		29.69				FM-16	0.06	29.72
18	1124	7	BKN:07 8 OVC:08 33	10.00	TS:7 -RA:02 RA TS TS RA	71	21.7	69	20.6	68	20.0	90	7	VRB		29.70				FM-16	0.12	29.73
18	1154	7	BKN:07 8 BKN:07 33 OVC:08 70	10.00	TS:7 -RA:02 RA TS TS RA	71	21.7	69	20.6	68	20.0	90	3	020		29.70			29.72	FM-15	0.08	29.73
18	1234	6	BKN:07 7 OVC:08 33	3.00	RA:02 BR:1 RA RA	71	21.7	69	20.6	68	20.0	90	6	040		29.68				FM-16		29.71
18	1254	7	BKN:07 7 OVC:08 33	5.00	-RA:02 BR:1 RA RA	71	21.7	70	20.9	69	20.6	94	6	010		29.70	0	-0.03	29.72	FM-15	0.12	29.73
18	1300	4	8	4.97	RA	71	21.7	70	20.9	69	20.6	94	6	010		29.71	9	0.03	29.72	FM-12		
18	1354	7	BKN:07 7 OVC:08 13	4.00	RA:02 BR:1 RA RA	71	21.7	69	20.6	68	20.0	90	7	360		29.69			29.72	FM-15	0.03	29.72
18	1418	6	SCT:04 7 BKN:07 13 BKN:07 20	7.00	-RA:02 RA RA	71	21.7	69	20.6	68	20.0	90	5	360		29.71				FM-16		29.74
18	1436	7	FEW:02 7 BKN:07 16 BKN:07 22	6.00	RA RA	72	22.2	69	20.8	68	20.0	87	3	350		29.72				FM-16	0.04	29.75
18	1454	7	FEW:02 7 BKN:07 19 BKN:07 80	7.00		72	22.2	69	20.8	68	20.0	87	0	000		29.72			29.75	FM-15	0.03	29.75
18	1525	7	FEW:02 10 SCT:04 19 BKN:07 80	8.00		73	22.8	70	21.3	69	20.6	87	0	000		29.73				FM-16		29.76
18	1541	7	FEW:02 6 BKN:07 10 BKN:07 80	10.00		73	22.8	70	21.0	68	20.0	84	3	300		29.72				FM-16		29.75
18	1554	7	FEW:02 6 BKN:07 10 BKN:07 80	10.00		73	22.8	70	21.3	69	20.6	87	3	330		29.72	0	-0.02		FM-15	0.00	29.75
18	1600	4	5	9.94		73	22.8	70	21.3	69	20.6	87	3	330		29.73	9	0.02	29.75	FM-12		

					1		-							<u>г т</u>								
18	1654	7	FEW:02 7 BKN:07 11 BKN:07 130	10.00		73	22.8	70	21.3	69	20.6	87	5	160		29.70			29.73	FM-15	0.00	29.73
18	1706	7	FEW:02 7 SCT:04 11 BKN:07 130	10.00		73	22.8	70	21.3	69	20.6	87	5	150		29.70				FM-16		29.73
18	1754	7	FEW:02 7 FEW:02 16 SCT:04 80	10.00		73	22.8	70	21.0	68	20.0	84	3	320		29.71			29.73	FM-15	0.00	29.74
18	1854	7	FEW:02 13 FEW:02 80 SCT:04 130	10.00		72	22.2	69	20.8	68	20.0	87	5	140		29.72	3	-0.00	29.75	FM-15	0.00	29.75
18	1900	4	15	9.94		72	22.2	69	20.8	68	20.0	87	5	140		29.73	3	-0.00	29.75	FM-12		
18	1954	7	FEW:02 11 SCT:04 130 BKN:07 210	10.00		72	22.2	70	21.1	69	20.6	91	5	270		29.73				FM-15	0.00	29.76
18	2054	7	FEW:02 11 SCT:04 130 BKN:07 210	10.00		72	22.2	69	20.8	68	20.0	87	0	000		29.73			29.75	FM-15	0.00	29.76
18	2154	7	FEW:02 11 SCT:04 130 BKN:07 210	10.00		70	21.1	68	20.0	67	19.4	90	5	200		29.74	3	-0.01	29.76	FM-15	0.00	29.77
18	2200	4	15	9.94		70	21.1	68	20.0	67	19.4	90	5	200		29.75	3	-0.01	29.76	FM-12		
18	2254	7	FEW:02 130	10.00		69	20.6	68	19.8	67	19.4	93	5	190		29.73			29.76	FM-15	0.00	29.76
18	2354	7	CLR:00	10.00		69	20.6	68	19.8	67	19.4	93	0	000		29.73			29.76	FM-15	0.00	29.76
19	0054	7	CLR:00	10.00		70	21.1	68	20.0	67	19.4	90	3	330		29.74	5	+0.00	29.76	FM-15	0.00	29.77
19	0100	4		9.94		70	21.1	68	20.0	67	19.4	90	3	330		29.75	5	+0.00	29.76	FM-12		
19	0146	7	BKN:07 10	10.00		71	21.7	68	20.2	67	19.4	87	11	350		29.75				FM-16		29.78
19	0154	7	BKN:07 10	10.00		71	21.7	68	20.2	67	19.4	87	10	360		29.75			29.78	FM-15	0.00	29.78
19	0203	7	OVC:08 8	10.00		70	21.1	69	20.4	68	20.0	93	11	020		29.75				FM-16		29.78
19	0237	7	OVC:08 4	7.00		69	20.6	68	19.8	67	19.4	93	15	020		29.76				FM-16		29.79
19	0252	6	OVC:08 3		BR:1	68	20.0	67	19.3	66	19.0	94	13	020		29.76				FM-16		29.79
19	0254	7	OVC:08 3	1.50	BR:1	68	20.0	67	19.6	67	19.4	96	13	020		29.76			29.79	FM-15	0.00	29.79
19	0342	7	OVC:08 4	3.00	BR:1	65	18.3	64	18.0	64	17.8	97	20	030		29.79		0.00	00.00	FM-16	T	29.82
19	0354	7	OVC:08 4	3.00	BR:1	65	18.3	64	17.7	63	17.2	93	20	030		29.79	3	-0.06	29.82	FM-15	Т	29.82
19	0400	4	5	2.98		65	18.3	64	17.7	63	17.2	93	20	030	00	29.80	3	-0.06	29.82	FM-12	0.00	00.00
19	0454	7	OVC:08 4		BR:1 BR:1	64 64	17.8	63	17.1	62	16.7	93	18	010	22	29.83			29.85	FM-15	0.00	29.86
19	0501	1	OVC:08 7	6.00	BR:1	64	17.8	62	16.8	61	16.1	90	16	020		29.83				FM-16		29.86
19	0552	6	BKN:07 10 OVC:08 17 BKN:07 10	10.00		63	17.0	62	16.6	61	16.0	94	17	020		29.85				FM-16		29.88
19 19	0554 0614	7	OVC:08 17 BKN:07 9	10.00 9.00		63 63	17.2 17.2	61 61	16.2 16.2	60 60	15.6 15.6	90 90	16 15	020 030		29.85 29.85			29.88	FM-15 FM-16	0.00	29.88 29.88
			OVC:08 19																	_		
19	0654	7	OVC:08 9	10.00		63	17.2	61	15.9	59	15.0	87	16	030		29.86	1	-0.07	29.89	FM-15	0.00	29.89
19	0700	4	8	9.94		63	17.2	61	15.9	59	15.0	87	16	030		29.87	1	-0.07	29.89	FM-12	0.00	00.00
19	0754	7	OVC:08 8	8.00		63	17.2	61	16.2	60	15.6	90	11	020		29.89			29.92	FM-15	0.00	29.92
19	0826	7	OVC:08 8	2.50V	BR:1	63	17.2	61	16.2	60	15.6	90	14	020		29.91				FM-16		29.94
19	0843	7	BKN:07 8 OVC:08 13 BKN:07 10	9.00		63	17.2	61	16.2	60	15.6	90	15	040		29.91				FM-16	Т	29.94
19	0852	6	OVC:08 14 BKN:07 10	10.00		63	17.0	61	15.9	59	15.0	88	14	040		29.91				FM-16		29.94
19	0854	7	OVC:08 14	10.00		63	17.2	61	15.9	59	15.0	87	14	030		29.92		0.07	29.94	FM-15	T	29.95
19	0954	7	OVC:08 10	9.00		63	17.2	61	15.9	59	15.0	87	11	040		29.94	1	-0.07		FM-15	0.00	29.97
19	1000	4	15	8.70		63	17.2	61	15.9	59	15.0	87	11	040		29.95	1	-0.07	29.96	FM-12		
19	1015	7	OVC:08 9	10.00		64	17.8	61	16.1	59	15.0	84	13	030		29.94			20.07	FM-16	т	29.97
19 19	1054 1141	7	OVC:08 9 OVC:08 10	3.00 9.00	-DZ:01 DZ DZ	63 63	17.2 17.2	61 61	15.9 15.9	59 59	15.0 15.0	87 87	9 11	050 040		29.94 29.95			29.97	FM-15 FM-16	T	29.97 29.98
			BKN:07 10																			
19	1154	7	OVC:08 17	10.00		64	17.8	61	16.1	59	15.0	84	9	040		29.94			29.97	FM-15	Т	29.97

19	1211	7	OVC:08 15	7.00	65	18.3	61	16.4	59	15.0	81	11	040	29.95				FM-16		29.98
19	1230	7	BKN:07 11 OVC:08 18	10.00	64	17.8	61	15.8	58	14.4	81	13	050	29.95				FM-16		29.98
19	1254	7	BKN:07 13 OVC:08 27	10.00	64	17.8	61	15.8	58	14.4	81	13	050	29.95	1	-0.01	29.97	FM-15	0.00	29.98
19	1300	4	15	9.94	64	17.8	61	15.8	58	14.4	81	13	050	29.96	1	-0.01	29.97	FM-12		
19	1327	7	BKN:07 17	10.00	64	17.8	61	15.8	58	14.4	81	11	030	29.94				FM-16		29.97
19	1354	7	OVC:08 27 BKN:07 16	10.00	64	17.8	60	15.5	57	13.9	78	10	050	29.95			29.97	FM-15	0.00	29.98
19	1454	7	OVC:08 28 BKN:07 18	10.00	64	17.8	60	15.5	57	13.9	78	10	070	29.96			29.99	FM-15	0.00	29.99
			BKN:07 41 SCT:04 23														29.99		0.00	
19	1510	7	BKN:07 50 BKN:07 140 SCT:04 23	10.00	65	18.3	60	15.5	56	13.3	73	10	070	29.96				FM-16		29.99
19	1554	7	BKN:07 50 BKN:07 140	10.00	65	18.3	60	15.5	56	13.3	73	10	050	29.96	3	-0.02	29.99	FM-15	0.00	29.99
19	1600	4	26	9.94	65	18.3	60	15.5	56	13.3	73	10	050	29.97	3	-0.02	29.99	FM-12		
19	1654	6	FEW:02 10 SCT:04 22 BKN:07 50	10.00	63	17.2	58	14.7	55	12.8	75	11	040	30.00			30.03	FM-15	0.00	30.03
19	1717	6	FEW:02 10 BKN:07 19 BKN:07 50	10.00	63	17.2	58	14.7	55	12.8	75	10	030	30.01				FM-16		30.04
19	1742	6	FEW:02 10 SCT:04 19 BKN:07 50	10.00	63	17.2	58	14.7	55	12.8	75	9	040	30.01				FM-16		30.04
19	1754	6	SCT:04 19 BKN:07 33 BKN:07 50	10.00	63	17.2	58	14.7	55	12.8	75	8	040	30.01			30.04	FM-15	0.00	30.04
19	1854	7	FEW:02 12 BKN:07 32 BKN:07 50	10.00	63	17.2	58	14.7	55	12.8	75	13	050	30.03	1	-0.06	30.06	SY-MT	0.00	30.06
19	1954	6	FEW:02 13 BKN:07 33 BKN:07 50	10.00	63	17.2	59	15.0	56	13.3	78	11	040	30.05			30.07	FM-15	0.00	30.08
19	2054	6	SCT:04 21 BKN:07 33 OVC:08 50	10.00	63	17.2	58	14.7	55	12.8	75	11	040	30.06			30.08	FM-15	0.00	30.09
19	2154	7	FEW:02 22 OVC:08 50	10.00	62	16.7	58	14.2	54	12.2	75	13	050	30.06	1	-0.03	30.09	SY-MT	0.00	30.09
19	2241	6	FEW:02 21 BKN:07 27	10.00	62	16.7	58	14.5	55	12.8	78	13	020	30.07				FM-16		30.10
19	2254	6	FEW:02 21 OVC:08 27	10.00	62	16.7	58	14.5	55	12.8	78	9	010	30.07			30.10	FM-15	0.00	30.10
19	2354	6	FEW:02 22 BKN:07 30 BKN:07 37	10.00	62	16.7	58	14.5	55	12.8	78	8	360	30.09			30.12	FM-15	0.00	30.12
20	0054	7	SCT:04 17 BKN:07 32 BKN:07 55	10.00	62	16.7	59	14.8	56	13.3	80	7	350	30.10	1	-0.04	30.12	SY-MT	0.00	30.13
20	0117	6	SCT:04 17 BKN:07 22 BKN:07 37	10.00	61	16.1	58	14.5	56	13.3	84	13	030	30.09				FM-16		30.12
20	0154	6	BKN:07 17 BKN:07 35	10.00	62	16.7	59	14.8	56	13.3	80	13	040	30.10			30.13	FM-15	0.00	30.13
20	0254	6	FEW:02 13 BKN:07 22	10.00	61	16.1	58	14.5	56	13.3	84	13	010	30.11			30.14	FM-15	0.00	30.14
20	0354	7	SCT:04 13 BKN:07 22	10.00	60	15.6	58	14.3	56	13.3	86	13	020	30.12	2	-0.02	30.14	SY-MT	0.00	30.15
20	0454	7	SCT:04 13 BKN:07 49	10.00	61	16.1	58	14.5	56	13.3	84	13	030	30.13			30.15	FM-15	0.00	30.16

20	0516	7	SCT:04 13 BKN:07 19 BKN:07 40	10.00	61	16.1	58	14.5	56	13.3	84	11	030	30.13				FM-16		30.16
20	0554	7	SCT:04 16 BKN:07 23	10.00	61	16.1	58	14.5	56	13.3	84	11	030	30.15			30.17	FM-15	0.00	30.18
20	0647	7	FEW:02 13 SCT:04 24 SCT:04 45	10.00	61	16.1	58	14.5	56	13.3	84	11	030	30.17				FM-16		30.20
20	0654	7	FEW:02 13 SCT:04 24 SCT:04 45	10.00	61	16.1	58	14.5	56	13.3	84	13	040	30.18	3	-0.06	30.20	FM-15	0.00	30.21
20	0700	4	15	9.94	61	16.1	58	14.5	56	13.3	84	13	040	30.19	3	-0.06	30.20	FM-12		
20	0732	7	FEW:02 14 BKN:07 24	10.00	63	17.2	59	15.0	56	13.3	78	15	030	30.19				FM-16		30.22
20	0752	6	FEW:02 13 SCT:04 24	10.00	64	18.0	60	15.5	57	14.0	78	10	030	30.20				FM-16		30.23
20	0754	7	FEW:02 13 SCT:04 24	10.00	64	17.8	60	15.5	57	13.9	78	13	020	30.20			30.22	FM-15	0.00	30.23
20	0851	7	SCT:04 17 BKN:07 28	10.00	64	18.0	59	14.9	55	13.0	73	11	020	30.23				FM-16		30.26
20	0854	7	SCT:04 17 BKN:07 28	10.00	65	18.3	60	15.5	56	13.3	73	13	030	30.23			30.26	FM-15	0.00	30.26
20	0954	7	BKN:07 20 BKN:07 28	10.00	65	18.3	60	15.5	56	13.3	73	17	030	30.24	1	-0.04	30.26	FM-15	0.00	30.27
20	1000	4	26	9.94	65	18.3	60	15.5	56	13.3	73	17	030	30.25	1	-0.04	30.26	FM-12		
20	1054	7	BKN:07 16 OVC:08 38	10.00	63	17.2	59	15.0	56	13.3	78	11	060	30.25			30.27	FM-15	т	30.28
20	1154	7	FEW:02 20 BKN:07 27 OVC:08 32	10.00	64	17.8	59	15.2	56	13.3	75	11	070	30.25			30.27	FM-15	0.00	30.28
20	1228	7	SCT:04 19 OVC:08 46	10.00	64	17.8	59	15.2	56	13.3	75	15	070	30.24				FM-16		30.27
20	1254	7	SCT:04 19 OVC:08 46	10.00	65	18.3	60	15.5	56	13.3	73	14	080	30.23	8	+0.00	30.26	FM-15	0.00	30.26
20	1300	4	15	9.94	65	18.3	60	15.5	56	13.3	73	14	080	30.24	4	0.00	30.26	FM-12		
20	1354	7	FEW:02 17 BKN:07 45 BKN:07 110	10.00	65	18.3	59	15.2	55	12.8	70	14	080	30.23			30.26	FM-15	0.00	30.26
20	1454	6	FEW:02 17 SCT:04 45 BKN:07 110	10.00	64	17.8	59	14.9	55	12.8	73	14	080	30.23			30.25	FM-15	0.00	30.26
20	1554	7	SCT:04 17 BKN:07 45 BKN:07 110	10.00	64	17.8	59	15.2	56	13.3	75	11	080	30.24	3	-0.00	30.27	FM-15	0.00	30.27
20	1600	4	15	9.94	 64	17.8	59	15.2	56	13.3	75	11	080	30.25	3	-0.00	30.27	FM-12		
20	1614	7	BKN:07 19 BKN:07 110 BKN:07 210	10.00	63	17.2	58	14.7	55	12.8	75	13	090	30.23				FM-16		30.26
20	1654	7	BKN:07 19 BKN:07 130 BKN:07 210	10.00	63	17.2	58	14.7	55	12.8	75	10	100	30.24			30.27	FM-15	0.00	30.27
20	1754	7	SCT:04 19 BKN:07 29 OVC:08 130	10.00	63	17.2	58	14.7	55	12.8	75	7	080	30.26			30.29	FM-15	0.00	30.29
20	1843	7	FEW:02 17 SCT:04 29 BKN:07 47	10.00	63	17.2	58	14.4	54	12.2	73	8	080	30.26				FM-16		30.29
20	1854	7	FEW:02 17 SCT:04 31 BKN:07 50	10.00	63	17.2	58	14.4	54	12.2	73	8	090	30.26	0	-0.02	30.28	FM-15	0.00	30.29
20	1900	4	15	9.94	63	17.2	58	14.4	54	12.2	73	8	090	30.27	9	0.02	30.28	FM-12		
20	1954	7	FEW:02 17 SCT:04 50 BKN:07 130	10.00	63	17.2	58	14.4	54	12.2	73	9	100	30.27			30.29	FM-15	0.00	30.30

20	2054	7	FEW:02 17 SCT:04 50 BKN:07 140	10.00	63	17.2	57	14.1	53	11.7	70	8	100		30.27			30.30	FM-15	0.00	30.30
20	2154	7	FEW:02 50 BKN:07 140 OVC:08 180	10.00	63	17.2	57	14.1	53	11.7	70	11	120		30.26	0	-0.01	30.29	FM-15	0.00	30.29
20	2200	4	57	9.94	63	17.2	57	14.1	53	11.7	70	11	120		30.27	9	0.01	30.29	FM-12		
20	2254	7	FEW:02 50 BKN:07 160 OVC:08 190	10.00	63	17.2	58	14.4	54	12.2	73	6	130		30.28			30.31	FM-15	0.00	30.31
20	2354	7	FEW:02 50 BKN:07 160 OVC:08 190	10.00	63	17.2	57	14.1	53	11.7	70	6	150		30.28			30.31	FM-15	0.00	30.31
21	0054	7	OVC:08 50	10.00	62	16.7	58	14.2	54	12.2	75	5	150		30.27	0	-0.01	30.30	FM-15	0.00	30.30
21	0100	4	57	9.94	62	16.7	58	14.2	54	12.2	75	5	150		30.28	9	0.01	30.30	FM-12	0.00	00100
21	0154	7	OVC:08 55	10.00	62	16.7	58	14.2	54	12.2	75	5	160		30.26		0.01	30.29	FM-15	0.00	30.29
21	0254	7	BKN:07 55 OVC:08 140	10.00	62	16.7	58	14.2	54	12.2	75	6	150		30.26			30.29	FM-15	0.00	30.29
21	0354	7	SCT:04 55 OVC:08 140	10.00	62	16.7	57	13.9	53	11.7	73	6	160		30.26	5	+0.01	30.29	FM-15	0.00	30.29
21	0400	4	57	9.94	62	16.7	57	13.9	53	11.7	73	6	160		30.27	5	+0.01	30.29	FM-12		
21	0454	7	SCT:04 50 BKN:07 140	10.00	62	16.7	57	13.6	52	11.1	70	7	160		30.27			30.29	FM-15	0.00	30.30
21	0554	7	FEW:02 35 BKN:07 100 BKN:07 220	10.00	62	16.7	57	13.9	53	11.7	73	8	180		30.28			30.30	FM-15	0.00	30.31
21	0654	7	FEW:02 35 BKN:07 100	10.00	62	16.7	57	13.9	53	11.7	73	8	180		30.28	1	-0.01	30.31	FM-15	0.00	30.31
21	0700	4	41	9.94	62	16.7	57	13.9	53	11.7	73	8	180		30.29	1	-0.01	30.31	FM-12		
21	0754	7	FEW:02 35 SCT:04 100 SCT:04 160	10.00	64	17.8	58	14.4	53	11.7	68	8	170		30.28			30.30	FM-15	0.00	30.31
21	0854	7	FEW:02 30 SCT:04 90 SCT:04 160	10.00	66	18.9	59	14.8	53	11.7	63	11	160		30.26			30.29	FM-15	0.00	30.29
21	0954	7	FEW:02 30 SCT:04 70 SCT:04 160	10.00	67	19.4	59	15.1	53	11.7	61	9	150		30.22	8	+0.06	30.25	FM-15	0.00	30.25
21	1000	4	26	9.94	67	19.4	59	15.1	53	11.7	61	9	150		30.23	8	+0.06	30.25	FM-12		
21	1054	7	FEW:02 30 FEW:02 70 SCT:04 250	10.00	69	20.6	59	15.2	52	11.1	55	10	160		30.19			30.22	FM-15	0.00	30.22
21	1154	7	FEW:02 30 FEW:02 70 SCT:04 250	10.00	71	21.7	61	16.2	54	12.2	55	10	170		30.16			30.19	FM-15	0.00	30.19
21	1254	7	SCT:04 35 BKN:07 60 BKN:07 250	10.00	71	21.7	62	16.5	55	12.8	57	11	210		30.13	8	+0.10	30.16	FM-15	0.00	30.16
21	1300	4	41	9.94	71	21.7	62	16.5	55	12.8	57	11	210		30.14	8	+0.10	30.16	FM-12		
21	1354	7	SCT:04 32 BKN:07 55 BKN:07 250	10.00	70	21.1	62	16.6	56	13.3	61	14	200		30.10			30.12	FM-15	0.00	30.13
21	1454	7	FEW:02 29 BKN:07 48 BKN:07 250	10.00	70	21.1	61	16.0	54	12.2	57	17	200		30.07			30.10	FM-15	0.00	30.10
21	1554	7	FEW:02 26 OVC:08 48	10.00	68	20.0	61	16.1	56	13.3	65	17	190		30.04	6	+0.09	30.07	FM-15	0.00	30.07
21	1600	4	26	9.94	68	20.0	61	16.1	56	13.3	65	17	190		30.05	6	+0.09	30.07	FM-12		
21	1654	7	FEW:02 28 OVC:08 46	10.00	67	19.4	61	16.2	57	13.9	71	15	200	22	30.02			30.05	FM-15	0.00	30.05
21	1754	7	FEW:02 27 BKN:07 50 OVC:08 250	10.00	66	18.9	61	16.0	57	13.9	73	18	190		29.99			30.02	FM-15	0.00	30.02

21	1854	7	FEW:02 32 BKN:07 49 OVC:08 250	10.00	67	19.4	62	16.8	59	15.0	76	17	200		29.96	8	+0.08	29.99	FM-15	0.00	29.99
21	1900	4	26	9.94	67	19.4	62	16.8	59	15.0	76	17	200		29.97	8	+0.08	29.99	FM-12		
21	1954	7	FEW:02 13 SCT:04 35 BKN:07 140	10.00	67	19.4	63	17.1	60	15.6	79	16	200		29.94			29.97	FM-15	0.00	29.97
21	2054	7	FEW:02 14 SCT:04 37 BKN:07 140	10.00	68	20.0	64	17.6	61	16.1	78	18	210	25	29.94			29.97	FM-15	0.00	29.97
21	2154	7	SCT:04 43 BKN:07 140	10.00	69	20.6	65	18.2	62	16.7	78	17	210	24	29.92	8	+0.04	29.95	FM-15	0.00	29.95
21	2200	4	41	9.94	69	20.6	65	18.2	62	16.7	78	17	210		29.93	8	+0.04	29.95	FM-12		i l
21	2254	7	FEW:02 37	10.00	69	20.6	65	18.2	62	16.7	78	21	210	29	29.90			29.92	FM-15	0.00	29.93
21	2354	7	SCT:04 34 BKN:07 140	10.00	70	21.1	65	18.1	61	16.1	73	20	210	29	29.84			29.87	FM-15	0.00	29.87

U.S. Department of Commerce National Oceanic & Atmospheric Administration

National Environmental Satellite, Data, and Information Service

Current Location: Elev: 12 ft. Lat: 42.3606° N Lon: -71.0097° W

Local Climatological Data Hourly Precipitation September 2018

Generated on 09/25/2018

Station:	BOSTO	N, MA US	6 14739								Gene	rated on t	59/25/20	10											
Date											For	Hour (LS	ST) Endir	ng at											Date
Date	1 AM	2 AM	3 AM	4 AM	5 AM	6 AM	7 AM	8 AM	9 AM	10 AM	11 AM	NOON	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	MID	Date
01																									01
02																									02
03																									03
04																									04
05																									05
06																Т	0.01	0.02	Т						06
07													Т												07
08		Т	Т																						08
09																									09
10													Т	Т		0.01	0.01	0.10	0.10	0.07	0.13	0.14	0.09	0.11	10
11	0.14	0.14	0.07	0.07	0.10	0.01																			11
12		Т	Т		Т	0.01						0.01	0.01	0.08	0.09	Т						0.05s	0.01		12
13	0.02	0.22	0.05	0.07	0.08	Т	М																		13
14	T T T 0.01																						14		
15	T T 0.02 0.22 0.05 0.07 T 0.03 0.01 M M M M				Т								М												15
16													М												16
17	T 0.03 0.01 M 0.12 T																						Т	17	
18	5 T T 6 I I 7 I 8 T 0.03 9 I 0 M 1 I				Т	0.05s	0.63	0.08	0.12	0.03	0.03										18				
19				Т					Т		Т	Т							М			M			19
20				M							Т														20
21																									21
22			0.03	Т																			М	М	22
												Short Du	ration P	recipitati											
				5		10		15		20		30	4	5	60)	80		100		120		150	1	180
()	Ending D yyyy-mm-	ate Time ·dd hh:mi)																						

Hourly, daily, and monthly totals on the Daily Summary page and the Hourly Precipitation Table are shown as reported by the instrumentation the site. However, NWS does not edit hourly values for its ASOS sites, but may edit the daily and monthly totals for selected sites which will be reflected on the Daily Summary page.

s = Suspect * = Erroneous blank = No precipitation observed M = Missing

National Oceanic & Atmospheric Administration

Local Climatological Data Hourly Observations September 2018 Generated on 10/11/2018

National Centers for Environmental Information 151 Patton Avenue Asheville, North Carolina 28801

Alti-

meter

Setting

(inHg)

23

29.94

29.94

29.95

29.95

29.97

30.00

30.03

30.07

30.09

30.12

30.14

30.15

30.15

30.15

30.14

30.14

30.14

Current Location: Elev: 12 ft. Lat: 42.3606° N Lon: -71.0097° W

National Environmental Satellite, Data, and Information Service

Station: BOSTON. MA US 14739

27

27

27

1300

1354

1454

4 57

7

7

FEW:02 45 SCT:04 100

BKN:07 250 FEW:02 45

BKN:07 140

BKN:07 250

9.94

10.00

10.00

Stati	on: BOS	TON, N	IA US 14739																			
D a	Time	Sta- tion	Sky Conditions	Visi- bility	Weather Type (see documentation)		Bulb mp		Bulb mp		Point mp	Rel Hum	Wind Speed	Wind Dir	Wind Gusts	Station Press	Press. Tend	Net 3- Hr	Sea Level Press.	Report	Precip Total	
e t	(LST)	Туре	Conditions	Dinty	AU AW MW	(F)	(C)	(F)	(C)	(F)	(C)	%	(MPH)	(Deg)	(MPH)	(inHg)	rena	Change (inHg)	(inHg)	Туре	(in)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	Ĺ
27	0054	7	FEW:02 20 BKN:07 50 OVC:08 65	4.00	-RA:02 BR:1 RA RA	70	21.1	68	20.0	67	19.4	90	3	260		29.91	1	-0.06	29.94	FM-15	0.05	ĺ
27	0100	4	26	3.73	RA	70	21.1	68	20.0	67	19.4	90	3	260		29.92	1	-0.06	29.94	FM-12		
27	0106	7	BKN:07 15 BKN:07 48 OVC:08 80	10.00		70	21.1	68	20.0	67	19.4	90	0	000		29.91				FM-16	т	
27	0147	7	SCT:04 16 BKN:07 43 OVC:08 65	10.00		70	21.1	68	20.0	67	19.4	90	5	260		29.92				FM-16	т	
27	0154	7	SCT:04 16 BKN:07 43 OVC:08 65	10.00		70	21.1	68	20.0	67	19.4	90	6	280		29.92			29.95	FM-15	т	
27	0254	7	SCT:04 47 BKN:07 100 OVC:08 220	10.00		69	20.6	66	18.8	64	17.8	84	11	320		29.94			29.97	FM-15	0.00	
27	0354	7	FEW:02 50 SCT:04 100 OVC:08 240	10.00		66	18.9	62	16.9	60	15.6	81	10	330	18	29.97	3	-0.06	29.99	FM-15	0.00	
27	0400	4	57	9.94		66	18.9	62	16.9	60	15.6	81	10	330		29.98	3	-0.06	29.99	FM-12		
27	0454	7	BKN:07 50 BKN:07 100 OVC:08 240	10.00		64	17.8	60	15.5	57	13.9	78	11	330		30.00			30.03	FM-15	0.00	
27	0554	7	BKN:07 44 BKN:07 160 BKN:07 250	10.00		63	17.2	59	15.0	56	13.3	78	13	330		30.04			30.06	FM-15	0.00	
27	0654	7	FEW:02 26 BKN:07 44 BKN:07 160	10.00		63	17.2	58	14.7	55	12.8	75	11	340		30.06	1	-0.09	30.09	FM-15	0.00	
27	0700	4	26	9.94		63	17.2	58	14.7	55	12.8	75	11	340		30.07	1	-0.09	30.09	FM-12		L
27	0754	7	BKN:07 48 BKN:07 160 BKN:07 250	10.00		64	17.8	59	15.2	56	13.3	75	10	350		30.09			30.12	FM-15	0.00	
27	0854	7	BKN:07 50 BKN:07 250	10.00		66	18.9	60	15.4	55	12.8	68	11	020		30.11			30.14	FM-15	0.00	L
27	0954	7	SCT:04 40 BKN:07 60 BKN:07 160	10.00		68	20.0	59	14.7	51	10.6	55	14	020		30.12	1	-0.06	30.15	FM-15	0.00	
27	1000	4	41	9.94		68	20.0	59	14.7	51	10.6	55	14	020		30.13	1	-0.06	30.15	FM-12		L
27	1054	7	SCT:04 41 SCT:04 160 BKN:07 250	10.00		69	20.6	58	14.7	50	10.0	51	11	040		30.12			30.15	FM-15	0.00	
27	1154	7	FEW:02 44 FEW:02 170 SCT:04 250	10.00		68	20.0	59	15.0	52	11.1	57	11	090		30.12			30.15	FM-15	0.00	
27	1254	7	FEW:02 50 BKN:07 250	10.00		67	19.4	60	15.6	55	12.8	66	13	070		30.11	8	+0.01	30.14	FM-15	0.00	Ĺ
27	1200	4	57	0.04		67	10.4	60	15.6	EE	100	66	10	070		20.12	0	10.01	0044	EM 12		ſ

60

59

57

15.6

14.9

14.1

55

54

52

19.4

18.3

17.8

12.8

12.2

11.1

66

68

65

13

15

13

070

070

070

30.12

30.11

30.11

8

+0.01

30.14

30.14

FM-12

FM-15

30.13 FM-15

0.00

0.00

67

65

64

						1									T							
27	1554	7	FEW:02 45 SCT:04 95 BKN:07 140	10.00		64	17.8	57	13.8	51	10.6	63	14	080		30.12	3	-0.01	30.14	FM-15	0.00	30.15
27	1600	4	41	9.94		64	17.8	57	13.8	51	10.6	63	14	080		30.13	3	-0.01	30.14	FM-12		
27	1654	7	FEW:02 45 SCT:04 95 BKN:07 140	10.00		63	17.2	55	13.0	49	9.4	60	10	060		30.10			30.12	FM-15	0.00	30.13
27	1754	7	FEW:02 95 BKN:07 140 BKN:07 250	10.00		62	16.7	54	12.3	47	8.3	58	10	060		30.11			30.13	FM-15	0.00	30.14
27	1854	7	FEW:02 95 BKN:07 140 OVC:08 250	10.00		61	16.1	56	13.4	52	11.1	72	7	070		30.14	3	-0.02	30.16	FM-15	0.00	30.17
27	1900	4	010.00 200	9.94		61	16.1	56	13.4	52	11.1	72	7	070		30.15	3	-0.02	30.16	FM-12		
27	1954	7	FEW:02 95 BKN:07 140 OVC:08 230	10.00		62	16.7	56	13.3	51	10.6	67	8	070		30.14		0.02	30.17	FM-15	0.00	30.17
27	2054	6	FEW:02 95 BKN:07 140 OVC:08 230	10.00		62	16.7	56	13.1	50	10.0	65	10	060		30.14			30.16	FM-15	0.00	30.17
27	2154	7	FEW:02 95 BKN:07 140	10.00		61	16.1	56	13.4	52	11.1	72	9	070		30.12	8	+0.01	30.15	FM-15	0.00	30.15
27	2200	4		9.94		61	16.1	56	13.4	52	11.1	72	9	070		30.13	8	+0.01	30.15	FM-12		
27	2254	7	BKN:07 120	10.00		62	16.7	57	13.9	53	11.7	73	10	070		30.11			30.13	FM-15	0.00	30.14
27	2354	7	SCT:04 85 OVC:08 110	10.00		62	16.7	56	13.6	52	11.1	70	15	070		30.07			30.09	FM-15	0.00	30.10
28	0054	7	OVC:08 80	10.00		62	16.7	57	13.9	53	11.7	73	10	050		30.09	5	+0.04	30.11	FM-15	Т	30.12
28	0100	4	74	9.94		62	16.7	57	13.9	53	11.7	73	10	050		30.10	5	+0.04	30.11	FM-12		
28	0154	7	OVC:08 80	10.00		62	16.7	57	13.9	53	11.7	73	10	060		30.07			30.10	FM-15	0.00	30.10
28	0254	7	OVC:08 80	10.00		61	16.1	57	13.7	53	11.7	75	9	020		30.06	-		30.09	FM-15	0.00	30.09
28	0354	7	OVC:08 70	10.00		61	16.1	57	13.7	53	11.7	75	13	040		30.05	6	+0.03	30.08	FM-15	0.00	30.08
28	0400	4	74	9.94		61	16.1	57	13.7	53	11.7	75	13	040		30.06	6	+0.03	30.08	FM-12		
28	0454	7	FEW:02 20 OVC:08 70	10.00	-RA:02 RA RA	61	16.1	57	13.9	54	12.2	78	14	030		30.05			30.08	FM-15	Т	30.08
28	0518	7	BKN:07 20 OVC:08 65	10.00		61	16.1	57	13.7	53	11.7	75	13	030		30.05				FM-16	Т	30.08
28	0554	7	BKN:07 20 OVC:08 55	5.00	RA:02 RA RA	60	15.6	57	13.7	54	12.2	80	11	030		30.08			30.10	FM-15	0.01	30.11
28	0610	7	SCT:04 19 BKN:07 48 OVC:08 70	2.50	RA:02 BR:1 RA RA	59	15.0	57	13.8	55	12.8	87	8	030		30.08				FM-16	0.03	30.11
28	0632	7	SCT:04 19 BKN:07 50 OVC:08 90	3.00	-RA:02 BR:1 RA RA	59	15.0	57	13.8	55	12.8	87	9	030		30.08				FM-16	0.07	30.11
28	0654	7	BKN:07 19 BKN:07 55 OVC:08 110	3.00	+RA:02 BR:1 RA RA	59	15.0	57	13.8	55	12.8	87	10	040		30.08	3	-0.02	30.10	FM-15	0.13s	30.11
28	0700	4	15	2.98	RA	59	15.0	57	13.8	55	12.8	87	10	040		30.09	3	-0.02	30.10	FM-12		
28	0754	7	BKN:07 20 BKN:07 60 OVC:08 120	3.00	RA:02 BR:1 RA RA	58	14.4	56	13.2	54	12.2	87	11	040		30.06			30.08	FM-15	0.10	30.09
28	0827	7	BKN:07 12 BKN:07 25 OVC:08 47	10.00	-RA:02 RA RA	59	15.0	57	14.1	56	13.3	90	10	020		30.06				FM-16	0.03	30.09
28	0854	7	BKN:07 11 BKN:07 23 OVC:08 47	10.00	-RA:02 RA RA	60	15.6	58	14.3	56	13.3	86	11	020		30.06			30.09	FM-15	0.02	30.09
28	0954	7	BKN:07 11 OVC:08 29	10.00	-RA:02 RA RA	60	15.6	58	14.3	56	13.3	86	11	020		30.06	6	+0.02	30.08	FM-15	Т	30.09
28	1000	4	15	9.94	RA	60	15.6	58	14.3	56	13.3	86	11	020		30.07	6	+0.02	30.08	FM-12		
28	1054	7	BKN:07 12 OVC:08 31	3.00	-RA:02 BR:1 RA RA	59	15.0	57	14.1	56	13.3	90	16	030		30.03			30.06	FM-15	0.08	30.06

28	1152	6	SCT:04 10 BKN:07 17 OVC:08 25	4.00	-RA:02 BR:1 RA RA	57	14.0	55	13.0	54	12.0	88	16	010		30.04				FM-16		30.07
28	1154	7	SCT:04 10 BKN:07 17 OVC:08 25	4.00	-RA:02 BR:1 RA RA	58	14.4	56	13.2	54	12.2	87	14	010		30.04			30.06	FM-15	т	30.07
28	1254	7	FEW:02 11 BKN:07 17 OVC:08 25	9.00	-RA:02 RA RA	58	14.4	54	12.4	51	10.6	78	14	020		30.03	6	+0.02	30.06	FM-15	т	30.06
28	1300	4	15	8.70	RA	58	14.4	54	12.4	51	10.6	78	14	020		30.04	6	+0.02	30.06	FM-12		
28	1354	7	FEW:02 13 OVC:08 29	10.00	-RA:02 RA RA	60	15.6	55	12.8	51	10.6	72	9	040		30.02			30.04	FM-15	0.01	30.05
28	1427	7	FEW:02 13 OVC:08 36	10.00		60	15.6	55	12.8	51	10.6	72	11	020		30.02				FM-16	Т	30.05
28	1454	7	FEW:02 11 SCT:04 16 OVC:08 39	6.00	-DZ:01 DZ DZ	59	15.0	56	13.5	54	12.2	83	7	010		30.02			30.04	FM-15	Т	30.05
28	1509	7	FEW:02 11 BKN:07 16 OVC:08 32	10.00		59	15.0	56	13.5	54	12.2	83	3	050		30.01				FM-16	Т	30.04
28	1554	7	FEW:02 12 BKN:07 26	10.00		60	15.6	56	13.4	53	11.7	78	6	060		30.01	6	+0.02	30.04	FM-15	т	30.04
28	1600	4	15	9.94		60	15.6	56	13.4	53	11.7	78	6	060		30.02	6	+0.02	30.04	FM-12		
28	1654	7	FEW:02 11 BKN:07 21	10.00		60	15.6	56	13.4	53	11.7	78	3	020		30.04			30.06	FM-15	0.00	30.07
28	1754	7	FEW:02 13 BKN:07 22	10.00		60	15.6	56	13.1	52	11.1	75	3	010		30.04			30.07	FM-15	0.00	30.07
28	1852	6	FEW:02 11 SCT:04 25	10.00		59	15.0	55	12.9	52	11.0	77	5	010		30.05				FM-16		30.08
28	1854	7	FEW:02 11 SCT:04 25	10.00		59	15.0	55	12.9	52	11.1	78	5	020		30.05	1	-0.04	30.07	FM-15	0.00	30.08
28	1900	4	15	9.94		59	15.0	55	12.9	52	11.1	78	5	020		30.06	1	-0.04	30.07	FM-12		
28	1954	7	CLR:00	10.00		59	15.0	55	12.6	51	10.6	75	3	040		30.05			30.08	FM-15	0.00	30.08
28	2054	7	FEW:02 24	10.00		59	15.0	55	12.9	52	11.1	78	3	240		30.05			30.08	FM-15	0.00	30.08
28	2154	7	FEW:02 24	10.00		59	15.0	56	13.2	53	11.7	81	5	280		30.05	1	-0.01	30.08	FM-15	0.00	30.08
28	2200	4	26	9.94		59	15.0	56	13.2	53	11.7	81	5	280		30.06	1	-0.01	30.08	FM-12		
28	2254	7	FEW:02 30	10.00		58	14.4	55	12.6	52	11.1	81	6	280		30.06			30.08	FM-15	0.00	30.09
28	2354	7	CLR:00	10.00		58	14.4	55	12.6	52	11.1	81	6	270		30.05			30.07	FM-15	0.00	30.08
29	0054	7	CLR:00	10.00		56	13.3	54	12.4	53	11.7	90	7	230		30.05	8	+0.00	30.08	FM-15	0.00	30.08
29	0100	4		9.94		56	13.3	54	12.4	53	11.7	90	7	230		30.06	8	+0.00	30.08	FM-12		
29	0154	7	CLR:00	10.00		56	13.3	54	12.1	52	11.1	87	9	220		30.04			30.07	FM-15	0.00	30.07
29	0254	7	CLR:00	10.00		56	13.3	54	12.1	52	11.1	87	8	240		30.05	-		30.07	FM-15	0.00	30.08
29	0354	7	CLR:00	10.00		55	12.8	53	11.9	52	11.1	90	6	230		30.06	3	-0.01	30.09	FM-15	0.00	30.09
29	0400	4		9.94		55 55	12.8	53 53	11.9	52 52	11.1	90	6 7	230		30.07	3	-0.01	30.09	FM-12 FM-15	0.00	20.00
29 29	0454 0554	7	CLR:00 CLR:00	10.00		56	12.8 13.3	53 54	11.9 12.1	52	11.1 11.1	90 87	6	230 240		30.06 30.09			30.09 30.11	FM-15	0.00	30.09 30.12
29	0554	7	FEW:02 20	10.00		59	15.0	56	13.2	53	11.7	81	9	240		30.09	3	-0.04	30.11	FM-15	0.00	30.12
29	0700	4	26	9.94		59	15.0	56	13.2	53	11.7	81	9	270		30.10	3	-0.04	30.13	FM-13	0.00	50.15
29	0700	7	FEW:02 18	10.00		61	16.1	57	13.7	53	11.7	75	10	270		30.11		0.04	30.13	FM-15	0.00	30.14
29	0854	7	FEW:02 18	10.00		65	18.3	59	15.2	55	12.8	70	6	VRB		30.12			30.15	FM-15	0.00	30.15
	0954	7	FEW:02 10			69	20.6	60	15.8	54	12.2	59	7	320		30.12	0	-0.02		FM-15		30.15
29	1000	4	26	9.94		69	20.6	60	15.8	54	12.2	59	7	320		30.12	9	0.02		FM-12		
29	1054	7	FEW:02 25	10.00		70	21.1	61	16.0	54	12.2	57	8	270		30.10				FM-15	0.00	30.13
	1154	7	SCT:04 30	10.00		72	22.2	62	16.7	55	12.8	55	10	300		30.10				FM-15	0.00	30.13
29	1254	6	SCT:04 41	10.00		72	22.2	62	16.4	54	12.2	53	7	280	18	30.09	6	+0.03		FM-15	0.00	30.12
29	1354	7	SCT:04 50	10.00		74	23.3	62	16.8	54	12.2	50	8	280		30.09				FM-15	0.00	30.12
29	1454	7	SCT:04 55	10.00		72	22.2	61	15.9	52	11.1	50	6	300		30.11				FM-15	0.00	30.14
29	1554	7	SCT:04 60	10.00		72	22.2	61	15.9	52	11.1	50	8	300		30.12	3	-0.03		FM-15	0.00	30.15
29	1600	4	57	9.94		72	22.2	61	15.9	52	11.1	50	8	300		30.13	3	-0.03		FM-12		
29	1654	7	SCT:04 65	10.00		69	20.6	58	14.7	50	10.0	51	9	300		30.14			30.16	FM-15	0.00	30.17

	1754	-		40.00		00		50			10.0			040		00.45			00.40		0.00	00.40
29	1754	7	SCT:04 55	10.00		68	20.0	58	14.5	50	10.0	53	9	310		30.15	0	0.05		FM-15	0.00	30.18
29	1854	7	SCT:04 50	10.00		67	19.4	58	14.2	50	10.0	55	3	330		30.17	2	-0.05	30.20	FM-15	0.00	30.20
29	1900	4	57	9.94		67	19.4	58	14.2	50	10.0	55	3	330		30.18	2	-0.05	30.20	FM-12		
29	1954	7	BKN:07 60	10.00		66	18.9	58	14.3	51	10.6	59	3	VRB		30.19			30.21	FM-15	0.00	30.22
29	2054	7	FEW:02 60	10.00		64	17.8	56	13.3	49	9.4	58	8	300		30.20			30.23	FM-15	0.00	30.23
29	2154	7	FEW:02 60	10.00		61	16.1	55	12.8	50	10.0	67	8	300		30.21	1	-0.04	30.24	FM-15	0.00	30.24
29	2200	4	57	9.94		61	16.1	55	12.8	50	10.0	67	8	300		30.22	1	-0.04	30.24	FM-12		1
29	2254	7	FEW:02 60	10.00		60	15.6	54	12.0	48	8.9	65	8	290		30.22			30.24	FM-15	0.00	30.25
29	2354	7	CLR:00	10.00		60	15.6	53	11.5	46	7.8	60	8	320		30.22			30.25	FM-15	0.00	30.25
30	0054	7	FEW:02 60	10.00		58	14.4	52	11.3	47	8.3	67	8	330		30.23	1	-0.02	30.26	FM-15	0.00	30.26
30	0100	4	57	9.94		58	14.4	52	11.3	47	8.3	67	8	330		30.24	1	-0.02	30.26	FM-12		
30	0154	7	FEW:02 60	10.00		56	13.3	51	10.8	47	8.3	72	5	340		30.23			30.26	FM-15	0.00	30.26
30	0254	7	FEW:02 60	10.00		56	13.3	51	10.5	46	7.8	70	7	320		30.24			30.27	FM-15	0.00	30.27
30	0354	7	FEW:02 60	10.00		55	12.8	50	10.2	46	7.8	72	5	290		30.26	3	-0.03	30.29	FM-15	0.00	30.29
30	0400	4	57	9.94		55	12.8	50	10.2	46	7.8	72	5	290		30.27	3	-0.03	30.29	FM-12	0.00	
30	0454	7	FEW:02 60	10.00		55	12.8	50	9.7	44	6.7	67	8	290		30.27	•	0.00	30.29	FM-15	0.00	30.30
30	0554	7	FEW:02.60	10.00		54	12.0	49	9.5	44	6.7	69	9	300		30.29			30.31	FM-15	0.00	30.32
- 50	0004		FEW:02 50				12.2	40	3.5		0.7		3	500							0.00	30.32
30	0654	7	FEW:02 180	10.00		57	13.9	50	10.3	44	6.7	62	10	300		30.29	1	-0.03	30.32	FM-15	0.00	30.32
30	0700	4	57	9.94		57	13.9	50	10.3	44	6.7	62	10	300		30.30	1	-0.03	30.32	FM-12		
		-	FEW:02 40																		0.00	00.05
30	0754	7	FEW:02 180	10.00		60	15.6	52	11.3	45	7.2	58	8	300		30.32			30.35	FM-15	0.00	30.35
30	0854	7	FEW:02 40	10.00		63	17.2	53	11.6	43	6.1	48	8	310		30.32			30.34	FM-15	0.00	30.35
30	0004	'	FEW:02 180	10.00		05	17.2	55	11.0	43	0.1	40	0	510		30.32			50.54	1 101-13	0.00	30.33
30	0954	7	FEW:02 40	10.00		64	17.8	53	11.8	43	6.1	46	6	290		30.31	0	-0.02	30.34	FM-15	0.00	30.34
			FEW:02 220														-				0.00	00.01
30	1000	4	41	9.94		64	17.8	53	11.8	43	6.1	46	6	290		30.32	9	0.02	30.34	FM-12		
20	1051	7	FEW:02 30	10.00		<u> </u>	10.0	F 4	40.4	40	F 0	40	<u> </u>	200		20.20			20.22		0.00	20.22
30	1054	7	FEW:02 70 SCT:04 250	10.00		66	18.9	54	12.1	42	5.6	42	6	360		30.29			30.32	FM-15	0.00	30.32
			FEW:02 30																			
30	1154	7	FEW:02 90	10.00		67	19.4	54	12.3	42	5.6	41	5	300		30.28			30.31	FM-15	0.00	30.31
	-		SCT:04 250				-		_				-							-		
			FEW:02 30																			
30	1254	7	FEW:02 90	10.00		69	20.6	55	12.8	42	5.6	38	8	280		30.27	6	+0.04	30.30	FM-15	0.00	30.30
			SCT:04 250						10.0													⊢−−−−
30	1300	4	26	9.94		69	20.6	55	12.8	42	5.6	38	8	280		30.28	6	+0.04	30.30	FM-12		
20	1054	-	SCT:04 70	10.00		<u></u>	20.0		105	44	F 0	20	40	200	10	20.25			20.07		0.00	20.20
30	1354	7	SCT:04 80 BKN:07 220	10.00		69	20.6	55	12.5	41	5.0	36	13	260	18	30.25			30.27	FM-15	0.00	30.28
			BKN:07 220																			
30	1454	7	BKN:07 250	10.00		69	20.6	55	13.0	43	6.1	39	9	240		30.25			30.27	FM-15	0.00	30.28
			FEW:02 180																			
30	1554	7	BKN:07 220	10.00		69	20.6	55	12.8	42	5.6	38	9	250		30.25	5	+0.02	30.28	FM-15	0.00	30.28
			BKN:07 250																			
30	1600	4		9.94		69	20.6	55	12.8	42	5.6	38	9	250		30.26	5	+0.02	30.28	FM-12		
		_	FEW:02 180																			
30	1654	7	BKN:07 220	10.00		67	19.4	54	12.3	42	5.6	41	8	VRB		30.25			30.27	FM-15	0.00	30.28
			OVC:08 250 FEW:02 150																			<u> </u>
30	1754	7	SCT:04 220	10.00		66	18.9	54	12.0	42	5.6	42	9	270		30.25			30.28	FM-15	0.00	30.28
00			BKN:07 250	10.00		00	10.0	0.	12.0	.2	0.0		Ũ	2.0		00.20			00.20		0.00	00.20
	4054	_		40.00		05	40.0	- 4	40.0	40		45	•	000		00.00	0	0.04	00.00		0.00	00.00
30	1854	7	SCT:04 220 BKN:07 250	10.00		65	18.3	54	12.0	43	6.1	45	6	260		30.26	3	-0.01	30.29	FM-15	0.00	30.29
30	1900	4		9.94		65	18.3	54	12.0	43	6.1	45	6	260		30.27	3	-0.01	30.29	FM-12		
30	1954	7	FEW:02 220	10.00		62	16.7	54	12.3	47	8.3	58	5	200		30.26			30.20	FM-15	0.00	30.29
50	1004	Ľ	BKN:07 250	10.00		02	10.1		12.0	77	0.0	00	5	200		00.20			00.23	1 101-13	0.00	00.20
30	2054	7	FEW:02 220 SCT:04 250	10.00		61	16.1	54	12.0	47	8.3	60	5	200		30.26			30.29	FM-15	0.00	30.29
																	~	0.04				
30	2154	7	BKN:07 250	10.00		60	15.6	54	12.3	49	9.4	67	6	220		30.27	3	-0.01 -0.01		FM-15	0.00	30.30
30	2200	4	1	9.94		60	15.6	54	12.3	49	9.4	67	6	220		30.28	3	-0.01	30.29	FM-12		

30	2254	7	FEW:02 220 SCT:04 250 10.00	60	15.6	55	12.6	50	10.0	70	7	220	30.27		30.30	FM-15	0.00	30.30
30	2354	7	OVC:08 75 10.00	62	16.7	56	13.1	50	10.0	65	3	260	30.27		30.29	FM-15	0.00	30.30

National Oceanic & Atmospheric Administration National Environmental Satellite, Data, and Information Service

Local Climatological Data Hourly Observations October 2018 Generated on 10/11/2018

National Centers for Environmental Information 151 Patton Avenue Asheville, North Carolina 28801

Current Location: Elev: 12 ft. Lat: 42.3606° N Lon: -71.0097° W

Station: BOSTON, MA US 14739

D a	Time	Sta- tion	Sky	Visi-	Weather Type (see documentation)		Bulb mp		Bulb mp		Point mp	Rel Hum	Wind Speed	Wind Dir	Wind Gusts	Station Press	Press.	Net 3- Hr	Sea Level	Report	Precip Total	Alti- meter
t e	(LST)	Туре	Conditions	bility	AU AW MW	(F)	(C)	(F)	(C)	(F)	(C)	%	(MPH)	(Deg)	(MPH)	(inHg)	Tend	Change (inHg)	Press. (inHg)	Туре	(in)	Setting (inHg)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
01	0054	7	BKN:07 70 OVC:08 150	10.00		60	15.6	55	12.9	51	10.6	72	6	220		30.27	8	+0.00	30.29	FM-15	0.00	30.30
01	0100	4	74	9.94		60	15.6	55	12.9	51	10.6	72	6	220		30.28	8	+0.00	30.29	FM-12		
01	0154	7	OVC:08 65	10.00		60	15.6	56	13.1	52	11.1	75	8	210		30.25			30.28	FM-15	0.00	30.28
01	0254	7	OVC:08 70	10.00		61	16.1	57	13.7	53	11.7	75	7	210		30.25			30.28	FM-15	0.00	30.28
01	0354	7	BKN:07 70 BKN:07 220	10.00		61	16.1	57	13.7	53	11.7	75	6	220		30.26	5	+0.01	30.28	FM-15	0.00	30.29
01	0400	4	74	9.94		61	16.1	57	13.7	53	11.7	75	6	220		30.27	5	+0.01	30.28	FM-12		
01	0454	7	OVC:08 75	10.00		60	15.6	57	13.7	54	12.2	80	5	240		30.26			30.29	FM-15	0.00	30.29
01	0554	7	BKN:07 80	10.00		61	16.1	58	14.2	55	12.8	81	9	220		30.27			30.29	FM-15	0.00	30.30
01	0654	7	SCT:04 70 BKN:07 120 BKN:07 250	10.00		63	17.2	60	15.3	57	13.9	81	11	200		30.26	0	-0.01	30.29	FM-15	0.00	30.29
01	0700	4	74	9.94		63	17.2	60	15.3	57	13.9	81	11	200		30.27	9	0.01	30.29	FM-12		
01	0754	7	FEW:02 65 SCT:04 120 SCT:04 250	10.00		66	18.9	61	16.3	58	14.4	75	13	240		30.28			30.30	FM-15	0.00	30.31
01	0834	7	BKN:07 18 BKN:07 70	10.00		67	19.4	62	16.8	59	15.0	76	10	240		30.28				FM-16		30.31
01	0854	7	BKN:07 16 OVC:08 70	10.00		67	19.4	62	16.8	59	15.0	76	5	270		30.28			30.31	FM-15	0.00	30.31
01	0954	7	OVC:08 19	10.00		66	18.9	61	16.3	58	14.4	75	6	330		30.28	1	-0.02	30.31	FM-15	0.00	30.31
01	1000	4	15	9.94		66	18.9	61	16.3	58	14.4	75	6	330		30.29	1	-0.02	30.31	FM-12		
01	1054	7	OVC:08 20	10.00		66	18.9	61	16.3	58	14.4	75	10	350		30.29			30.31	FM-15	0.00	30.32
01	1154	7	OVC:08 16 OVC:08 14	10.00		62	16.7	58	14.2	54	12.2 12.2	75 75	11	040		30.29 30.29			30.32	FM-15 FM-16	0.00	30.32
01	1201 1254	7	OVC:08 14 OVC:08 14	10.00	BR:1	62 61	16.7 16.1	58 57	14.2 13.9	54 54	12.2	75	11 9	020 030		30.29	0	-0.01	30.31	FM-16	0.00	30.32 30.32
01	1300	4	15	6.84		61	16.1	57	14.0	54	12.2	78	9	030		30.29	9	0.01	30.31	FM-12	0.00	30.32
01	1340	7	FEW:02 14 OVC:08 18	10.00		60	15.6	57	13.7	54	12.2	80	10	030		30.28		0.01	00.01	FM-16		30.31
01	1354	7	FEW:02 13 OVC:08 16	10.00		60	15.6	56	13.4	53	11.7	78	9	030		30.29			30.31	FM-15	0.00	30.32
01	1434	7	FEW:02 11 OVC:08 15	2.50	-RA:02 BR:1 RA RA	59	15.0	56	13.5	54	12.2	83	9	030		30.29				FM-16	Т	30.32
01	1451	7	BKN:07 11 OVC:08 15	1.75	-RA:02 BR:1 RA RA	57	14.0	56	13.3	55	13.0	94	10	020		30.29				FM-16	Т	30.32
01	1454	7	BKN:07 9 OVC:08 14	1.75	-RA:02 BR:1 RA RA	58	14.4	56	13.5	55	12.8	90	10	020		30.29			30.31	FM-15	Т	30.32
01	1503	7	SCT:04 6 OVC:08 11	2.50	-RA:02 BR:1 RA RA	58	14.4	57	13.8	56	13.3	93	11	030		30.29				FM-16	Т	30.32
01	1518	7	BKN:07 6 OVC:08 13	2.00	-RA:02 BR:1 RA RA	58	14.4	56	13.5	55	12.8	90	8	040		30.29				FM-16	Т	30.32
01	1538	7	BKN:07 6 OVC:08 11	1.50	-RA:02 BR:1 RA RA	58	14.4	56	13.5	55	12.8	90	7	060		30.28				FM-16	Т	30.31
01	1554	7	BKN:07 6 OVC:08 11	1.25	-RA:02 BR:1 RA RA	58	14.4	57	13.8	56	13.3	93	8	050		30.29	3	-0.01	30.32	FM-15	0.01	30.32
01	1600	4	5	1.24	RA	58	14.4	57	13.8	56	13.3	93	8	050		30.30	3	-0.01	30.32	FM-12		
01	1642	7	SCT:04 6 BKN:07 10 OVC:08 24	2.50	-RA:02 BR:1 RA RA	58	14.4	56	13.5	55	12.8	90	8	050		30.29				FM-16	0.01	30.32

02 0254 7 OVC:08 8 5.00 -RA:02 BR:1 RA RA 57 13.9 56 13.3 55 12.8 93 7 040 30.25 30.28 FM-15 0.03 30.28 02 0317 7 OVC:08 10 3.00 -RA:02 BR:1 RA RA 57 13.9 56 13.3 55 12.8 93 13 060 30.24 FM-16 0.04 30.27 02 0354 7 OVC:0811 9.00 -RA:02 RA RA 58 14.4 56 13.5 55 12.8 90 9 050 30.24 8 +0.04 30.27 FM-15 0.04 30.27 02 0400 4 15 8.70 RA 58 14.4 56 13.5 55 12.8 90 9 050 30.25 8 +0.04 30.27 FM-15 0.04 30.28 02 0454 7 OVC:0810 10.00 57 13.9 55 13.0 54 12.2 90 6 <				SCT:04 7																			
1 1 2 2 0 2 0 2 0 1 0 1 0 </td <td>01</td> <td>1652</td> <td>6</td> <td>OVC:08 29</td> <td>2.50</td> <td>-DZ:01 BR:1 DZ DZ</td> <td>57</td> <td>14.0</td> <td>56</td> <td>13.3</td> <td>55</td> <td>13.0</td> <td>94</td> <td>8</td> <td>050</td> <td></td> <td>30.29</td> <td></td> <td></td> <td></td> <td>FM-16</td> <td></td> <td>30.32</td>	01	1652	6	OVC:08 29	2.50	-DZ:01 BR:1 DZ DZ	57	14.0	56	13.3	55	13.0	94	8	050		30.29				FM-16		30.32
0 1 0	01	1654	7	BKN:07 18	2.50	-DZ:01 BR:1 DZ DZ	58	14.4	56	13.5	55	12.8	90	7	040		30.29			30.32	FM-15	0.01	30.32
0 0	01	1715	7		2.50	-RA:02 BR:1 RA RA	58	14.4	56	13.5	55	12.8	90	7	060		30.29				FM-16	Т	30.32
0 100 0.00 0.0 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 <	01	1754	7		2.50	-DZ:01 BR:1 DZ DZ	58	14.4	57	13.8	56	13.3	93	13	030		30.30			30.33	FM-15	Т	30.33
10 15 16 000 160 160 000 000 000 000	01	1802	7		6.00	-DZ:01 BR:1 DZ DZ	58	14.4	56	13.5	55	12.8	90	9	040		30.30				FM-16	Т	30.33
D 194 7 FMV071 FWV078 7.0 D201 DZ DZ 58 14.4 56 132 57 100 30.3 10. 30.34 FM.16 11 30.34 10 256 7 FW0738 10.0	01	1854	7	BKN:07 11	5.00	-RA:02 BR:1 RA RA	58	14.4	56	13.5	55	12.8	90	10	030		30.31	3	-0.02	30.34	FM-15	0.01	30.34
01 184 7 80.7011 7.0 0.201 [02] [02] [02] 58 144 56 122 64 12 67 10 030 10 0303 FM-16 7 30.34 FM-16 7 30.34 10 256 6 800.0713 10.00 - 600 - 30.34 FM-16 7 30.34 10 256 6 800.0733 10.00 - 68 14.4 56 32.6 4 12 80.0 11 020 - 30.33 3 -0.01 30.35 FM-16 7 30.3 10 220 4 15 9.00 - 80.01 10.00 - 10.01 10.00 10.01	01	1900	4	8	4.97	RA	58	14.4	56	13.5	55	12.8	90	10	030		30.32	3	-0.02	30.34	FM-12		
0 0	01	1954	7	BKN:07 11	7.00	-DZ:01 DZ DZ	58	14.4	56	13.2	54	12.2	87	10	030		30.31			30.34	FM-15	т	30.34
0 0 2 6 0 0.00 3 10.0 55 11.0 55 12.0 65 0 0.00 0.	01	2054	7		10.00		58	14.4	56	13.2	54	12.2	87	9	040		30.31			30.34	FM-15	Т	30.34
0 1	01	2152	6		10.00		57	14.0	55	13.0	54	12.0	88	9	020		30.32				FM-16		30.35
01 224 7 FRW029 0VC.0823 7.00 RA.02 RA RA 57 13.9 55 13.0 54 12.2 90 10 030 30.31 10 10 10.0	01	2154	7		10.00		58	14.4	56	13.2	54	12.2	87	11	020		30.32	3	-0.01	30.35	FM-15	т	30.35
0 1 0 0.00	01	2200	4		9.94		58	14.4	56	13.2	54	12.2	87	11	020		30.33	3	-0.01	30.35	FM-12		
1 224 7 BKN0717 0.00 0.01 57 13.9 55 13.0 54 12.2 90 9 020 30.31 30.33 FM-15 0.03 30.34 01 2352 6 BKN0714 0.00 57 14.0 56 13.3 55 13.0 94 7 030 30.29 5 M.16 0.03 30.32 01 235 7 BKN0714 0.00 Core and	01	2241	7		7.00	-RA:02 RA RA	57	13.9	55	13.0	54	12.2	90	10	030		30.31				FM-16	0.03	30.34
11 235 6 BKN:07 14 0V:032 100 30.29 100 50.20 5	01	2254	7	BKN:07 17	8.00		57	13.9	55	13.0	54	12.2	90	9	020		30.31			30.33	FM-15	0.03	30.34
11 234 7 BKN:07 14 OVC.0819 10.00 Amount 57 13.9 56 13.3 55 12.8 93 8 040 30.29 1.4 30.31 FM-16 0.00 30.32 02 000 7 SK1:04 8 OVC:08 25 000 SC1:04 8 OVC:08 15 000 SC1:04 8 OVC:08 15 000 SC1:04 8 OVC:08 15 000 SC1:04 8 OVC:08 15 000 SC1:04 8 OVC:08 15 <t< td=""><td>01</td><td>2352</td><td>6</td><td>BKN:07 14</td><td>10.00</td><td></td><td>57</td><td>14.0</td><td>56</td><td>13.3</td><td>55</td><td>13.0</td><td>94</td><td>7</td><td>030</td><td></td><td>30.29</td><td></td><td></td><td></td><td>FM-16</td><td></td><td>30.32</td></t<>	01	2352	6	BKN:07 14	10.00		57	14.0	56	13.3	55	13.0	94	7	030		30.29				FM-16		30.32
000 7 BKN:071 fs OVC:08 25 10.00 57 13.9 56 13.3 55 12.8 93 8 040 30.28 FM-16 30.31 02 003 7 BKN:071 B OVC:08 25 10.00 58 14.4 56 13.5 55 12.8 90 8 040 30.27 FM-16 30.30 02 0042 7 BKN:0711 DVC:08 25 10.00 58 14.4 56 13.5 55 12.8 90 9 020 30.28 FM-16 30.30 02 0042 7 BKN:0710 DVC:08 10 10.00 58 14.4 56 13.5 55 12.8 90 9 020 30.28 6 +0.05 30.30 FM-16 T 30.31 02 0154 7 0VC:0810 5.00 RA:02 BR:1 RA RA 57 13.9 55 13.0 54 12.2 90 9 050 30.26 <	01	2354	7	BKN:07 14	10.00		57	13.9	56	13.3	55	12.8	93	8	040		30.29			30.31	FM-15	0.00	30.32
02 033 7 BKN:07 14 BKN:07 11 BKN:07 11 BKN:07 11 BKN:07 11 BKN:07 14 BKN:07 14 B	02	0000	7	BKN:07 15	10.00		57	13.9	56	13.3	55	12.8	93	8	040		30.28				FM-16		30.31
02 042 7 BKN:0714 OVC:08 20 10.00 58 14.4 56 13.5 55 12.8 90 9 020 30.28 FM-16 30.31 02 0054 7 BKN:0710 OVC:0815 10.00 58 14.4 56 13.5 55 12.8 90 9 020 30.28 6 +0.05 30.30 FM-16 0.00 30.31 02 0100 4 15 9.94 020 30.28 6 +0.05 30.30 FM-15 0.00 30.31 02 0154 7 OVC:0810 5.00 -RA:02 BR:1 RA RA 57 13.9 55 13.0 54 12.2 90 9 040 30.26 - FM-16 1 30.29 6 +1.05 30.29 FM-16 10.0 30.28 50 13.0 55 12.8 93 7 040 30.25 - FM-16 0.01 30.28 30.28 30.28 30.28 30.28 30.28 30.28 50	02	0033	7	BKN:07 18	10.00		58	14.4	56	13.5	55	12.8	90	8	040		30.27				FM-16		30.30
102 0054 7 OVC:08 15 10.00 30.00 FM-15 0.00 30.31 02 0100 4 15 9.4 58 14.4 56 13.5 55 12.8 90 9 020 30.28 6 40.05 30.30 FM-15 0.00 30.31 02 0100 4 15 9.4 500 F8.12 55 12.8 90 9 020 30.28 6 40.05 30.30 FM-15 0.00 30.31 02 0154 7 0VC:0810 5.00 FRA:02 BR:1 RA RA 57 13.9 55 13.0 54 12.2 90 9 040 30.26 6 40.05 80.09 FM-16 T 30.29 FM-16 T 30.29 FM-16 T 30.28 FM-16 T 30.29 FM-16 T 30.28 FM-16 T 30.29 FM-16 7 30.29 FM-16 7 30.29 FM-16 7 30.28 FM-16 13.0 55 13.0 55	02	0042	7	BKN:07 14	10.00		58	14.4	56	13.5	55	12.8	90	9	020		30.28				FM-16		30.31
02 0100 4 15 9.94 9.94 58 14.4 56 13.5 55 12.8 90 9 020 30.29 6 +0.05 30.30 FM-12 PM-15 T 30.29 02 0154 7 OVC.0810 5.00 -RA:02 BR:1 RA RA 57 13.9 55 13.0 54 12.2 90 9 040 30.26 30.29 FM-16 T 30.29 02 0209 7 OVC:089 4.00 -RA:02 BR:1 RA RA 57 13.9 56 13.3 55 12.8 93 7 040 30.26 FM-16 T 30.28 02 0224 7 OVC:089 4.00 -RA:02 BR:1 RA RA 57 13.9 56 13.3 55 12.8 93 7 040 30.25 B3.28 FM-16 0.01 30.28 02 0317 7 OVC:0810 3.00 -RA:02 RA RA 57 13.9 56 13.3 55 12.8 93	02	0054	7		10.00		58	14.4	56	13.5	55	12.8	90	9	020		30.28	6	+0.05	30.30	FM-15	0.00	30.31
02 0209 7 OVC:08 9 2.50 -RA:02 BR:1 RA RA 57 13.9 55 13.0 54 12.2 90 9 050 30.26 K-M-16 T 30.29 02 0227 7 OVC:08 9 4.00 -RA:02 BR:1 RA RA 57 13.9 56 13.3 55 12.8 93 7 040 30.25 K-M-16 0.01 30.28 02 0254 7 OVC:08 8 5.00 -RA:02 BR:1 RA RA 57 13.9 56 13.3 55 12.8 93 7 040 30.25 30.28 FM-16 0.01 30.28 02 0317 7 OVC:08 10 3.00 -RA:02 BR:1 RA RA 57 13.9 56 13.3 55 12.8 93 7 040 30.24 8 +0.04 30.27 FM-16 0.04 30.27 02 0354 7 OVC:0810 10.00 -RA:02 RA RA 58 14.4 56 13.5 55 12.8 90	02	0100	4		9.94		58	14.4	56	13.5	55	12.8	90	9	020		30.29	6	+0.05	30.30	FM-12		
02 0227 7 OVC:08 9 4.00 -RA:02 BR:1 RA RA 57 13.9 56 13.3 55 12.8 93 7 040 30.25 FM-16 0.01 30.28 02 0254 7 OVC:08 8 5.00 -RA:02 BR:1 RA RA 57 13.9 56 13.3 55 12.8 93 7 040 30.25 S0.28 FM-16 0.01 30.28 02 0317 7 OVC:08 10 3.00 -RA:02 BR:1 RA RA 57 13.9 56 13.3 55 12.8 93 7 040 30.25 30.28 FM-16 0.01 30.28 02 0317 7 OVC:0810 3.00 -RA:02 RA RA 57 13.9 56 13.3 55 12.8 93 13 060 30.24 8 +0.04 30.27 FM-16 0.04 30.27 FM-16 0.04 30.27 FM-16 0.04 30.27 FM-15 0.04 30.27 FM-15 0.04 30.27 FM-15	02	0154	7	OVC:08 10	5.00	-RA:02 BR:1 RA RA	57	13.9	55	13.0	54	12.2	90	9	040		30.26			30.29	FM-15	Т	30.29
02 0254 7 OVC:08 8 5.00 -RA:02 BR:1 RA RA 57 13.9 56 13.3 55 12.8 93 7 040 30.25 30.28 FM-15 0.03 30.28 02 0317 7 OVC:08 10 3.00 -RA:02 BR:1 RA RA 57 13.9 56 13.3 55 12.8 93 13 060 30.24 FM-16 0.04 30.27 02 0354 7 OVC:0811 9.00 -RA:02 RA RA 58 14.4 56 13.5 55 12.8 90 9 050 30.24 8 +0.04 30.27 FM-15 0.04 30.27 02 0400 4 15 8.70 RA 58 14.4 56 13.5 55 12.8 90 9 050 30.25 8 +0.04 30.27 FM-15 0.04 30.28 02 0454 7 OVC:0810 10.00 57 13.9 55 13.0 54 12.2 90 6 <	02	0209	7	OVC:08 9	2.50	-RA:02 BR:1 RA RA	57	13.9	55	13.0	54		90	9	050		30.26				FM-16	Т	30.29
02 0317 7 0VC:08 10 3.00 -RA:02 BR:1 A AA 57 13.9 56 13.3 55 12.8 93 13 060 30.24 .																							30.28
02 0354 7 OVC:08 11 9.00 -RA:02 RA RA 58 14.4 56 13.5 55 12.8 90 9 050 30.24 8 +0.04 30.27 FM-15 0.04 30.27 02 0400 4 15 8.70 RA 58 14.4 56 13.5 55 12.8 90 9 050 30.24 8 +0.04 30.27 FM-15 0.04 30.27 02 0454 7 OVC:0810 10.00																				30.28			30.28
02 0400 4 15 8.70 RA 58 14.4 56 13.5 55 12.8 90 9 050 30.25 8 +0.04 30.27 FM-12 - 02 0454 7 OVC:0810 10.00																							30.27
02 0454 7 0VC:08 10 10.00 10.00 57 13.9 55 13.0 54 12.2 90 6 360 30.25 30.28 FM-15 0.02 30.28 02 0501 7 0VC:08 6 10.00 57 13.9 55 13.0 54 12.2 90 6 30.25 FM-16 30.28 02 0554 7 0VC:08 8 8.00 57 13.9 56 13.3 55 12.8 93 7 010 30.24 50.2 FM-15 0.00 30.27 02 0554 7 0VC:08 7 3.00 BR:1 57 13.9 56 13.3 55 12.8 93 10 040 30.24 8 +0.00 30.27 FM-15 0.00 30.27 02 0700 4 8 2.98 57 13.9 56 13.3 55 12.8 93 10 0						· · ·		-														0.04	30.27
02 0501 7 OVC:08.6 10.00 57 13.9 55 13.0 54 12.2 90 6 020 30.25 FM-16 30.28 02 0554 7 OVC:08.8 8.00						RA												8	+0.04			0.00	00.00
02 0554 7 0VC:08.8 8.00 57 13.9 56 13.3 55 12.8 93 7 010 30.24 30.27 FM-15 0.00 30.27 02 0654 7 0VC:08.7 3.00 BR:1 57 13.9 56 13.3 55 12.8 93 10 040 30.24 8 +0.00 30.27 FM-15 0.00 30.27 02 0700 4 8 2.98 57 13.9 56 13.3 55 12.8 93 10 040 30.24 8 +0.00 30.27 FM-15 0.00 30.27 02 0700 4 8 2.98 57 13.9 56 13.3 55 12.8 93 10 040 30.25 4 0.00 30.27 FM-15 0.00 30.28 02 0734 7 0VC:08.5 1.50 BR:1 57 13.9 56 13.3 55 12.8 93 8																				30.28		0.02	
02 0654 7 OVC:08 7 3.00 BR:1 57 13.9 56 13.3 55 12.8 93 10 040 30.24 8 +0.00 30.27 FM-15 0.00 30.27 02 0700 4 8 2.98 57 13.9 56 13.3 55 12.8 93 10 040 30.25 4 0.00 30.27 FM-12 56 02 0734 7 OVC:085 1.50 BR:1 57 13.9 56 13.3 55 12.8 93 10 040 30.25 4 0.00 30.27 FM-12 56 02 0734 7 OVC:085 1.50 BR:1 57 13.9 56 13.3 55 12.8 93 8 030 30.25 4 0.00 30.27 FM-16 30.28																				00.07		0.00	
02 0700 4 8 2.98 57 13.9 56 13.3 55 12.8 93 10 040 30.25 4 0.00 30.27 FM-12 02 0734 7 OVC:08.5 1.50 BR:1 57 13.9 56 13.3 55 12.8 93 8 030 30.25 4 0.00 30.47 FM-16 30.28																		0	10.00				
02 0734 7 OVC:08 5 1.50 BR:1 57 13.9 56 13.3 55 12.8 93 8 030 30.25 FM-16 30.28																						0.00	30.27
				-		BB:1 II		-								├		4	0.00	30.27			30.28
		0734		OVC:08 5 OVC:08 4			57	14.0	56	13.3	55 55	12.0	93 94	0 11	030		30.25				FM-16		30.28

		-					10.0												~~~~		-	
02	0754	7	OVC:08 4	1.50	-RA:02 BR:1 RA RA	57	13.9	56	13.3	55	12.8	93	10	040		30.25			30.27	FM-15	<u>T</u>	30.28
02	0854	7	OVC:08 4	1.25	-DZ:01 BR:1 DZ DZ	58	14.4	57	13.8	56	13.3	93	10	010		30.25			30.28	FM-15	0.02	30.28
02	0909	7	OVC:08 5	1.00	-DZ:01 BR:1 DZ DZ	57	13.9	56	13.6	56	13.3	96	9	040		30.24				FM-16	Т	30.27
02	0954	7	OVC:08 5	1.25	-DZ:01 BR:1 DZ DZ	58	14.4	57	13.8	56	13.3	93	9	040		30.23	8	+0.02	30.25	FM-15	0.01	30.26
02	1000	4	5	1.24	DZ	58	14.4	57	13.8	56	13.3	93	9	040		30.24	8	+0.02	30.25	FM-12		
02	1036	7	OVC:08 5	3.00	BR:1	59	15.0	58	14.4	57	13.9	93	9	070		30.21				FM-16	0.01	30.24
02	1052	6	OVC:08 7	2.50	BR:1	59	15.0	57	13.8	55	13.0	88	10	060		30.20				FM-16		30.23
02	1054	7	OVC:08 7	3.00	BR:1	59	15.0	57	14.1	56	13.3	90	10	060		30.20			30.23	FM-15	0.01	30.23
02	1152	6	OVC:08 6	1.50	-DZ:01 BR:1 DZ DZ	59	15.0	58	14.4	57	14.0	94	8	070		30.17				FM-16		30.20
02	1154	7	OVC:08 6	1.50	-DZ:01 BR:1 DZ DZ	59	15.0	58	14.4	57	13.9	93	8	060		30.17			30.20	FM-15	Т	30.20
02	1250	7	OVC:08 4	1.00	-DZ:01 BR:1 DZ DZ	61	16.0	59	14.8	57	14.0	88	9	070		30.13				FM-16	Т	30.16
02	1252	6	OVC:08 6	1.25	-DZ:01 BR:1 DZ DZ	61	16.0	59	14.8	57	14.0	88	9	070		30.13				FM-16		30.16
02	1254	7	OVC:08 6	1.25	-DZ:01 BR:1 DZ DZ	60	15.6	59	14.9	58	14.4	93	9	060		30.13	6	+0.07	30.16	FM-15	Т	30.16
02	1300	4	5	1.24	DZ	60	15.6	59	14.9	58	14.4	93	9	060		30.13	6	+0.07	30.16	FM-12	•	30.10
02	1307	7	OVC:08 4	1.25	-DZ:01 BR:1 DZ DZ	60	15.6	59	14.9	58	14.4	93	7	070		30.14	0	+0.07	30.10	FM-16	Т	30.16
		7	OVC:08 4	1.25	- · · ·	60		59	14.9	58		93	9	070					30.13	FM-15	0.01	
02	1354				-DZ:01 BR:1 DZ DZ		15.6				14.4					30.10						30.13
02	1454	7	OVC:08 4	1.00	-DZ:01 BR:1 DZ DZ	60	15.6	59	15.2	59	15.0	96	10	070		30.08	0	.0.07	30.11	FM-15	<u> </u>	30.11
02	1554	7	OVC:08 3	1.25	-DZ:01 BR:1 DZ DZ	61	16.1	60	15.5	59	15.0	93	8	050		30.06	6	+0.07	30.09	FM-15	Т	30.09
02	1600	4	2	1.24	DZ	61	16.1	60	15.5	59	15.0	93	8	050		30.07	6	+0.07	30.09	FM-12		
02	1654	7	OVC:08 3	1.75	-DZ:01 BR:1 DZ DZ	61	16.1	60	15.8	60	15.6	97	7	050		30.05			30.08	FM-15	Т	30.08
02	1754	7	OVC:08 3	1.25	RA:02 BR:1 RA RA	62	16.7	61	16.3	61	16.1	96	9	120		30.01			30.04	FM-15	0.05	30.04
02	1842	7	FEW:02 3 OVC:08 5	4.00	-RA:02 BR:1 RA RA	63	17.2	62	16.6	61	16.1	93	0	000		30.00				FM-16	0.05	30.03
02	1854	7	SCT:04 5 BKN:07 11 OVC:08 100	5.00	-RA:02 BR:1 RA RA	63	17.2	62	16.6	61	16.1	93	7	340		30.00	6	+0.06	30.03	FM-15	0.06	30.03
02	1900	4	5	4.97	IIRA	63	17.2	62	16.6	61	16.1	93	7	340		30.01	6	+0.06	30.03	FM-12		
02	1954	7	SCT:04 4 BKN:07 12 OVC:08 100	6.00	BR:1	62	16.7	61	16.0	60	15.6	93	6	340		30.00			30.03	FM-15	0.01	30.03
02	2030	7	BKN:07 8 OVC:08 12	6.00	BR:1	61	16.1	60	15.5	59	15.0	93	5	330		29.99				FM-16		30.02
02	2054	7	BKN:07 8 OVC:08 12	6.00	BR:1	61	16.1	60	15.5	59	15.0	93	7	360		29.98			30.01	FM-15	0.00	30.01
02	2154	7	OVC:08 7	7.00		61	16.1	59	15.2	58	14.4	90	6	350		29.97	8	+0.03	30.00	FM-15	0.00	30.00
02	2200	4	8	6.84		61	16.1	59	15.2	58	14.4	90	6	350		29.98	8	+0.03	30.00	FM-12		1
02	2254	7	OVC:08 6	7.00		61	16.1	60	15.5	59	15.0	93	5	350		29.97			30.00	FM-15	0.00	30.00
02	2316	7	OVC:08 4	7.00		61	16.1	60	15.5	59	15.0	93	5	010		29.97				FM-16		30.00
02	2352	6	OVC:08 3	2.50	RA:02 BR:1 RA RA	61	16.0	60	15.5	59	15.0	94	0	000		29.97				FM-16		30.00
02	2354	7	OVC:08 3	2.50	RA:02 BR:1 RA RA	61	16.1	60	15.5	59	15.0	93	0	000		29.96			29.99	FM-15	0.03	29.99
03	0006	7	OVC:08 3	3.00	RA:02 BR:1 RA RA	60	15.6	58	14.6	57	13.9	90	8	030		29.96				FM-16	0.04	29.99
03	0054	7	OVC:08 4	6.00	RA:02 BR:1 RA RA	58	14.4	57	13.8	56	13.3	93	6	010		29.96	8	+0.02	29.98	FM-15	0.13	29.99
03	0100	4	5	5.59	IIRA	58	14.4	57	13.8	56	13.3	93	6	010		29.97	8	+0.02	29.98	FM-12		
03	0123	7	BKN:07 6 OVC:08 11	6.00	-RA:02 BR:1 RA RA	58	14.4	57	13.8	56	13.3	93	6	010		29.95				FM-16	0.04	29.98
03	0154	7	OVC:08 8	10.00	-RA:02 RA RA	57	13.9	56	13.3	55	12.8	93	6	010		29.94			29.97	FM-15	0.05	29.97
03	0254	7	OVC:08 5	10.00	-RA:02 RA RA	56	13.3	55	12.7	54	12.2	93	8	350		29.95			29.97	FM-15	0.02	29.98
03	0354	7	BKN:07 5 OVC:08 10	3.00	-RA:02 BR:1 RA RA	55	12.8	54	12.2	53	11.7	93	7	360		29.95	5	+0.01		FM-15	0.01	29.98
03	0400	4	5	2.98	RA	55	12.8	54	12.2	53	11.7	93	7	360		29.96	5	+0.01	29.98	FM-12		
03	0405	7	OVC:08 3		BR:1	55	12.8	54	12.2	53	11.7	93	9	340		29.95			0	FM-16	0.01	29.98
03	0454	7	BKN:07 3 OVC:08 80	6.00	BR:1	54	12.2	53	11.9	53	11.7	97	7	340		29.96			29.98	FM-15	T	29.99
03	0526	7	OVC:08 5	10.00		54	12.2	53	11.6	52	11.1	93	7	350		29.96				FM-16		29.99
03	0554	7	OVC:08 6	9.00		54	12.2	53	11.6	52	11.1	93	8	350	\vdash	29.97			29 99	FM-15	0.00	30.00
03	0654	7	OVC:08 5		BR:1	54	12.2	53	11.6	52	11.1	93	5	350	-	29.98	3	-0.03		FM-15	0.00	30.00
03	0700	4	5	2.98		54	12.2	53	11.6	52	11.1	93	5	350		29.98	3	-0.03		FM-12	0.00	30.01
03	0700	4	5 OVC:08 5		BR:1	55	12.2	53	11.0	52	11.1	93	6	340		29.99	3	-0.03	30.01	FM-12		30.02
	0725				BR:1	55 55	12.0	53 54	12.5	52 54	12.0	90		030	\vdash					FM-16		
03	0152	6	OVC:08 4	1.20		00	13.0	- 54	12.0	04	12.0	94	3	030		30.00						30.03

03	0754	7	OVC:08 4	1.50	BR:1	55	12.8	54	12.2	53	11.7	93	3	010	30.00			30.03	FM-15	0.00	30.03
03	0734	7	OVC:08 4	2.50	BR:1	55	12.8	54	12.2	53	11.7	93	3	340	30.00			30.03	FM-16	0.00	30.03
03	0822	7	OVC:08 5	4.00	BR:1	56	13.3	54	12.4	53	11.7	90	3	VRB	30.01				FM-16		30.04
03	0830	7	OVC:08 5	2.50	BR:1	56	13.3	54	12.4	53	11.7	90	3	320	30.01				FM-16		30.04
03	0854	7	OVC:08 5	2.50	BR:1	56	13.3	54	12.4	53	11.7	90	5	360	30.01			30.04	FM-15	0.00	30.04
03	0952	6	BKN:07 7 OVC:08 12	7.00		57	14.0	55	13.0	54	12.0	88	0	000	30.02				FM-16		30.05
03	0954	7	BKN:07 7 OVC:08 12	7.00		58	14.4	56	13.5	55	12.8	90	0	000	30.02	1	-0.04	30.05	FM-15	0.00	30.05
03	1000	4	8	6.84		58	14.4	56	13.5	55	12.8	90	0	000	30.03	1	-0.04	30.05	FM-12		
03	1054	7	OVC:08 8	10.00		59	15.0	57	13.8	55	12.8	87	5	050	30.04			30.06	FM-15	0.00	30.07
03	1154	7	OVC:08 10	10.00		61	16.1	58	14.2	55	12.8	81	5	350	30.03			30.06	FM-15	0.00	30.06
03	1254	7	BKN:07 10 OVC:08 22	10.00		63	17.2	59	15.0	56	13.3	78	6	320	 30.01	8	+0.01	30.03	FM-15	0.00	30.04
03	1300	4	15	9.94		63	17.2	59	15.0	56	13.3	78	6	320	30.02	8	+0.01	30.03	FM-12		
03	1354	7	FEW:02 10 OVC:08 14	10.00		63	17.2	59	15.0	56	13.3	78	5	290	 30.00			30.03	FM-15	0.00	30.03
03	1454	7	FEW:02 10 OVC:08 14	10.00		63	17.2	59	15.0	56	13.3	78	8	320	 30.02			30.05	FM-15	0.00	30.05
03	1554	7	FEW:02 10 OVC:08 14	10.00		62	16.7	59	14.8	56	13.3	80	6	310	30.03	3	-0.02	30.06	FM-15	0.00	30.06
03	1600	4	15	9.94		62	16.7	59	14.8	56	13.3	80	6	310	30.04	3	-0.02	30.06	FM-12		
03	1654	7	FEW:02 10 OVC:08 14	10.00		62	16.7	59	14.8	56	13.3	80	3	030	30.04			30.06	FM-15	0.00	30.07
03	1754	7	FEW:02 10 OVC:08 13	10.00		62	16.7	59	14.8	56	13.3	80	8	010	30.05			30.07	FM-15	0.00	30.08
03	1854	7	FEW:02 10 OVC:08 13	10.00		61	16.1	58	14.2	55	12.8	81	7	360	30.07	3	-0.04	30.10	FM-15	0.00	30.10
03	1900	4	15	9.94		61	16.1	58	14.2	55	12.8	81	7	360	30.08	3	-0.04	30.10	FM-12		
03	1950	7	SCT:04 13 BKN:07 17 OVC:08 100	10.00		61	16.0	58	14.2	55	13.0	83	3	VRB	30.07				FM-16		30.10
03	1954	7	FEW:02 13 BKN:07 17 OVC:08 100	10.00		61	16.1	58	14.5	56	13.3	84	5	060	30.07			30.10	FM-15	0.00	30.10
03	2054	7	FEW:02 12 OVC:08 17	10.00		61	16.1	58	14.5	56	13.3	84	5	080	30.08			30.11	FM-15	0.00	30.11
03	2152	6	OVC:08 13	10.00		61	16.0	58	14.2	55	13.0	83	5	070	30.07				FM-16		30.10
03	2154	7	OVC:08 13	10.00		61	16.1	58	14.5	56	13.3	84	3	070	30.07	0	-0.00	30.10	FM-15	0.00	30.10
03	2200	4	15	9.94		61	16.1	58	14.5	56	13.3	84	3	070	30.08	9	0.00	30.10	FM-12		
03	2254	7	BKN:07 14 BKN:07 24	10.00		61	16.1	58	14.5	56	13.3	84	5	140	 30.06			30.09	FM-15	0.00	30.09
03	2354	7	SCT:04 14 OVC:08 25	10.00		60	15.6	58	14.3	56	13.3	86	7	140	 30.05			30.07	FM-15	0.00	30.08
04	0054	7	FEW:02 14 OVC:08 23	10.00		61	16.1	58	14.5	56	13.3	84	8	180	30.04	6	+0.04	30.06	FM-15	0.00	30.07
04	0100	4	15	9.94		61	16.1	58	14.5	56	13.3	84	8	180	30.05	6	+0.04	30.06	FM-12		
04	0154	7	OVC:08 21	10.00		60	15.6	57	14.0	55	12.8	84	8	170	30.03			30.05	FM-15	0.00	30.06
04	0254	7	OVC:08 21	10.00		60	15.6	57	14.0	55	12.8	84	7	200	30.02			30.05	FM-15	0.00	30.05
04	0337	7	BKN:07 10 OVC:08 18	10.00		60	15.6	57	14.0	55	12.8	84	6	190	30.03				FM-16		30.06
04	0352	6	OVC:08 8	10.00		61	16.0	58	14.2	55	13.0	83	7	190	30.02				FM-16		30.05
04	0354	7	BKN:07 8 OVC:08 11	10.00		60	15.6	58	14.3	56	13.3	86	7	200	 30.03	5	+0.01	30.05	FM-15	0.00	30.06
04	0400	4	8	9.94		60	15.6	58	14.3	56	13.3	86	7	200	30.04	5	+0.01	30.05	FM-12		
04	0454	7	BKN:07 8 OVC:08 11	10.00		60	15.6	58	14.6	57	13.9	90	7	200	30.02			30.05	FM-15	0.00	30.05
04	0523	7	SCT:04 8 OVC:08 32	8.00		60	15.6	58	14.6	57	13.9	90	7	190	 30.01				FM-16		30.04
04	0554	7	OVC:08 31	10.00		60	15.6	58	14.6	57	13.9	90	7	180	30.01			30.04	FM-15	0.00	30.04

04	0647	7	FEW:02 8 SCT:04 16	10.00	61	16.1	59	14.8	57	13.9	87	9	190		30.02				FM-16		30.05
			OVC:08 32 FEW:02 8																		
04	0652	6	BKN:07 16 OVC:08 32	10.00	61	16.0	59	14.8	57	14.0	88	8	200		30.02				FM-16		30.05
04	0654	7	FEW:02 8 BKN:07 16 OVC:08 32	10.00	61	16.1	59	14.8	57	13.9	87	7	190		30.02	5	+0.01	30.05	FM-15	0.00	30.05
04	0700	4	8	9.94	61	16.1	59	14.8	57	13.9	87	7	190		30.03	5	+0.01	30.05	FM-12		
04	0735	7	FEW:02 9 SCT:04 18 OVC:08 30	10.00	62	16.7	60	15.4	58	14.4	86	9	170		30.01				FM-16		30.04
04	0752	6	BKN:07 9 BKN:07 18 BKN:07 30	10.00	63	17.0	60	15.3	57	14.0	83	9	180		30.00				FM-16		30.03
04	0754	7	BKN:07 9 BKN:07 18 BKN:07 30	10.00	63	17.2	60	15.6	58	14.4	84	9	180		30.00			30.03	FM-15	0.00	30.03
04	0830	7	BKN:07 13 BKN:07 19 BKN:07 32	10.00	65	18.3	61	16.4	59	15.0	81	9	200		30.01				FM-16		30.04
04	0854	7	BKN:07 11 OVC:08 19	10.00	65	18.3	61	16.4	59	15.0	81	9	200		30.01			30.03	FM-15	0.00	30.04
04	0954	7	BKN:07 13 BKN:07 200	10.00	67	19.4	63	17.1	60	15.6	79	15	220		29.98	8	+0.04	30.01	FM-15	0.00	30.01
04	1000	4	15	9.94	67	19.4	63	17.1	60	15.6	79	15	220		29.99	8	+0.04	30.01	FM-12		
04	1030	7	FEW:02 14 BKN:07 20 BKN:07 200	10.00	71	21.7	65	18.3	61	16.1	71	14	190		29.96				FM-16		29.99
04	1054	7	FEW:02 14 BKN:07 22 BKN:07 200	10.00	71	21.7	65	18.3	61	16.1	71	13	220	23	29.96			29.98	FM-15	0.00	29.99
04	1154	7	BKN:07 23 BKN:07 200	10.00	72	22.2	65	18.5	61	16.1	68	15	220		29.92			29.95	FM-15	0.00	29.95
04	1254	7	BKN:07 22 OVC:08 200	10.00	72	22.2	66	19.1	63	17.2	73	15	190		29.88	8	+0.09	29.91	FM-15	0.00	29.91
04	1300	4	26	9.94	72	22.2	66	19.1	63	17.2	73	15	190		29.89	8	+0.09	29.91	FM-12		
04	1354	7	SCT:04 20 BKN:07 26 OVC:08 200	10.00	73	22.8	67	19.6	64	17.8	74	17	200	24	29.87			29.90	FM-15	0.00	29.90
04	1454	7	SCT:04 17 BKN:07 24 BKN:07 200	10.00	71	21.7	66	18.9	63	17.2	76	15	210	24	29.87			29.90	FM-15	0.00	29.90
04	1537	7	FEW:02 17 SCT:04 28 BKN:07 160	10.00	71	21.7	67	19.2	64	17.8	79	15	220		29.87				FM-16		29.90
04	1554	7	FEW:02 15 SCT:04 29 BKN:07 130	10.00	71	21.7	67	19.2	64	17.8	79	13	210		29.86	6	+0.02	29.89	FM-15	0.00	29.89
04	1600	4	15	9.94	71	21.7	67	19.2	64	17.8	79	13	210		29.87	6	+0.02	29.89	FM-12		
04	1654	7	SCT:04 14 BKN:07 130 BKN:07 220	10.00	 70	21.1	66	19.0	64	17.8	82	13	210		29.87			29.89	FM-15	0.00	29.90
04	1754	7	FEW:02 18 SCT:04 40 BKN:07 130	10.00	70	21.1	66	19.0	64	17.8	82	10	210		29.88			29.91	FM-15	0.00	29.91
04	1854	7	FEW:02 17 BKN:07 41 OVC:08 130	10.00	70	21.1	66	19.0	64	17.8	82	14	220		29.89	3	-0.03	29.92	FM-15	0.00	29.92
04	1900	4	15	9.94	70	21.1	66	19.0	64	17.8	82	14	220		29.90	3	-0.03	29.92	FM-12		
04	1954	7	FEW:02 21 SCT:04 70 BKN:07 130	10.00	70	21.1	67	19.4	65	18.3	84	11	230		29.89			29.92	FM-15	0.00	29.92

			007-04-70																	,	
04	2054	7	SCT:04 70 BKN:07 120	10.00	71	21.7	67	19.6	65	18.3	81	14	VRB		29.90			29.92	FM-15	0.00	29.93
04	2154	7	BKN:07 110	10.00	71	21.7	67	19.6	65	18.3	81	11	270		29.91	3	-0.01	29.93	FM-15	0.00	29.94
04	2200	4		9.94	71	21.7	67	19.6	65	18.3	81	11	270		29.92	3	-0.01	29.93	FM-12		
04	2254	7	FEW:02 120	10.00	70	21.1	67	19.4	65	18.3	84	8	290		29.93			29.96	FM-15	0.00	29.96
04	2354	7	FEW:02 70	8.00	69	20.6	66	19.2	65	18.3	87	11	290		29.94			29.97	FM-15	0.00	29.97
05	0054	7	FEW:02 70	10.00	68	20.0	64	17.6	61	16.1	78	14	320	22	29.94	1	-0.04	29.97	FM-15	0.00	29.97
05	0100	4	74	9.94	68	20.0	64	17.6	61	16.1	78	14	320		29.95	1	-0.04	29.97	FM-12		
05	0154	7	CLR:00	10.00	65	18.3	60	15.5	56	13.3	73	13	320		29.97			29.99	FM-15	0.00	30.00
05	0254	7	FEW:02 50	10.00	63	17.2	58	14.7	55	12.8	75	11	330		30.00			30.03	FM-15	0.00	30.03
05	0354	7	FEW:02 55	10.00	62	16.7	57	13.9	53	11.7	73	10	340		30.03	3	-0.09	30.06	FM-15	0.00	30.06
05	0400	4	57	9.94	62	16.7	57	13.9	53	11.7	73	10	340		30.04	3	-0.09	30.06	FM-12		
05	0454	7	SCT:04 26 BKN:07 55	10.00	60	15.6	56	13.1	52	11.1	75	11	340		30.07			30.10	FM-15	0.00	30.10
05	0510	7	BKN:07 26 BKN:07 50	10.00	60	15.6	56	13.1	52	11.1	75	8	350		30.08				FM-16		30.11
05	0552	6	SCT:04 24 SCT:04 50	10.00	59	15.0	54	12.3	50	10.0	72	11	340		30.11				FM-16		30.14
05	0554	7	SCT:04 24 SCT:04 50	10.00	58	14.4	54	12.1	50	10.0	75	10	360		30.11			30.14	FM-15	0.00	30.14
05	0654	7	FEW:02 22 FEW:02 50	10.00	58	14.4	52	11.3	47	8.3	67	15	020		30.15	3	-0.12	30.17	FM-15	0.00	30.18
05	0700	4	26	9.94	58	14.4	52	11.3	47	8.3	67	15	020		30.16	3	-0.12	30.17	FM-12		
05	0754	7	FEW:02 25 FEW:02 50	10.00	58	14.4	50	10.3	43	6.1	58	15	020		30.18			30.20	FM-15	0.00	30.21
05	0854	7	FEW:02 28 FEW:02 50	10.00	58	14.4	51	10.8	45	7.2	62	15	030		30.19			30.22	FM-15	0.00	30.22
05	0954	7	SCT:04 26	10.00	59	15.0	52	11.0	45	7.2	60	16	010		30.20	1	-0.06	30.23	FM-15	0.00	30.23
05	1000	4	26	9.94	59	15.0	52	11.0	45	7.2	60	16	010		30.21	1	-0.06	30.23	FM-12		
05	1054	7	SCT:04 27	10.00	59	15.0	52	11.0	45	7.2	60	14	030		30.20			30.22	FM-15	0.00	30.23
05	1154	7	FEW:02 28	10.00	58	14.4	51	10.5	44	6.7	60	11	040	22	30.19			30.21	FM-15	0.00	30.22
05	1254	7	FEW:02 30	10.00	58	14.4	51	10.8	45	7.2	62	11	050		30.17	8	+0.03	30.20	FM-15	0.00	30.20
05	1300	4	26	9.94	58	14.4	51	10.8	45	7.2	62	11	050		30.18	8	+0.03	30.20	FM-12		ļ!
05	1354	7	FEW:02 33 SCT:04 230	10.00	58	14.4	52	11.0	46	7.8	65	13	100		30.16			30.19	FM-15	0.00	30.19
05	1454	7	FEW:02 35 BKN:07 230	10.00	57	13.9	51	10.5	45	7.2	64	11	100		30.16			30.18	FM-15	0.00	30.19
05	1554	7	FEW:02 35 BKN:07 230	10.00	57	13.9	50	10.3	44	6.7	62	10	090		30.15	6	+0.02	30.18	FM-15	0.00	30.18
05	1600	4	41	9.94	57	13.9	50	10.3	44	6.7	62	10	090		30.16	6	+0.02	30.18	FM-12		
05	1654	7	BKN:07 230	10.00	55	12.8	50	9.7	44	6.7	67	7	090		30.16			30.19	FM-15	0.00	30.19
05	1754	7	FEW:02 110 BKN:07 230	9.00	54	12.2	49	9.2	43	6.1	67	7	100		30.17			30.20	FM-15	0.00	30.20
05	1854	7	FEW:02 110 SCT:04 230	10.00	54	12.2	49	9.5	44	6.7	69	8	110		30.18	1	-0.03	30.20	FM-15	0.00	30.21
05	1900	4		9.94	54	12.2	49	9.5	44	6.7	69	8	110		30.19	1	-0.03	30.20	FM-12		
05	1954	7	FEW:02 110 FEW:02 200	10.00	54	12.2	49	9.5	44	6.7	69	9	100		30.19			30.21	FM-15	0.00	30.22
05	2054	7	FEW:02 200	10.00	55	12.8	50	9.7	44	6.7	67	7	080		30.20			30.23	FM-15	0.00	30.23
05	2154	7	FEW:02 250	10.00	54	12.2	49	9.5	44	6.7	69	6	080		30.20	1	-0.03	30.23	FM-15	0.00	30.23
05	2200	4		9.94	 54	12.2	49	9.5	44	6.7	69	6	080		30.21	1	-0.03	30.23	FM-12		
05	2254	7	CLR:00	10.00	53	11.7	49	9.5	45	7.2	74	5	350		30.21			30.23	FM-15	0.00	30.24
05	2354	7	CLR:00	10.00	53	11.7	49	9.5	45	7.2	74	6	340		30.19			30.22	FM-15	0.00	30.22

National Oceanic & Atmospheric Administration National Environmental Satellite, Data, and Information Service

Current Location: Elev: 12 ft. Lat: 42.3606° N Lon: -71.0097° W

Local Climatological Data Hourly Precipitation September 2018

Station: BOSTON, MA US 14739

Generated on 10/11/2018

Date											For	Hour (LS	ST) Endiı	ng at											Date
Dale	1 AM	2 AM	3 AM	4 AM	5 AM	6 AM	7 AM	8 AM	9 AM	10 AM	11 AM	NOON	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	MID	
01																									01
02																									02
03																									03
04																									04
05																									05
06																Т	0.01	0.02	Т						06
07													Т												07
08		Т	Т																						08
09																									09
10													Т	Т		0.01	0.01	0.10	0.10	0.07	0.13	0.14	0.09	0.11	10
11	0.14	0.14	0.07	0.07	0.10	0.01																			11
12		Т	Т		Т	0.01						0.01	0.01	0.08	0.09	Т						0.05s	0.01		12
13	0.02	0.22	0.05	0.07	0.08	Т	М																		13
14																									14
15					Т								M												15
16													M												16
17																								Т	17
18	Т	0.03	0.01	M	0.12	Т	0.02	Т	Т	0.05s	0.63	0.08	0.12	0.03	0.03										18
19				Т					Т		Т	Т							М			M			19
20	М			M							Т														20
21																									21
22			0.03	Т																					22
23																									23
24																									24
25									Т	0.01	Т	0.02	0.06	0.04	0.14	0.11	0.04	0.05	0.02	0.01	0.05	0.07	0.61	0.01	25
26							Т																0.08	0.20	26
27	0.05	Т																							27
28	Т				Т	0.01	0.13s	0.10	0.02	Т	0.08	Т	Т	0.01	Т	Т									28
29																									29
30																									30
												Short Du	ration P	recipitat											
	ne Perioc			5		10		15		20		30		15	60		80		100		120		150		180
	recipitatio			0.2		0.30		0.40		0.45		0.52	_	.57	0.6		0.69		0.71		0.74		0.81).85
	Ending Da /yyy-mm-			2018-0 10:1		2018-09 10:14		018-09-1 10:20		18-09-18 10:24		8-09-25 2:34		-09-25 ::45	2018-0 10:5		2018-09 11:17		2018-09- 11:17	18 20	018-09-18 11:17		8-09-18 12:33		8-09-18 2:39

Hourly, daily, and monthly totals on the Daily Summary page and the Hourly Precipitation Table are shown as reported by the instrumentation at the site. However, NWS does not edit hourly values for its ASOS sites, but may edit the daily and monthly totals for selected sites which will be reflected on the Daily Summary page. T = Trace s = Suspect * = Erroneous blank = No precipitation observed M = Missing

U.S. Department of Commerce National Oceanic & Atmospheric Administration National Environmental Satellite, Data, and Information Service

Local Climatological Data Hourly Precipitation October 2018

Current Location: Elev: 12 ft. Lat: 42.3606° N Lon: -71.0097° W

Generated on 10/11/2018

Data											For	Hour (LS	T) Endir	ig at											Data
Date	1 AM	2 AM	3 AM	4 AM	5 AM	6 AM	7 AM	8 AM	9 AM	10 AM	11 AM	NOON	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	MID	Date
01															Т	0.01	0.01	Т	0.01	Т	Т	Т	0.03		01
02		Т	0.03	0.04	0.02			Т	0.02	0.01	0.01	Т	Т	0.01	Т	Т	Т	0.05	0.06	0.01				0.03	02
03	0.13	0.05	0.02	0.01	Т																				03
04																									04
05																									05
06																									06
07															Т	0.06		0.01	0.02	0.01	Т				07
08													Т					М					М	М	08
										Ma	ximum \$	Short Du	ration P	ecipitati	on										
Tin	Time Period (Minutes) 5 10 1									20		30	4	5	60)	80		100		120		150	1	80
Pi	recipitatio	on (inches	5)																						
()	Ending Da /yyy-mm-	ate Time dd hh:mi)																						

Hourly, daily, and monthly totals on the Daily Summary page and the Hourly Precipitation Table are shown as reported by the instrumentation the site. However, NWS does not edit hourly values for its ASOS sites, but may edit the daily and monthly totals for selected sites which will be reflected on the Daily Summary page.

Station: BOSTON. MA US 14739

s = Suspect * = Erroneous blank = No precipitation observed M = Missing

Enclosure 3: Attachment H – Applicant Redline (10/24/2018) to Draft Proposed Non-Major CPA (03/30/2017)

Department of Environmental Protection

Southeast Regional Office • 20 Riverside Drive, Lakeville MA 02347 • 508-946-2700

Charles D. Baker Governor

Karyn E. Polito Lieutenant Governor Matthew A. Beaton Secretary

> Martin Suuberg Commissioner

Mr. Thomas Wooden Jr. Vice President, Field Operations Algonquin Gas Transmission, LLC. P.O. Box 1642 Houston, TX 77251-1642 March 30, 2017 **Weymouth** Transmittal No.: X266786 Application No.: SE-15-027 Class: SM-25 FMF No.: 571926 **AIR QUALITY PROPOSED PLAN APPROVAL**

Dear Mr. Wooden:

The Massachusetts Department of Environmental Protection ("MassDEP"), Bureau of Air and Waste, has reviewed your non-Major Comprehensive Plan Application ("Application") listed above. This Application concerns the proposed construction of a natural gas fired turbine at your proposed gas pipeline compressor station located at 50 Bridge Street in Weymouth, Massachusetts ("Facility"). The Application bears the seal and signature of David CotterLynne Santos Massachusetts Registered Professional Engineer Number 4906847225.

RE:

This Application was submitted in accordance with 310 CMR 7.02 Plan Approval and Emission Limitations as contained in 310 CMR 7.00 "Air Pollution Control" regulations adopted by MassDEP pursuant to the authority granted by Massachusetts General Laws, Chapter 111, Section 142 A-N, Chapter 21C, Section 4 and 6, and Chapter 21E, Section 6. MassDEP's review of your Application has been limited to air pollution control regulation compliance and does not relieve you of the obligation to comply with any other regulatory requirements.

In response to a public petition, accompanied by over one hundred (100) signatures, this Proposed Plan Approval has been made subject to a 30-day public comment period. All comments received will be considered and addressed, as appropriate, before taking a final action on the Plan Application.

MassDEP has determined that the Application is administratively and technically complete and that the Application is in conformance with the Air Pollution Control regulations and current air pollution control engineering practice, and hereby **Proposes** to grant this **Plan Approval** for said Application, as submitted, subject to the conditions listed below.

Sound Impacts and Mitigation

Operation of the Facility will create several sources of sound, which will be mitigated as follows: 1. Insulated / acoustically treated building housing the turbine and compressor, 2. use of a sound suppressant muffler on the turbine exhaust, 3. acoustical pipe insulation for outdoor above ground piping, 4. a silencer for the turbine air intake system, 5. low-noise lube oil coolers, 6. a low-noise gas cooler, and 7. a blowdown silencer.

The Facility is designed to meet the <u>MassDEP Noise Policy which limits the maximum sound</u> impacts attributable to a noise source to an increase in the broadband sound level of no more than 10 dB(A) above ambient Federal Energy Regulatory Commission ("FERC") standards for air and noise quality, which limits noise attributable to any new compressor station to an average day night sound level of 55 decibels A weighted ("dB(A)") at any pre-existing noise sensitive area ("NSA")⁵.

A sound analysis⁶, which was included with the Air Plan Application <u>as updated</u>, evaluated sound impacts at <u>nine seven NSA_receptor locations in the vicinity of the Station⁷</u> as follows:

- Receptor A/Location M1: King's Cove Property Line; represents sound levels at the closest property line immediately east of the Station, approximately 90 feet east of the center of the compressor building. This location also represents existing sound levels along the walking path that goes through the public park located in the Fore River Basin south of the MWRA pumping station within the King's Cove conservation area.
- Receptor B/Location M2: Bridge Street; represents sound levels at the nearest residences to the southeast of the Station, approximately 840 feet from the center of the compressor building.
- <u>Receptor C/Location M3: Monatiquot Street; represents sound levels at the nearest residences to the south of the Station, approximately 1,300 feet from the center of the compressor building. This location is just within the Fore River Energy Center fence line near the intersection of Monatiquot Street and Bluff Road.</u>
- Receptor D/Location M4: King's Cove Beach Road; represents sound levels at the nearest residences to the east of the Station along King's Cove Beach Road, approximately 1,530 feet from the center of the compressor building.
- <u>Receptor E/Location M5: City of Quincy Park; represents sound levels at the nearest residences to the</u> west of the Station in Quincy along Washington Street, located approximately 2,850 feet from the center of the compressor building.

 ⁵ 18 CFR 380.12(k)(4)(v)(A). A NSA as defined therein includes schools, hospitals, and residences.
 ⁶ Hoover & Keith, Inc., Weymouth Compressor Station Results of Additional Ambient Sound Survey and Updated Acoustical Analysis of a New Natural Gas Compressor Station Associated with the Proposed Atlantic Bridge Project, dated January 11, 2017Epsilon Associates, Inc. "Sound Level Impact Assessment Report, Weymouth Compressor Station, Massachusetts," dated October 15, 2018.
 ⁷ Six of the seven modeling receptors were selected based on the ambient measurement locations. The seventh receptor (G) was included to represent the closest residences to the north of the Station.

- <u>Receptor F/Location M6: O'Brien Towers; represents sound levels at the nearest group of residences</u> to the north of the Station. The location is in Quincy on the south lawn of the O'Brien Towers south of Bicknell Street, located approximately 1,740 feet from the center of the compressor building.
- Receptor G: Germantown; represents sound levels at the nearest group of residences to the north of the Station in the Germantown neighborhood of Quincy. The location is located approximately 1,420 feet from the center of the compressor building.
- NSA #1; Residences located on the North Side of Bridge Street, in Weymouth, approximately 610 feet south southeast of the Station site "acoustic center" (i.e., anticipated location of Compressor Building);
- NSA #2; Residences at the end of Saint German St. (area of Germantown Point; Town of Quincy), approximately 1,370 feet north of the Station site center;
- NSA #3; Residences located along Kings Cove Beach Road (near Hunt Hills Point, Weymouth), approximately 1,560 feet east of the Station site center;
- NSA #4; Residences located near the intersection of Monatiquot Street and Vaness Road (Weymouth), approximately 900 feet south of the Station site center;
- NSA #5; Residences located along Kings Cove Way (Weymouth), approximately 1,030 feet southeast (SE) of the Station site center;
- NSA #6; Residences located in the area of Roslind Road and Evans Road (Weymouth), approximately 2,300 feet SE of the Station site center;
- NSA #7; Residences located in the area of Weybosset Street and Fore River Ave. (Weymouth), approximately 1,970 feet east-northeast (ENE) of the Station site center;
- NSA #8; Residences located along Dee Road (Quincy), approximately 2,400 feet west of the Station site center; and
- NSA #9; Johnson School (Pearl Street, Weymouth), located approximately 4,200 feet east-southeast (ESE) of the Station site center.

MassDEP's Noise Policy limits the maximum sound impacts attributable to a noise source to an increase in the broadband sound level of no more than 10 dB(A) above ambient. The sound impact analysis indicates that the Facility will not cause an increase in sound in excess of the sound impacts allowed by MassDEP's Noise Policy. The results of the sound impact analysis are as follows:

Table 2						
Identified Receptor	Distance & Direction of Receptor/NSA	Measured Ambient Nighttime L90 (dBA)	CalculatedModeled Sound Level of Station [dB(A)]	Calculated Modeled Station Level + Lowest Ambient Level [dB(A)]	Increase above Lowest Ambient Level [dB(A)]	
<mark>NSA 1</mark> A	<mark>610-90_</mark> feet (SSE east)	<u>44.840</u>	<mark>4<u>2.6</u>47</mark>	4 <u>6.9</u> 47	<mark>2.1</mark> 7 ¹	

Table 2						
Identified Receptor	Distance & Direction of Receptor/NSA	Measured Ambient Nighttime L90 (dBA)	CalculatedModeled Sound Level of Station [dB(A)]	Calculated Modeled Station Level + Lowest Ambient Level [dB(A)]	Increase above Lowest Ambient Level [dB(A)]	
NSA 2 <u>B</u>	1 <u>,370840</u> feet (north<u>SE</u>)	<mark>46.8<u>36</u></mark>	<mark>35.7<u>44</u></mark>	<mark>47.1<u>44</u></mark>	<mark>0.3</mark> 8	
NSA 3 <u>C</u>	<mark>1,560<u>1,300</u> feet</mark> (east<u>south</u>)	<mark>44.0<u>45</u></mark>	<mark>34.4<u>40</u></mark>	<mark>44.4<u>46</u></mark>	<mark>0.41</mark>	
NSA-4D	900- <u>1,530</u> feet (southeast)	<mark>48.5</mark> 37	<mark>38.9<u>31</u></mark>	4 <u>8.9</u> 38	<mark>0.41</mark>	
<mark>NSA 5</mark> E	1,030- <u>2,850</u> feet (SE west)	<mark>41.3</mark> 34	37.5<u>35</u>	<mark>4<u>2.8</u>37</mark>	<u>1.53</u>	
<mark>NSA 6</mark> F	2 <u>,3001,740</u> feet (SE<u>north</u>)	<mark>41.4<u>41</u></mark>	<mark>29.3<u>36</u></mark>	<mark>41.7<u>42</u></mark>	<mark>0.31</mark>	
<mark>NSA 7<u>G</u></mark>	1,970 <u>1,420</u> feet (ENE <u>north)</u>	<mark>39.3</mark> 41 +2	<mark>31.8</mark> 38	4 <u>0.043</u>	<mark>0.72</mark>	
<mark>NSA 8</mark>	2,400 feet (west)	<mark>44.5</mark>	<mark>28.9</mark>	<mark>44.6</mark>	<mark>0.1</mark>	
<mark>NSA 9</mark>	4,200 feet (ESE)	<mark>41.0</mark>	22.7	<mark>41.1</mark>	<mark>0.1</mark>	

Table 2 Notes:

1. Receptor A is the closest station property line shared with the King's Cove Parcel. Though the increase above the nighttime L90 is modeled to be 7 db(A), the King's Cove Parcel is not occupied at night. The increase above the daytime L90 is modeled to be 5 dB(A).

2. Background sound level at receptor G is estimated to be equal to the level at receptor F due to their proximity.

Table 2 Key:

ENE = east northeast ESE = east southeast SE = southeast SSE = south southeast dB(A) = decibels, A weighted NSA = noise sensitive area

In addition, the sound impact analysis indicates the sound contribution at the closest station property line <u>(Receptor A)</u>, which is the east station property line shared with the King's Cove Parcel, will not exceed the MassDEP Noise Policy.

MassDEP's Noise Policy also prohibits a "pure tone" condition, which is defined as when any octave band center frequency sound pressure level exceeds the two adjacent center frequency sound pressure levels by 3 decibels or more. A review of the sound analysis and associated supplemental forms submitted with the Application indicate operation of the Facility will not create a pure tone condition.

Accordingly, the predicted sound impacts generated by the Facility will meet the requirements of MassDEP's Noise Policy. A post-construction compliance demonstration for sound impacts is required herein.

C. EMISSIONS MODELING

An air dispersion modeling analysis⁸ was conducted to demonstrate that the project's ambient air impacts, combined with the pre-existing background levels, will not cause or contribute to a violation of the National Ambient Air Quality Standards ("NAAQS"). The primary standards are health based standards established under the United States Clean Air Act ("CAA") that are designed to preserve public health and protect sensitive subpopulations, which include people with diseases (e.g. asthma, cardiovascular disease), children, and the elderly with an adequate margin of safety. The Secondary standards provide public welfare protection, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings

EPA has established Significant Impact Levels ("SILs"), which are numerical values that are used to evaluate the impact that a proposed source may have on the NAAQS (72 CFR 54.138). The SIL is the level of ambient impact below which the EPA considers a source to have an insignificant impact on air quality (72 CFR 54.130). The SILS are a small fraction of the NAAQS and ambient impacts below the SIL are commonly referred to as "de minimis." If the modeling shows that: (1) the predicted impact of a pollutant is less than the SIL, and (2) the difference between the background ambient air concentration and the NAAQS for that pollutant is greater than the SIL, the predicted impact of that pollutant is deemed insignificant. In these circumstances, MassDEP follows EPA Guidance and concludes that the emissions of that pollutant do not cause or contribute to a violation of the NAAQS without requiring cumulative impact modeling.

		Table 3		
Compa	arison of Maximum P	redicted Impacts wit	th Significant Impact	Levels
Pollutant	Averaging Period	Max Impact (µg/m ³)	SIL (µg/m ³)	Below SIL
NO ₂	1-Hour	14.4	7.5	no
	Annual	2.0	1	no
	1-Hour	6.5	7.8	yes
50	3-Hour	6.3	25	yes
SO_2	24-Hour	5.5	5	no
	Annual	0.8	1	yes
PM ₁₀	24-Hour	2.6	5	yes
D1/	24-Hour	2.3	1.2	no
PM _{2.5}	Annual	0.35	0.3	no
СО	1-Hour	122.8	2,000	yes

⁸ Trinity Consultants, <u>Updated</u> Air Dispersion Modeling Report, Algonquin Gas Transmission, LLC., Weymouth Compressor Station, dated September 2016 revised May 2018.

Algonquin Gas Transmission, LLC. March 30, 2017 – **Proposed Plan Approval** Transmittal No. X266786 Application No. SE-15-027 Page 10 of 26

8-Hour 101.0	500	yes
--------------	-----	-----

Table 3 Key:

 $\begin{array}{l} CO = Carbon \ Monoxide \\ NO_2 = Nitrogen \ Dioxide \\ PM_{10} = Particulate \ Matter \leq 10 \ microns \ in \ diameter \\ PM_{2.5} = Particulate \ Matter \leq 2.5 \ microns \ in \ diameter \end{array}$

 $SO_2 = Sulfur Dioxide$ SIL = significant impact level $\mu g/m^3 = micrograms$ per cubic meter

Since the predicted impacts of SO₂ (1-hour, 3-hour, and annual averaging periods), PM₁₀, and CO are below the SIL, no additional modeling was performed. The predicted impacts of NO₂, PM_{2.5}, and SO₂ (24-hour averaging period) exceed the SIL, so a cumulative impact analysis was performed.

In evaluating cumulative impacts with respect to the NAAQS, maximum modeled impacts were added to representative ambient background concentrations and compared to the applicable NAAQS. The Applicant used background data obtained from MassDEP's existing monitoring station on Harrison Avenue in Roxbury and on Von Hillern St. in Boston. The background data, when added to the modeled impacts found that the maximum impacts from emissions from the proposed facility will be below the NAAQS, as indicated below:

Table 4								
	Comparison of Predicted Impact Concentrations with NAAQS							
Pollutant	Averaging Period	Cumulative Impact of Weymouth Compressor Station and Regional <u>Sources</u> Algonquin Compressor Station Impact (μg/m ³)	Measured Background (µg/m ³)	Background plus <u>Cumulative</u> <u>Impact of</u> <u>Weymouth</u> <u>Compressor</u> <u>Station and</u> <u>Regional</u> <u>SourcesCompr</u> essor Station Total Impact (µg/m ³)	NAAQS (µg/m ³)	Background plus <u>Cumulative</u> <u>Impact of</u> <u>Weymouth</u> <u>Compressor</u> <u>Station and</u> <u>Regional</u> <u>SourcesCompres</u> <u>sor Station</u> % of NAAQS		
Tonutunt	1-Hour	57.8581.41	91.0 94.63	148.85	188	79.2% 93.6%		
NO ₂	Annual	7.67<u>8.52</u>	<u>32.8</u> 32.88	40.47 <u>41.40</u>	100	40.5% <u>41.4%</u>		
SO ₂	24-Hour	<mark>14.87</mark> 18.41	<mark>23.1</mark> 13.40	37.97<u>31.81</u>	365	<mark>10.4%</mark> 8.7%		
DM	24-Hour	4 <u>.877.13</u>	16.4<u>15.3</u>	21.27 <u>22.43</u>	35	60.8% 64.1%		
PM _{2.5}	Annual	1.34<u>1.47</u>	7.2<u>6.5</u>	<mark>8.54</mark> 7.97	12	71.2%<u>66.4%</u>		

Table 4 Key:

 $NAAQS = National Ambient Air Quality Standards NO_2 = Nitrogen Dioxide SO_2 = Sulfur Dioxide$

PM = Particulate Matter $PM_{2.5} = Particulate Matter \le 2.5$ microns in diameter % = percent $\mu g/m^3 =$ micrograms per cubic meter

The air dispersion modeling analysis also included an evaluation of the Facility's impacts relative to the MassDEP's 24-hour Threshold Effect Exposure Limits ("TELs") and annual Allowable Ambient Limits ("AALs") Guideline values for air toxics. The AALs and TELs were evaluated from Facility-wide sources at both 50% and 100% turbine load. <u>The maximum modeled impacts were compared to the TELs and AALs</u>.

Table 5						
	TEL (24-hour)			AAL (annual)		
Pollutant	TEL Limit (µg/m ³)	Modeled concentration (µg/m³)	percent of limit ¹	AAL Limit (µg/m ³)	Modeled concentration (µg/m ³)	percent of limit ¹
Acetaldehyde	30	<mark>5.95<u>6.01</u>E-02</mark>	0.2	0.40	<mark>9.54<u>8.04</u>E-03</mark>	<mark>2.4<u>2.0</u></mark>
Acrolein	0.07	<u> <mark>3.67</mark>3.71</u> Е-02	<u>52.5</u> 53.0	0.07	<mark>5.88<u>4.94</u>E-03</mark>	<mark>8.4</mark> 7.1
Benzene	0.6	<u><mark>3.96</mark>2.17</u> Е-01	66.0 <u>36.2</u>	0.1	<mark>5.66<u>4.27</u>E-02</mark>	<mark>56.6</mark> 42.7
1,3 Butadiene	1.20	<mark>1.91<u>1.93</u>Е-03</mark>	0.2	0.003	<u>3.102.60</u> E-04	10.3<u>8.7</u>
Carbon tetrachloride	85.52	2.60E-04	0.0	0.07	4.00E-05	0.1
Chlorobenzene	93.88	2.20E-04	0.0	6.26	3.00E-05	0.0
Chloroform	132.76	<mark>2.00</mark> 2.10 <mark>E-04</mark>	0.0	0.04	3.00E-05	0.1
Dichloromethane	100.00	1.40E-04	0.0	60.00	2.00E-05	0.0
Diphenyl	0.34	<mark>1.52</mark> 1.53E-03	<mark>0.4<u>0.5</u></mark>	0.09	<mark>2.40</mark> 2.00 <mark>E-04</mark>	0.3<u>0.2</u>
Ethylbenzene	300	1.19 <u>7.87</u> E-01	0.0	300	<u> 1.701.55</u> Е-02	0.0
Formaldehyde	2.00	3.82 <u>3.86</u> E-01	19.1<u>19.3</u>	0.08	<u> <mark>6.92</mark>5.56</u> Е-02	86.5<u>69.5</u>
Methanol	7.13	<mark>1.79<u>1.80</u>Е-02</mark>	0.3	7.13	2.86 <u>2.39</u> E-03	0.0
2-Methylnaphthalene	14.25	2.40E-04	0.0	14.25	<mark>4.00<u>3.00</u>E-05</mark>	0.0
Naphthalene	14.25	<u> <mark>1.29</mark>2.91</u> Е-03	0.0	14.25	<mark>2.40<u>3.70</u>E-04</mark>	0.0
Phenol	52.33	1.70E-04	0.0	52.33	<mark>3.00<u>2.00</u>E-05</mark>	0.0
Propylene oxide	6.00	<mark>1.71<u>6.37</u>Е-02</mark>	0.3<u>1.1</u>	0.30	<mark>1.93<u>6.43</u>Е-03</mark>	0.6<u>2.1</u>
Styrene	200	1.70E-04	0.0	2	<mark>3.00<u>2.00</u>E-05</mark>	0.0
1,1,2,2 Tetrachloroethane	18.67	<u> </u>	0.0	0.02	<mark>5.00<u>4.00</u>E-05</mark>	0.3<u>0.2</u>
Toluene	80	<mark>9.00<u>5.60</u>E-01</mark>	<mark>1.1<u>0.7</u></mark>	20	<mark>1.29<u>1.11</u>E-01</mark>	0.6
1,1,2 Trichloroethane	14.84	2.30E-04	0.0	0.06	4 <u>.003.00</u> E-05	0.1
Vinyl chloride	3.47	1.10E-04	0.0	0.38	<mark>2.00<u>1.00</u>E-05</mark>	0.0
xylenes	11.8	1.20E+00<u>7.86</u> <u>E-01</u>	<mark>10.2<u>6.7</u></mark>	11.8	1.72 <u>1.54</u> E-01	<u>1.3</u> 1.5

Table 5 Notes:

1. – Modeled concentration as a percent of limit.

the criteria for invoking Fail-Safe Review." Additionally, a determination was made that the Atlantic Bridge Project and the Access Northeast Project "are sufficiently distinct in purpose, design, and scope that they have independent utility and can be reviewed separately."

Should you have any questions concerning this Plan Approval, please contact the undersigned by telephone at 508-946-2824, or in writing at the letterhead address.

PROPOSED

Thomas Cushing Permit Chief Bureau of Air and Waste

Enclosure

cc:	Weymouth Board of Health/Dept. of Hea Weymouth Fire Department				
	MassDEP / SERO-	M. Garcia-Serrano			
		M. Pinaud			
		L. Ramos			
	MassDEP / Boston-	K. Kerigan			
		Y. Tian			
	Algonquin Gas	T. Doyle			
	Trinity Consultants -	D. CotterL. Santos			
		W. Merz			