### Urban Water Transformation: Designing Infrastructure for a Livable Future

**Charles River Watershed Association** 



Charles River Watershed Association

### CRWA: Working to Restore Nature by Learning from Nature



- <u>*Resource-to-Waste-to-Resource*</u> There are no wastewater treatment plants or landfills in nature; each waste product becomes another resource.
- Keep Water Local Water is slowed down, infiltrated, and used several times.
- *Flexibility, Adaptability, Interconnectedness* Nature handles catastrophic events by lending the capacity of each to all others.
- <u>Promote and Support Rich Diversity</u> Nature celebrates diversity as a strength, a way for communities to be more adaptable, more resilient, and to gain strength through evolution.



#### Resource-to-Waste-to-Resource Maximizing Water and Energy Resources





#### Community Water and Energy Resource Center = CWERC





- Treat and resell a portion of the water (MBR)
- Capture and use/sell thermal energy (heat pump/exchange)
- Produce and use/sell biogas through co-digestion (CHP)
- Capture nutrients (N) for resale
- Produce compost for resale (2 tiers, separating sludge and SSO streams)

# Keep Water Local

- Offset the impacts of infiltration and inflow: about 40% of flow to Deer Island is relatively clean groundwater or rainwater
- Reduce potable water demand from Quabbin or local sources



## Flexible, Adaptable, Interconnected and Promote and Support Rich Diversity

- A decentralized or distributed network of CWERCs to serve our water and energy needs
  - Resilient and redundant
  - Equitable
  - Efficient
- Integrated stormwater management using green infrastructure, wetland restoration and stream daylighting



FIG. I - Centralized, Decentralized and Distributed Networks



#### Climate Change will bring the Northeastern United States More Large Storms and Floods

Figure ES-2: Trend in Frequency of Extreme Precipitation by Climate Division



Source: When It Rains, It Pours. Environment America Research and Policy Center, December 2007





# **INITIATION PHASE**

Selecting pilot neighborhoods and developing conceptual CWERC design

# Task 1: Neighborhood Selection *Methodology*

Level 1: Compare and Narrow • 5 sites Many ("unlimited") Sites • In depth • 23 sites analysis and site • Cursory Screen More in depth visit analysis Level 0: Screen Level 2: Select **Possible Sites** Sites



### Pilot Neighborhood Selection and Assessment

#### Pilot Neighborhood #1: Expanded Innovation District

#### Pilot Neighborhood #2: Lower Stony Brook



Critical Siting Elements: Access to adequate sewage volume Available space Opportunities for reuse of treated water



Technical Inputs/Outputs and Business Model Scenarios for CWERC

## MODELING



### Modeling CWERC Inputs and Outputs

| Neighborhood                                                | 1            | 2          |
|-------------------------------------------------------------|--------------|------------|
| WW Reclamation (MGD)                                        | 2            | 3          |
| Water for Hydrologic<br>Restoration (MGD) (% total)         | 0.5<br>(25%) | 1<br>(33%) |
| Food Waste Processing<br>(Tons/Day)                         | 80           | 54         |
| Food Waste Tipping Fee (\$/Ton)                             | 80           | 60         |
| Electric Rate based on energy production vs. parasitic load | \$0.12/kWh   | \$0.15/kWh |
| Wastewater Treatment Fee (%<br>Boston Retail Treatment Fee) | 0            | 0-31%      |
| Water Reuse Fee (% Boston<br>Potable Water Retail Fee)      | 30%          | 50 – 100 % |
| Approximate Facility Footprint                              | 2 acres      | 2.5 acres  |

Other Assumptions:

- WW content based on influent at DI WWTP
- Reuse water buyer is onsite or nearby
- Thermal energy sold at \$9.77/MMBTU
- Food waste producer location and availability based on MassDEP estimates (no overlap b/t neighborhood #1 and #2 suppliers)
- No discharge to sewer
- SSO 20% solids as received



# Resource Recovery CWERC Modeling Neighborhood #1 Technical Results

|                                   | Unit Cost/Fee                    | Total Volume       | Total Value      | Volume Used                                   |
|-----------------------------------|----------------------------------|--------------------|------------------|-----------------------------------------------|
|                                   | Assumed                          | Produced           | Produced         | Onsite                                        |
| Reuse Water Sales                 | \$2.20/1000 gallons              | 1.5 MGD            | \$1,201,000/yr   | None                                          |
| Thermal Energy                    | \$9.77/MMBTU                     | 292,981            | \$2,494,000/yr** | 188,466                                       |
| Capture                           |                                  | MMBTU/yr*          | (\$715,000 net)  | MMBTU/yr**                                    |
| Biogas<br>Conditioning and<br>CHP | \$89/MWh<br>(\$0.089/KWh) (sale) | 7,480 MWh/yr       | \$665,700/yr     | 3,870 MWh/yr<br>(\$121/MWh rate<br>for usage) |
| Sludge Digester<br>Compost        | \$25/cu. yds.                    | 770 cu. yds./yr    | \$19,200/yr      | None                                          |
| Food waste<br>Digester Compost    | \$12/cu. yds.                    | 12,650 cu. yds./yr | \$151,800/yr     | None                                          |
| Nitrogen Recovery                 | \$0.70/lb N                      | 85,100 lbs-N/yr    | \$59,600/yr      | None                                          |
| Food Waste                        | \$80/wet ton                     | 80 ton/day         | 52 226 000 hr    | All                                           |
| Tipping Fees                      | (\$0.04/lb)                      | accepted           | Ş2,330,000/ γι   | All                                           |
| Renewable Energy<br>Credits       | \$65.27/MWh                      |                    | \$439,400        |                                               |

\* Includes heat capture from CHP unit

\*\*Includes energy to run heat pump which is available as output but is a cost to the plant

# Resource Recovery CWERC Modeling Neighborhood #2 Technical Results

|                                   | Unit Cost/Fee                   | Total Volume           | Total Value    | Volume Used                                   |
|-----------------------------------|---------------------------------|------------------------|----------------|-----------------------------------------------|
|                                   | Assumed                         | Produced               | Produced       | Onsite                                        |
| Reuse Water Sales                 | \$3.25/1000 gallons             | 1.99 MGD               | \$2,365,300/yr | None                                          |
| Thermal Energy<br>Capture         | \$9.77/MMBTU                    | 421,926<br>MMBTU/yr    | \$3,591,900/yr | 279,536<br>MMBTU/yr                           |
| Biogas<br>Conditioning and<br>CHP | \$89/MWh<br>(\$0.089/KWh)(sale) | 5,295 MWh/yr           | 471,300 \$/yr  | 4,929 MWh/yr<br>(\$147/MWh rate<br>for usage) |
| Sludge Digester<br>Compost        | \$25/cu. yds.                   | 1,150 cu. yds./yr      | \$28,700/yr    | None                                          |
| Food waste<br>Digester Compost    | \$12/cu. yds.                   | 8,540 cu. yds./yr      | \$102,500/yr   | None                                          |
| Nitrogen Recovery                 | \$0.70/lb N                     | 57,500 lbs-N/yr        | \$40,200/yr    | None                                          |
| Food Waste<br>Tipping Fees        | \$60/wet ton<br>(\$0.03/lb)     | 54 ton/day<br>accepted | \$1,182,600/yr | All                                           |
| Renewable Energy<br>Credits       | \$65.27/MWh                     |                        | \$311,100      |                                               |
| Wastewater<br>Treatment Fee       | \$0-\$2.87/1000<br>gallons      | 3 MGD                  | \$0-3,144,700  |                                               |

#### Community Water and Energy Resource Center Capital Cost and Revenue Summary

- Total capital cost: \$46.8 million
  - headworks, MBR, storage tank, heat pump, anaerobic digestor for municipal sludge, food waste digestor, dewater biosolids, dewatering food solids, food receiving station, digester storage tanks (2, 100K gallon tanks) digester pumps, CHP unit, nutrient recovery, composting
  - does not reflect prevailing wage requirements
- Annual O&M costs: \$4.9 M
  - wastewater treatment, pumping, energy, chemicals, labor, misc. supplies
  - does not take into account the value of any energy produced on site.
- Annual product fees/revenues: \$7.4M
- Conducted financial modeling to determine project viability under various ownership scenarios





# Neighborhood 1 CWERC Output

#### Annual Income by Recovered Resource



CRW

Marrying potable, storm-, waste-, surface and groundwater management to restore the natural water cycle

# INTEGRATING STORMWATER MANAGEMENT



# Neighborhood 2 Greening Plan





# Neighborhood Assessment

**CRWA** 



# Neighborhood A





Figure 11. The culverting of Stony Brook at Forest Hills, about 1905.



**CRWA** 

#### **Stream Restoration or Creation**



**CRWA** 

## NU Stream Daylighting-Visualization



# NU Stream Daylighting-Visualization





Non-market benefits

## SOCIAL WELFARE EVALUATION



#### Major Benefit Categories Examined

- Energy benefits
- Emissions reduction and climate change benefits
- Functional open space and other GI benefits
- Distributional benefits



#### Summary of Annual Benefits

|                                    |                                      | VALUE        |              |
|------------------------------------|--------------------------------------|--------------|--------------|
|                                    | BENEFIT CATEGORY                     | LOWER        | UPPER        |
| Additive                           | Energy Recovery and Energy Savings   | \$3,727,535  | \$3,982,105  |
|                                    | Reduced Carbon Emissions             | \$334,635    | \$1,722,388  |
|                                    | Reduced Criteria Pollutant Emissions | \$55,909     | \$139,392    |
|                                    | Carbon Sequestration from GI         | \$3,991      | \$20,679     |
|                                    | Air Quality Benefits from Greening   | \$6,755      | \$16,889     |
|                                    | Avoided Stormwater BMP Costs         | \$1,572,345  | \$3,144,689  |
|                                    | Avoided Underpinning Costs           | \$8,600,000  | \$22,900,000 |
|                                    | Stream Daylighting Benefits          | \$139,442    | \$1,426,351  |
|                                    | TOTAL                                | \$14,440,612 | \$33,352,494 |
| Areas of<br>Significant<br>Overlap | Property Value (Street Greening)     | \$1,522,778  | \$3,045,556  |



# Additional and Ongoing Work

- Technical Advisory Committee and Citizen's Advisory Group
- Advancing toward implementation
- Expansion and Replication to Larger Area
  - Technical challenges of transitioning from centralized to decentralized infrastructure
  - Economic barriers or efficiencies
  - Regulatory, legal and permitting barriers



# WORKING TOWARD A RESILIENT AND EQUITABLE FUTURE FOR HUMANS AND NATURE, JOIN US!

Charles River Watershed Association: www.charlesriver.org

