Upgrades to the USGS-Massachusetts Long-term Observation-Well Network: Conversion of selected wells to real time reporting

Richard Verdi, USGS Peter Weiskel, USGS

Massachusetts Water Resources Commission October 12, 2017

Observation well upgrades:

- In 2017, USGS and MassDEP funded the upgrade of 11 wells to real time, to increase the MA total to 42. (MassDCR and USGS are funding long-term operations, maintenance, and data management.)
- 10 of the 11 wells have been completed, the 11th well (Hardwick 1) will be re-drilled before upgrade.

Why upgrade wells to real-time?

1. To improve basic understanding of how:

- Climate variations and trends (P, ET)
- Geologic conditions (till vs. sand & gravel)
- Hydrologic position (upland vs. lowland)

affect groundwater levels, aquifer recharge rates, and summer baseflows in streams.

Why upgrade wells to real-time?

2. Support timely decision-making. Examples:

- Drought management (local and State)
- Projecting likely high groundwater levels (Title 5 and the Frimpter Method)
- Projecting likely low groundwater levels (New developments in dug-well design)

Lakeville 14

Lakeville 14 instrumentation (older technology)

West Brookfield 2

West Brookfield 2 Instrumentation (new technology)

Magnitude of flood flows for selected annual exceedance probabilities for streams in Massachusetts

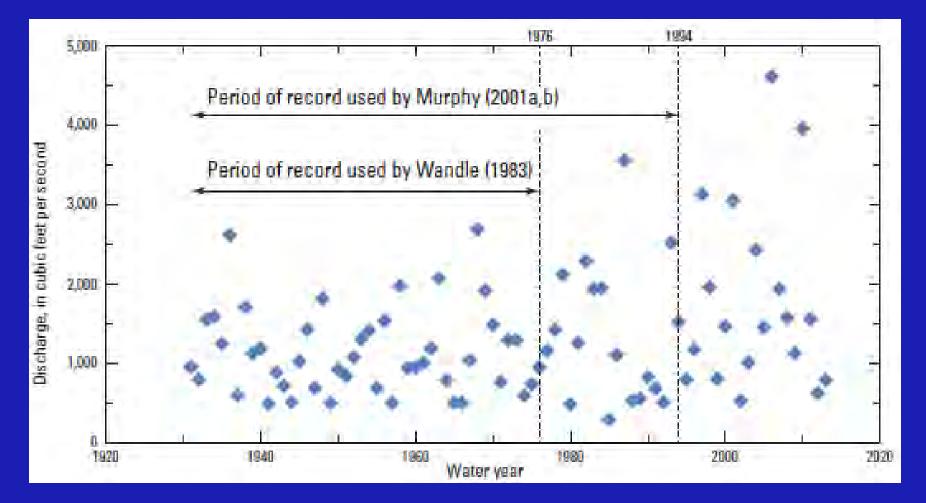
Phillip J. Zarriello (presentation by Peter Weiskel; pweiskel@usgs.gov) October 12, 2017

U.S. Geological Survey, New England Water Science Center, in cooperation with MassDOT

Aberjona River at Winchester, MA 3/15/2010

Objectives:

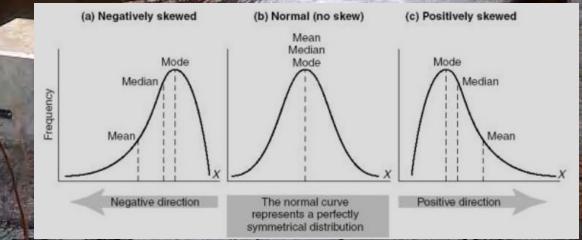
- Update at-site flood flow information for MA streamgages
- Develop new regional equations for estimating flood flows at ungaged locations in MA.
- Make information and equations accessible through the USGS StreamStats application.



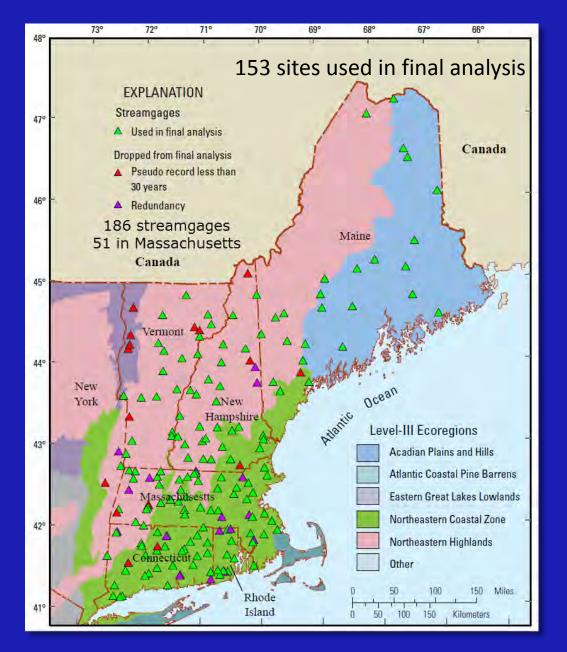
Why Update Flood Flow Anlaysis?

- Critical for infrastructure design, hazard mitigation, and climatechange adaptation.
- Existing MA regional equations were out of date.
 Wandle (1983)— used data through 1976 at 95 sites, for 2-, 5-, 10-, 25-, 50-, and 100-year floods; Murphy (2001) developed equations for mixed population floods; data up to 1993 at only 30 sites.
- More robust statistical methods, and new streamflow and landscape data are now available

The period of record matters... Annual peak flows, Ipswich River at Ipswich, MA:


New, more robust statistical methods:

Expected Moments Algorithm (EMA)
Censoring of low outliers (multiple Grubbs-Beck test)
Better accounting for periods between historic and systematic record, and periods of missing record
Improved approaches to uncertainty


Shawsheen River at Andover, MA 3/2010

- Estimation of regional skew coefficient
- Flood analysis is based on 3 statistics of annual peak flows– mean (μ), standard deviation (σ), and skew
- Skew determines shape of a probability function; sensitive to extreme events, and more variable than μ and σ
- Methods for determining skew have improved recently Bayesian WLS/GLS

Matapoisett River 3/31/2010

USGS has completed new skew analysis for New England

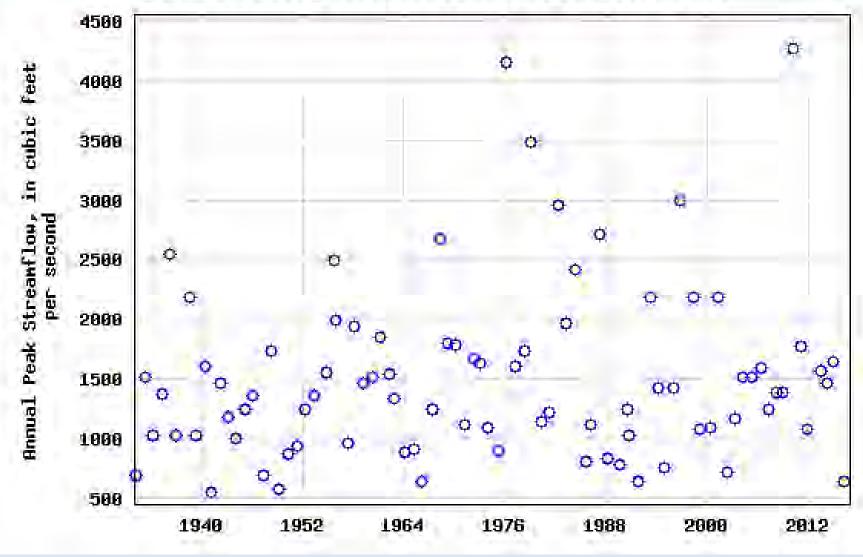
No significant spatial trends were found in skew.

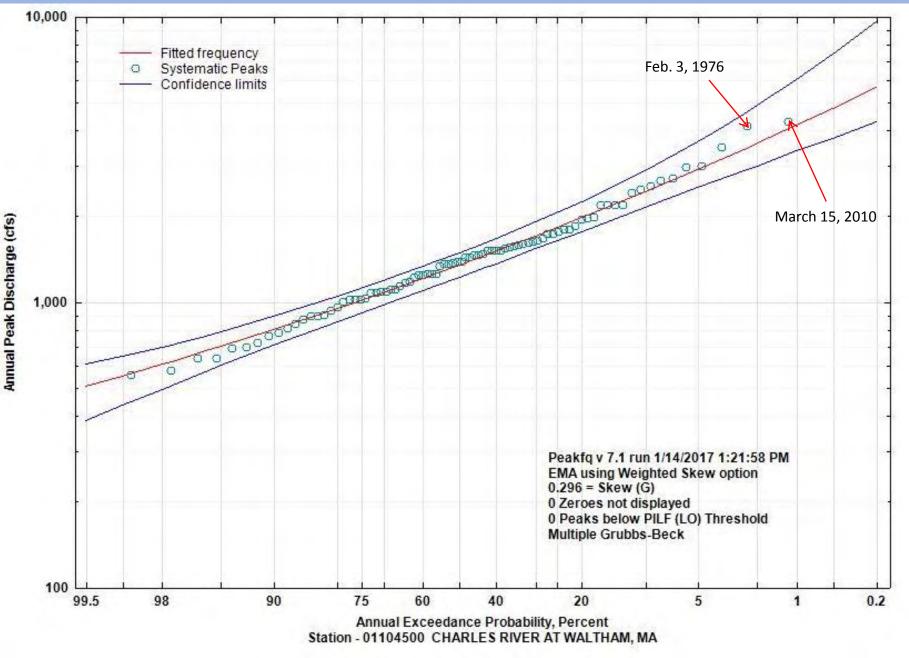
Single Skew of 0.37 was determined to be optimal for New England

Veilleux and others, 2017

At-Site Analysis

Flow for 50-, 20-, 10%, 4%, 2%, 1%, 0.5% and 0.2% Annual Exceedance Probabilities (AEPs)


- Total number of streamgages analyzed: 220
 - Massachusetts: 125 gages
- Adjacent states: 95 gages (CT-34; NH-19; RI-19; NY-13; and VT-10)


Blackstone River

≥USGS

USGS 01104500 CHARLES RIVER AT WALTHAM, MA

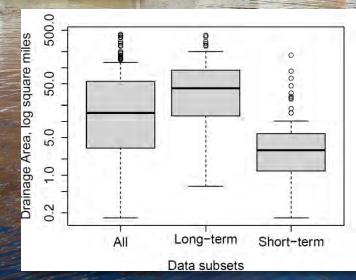
Regional Analysis

 Included 199 streamgages – 105 in Mass. (did not use highly regulated and redundant sites)

Compiled 60 basin characteristics associated with each gage, for potential use as explanatory variables in regional flood-flow equations

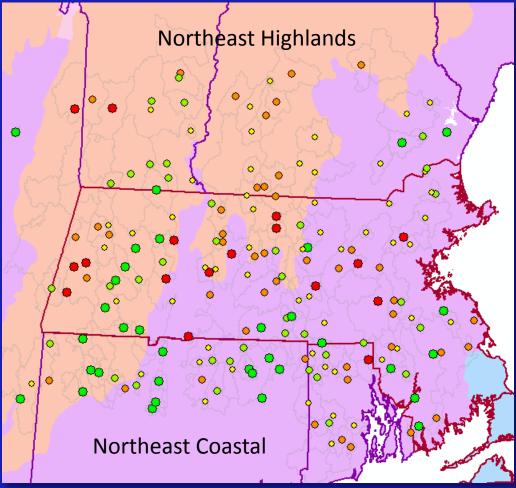
Exploratory regression analysis used to determine the best basin characteristics and subsets of data

> Hurricane Irene - Deerfield River at Bridge of Flowers, Shelburne Falls, MA Photo by Jeff Brown


Explanatory Basin Characteristics

Basin size and shape • • Land cover (2006 NLCD): impervious cover, wetlands, open water, etc. National Hydrography Dataset & NWI Topography (10-meter DEM) Infiltration (NRCS soils & USGS surficial geology) Climate (mean annual precip & temp, and 24-hr precip: 10-, 100-, and 500-yr)

Hurricane Irene, Deerfield River at Conway Street in Buckland, MA Photo by Jeff Brown


Include streamgages with short record?

THE

Yes... allows for small basins
Most long-term basins > 20 sq mi
Most short-term (<20 yrs) basins
< 10 sq mi
Uncertainty analysis accounts for shorter record lengths.
Shawsheen River at Andover, MA'3/15/2010

1-percent AEP Residuals

-1.4038660.757181
• -0.7571800.267961
• -0.267960 - 0.109517
• 0.109518 - 0.584723
\varTheta 0.584724 - 1.411039

Log10_Q is a function of (Log10_DA, mean elev, and total storage) (R² 0.88)

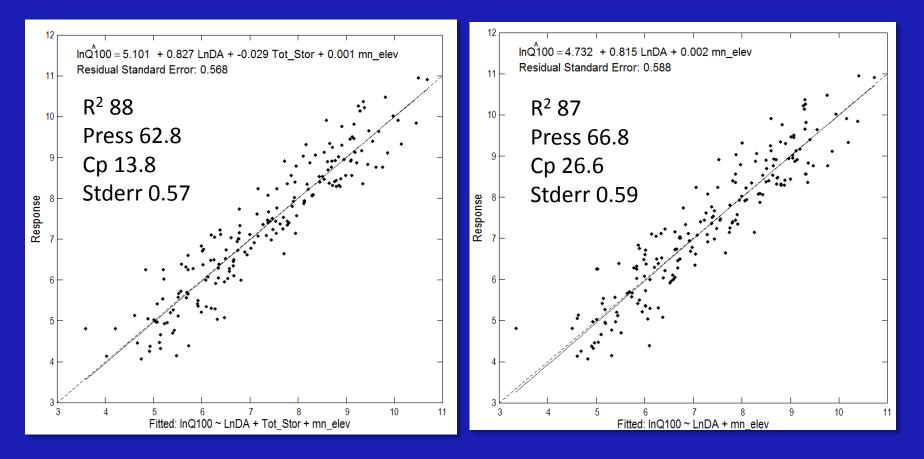
Use Sub-Regions?

EPA Ecoregion Level III OLS regression residuals

All data (199 Obs): R² 0.88

NE Highlands model (108 Obs) was slightly better: (R² 0.90)

NE Coastal model (91 Obs) was slightly worse: (R² 0.87)


Residuals *do not* show a spatial pattern that merits subregions;

Therefore, Sub-Regions were not used.

Ordinary Least-Squares (OLS) Regression Models

3-Variable model DA, TotStor, mn_elev

2-Variable model DA, mn_elev

Generalized Least Squares (GLS) models

TRADE TRADE AND A DESCRIPTION

- Supports same explanatory variables as OLS (Imperviousness not significant, even at the 50% AEP)
- Small improvement in R²

GLS pseudo R² is 90%, standard error 44%, model error variance is 0.034 (log units)

> Hurricane Irene Deerfield River at Shelburn Falls, MA Photo by John Elder Robison

GLS Models considered

Hert	1 parameter		2 parameter		3 parameter		4 parameter	
	Pseudo	StdErr	Pseudo	StdErr	Pseudo	StdErr	'seudo	StdErr
AEP	R ²	(percent)	R ²	(percent)	R ²	(percent)	R ²	(percent)
Q2	90.2	49.4	92.3	43.2	93.1	40.8	93.6	39.0
Q5	89.7	49.7	91.9	43.4	92.7	40.9	93.3	39.2
Q10	89.1	50.0	91.4	43.8	92.3	41.2	92.6	40.4
Q25	88.3	50.7	90.4	45.1	91.4	42.6	92.0	40.8
Q50	90.2	49.4	89.5	46.4	- 90.5	43.9	91.2	42.2
Q100	86.7	52.5	88.6	47.7	89.6	45.2	90.4	43.5
Q200	85.6	54.0	87.6	49.1	88.7	46.6	89.1	45.7
Q500	85.1	55.7	85.9	51.6	87.2	49.1	88.0	47.4
	log[DA] + mea			n_elev	+ Tot	t Stor	+ Str	mDEN

Confluence of Mill River and Deerfield River, Charlemont, MA

Final GLS Models

Models with 3 explanatory variables were chosen.

Flood-flow equations for 50-, 20-, 10-, 4-, 2-, 1-, 0.5- and 0.2% Annual Exceedance Probabilities (AEPs) are functions of---

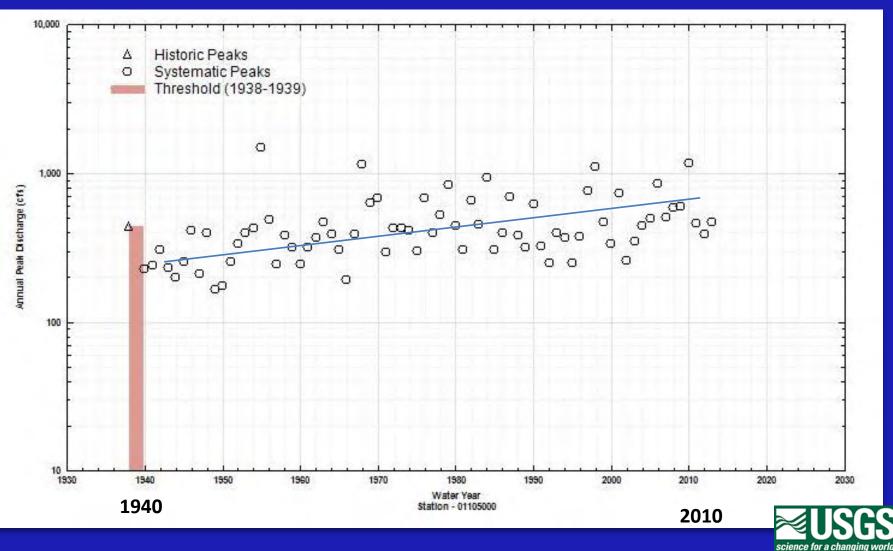
-- log [basin drainage area (mi²)]
-- mean basin elevation (ft)
-- total storage (% open water + wetlands)

Final GLS Models

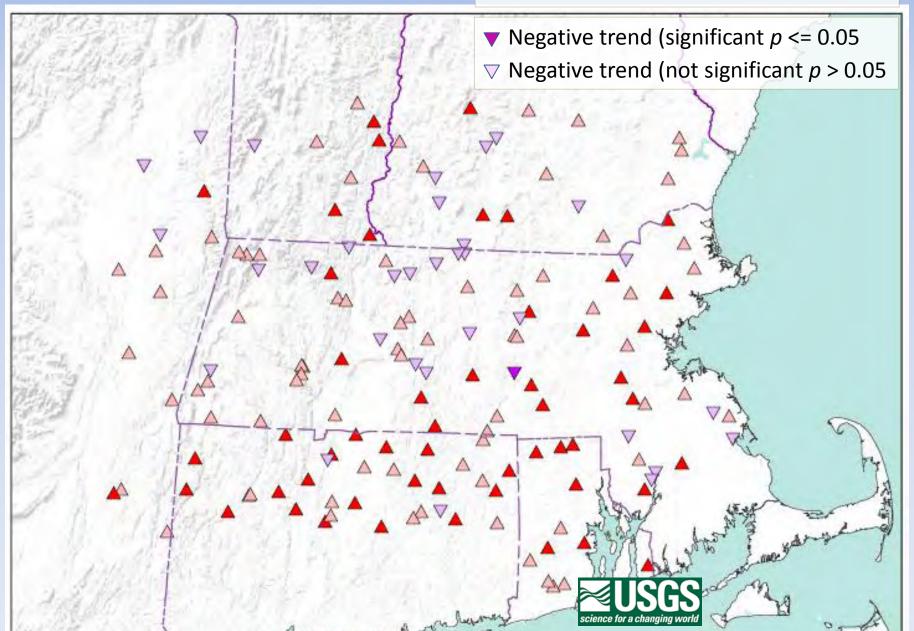
Example: the 1% AEP (100-yr flood) equation:

 $Q_1 = 10^{\left[2.256 + 0.767 \times \log_{10}(DRNAREA) + 0.790 \times 0.001 \times \left(\frac{ELEV}{3.28084}\right) - 1.137 \times 0.01 \times (LC06STOR)\right]},$

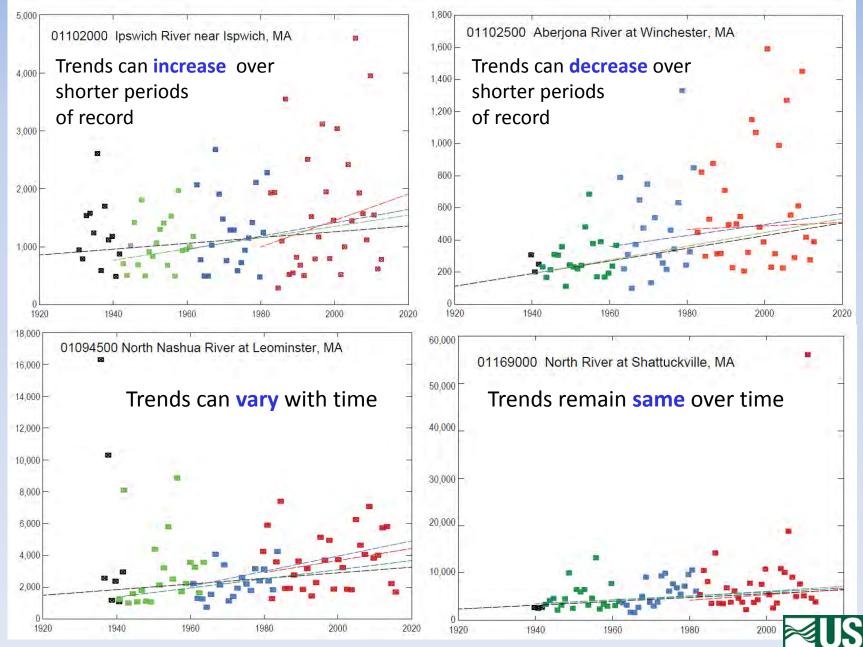
Flood flows:


increase with increasing drainage area *increase* with mean basin elevation *decrease* with increasing basin storage (% open water + wetlands).

Are provided: 90-percent prediction interval equations


Trends in annual peak flows

Example of a *significant* trend – 01105000 Neponset River at Norwood, MA TAU: 0.32; *p*-value: 0.000041 slope: 3.31



Trends: Spatial patterns \land Positive trend (significant $p \le 0.05$)

Positive trend (significant *p* <= 0.05

Trend Variability, at p <= 0.05

science for a chan

Trends: Summary of Findings

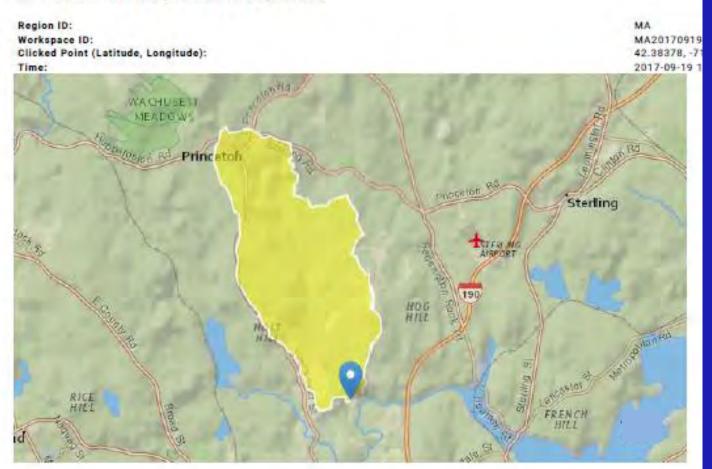
	MA +	Neighbor states	МА	Only
	count	% total	count	% total
Total no sites	148		64	
<i>P</i> <= 0.05	52	35 %	17	27 %
<i>p</i> <= 0.1	64	43 %	22	34 %
not significant	84	57 %	42	66 %
Years of record				
Average	52		63	
Minimum	20		20	
Maximum	103		101	

All significant trends were upward (except 1 site in MA with abbreviated record, ending in 1978)

Dealing with Trends

- No "cookbook" methods exist; none of the existing methods have wide acceptance. Possible approaches:
- De-trend the data and rerun the analysis (assume stationarity)
 - Modify the probability distribution moments: mean (μ), standard deviation (σ), and skew (k)
- Determine a flood magnification factor based on the trend and the planning horizon of interest (one way to address non-stationarity)

Photo NOAA, Taunton River, 2010 flood

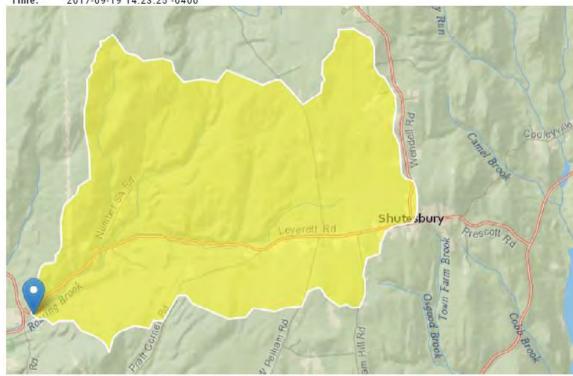

USGS StreamStats:

- An interactive web application for obtaining basin and streamflow statistics at both USGS streamgages and ungaged sites.
- Provides easy access to relevant flood and low-flow statistics for thousands of USGS gages nationally.
- Prediction intervals (error bars) are provided for all flow estimates at ungaged sites.

StreamStats: Example basin 1

Trout Brook, Holden, MA

StreamStats: Example basin 2


Roaring Brook, Leverett, MA

Region ID: MA

 Workspace ID:
 MA20170919182305680000

 Clicked Point (Latitude, Longitude):
 42.43942, -72.48089

 Time:
 2017-09-19 14:23:25 -0400

Comparison: Trout and Roaring Brooks

	DA	Mean	Storage	1% AEP
	(mi2)	Elev	(% ponds,	Flood
		(ft)	wetlands)	(cfs)
Trout Brook, Holden	8.34	811	14.3	989
Roaring Brook, Leverett	7.26	987	4.8	1,260
Difference	-13%	+22%	-66%	+27%

Roaring Brook has a smaller drainage area, but its other basin characteristics override its smaller size.

Benefits of the study

- Improved understanding of Massachusetts flood flows, probabilities of exceedance, uncertainties, and trends— leading to:
- More accurate floodplain maps (DFIRM's)
- Better infrastructure design & resiliency
- More effective emergency preparedness and response.

Because flood hazards will continue, USGS is committed to continuous improvement of data collection and scientific understanding.

Many thanks to the Commonwealth for the partnering with USGS on this project...

USGS Report: https://pubs.er.usgs.gov/publication/sir20165156 StreamStats: https://streamstats.usgs.gov/ss/

Questions?

Shelburne Falls, Tropical Storm Irene Photo Courtesy of John Elder Robison

