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Executive Summary 

This study of Assessment of Roadway Pavement Condition with UAS was undertaken as part 
of the Massachusetts Department of Transportation (MassDOT) Research Program. This 
program is funded with Federal Highway Administration (FHWA) State Planning and 
Research (SPR) funds. Through this program, applied research is conducted on topics of 
importance to the Commonwealth of Massachusetts transportation agencies.  
 
The main objectives of this research are twofold: (1) performing a review of existing 
Unmanned Aerial System (UAS) technologies for pavement condition survey, and (2) 
conducting a pilot study to evaluate the applicability of using UAS for pavement condition 
analysis. The literature review has been focused on both sensors that can be integrated with 
UAS and advanced algorithms for analyzing pavement distress data. Since most pavement 
distress data is in the form of images, the review of algorithms are concentrated on pavement 
image processing methods developed recently. Other than the literature review, several field 
trips were made to the Fitchburg Municipal Airport (FMA) in Massachusetts to assess the 
feasibility of using UAS mounted sensors to collect image data for evaluating runway 
pavement conditions. The collected FMA data was used in conjunction with some online 
pavement images to evaluate the crack detection capabilities of a well-known Matlab tool 
and two deep learning methods. 
 
Chapter 1 briefly presents the objectives and background of this research. The literature 
review results of UAS technologies and data analysis algorithms are detailed in Chapters 2 
and 3, respectively. Based on the literature review, the use of UAS for pavement condition 
assessment is still in its infancy with little experience and information available. For 
integration with UAS, photogrammetry appears to be the most popular technique, while the 
use of multi- or hyperspectral imaging is getting increasing attention. The integration of such 
sensors with UAS for pavement condition assessment has not been thoroughly explored yet, 
although it does show potential. The literature review also shows that there has been growing 
interest in applying deep learning methods for detecting pavement distresses from images. 
Many deep neural networks models have been developed for this purpose and have achieved 
considerable success. However, most of the methods are to identify and highlight cracked 
regions with a rectangular box, instead of identifying cracks at the pixel level. There is still a 
lack of consistent and well-accepted procedures to convert crack detection results into 
Pavement Condition Index (PCI) values. Additionally, to develop deep neural networks 
based crack detection algorithms, it is important to have a large database of pavement images 
with cracks clearly labeled. Compiling such a large database is time consuming, and transfer 
learning appears to be a possible solution to address this issue. 
 
Increasing a drone’s flight altitude will decrease the pavement image quality but reduce 
costs. A qualitative comparison of the drone images captured at different altitudes at the 
FMA suggest that flying the drone 50 feet above the runway seems to provide the best 
balance between efficiency and accuracy. For the camera used in this study, the 50 feet 
altitude resulted in a 0.16 inches per pixel ground sample distance. Both visual and thermal 
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cameras were used for data collection at the FMA, and the results suggest that thermal 
images do not seem to add value compared to images from the regular camera. 
 
The collected pavement images were used to evaluate the crack detection performance of a 
MATLAB toolbox called CrackIT and two deep learning methods. Overall, the two deep 
learning methods outperformed the CrackIT toolbox. Among the two deep learning methods, 
the U-Net has the advantage of generating crack detection results at the pixel level compared 
to the SSD Mobilenet_V1 network. Applying deep learning methods requires a large 
annotated pavement image dataset. To address this issue, an online pavement image database 
was used in addition to the collected FMA data. The modeling results suggest that U-Net 
performs well on the FMA testing dataset when trained using the online pavement images in 
addition to a small sample of FMA images. The trained U-Net model was also applied to 
some highway pavement images collected using a van-mounted laser scanning system and 
generated satisfactory crack detection results. Overall, the introduced U-Net is a promising 
method for image-based pavement crack detection for both airport runways and highways, 
and demonstrated great robustness and generalization ability. 
 
Going forward, additional research is needed to understand how to determine PCI values 
from the pixel-level crack detection results, and compare the PCI values with the assessment 
results of qualified engineers. Also, a programmable procedure needs to be established to 
generate reliable and consistent PCI outcomes from UAS images. Finally, this research 
demonstrated the feasibility of collecting pavement images using cameras mounted on rotary 
wing drones and extracting useful crack information using deep learning methods. In the 
future, fixed wing drones can be considered to further expand the coverage and speed of 
UAS based pavement condition data collection.  
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1.0 Introduction 

This study of Task B: Assessment of Roadway Pavement Condition with UAS was 
undertaken as part of the Massachusetts Department of Transportation (MassDOT) Research 
Program. This program is funded with Federal Highway Administration (FHWA) State 
Planning and Research (SPR) funds. Through this program, applied research is conducted on 
topics of importance to the Commonwealth of Massachusetts transportation agencies.  

1.1 Problem Statement 

Paved roads deteriorate over time due to traffic loading and environment. To capture the 
extent and severity of the deterioration, state agencies and municipalities conduct pavement 
condition surveys of their roadway network. The data collected during these surveys is 
converted into indices that are used to guide decision-makers on how to best distribute 
available funds to keep the roads in service and safe.  
 
The data collected during these condition assessments consist of the distresses present on the 
roadway (cracking, raveling, weathering, etc.) and roadway profiles. In general, condition 
surveys are conducted annually or biennially. However, this survey process of evaluating the 
condition of pavements can be expensive, labor intensive, and time-consuming. Many 
traditional road evaluation methods utilize measurements taken in situ along with visual 
examinations and interpretations.  
 
The use of unmanned aerial systems (UAS) offers new potential for pavement managers to 
conduct condition assessments of roads and airport pavement. UAS have the potential to 
evaluate large areas in significantly less time compared to the existing manual methods. 
Findings from the 2016 Phase I research performed for MassDOT (“The State of the Practice 
of UAS Applications in Transportation” and “Current Counter-Drone Technology Solutions 
to Shield Airports and Approach and Departure Corridors”) indicate that UAS technology is 
actively being investigated by a growing number of state Departments of Transportation 
(DOTs) to creatively improve safety, reduce traffic congestion, and save on costs. According 
to a March 2016 survey by the American Association of State Highway and Transportation 
Officials (AASHTO), 33 state DOTs have or are exploring, researching, or the use of UAS to 
inspect bridges and assist with clearing vehicle crashes, among other innovative applications. 
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1.2 Objectives 

The main objective of this research task was to understand the current state and potential 
future state of practice regarding the use of UAS technology for pavement condition 
assessment. It attempted to address the following major questions: 
 

• How are other agencies using currently available UAS technology for pavement 
condition analysis? 

• What are the current UAS platform and instrumentation requirements that are needed 
to perform pavement condition analysis? 

• What are the future UAS platform and instrumentation requirements for fully-
automated pavement condition analysis? 

• What data is collected by UAS and how is the data converted into a usable format? 
• How is the UAS data reduced, and how does this data compare to the data collected 

by the current state-of-the-art conventional and semi-automated methods? 
• What are the costs and cost savings involved with the use of UAS technology for 

pavement condition analysis applications? 
• What improvements in safety, time, quality of data, and cost can be expected when 

comparing traditional (non-UAS) methods, to semi-automated and fully-automated 
UAS pavement assessment methods? 

• If successful, what is the broader impact of using UAS technology for pavement 
condition analysis and subsequent pavement maintenance, repair, and re-construction 
decisions? 

1.3 Report Outline 

This research consists of a literature synthesis and a pilot study of using both traditional and 
deep learning methods for pavement distress analysis. The literature synthesis has been 
divided into two chapters for clarity. Chapter 2 addresses material related to UAS technology 
for pavement condition analysis, and Chapter 3 summarizes methods to detect distresses in 
pavement images. Chapter 4 presents the results of the pilot study and Chapter 5 concludes 
this research.  
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2.0 Types of UAS Technology for Pavement 
Condition Analysis 

The two main types of data collection system used by UAS for pavement condition 
assessment are photogrammetry and light detection and ranging (LiDAR). LiDAR is an 
abbreviation for light detection and ranging. 

2.1 Photogrammetry 

Photogrammetry is the oldest and most common type of data collection system used by UAS 
for pavement condition assessment. This method is a less expensive option than LiDAR or 
spectral imaging. UAS photogrammetry consists of a series of “bird’s eye view” two-
dimensional photos taken from a relatively low altitude and combined into one large 2D 
photo (1). A three-dimensional point cloud can also be generated by using a special method 
known as stereo-photogrammetry (1). Photogrammetry is different from aerial photography 
in that it is used to generate a composite map-like image which allows for distances between 
objects to be measured (2). New software is constantly being developed with improved 
algorithms to more accurately and consistently assess the type, severity, and quantity of 
pavement distresses. Ahmed and Haas (2009) describes the data analysis algorithms by 
saying they “rely internally on one or more threshold values during processing or may need a 
pre-processing stage” (1). What this essentially means is that despite the improvements in the 
algorithms of this software, the process still requires a lot of user input and refining to be 
reliable (1). 

2.2 Light Detection and Ranging (LiDAR)  

The Hartsfield-Jackson Atlanta International Airport has been a large supporter in the use of 
UAS for runway inspections (2). A presentation put together by the airport, Michael Baker 
International, and Pond & Company gives a brief introduction into the concepts of data 
fusion along multiple data collection systems including LiDAR technology (2). The Atlanta 
airport defines it as a “surveying method that measures the distance to a target by 
illuminating it with a laser,” offering a secondary method to measure various distances within 
a project to ensure agreement with photogrammetric data (2). Similar software is found on 
vehicle-mounted sensors that assess pavement condition; these are used by various public 
agencies and private businesses to determine road profiles from close range. A benefit that 
pavement condition assessment could gain from UAS LiDAR technology is that its “data can 
filter to the ground through the vegetation as long as light can be seen from under the tree 
canopy” (2). This quality of LiDAR data presents the opportunity to perform data fusion and 
cross-comparison to compensate for reduced accuracy in photogrammetry due to sub-optimal 
lighting (2). One downside of the LiDAR onboard equipment is that it “still weighs a lot, thus 
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making it a challenge to keep the drone under 55 pounds” (2). Smaller and lighter LiDAR 
equipment are being designed to address this issue. 

2.3 Case Studies of UAS Technology for 
Pavement Condition Analysis 

2.3.1 Airsight—Germany 
The Airbus Operations Division of the Hamburg-Finkenwerder Aerodrome hired a company 
called AirSight to conduct an UAS inspection of a 130,000-square-foot section of concrete 
on the aerodrome’s apron (3). Their drone took aerial photographs and was operated on a 
GPS-based programmed flight path with a minimum distance of 150 meters to the runway 
and 10 meters to parking aircraft to ensure safety (3). The company’s software then took four 
days combining all of the photos into what they call a “single georeferenced orthophoto” 
with a resolution of 2 millimeters per pixel (3). Instead of using an autonomous interpretation 
of this dataset, several qualified engineers analyzed the single georeferenced orthophoto in 
AutoCAD and graded it based on a virtual-interpretation of ASTM (American Society for 
Testing and Materials) D5340 (3). The results were accurate, and the advantages include 
limited interruption to aerodrome operations, reduced human error or bias, and elimination of 
software-generated errors (3). This study proves the reliability of qualified human assessment 
for orthophotographs (3). However, this process can be time-consuming and more expensive 
than other options. No details were provided about the drone or equipment utilized.  

2.3.2 South Dakota 
The U.S. Department of Transportation sponsored a 2008 study done by South Dakota State 
University, whose findings demonstrated the ability of an UAS with a photogrammetric 
mapping center to assess the condition of an unpaved road (4). The airframe used was an 
Airstar International Mongoose airframe helicopter powered by a 26cc, single cylinder, 
Zenoah G260H engine.. The fight controller used was the combination of the Automatic 
Flight Control System hardware (AFCS) and custom Mission Control System software 
(MCS). The image sensor used was a UEye 2220c USB video camera with frame size 
768x576 with an on board OptiLogic RS-232 laser range finder. No details on the drone 
flight operations were provided. A GPS and geomagnetic sensor kept track of the drone’s 
position, velocity and altitude; which allowed for a pre-programmed flight path (4). A 
computer at ground-level was working in real-time with the UAS computer which “includes 
camera calibration, integrated sensor orientation, digital 3D road surface model and 
orthoimage generation, automated feature extraction, and measurement for road condition 
assessment” (4). The main outcome of this reference was a proposed new strategy for 
assessing unpaved road conditions. 

2.3.3 Massachusetts Institute of Technology 
An MIT graduate student focused her 2016 master’s thesis on autonomous pavement distress 
detection through the use of drones. The experiment was conducted in small areas in 
Cambridge and Somerville, Massachusetts. A 3DR Solo Drone was used, flying at a speed of 
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1 meter per second at an altitude of 9 to 12 feet (5). The camera was a GoPro Hero4 (fisheye 
lens disabled) capturing 24 frames per second in 1080p resolution (5). Python API software 
was used to analyze the collected photos, while pre-programmed flight paths on Google 
Maps ran autonomously (5). The program converted images into grayscale, filtered them for 
smoothness to remove image noise (erosion, dilation, opening, and closing), segmented the 
data into a binary image to detect variations and inverted it for analysis (6). The next step 
involved autonomous estimation of contours, combined with elliptical regression (6). 
Distress geometry is calculated through analysis of texture, circularity, compactness, and 
size; then a distress classification is assigned (5). Software developers must work alongside 
pavement experts to tailor the digital image processing so that distress geometry and severity 
can be correlated to the Pavement Condition Index. This process is most valuable for 
identifying potholes and is not as useful for the identification of the many other pavement 
distresses because of the software’s generation of a high rate of false positives. (5). An 
onboard computer was mounted to the drone, but it was “unable to process the pothole 
classification algorithm fast enough for the tool to be realistically deployed in real time”; 
running about 10 times slower than would be required for real-time feedback (5). The 
hardware used in this study was sub-optimal, but the report gives an in-depth explanation of 
digital image processing. 

2.3.4 U.S. Air Force Institute of Technology 
The U.S. Air Force Institute of Technology prepared an extensive report in 2015, which 
discussed the viability of UAS paired with high-resolution cameras to assess pavement 
condition. The test area was a 2,000-foot-long airbase runway that displayed a wide range of 
various types and severities of pavement distresses (7). The size, type and resolution of 
camera used in this study were all taken into consideration, since higher megapixel cameras 
operate at slower maximum frame capture rates (7). This means that the UAS must fly slower 
to capture adequate data if a higher resolution camera is used (7). Furthermore, smaller 
capacity cameras must take more pictures to equalize the decrease in frame exposure time, 
which plays a role in determining optimal velocity (7). Another design constraint is battery 
life, which is directly related to flight time, velocity and quality and quantity of data collected 
(7). During the course of this study, a graph was created (shown in Figure 2.1) which shows 
the relationship between maximum flight velocity (while still attaining full coverage) and 
number of megapixels in a given camera (7). The software interprets the intensity of light 
values given off by pictures of the pavement and characterizes it within certain thresholds 
(7). Once these threshold values can be paired with corresponding distress types and severity, 
a reliable UAS Pavement Condition Index will be more attainable. The software has the 
capability of identifying pixels that correspond to a crack in the pavement and then assess 
whether there are any similar pixels within a certain range of pixels next to the already 
identified “crack-pixel” (7). This feature essentially maps the pixels of interest together, 
which can be used to identify alligator-cracking and longitudinal cracking (7). The software 
completes this task by “choosing the smallest distance edge and retaining it only if it 
connects a new node. Edges connecting already visited nodes are removed. Once all nodes 
are connected, the algorithm is completed” (7). Unfortunately, when a success rate for this 
method was graded by the F-Measure method, it displayed only 40 percent accuracy (7). The 
F-Measure method is a function of the recall and precision rates (both functions of the true 
positives and false positives and negatives captured by the algorithm) as compared to the 
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ground-truth image (7). Many different iterations and approaches were taken for analyzing 
this dataset to maximize accuracy, but spectral imaging may prove to be a useful tool for 
improving this type of assessment. 
 

 
Source: Grandsaert, P. Integrating Pavement Crack Detection and Analysis Using Autonomous Unmanned 

Aerial Vehicle Imagery. United States Airforce Institute of Technology, 2015 (7) 

Figure 2.1: Maximum speed of image capture characterized by megapixels of camera  

2.3.5 Sidewalk Condition Assessment 
In a 2017 article submitted to the Institute of Physics Conference on Materials Science and 
Engineering, Ahmet Ersoz headed an experiment using UAS photogrammetry and automated 
software to assess the condition of a concrete pavement sidewalk. A DJI Inspire 1 
Quadcopter operating at different altitudes ranging from 0.5 meters to 3 meters with a speed 
of 1 to 3 meters per second was used with all photos stored on an onboard SD card (8). A 
digital image processing software known as an SVM (Support Vector Machine) used specific 
indexes like aspect ratio and eccentricity; but it still needed “training” from a human operator 
to hone in its threshold values (8). ASTM D5340 (Standard Test Method for Airport 
Pavement Condition Index—Surveys). Once the SVM model was properly trained, its 
assessment was compared to a “boots on the ground” field survey (8). The results were 
comparable; however, the author admits that the test area was an easy trial course since it did 
not exhibit a wide range of types and severity of distresses (8). They state that using only 
photogrammetric data collection leads to dramatically obscured data when there is light 
interference from shadows or different light angles (sensitive to location, time of day, and 
season) (8). Ersoz argues that “the main advantage of the system is that it offers a cost-
effective solution compared to currently used systems such as a truck-mounted road 
monitoring system, as the UAS are getting cheaper and easily transportable” (8). He follows 
to say that the digital image processing algorithms still need significant improvement (8). 
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2.4 UAS Platform and Instrumentation 
Requirements  

Hanson Engineering produced a brief overview on current UAS technology in 2016, which 
listed quadcopters and fixed wings as the two ideal types of drones (9). They cite two 
experiments that were conducted to assess the accuracy (compared to traditional surveying 
methods) of UAS photogrammetry for the purpose of creating a topographical map. The brief 
overview stated that UAS can be used for accurate mapping as well as for bridge inspections, 
roadway asset inventories, and airports pavement condition surveys. 

2.5 Data Collection and Reduction  

As noted in the previous case studies, data reduction is widely varied. Currently, automatic 
data reduction is still in the development stage. Most case studies utilized some manual 
interpretation of the results.  

2.6 Cost Savings 

No data was available on the cost savings of using UAS for pavement condition analysis.  

2.7 Benefits of UAS for Pavement Condition 
Analysis over Traditional Methods  

No comprehensive studies have been conducted to compare UAS over traditional pavement 
condition collection methods.  

2.8 Closing Summary of UAS for Pavement 
Condition Analysis 

The use of UAS for pavement condition surveys is in its infancy with very little experience 
and information available. Photogrammetry appears to be the front runner of UAS pavement 
condition assessment technology, but the use of multi- or hyperspectral imaging is garnering 
attention in this field of study as it presents more and more benefits when used in conjunction 
with photogrammetry. LiDAR usage in drones has not been thoroughly explored yet, 
although it does propose some potential advantages that may be seen at a later time. 
Understanding how to consistently determine a pavement condition index (PCI) is essential 
to this process. A better relationship must be established between qualified engineers who 
can reliably define and determine the PCI of a given section of pavement, and the 



8 
 

programmers who are coding these algorithms; so that a more consistent system may be put 
into place. The “threshold values” and various assigned distresses need to be better integrated 
into a method that closely matches ASTM D5340. The “threshold values” and various 
assigned distresses need to be better integrated into a method for all types of pavements 
(highway, airport, etc.).  
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3.0 Review of Deep Learning Applications in 
Pavement Distress Analysis 

Due to the various means of obtaining pavement images and the widely varied features 
associated with pavement distress, classification of pavement distress images presents a 
significant challenge for computer vision. Recent advances in computer vision and deep 
learning, however, have led to the development of deep-learning models for detecting 
distress in road pavement images. The models most recently used have been primarily 
centered on convolutional neural networks (CNN) (10). In this brief literature review, the 
current state of the art in CNN-based pavement distress detection is summarized. This review 
starts with discussing some of the key results noted in a recent review paper (10) on this topic 
and then examines a few other important papers that are not included in that review. 
Although these early studies are mostly for detecting the existence of pavement distresses 
and classifying them, the findings are still useful for developing a model that can detect 
pavement distresses at the pixel level and ultimately convert them into PCI measures. 

3.1 Summary of Gopalakrishnan’s Review 
Paper 

In 2018, Kasthurira Gopalakrishnan published a review paper citing some of the most recent 
studies in the sub-field of CNN-based pavement distress detection and categorization (10). 
CNN is a special type of the well-known feedforward neural networks and is widely used in 
image analysis. Similar to feedforward neural networks, a CNN also consists of an input 
layer, multiple hidden layers, and an output layer. In feedforward neural networks, neuron in 
different layers are fully connected, meaning each neuron in a layer is connected to all 
neurons in the next layer. While for CNN, the hidden layers perform a sequence of 
convolution and pooling/subsampling operations on the input data, and are not fully 
connected. The results in some of the key works reviewed by Gopalakrishnan are 
summarized below.  
 
One paper reviewed by Gopalakrishnan (11) used deep learning to eliminate images of non-
interest within a street-view image database. The NVIDIA Deep Learning GPU Training 
System (DIGITS) was used to perform this work. The author (10, 11) found that this deep-
learning model was able to generate results that are 3 percent more accurate than the well-
known CrackIT (12) tool. 
 
Zhang et al. (13) developed a CNN model to detect pavement cracks and tested it based on a 
dataset of 500 images of size 3264x2448 captured using a smartphone. These images were 
broken up by the authors into 1 million 99x99 RGB images. Of these 1 million images, 
640,000 were used for training the CNN, 160,000 were used for five-fold cross validation, 
and 200,000 were used for testing. This CNN utilized the ReLU activation function and was 
developed using Caffe. It made use of dropout in between layers in order to avoid overfitting. 
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The stochastic gradient descent (SGD) method was used for model training with a batch size 
of 48. The CNN achieved the best performance after 20 epochs of training (10, 13). 
 
Pauly et al. (14) argued that a deeper CNN structure would present better results for 
pavement crack detection. They used the same 500 images as in Zhang et al. (13) and 
examined the effects of CNN depth on crack detection. The CNN was developed with four 
convolutional layers, four subsampling or max pooling layers, and two fully connected 
layers. The SGD optimization method was employed with a batch size of 48 for model 
training. The CNN was developed using Keras with a TensorFlow backend. Pauly et al. 
concluded that the deeper CNN architecture did increase pavement distress detection success, 
but did not present strong results when tested on images from new locations (10, 14).  
 
Eisenbech et al. (15) developed the open source GAPS (German Asphalt Pavement Distress) 
dataset, which consists of 1,969 grayscale images. They utilized 1,418 images for training, 51 
for validation, and 500 for testing. Initially, they utilized the same CNN that Zhang et al. (13) 
developed. Later, a deeper network structure was considered which consisted of eight 
convolutional layers, three subsampling or max pooling layers, and three fully connected 
layers. They tested several regularization techniques including dropout, batch normalization, 
and weight decay. The experiments took three months on a computer with two NVIDIA 
Titan X GPUs. The CNN was developed using Keras with a Theano backend. In general, the 
CNN achieved higher generalizability when employing the dropout or batch normalization 
techniques to avoid overfitting (10, 15). This result is not necessarily surprising, but it is 
important to be noted for future work in the field.  
 
Maeda et al. (16) developed a smartphone App called RoadDamageDetector to detect 
pavement distress. In their study, they distinguished between eight types of pavement 
distress. Their work utilized a smartphone mounted on a car dashboard. As the car was 
driven along the road at approximately 40 km/hr, the phone captured one image each second. 
These images, which were initially size 600x600, were downsized to 300x300 before being 
used for training the CNN. In order to develop the CNN, the Single Shot MultiBox Detector 
(SSD) with Inception V2 and SSD using MobileNet frameworks were utilized. The 
smartphone App was then developed on a Nexus 5X smartphone. The RoadDamageDetector 
App achieved a precision of greater than 75 percent (10, 16). The 9,053 images used in this 
study are also publicly available. 
 
Fan et al. (17) used images from two publicly available databases, the CFD database and the 
AigleRN database. To train the CNN, they broke up these images into overlapping 27x27 
patches surrounding each pixel. These patches served as the input to the CNN. They 
developed a CNN with four convolutional layers, two subsampling or max pooling layers, 
and three fully connected layers. All layers used the ReLU activation function except for the 
output layer which utilized the sigmoid activation function. The Adam optimizer was used 
with a batch size of 256 for model training, and a dropout rate of .5 was employed along with 
weight decay to avoid model overfitting. The CNN was trained on the AigleRN database for 
43 epochs and on the CFD database for 13 epochs. The CNN was developed with 
TensorFlow (10, 17). They conducted experiments on each database to confirm the CNN’s 
generalizability. First, they trained the network on the CFD database and tested it on the 
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AigleRN database. Then, they trained the CNN on the AigleRN database and tested it on the 
CFD database. Finally, they trained and tested the CNN on a hybrid database of images from 
both the CFD and AigleRN databases. The results showed good generalizability, especially 
when the network was trained on the hybrid database. They concluded that training on 
images with differing pavement conditions helps the CNN to achieve stronger 
generalizability (17). 
 
Rather than developing a CNN from scratch, Gopalakrishnan et al. (18) applied transfer 
learning to a pre-trained CNN. They utilized the VGG-16 CNN, which was pre-trained on the 
ImageNet database. They truncated the VGG-16 CNN, and only used the convolutional 
layers of the pre-trained CNN but not the fully connected layers. Then, a new fully connected 
layer was trained on the features recorded by the truncated VGG-16 CNN. They utilized 
1,056 images from the FHWA’s publicly available pavement performance database. The 
original images from this database, size 3072x2048, were downsized to 1000x500. The 
Adam optimizer was used with a batch size of 32. A dropout rate of .5 was also utilized. The 
CNN was trained for 50 epochs. They developed this transfer learning model using Keras. 
The best results were generated by a single layer classifier which was trained on the pre-
trained VGG-16 CNN (10, 18).  
 
Gopalakrishnan et al. also showed the potential of utilizing pre-trained models with transfer 
learning for pavement distress detection based on UAS (drone) collected images (10,19). 
They conducted the analysis using a Keras implementation of the VGG-16 CNN. The size of 
the images in their study was 224x224. Dropout with a rate of .5 was used to avoid model 
overfitting, the ReLU activation function was used in the fully connected layer, and the 
Softmax activation function was used in the output layer. They trained the model for 50 
epochs with a batch size of 32. Their results showed that, by truncating the VGG-16 CNN 
before the fully connected layer and by adding a new fully connected layer, they achieved an 
accuracy of 89 percent in crack detection (19). The potential for using pre-trained models and 
transfer learning may be useful for this research.  

3.2 MatConvNet 

Cha et al. (20) reported using MatConvNet, an open source MATLAB toolbox for 
developing CNN, for the task of crack detection. They utilized 277 images of size 4928x3264 
for training and validation of their CNN. These 277 images were broken down into 40,000 
images of size 256x256 and were annotated as either containing cracks or not. They then 
designed a CNN using MatConvNet which they trained and validated on these smaller 
images. The CNN utilized the ReLU activation function and was trained using SGD with a 
batch size of 100. Both dropout and batch normalization were employed to avoid overfitting. 
For training the CNN, 32,000 256x256 images were used, and the other 8,000 were used for 
validation. The accuracies in the training and validation phases were 98.22 percent achieved 
at the 51st epoch of training, and 97.95 percent achieved at the 49th epoch of validation. 
 
Their CNN was also tested on 55 images of size 5888x3584 in order to determine if a sliding 
window technique would allow it to detect cracks in images larger than 256x256. This testing 



12 
 

showed similar results as in training and validating the CNN, with nearly 97 percent accuracy 
achieved in crack detection. Cha et al. also compared their CNN with the Canny and Sobel 
edge detectors and found that the CNN significantly outperforms these edge detectors for 
identifying cracks in pavement images. 

3.3 CNN for Crack Length Estimation 

Tong et al. (21) attempted to use a CNN not only for crack detection, but also for measuring 
crack length. In their study, the original 8,000 images were broken down into sub-images of 
size 200x200. Then, the gray-scale range of the images was cut, and gray-level histograms 
were computed. They found that the crack features in the images had an average gray-level in 
the range 50-110, while the normal pavement in the images had an average gray-level in the 
range 110-250. After the above pre-processing steps, Tong et al. developed a CNN which 
consisted of two convolutional layers, two subsampling or max pooling layers, two fully 
connected layers, and an output layer (21).  
 
Overall, the CNN was able to identify crack length in an interval of 1 cm (e.g., a 1–2 cm long 
crack, a 2–3 cm long crack) with an accuracy of 94.35 percent and a mean squared error of 
.2377. The model performed well for most 1-cm intervals, while the biggest issue was for 
classifying cracks with length in the ranges of 6-7 cm and 7-8 cm. This was likely due to a 
lack of images containing cracks of this length.  
 
The CNN was then tested on new images from four highways in central China. Forty images 
from each highway were acquired and pre-processed in the same way as the images used for 
developing the CNN. The results show that their CNN has promising generalizability (21).  
 
While the results presented by Tong et al. show the promise of using CNN for crack length 
identification, one step in their pre-processing method is unclear. That is, they were able to 
utilize gray-level histograms to distinguish between crack features and non-distressed 
pavement in their images. However, this result seems to contradict that of Chambon and 
Moliard (22), who found several years earlier that the histograms of pavement images which 
contain cracks have only one gray-level peak. Thus, Chambon and Moliard argued that the 
gray-level histogram of an image could not be used to distinguish a crack from non-
distressed pavement (22). At this point, it is unclear why there is this discrepancy in the 
results of these two studies (21, 22). 

3.4 Closing Summary of Deep-Learning 
Applications in Pavement Distress Analysis 

This brief review shows that many deep-learning methods have been developed for detecting 
pavement cracks. While these methods utilize different deep-learning frameworks such as 
Caffe, TensorFlow, and Theano, it is important to note that the ReLU activation function 
seems to be the most commonly used. Also, stochastic gradient descent was employed by 
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most studies for model training, and it seems that dropout between layers is important for 
boosting CNN generalizability. The successful use of transfer learning models by 
Gopalakrishnan et al. (18,19) may also be directly relevant to the current UAS and pavement 
distress detection work at UMass Lowell. Additionally, Tong et al. (21) were able to 
successfully use a CNN to perform crack length identification. While the study by Tong et al. 
presents important results for crack length identification using CNN, it is unclear how they 
were able to achieve such high success by using gray-level histograms to separate crack 
features from non-cracked pavement, and the generalizability of their model is uncertain. 
 
In summary, this review suggests that CNNs have been widely applied to the task of crack 
detection and present a promising way forward for pavement distress analysis. Also, the 
study by Tong et al. (21) shows the potential for CNNs in the task of pavement crack length 
measurement. Additionally, this review suggests that to develop CNN-based crack length 
detection algorithms, it is important to have a large database of pavement images with cracks 
clearly labeled. A key aspect of the work by Gopalakrishnan et al. (18, 19), transfer learning, 
appears to be an encouraging technique to address the limited labeled pavement distress 
sample size issue. Overall, the methods reviewed in this report are mostly for identifying and 
classifying cracked regions, not for directly measuring crack lengths. These methods, 
however, can be combined with traditional image processing techniques to isolate cracks 
from cracked regions and to estimate crack lengths.  
 
A very time-consuming step in developing CNN based pavement distress detection models is 
to label cracks in the training image dataset. The studies reviewed in this report used data 
from various sources, including smartphones (13, 14, 16), open source image databases (15, 
17, 18), and drones (19). It is possible to directly utilize the labeled images in these studies. 
However, this would restrict the new model to have the same input layer dimension as those 
models in the previous studies. Another issue with the existing datasets is that some images 
were taken by smartphones mounted on a dashboard. It is difficult to identify and label small 
cracks from such images manually. Therefore, the trained CNN models will not be able to 
identify them either. Lastly, these existing training datasets were labeled for identifying 
distressed regions (i.e., boxes were drawn around areas with cracks), while the ultimate goal 
of this research includes estimating crack length. Therefore, the existing datasets are useful, 
but still need to be further processed (i.e., label cracks only, not regions that have cracks) and 
expanded to cover additional crack features. 
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4.0 Data and Analysis 

Based on the literature review, this research identifies and experiments with two methods for 
pavement crack detection. One is the MATLAB toolbox CrackIT (23) and the second one is 
a deep convolutional neural networks approach (24, 25). Both methods have been applied to 
the pavement image data collected from the Fitchburg Municipal Airport (FMA) in 
Massachusetts using drones and some additional datasets obtained from the internet. With the 
kind support of MassDOT Aeronautics Division, the team made two data collection trips to 
FMA on November 1, 2018 and March 1, 2019 respectively. Prior to these two data 
collection trips, the team received some pavement images collected by MassDOT 
Aeronautics Division using drones. For the first data collection trip, the team focused on 
evaluating the pavement images provided by MassDOT and comparing them with the 
pavement conditions in the field, and the team concluded that resolution of the received 
drone images is insufficient to provide useful pavement distress information (see Section 
4.1.1). In the March 2019 field trip, MassDOT Aeronautics Division helped the team collect 
a second set of pavement images using drones. The data and the analysis results are presented 
below.  

4.1 Data Sources 

4.1.1 Fitchburg Municipal Airport (FMA) Data 

 

Figure 4.1: Drone image from the initial data set 

The team obtained two sets of data from FMA. The first set of data was collected from an 
altitude of 120 ft and provided by the MassDOT Aeronautics Division. A sample image is 
presented in Figure 4.1. The team applied CrackIT and a deep learning method to this initial 
data set. However, the results were unsatisfactory. The team then visited the FMA and took 
some pictures of the pavement using a cell phone (see Figure 4.2). Clearly, the cell phone 
image covers a smaller area but is much clearer than the drone photo taken at 120 ft above 
the ground. The previous unsatisfactory crack detection results may likely be attributed to the 
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poor image resolution, not necessarily the methods adopted. Therefore, the team decided to 
collect additional pavement image data instead of trying to fine tune the existing CrackIT and 
deep learning models.  
 

 

Figure 4.2: Pavement image taken by a cell phone 

To investigate how height may affect the image quality, the MassDOT Aeronautics Division 
helped the team conduct another data collection at FMA. Table 4.1 below shows how the 
second set of data was collected. The elevator flight captured pavement images at a single 
location but at different altitudes using both visual and thermal cameras. The purpose was to 
find out how altitude may affect the image quality (e.g., inches on the ground per image 
pixel). With such information, the team was hoping to identify a threshold altitude, beyond 
which the collected data may become much less useful. Note that such a threshold may 
depend on the types of drone and camera being used. Therefore, the conclusion in this study 
may not be generalized to other cameras and drones. The coverage flight was designed to 
collect additional runway pavement images for crack detection model development and 
testing. 

Table 4.1: Flight plan for the second drone data collection 
Flight Description System Height (ft) Coverage 

Elevator Flight Using both 
Visual and Thermal Cameras 

DJI Matrice 210/XT2 
Dual 

10-70 (at a 5 ft interval), 80-
150 (a 10 ft interval), and 200 Single Point 

Coverage Flight Using a 
Visual Camera 

DJI Inspire 2/X4S 32, 40, 50, and 60 Half Runway 
DJI Inspire 2/X4S 70, 90, 120, and 200 Full Runway 

 
Figure 4.3 shows samples of pavement images collected at different altitudes through the 
elevator flight. It can be seen that once the altitude is greater than 120 ft, the pavement crack 
details are very difficult to see. This explains why the team’s previous modeling effort was 
unsuccessful.  
 
Choosing the drone flight altitude needs to consider both the image resolution and the 
efficiency. The FMA runway is about 150 ft wide. At the 10 ft altitude, it will take a drone 10 
runs to cover the entire width of the runway (each run covers a width of 15 ft). While at the 
50 ft altitude, the drone just need 2 runs (a width of 78 ft for each run). Figure 4.4 shows 
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10 ft 40 ft 

 
 

50 ft 60 ft 

  
70 ft 120 ft 

 

 

150 ft  

Figure 4.3: Pavement image taken by the elevator flight 
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the relationships between flight altitude and field of view width and ground sample distance 
measured in inches per pixel (smaller ground sample distances mean better image quality) for 
the visual and thermal cameras used in this research. Note that both the visual and thermal 
cameras used in this study have the same ground sample distance performance. Again, 
depending on the cameras used, this conclusion may be different. However, the overall trend 
will be the same: higher altitudes will require less flights (i.e., better efficiency) but result in 
poorer image resolutions. To achieve a balance between image quality and efficiency, the 
team decided to use the images captured at 50 ft for this research.  
 

 

Figure 4.4: Ground sample distance and field of view width vs. flight altitude 

During the elevator flight, the team collected images using both visual and thermal cameras 
and the results are compared in Figure 4.5 below. In the thermal image, pixels associated 
with pavement cracks do not appear to exhibit clearer characteristics compared to those in the 
visual camera image. For deep learning based crack detection models, cracks in the training 
images have to be marked at the pixel level. This process typically is done manually. 
Therefore, being able to identify cracks with naked eyes is essential. Given the quality of the 
collected thermal images, the team decided to only focus on the visual camera data.  
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Visual Camera Thermal Camera 

Figure 4.5: Pavement image taken by the elevator flight 

4.1.2 Other Data Sources 
The team also obtained additional data from three other sources: 
 

• UMass Amherst Dataset (UAD): Prof. Charlie Schweik and his student Ryan Wicks 
helped the team collect pavement crack images using a MicaSense RedEdge M 
multispectral camera. The images were taken at the north-west corner of Parking Lot 
26 of UMass Amherst campus. A DJI Phantom 4 was used to carry the RedEdge M 
payload. The camera was mounted on a fixed platform with no gimbal such that the 
camera was angled forward approximately 10-15 degrees.  

• German Asphalt Pavement Distress (GAPs) Dataset (26): The GAPs dataset is 
captured using a mobile mapping system called S.T.I.E.R., which is manufactured 
and operated by a German engineering company LEHMANN + PARTNER GmbH. 
The S.T.I.E.R has been designed and certified by the German Federal Highway 
Research Institute (BASt) and complies with the German Road Monitoring and 
Assessment (RMA) standards. 

• Crack500 (27, 28): This dataset is collected by a group at the Temple University 
using a smartphone. It consists of 500 pavement pictures and each picture is of size 
3264 pixels × 2448 pixels.  

 
The GAPs and Crack500 datasets contain both the original pavement images and the 
annotated images as shown in Figure 4.6. The annotated images mark cracks at the pixel 
level and are essential for training/teaching neural networks models how to detect cracks. In 
Figure 4.6, black pixels in the second column represent cracks. Preparing the annotated 
images is very time-consuming. Therefore, it is beneficial to have datasets that include both 
the original and annotated images. 
 
The UMass Amherst dataset contains multispectral images taken at altitudes ranging from 20 
feet to 390 feet. Similar to the thermal images collected at the FMA, this Amherst dataset 
suggests that multispectral images do not seem to reveal more crack information than images 
captured by visual cameras. Considering the significant efforts needed to annotate the 
thermal images, the team decided not to include the Amherst data in the modeling process.  
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Original Image Annotated Image 

  

  

Figure 4.6: Sample original and annotated pavement images 

4.2 CrackIT for Pavement Crack Detection 

The team initially applied the MATLAB-based CrackIT toolbox to the initial FMA dataset. 
CrackIT provides many functions and routines to aid in the task of automated crack 
detection. A basic flow diagram describing the CrackIT method is shown in Figure 4.7. 
 

 

Figure 4.7: Flow diagram of CrackIT detection method 

The toolbox only operates on grayscale images, so once an original image from the FMA 
dataset is read into MATLAB, it is converted to grayscale using the MATLAB function 
“rgb2gray.” Initially, the toolbox was applied “out of the box” on a sample image from the 
FMA dataset, and the detected results were poor. On the first attempt (Figure 4.8), CrackIT 
detected no cracks in the sample image. Only the black background region was returned with 
no detected cracks. 
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Figure 4.8: First attempt to apply CrackIT to FMA sample image 

After adjusting some parameters in the CrackIT functions (primarily those used for white line 
detection, pre-labeling of crack regions, and converting the image to binary), CrackIT 
returned a very noisy RGB map which contained little meaningful crack detection data 
shown in Figure 4.9. 
 

 

Figure 4.9: First attempt to fine tune CrackIT parameters 

There are some differences between the images in the CrackIT database and the images in 
the FMA dataset, such as the overall complexity of the images as well as the presence of 
many filled cracks in the FMA dataset as shown in Figure 4.10. Additionally, the images in 
the FMA dataset were captured using a drone, while the images in the CrackIT database were 
obtained using traditional road survey methods. Thus, it does not seem surprising that 
CrackIT “out of the box” did not perform well on the FMA data.  
 
To address this issue, sample images from the FMA dataset were resized and broken down 
into smaller chunks. The initial size of the images was 3648x4864 pixels. The images were 
resized to 3600x4800 pixels, and were then broken down into 192 non-overlapping sub-
images of size 300x300 pixels as shown in Figure 4.11. 
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Figure 4.10: L: Sample image from the CrackIT database; R: Sample image from the FMA 
dataset 

 

 

Figure 4.11: Example chunk from FMA image 

 

 

Figure 4.12: Results of chunking image into 192 nonoverlapping chunks of 300x300 pixels and 
applying CrackIT on each chunk 

CrackIT was applied on each of these chunks individually, and the chunks were then brought 
back together to reconstruct a full RGB map of the cracks in the image. This divide-and-
conquer approach improved upon the results of applying CrackIT “out of the box” on the full 
image from the FMA dataset, but the improvement is insignificant. In particular, there were 
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still many regions of cracks which were not detected, as well as substantial issues with 
noise/error in the RGB crack map as in Figure 4.12. 
 
To further simplify the image which was fed into the CrackIT algorithm, an eight-level 
thresholding was applied to the image before chunking. This eight-level thresholding, which 
is done utilizing the MATLAB function “multithresh,” maps each pixel in the image to one 
of eight possible pixel values, greatly simplifying the distribution of pixels in the image and 
in some sense de-noising the image as shown in Figure 4.13.  
 

 

Figure 4.13: Comparison of image histogram before (L) and after (R) applying multilevel 
thresholding 

Once this thresholding was complete, the image was again broken into 192 chunks and each 
chunk was individually processed by the CrackIT algorithm. This eight-level thresholding 
step improved the results of applying CrackIT on the complex data from the FMA, leading to 
both increased and improved crack detection as well as a significant reduction in noise in the 
RGB crack map. A sample of the result is provided in Figure 4.14.  
 

 

Figure 4.14: Results of adding multilevel thresholding preprocessing step to CrackIT 
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A significant number of smoothing parameters have been tested to further improve the crack 
detection results. In each of the above trials, the smoothing parameters passed to the CrackIT 
anisotropic smoothing routine consisted of 4 iterations of smoothing using a conduction 
coefficient of 60 and a speed of .125. Further testing revealed that 2 iterations of smoothing 
with a conduction coefficient of 80, and a speed of .125 seemed to improve the crack 
detection results. Additionally, further testing at larger numbers of iterations with smaller 
conduction coefficients revealed that 16 iterations of smoothing with a conduction coefficient 
of 30 and a speed of .125 seemed to improve the results further, at least for some images, and 
at this point, these are considered to be the best parameters for smoothing. Figure 4.15 shows 
the results based on the best smoothing parameters. 
 

 

Figure 4.15: Results of CrackIT with best smoothing parameters 

 

 

Figure 4.16: Error/false detection region 
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Some issues still remain. The first is the detection of the painted black lines adjacent to the 
white lines on the runway as crack regions. The second is the detection of false positive/error 
regions (see those blue, orange, and yellow regions marked in Figure 4.16) in the RGB crack 
map by the CrackIT algorithm. These false positive regions do not resemble any structures 
present in the original image, are generally square or rectangular in shape, and fairly densely 
filled. It is unclear why the algorithm detects these regions as pavement distresses.  
 
Because of the chunking method used in the processing of the FMA images, each of these 
false positive regions is generally contained only within one 300x300 chunk of the RGB 
crack detected image. For the step in CrackIT of converting the image to binary, CrackIT 
provides two possible options which correspond to two different MATLAB methods for 
converting to binary. If the method used for binary conversion in these regions of false 
positive is changed from “imextendedmin” to “im2bw” (a change which corresponds to 
passing a 1 to the CrackIT function “computeBinImg” instead of a 2), these regions of false 
positive are greatly reduced or eliminated. However, if this method for binary conversion is 
utilized on every chunk of the original image, then very few cracks are detected and the 
resultant RGB crack map returns a poorer representation of the cracks in the original images. 
Thus, at present, there is no consistent way to eliminate these regions of false detection/error. 
 
To further investigate these regions of false positive, a survey of several of these regions (one 
of them is highlighted in Figure 4.17 below) was conducted during a field trip to the FMA. In 
general, these regions of false positive do not show any signs of square-like distresses. Some 
of the regions show some signs of pavement wear, but this is inconsistent from region to 
region. Additionally, images of these regions were captured with cell phones. These cell 
phone images were processed using CrackIT, both using the parameters found to work well 
on the FMA dataset and using CrackIT “out of the box.”  The results of a sample image are 
presented in Figure 4.18. CrackIT “out of the box” returned better results on these cell phone 
images, which is not surprising given that these images more closely resemble those in the 
CrackIT database.  
 

 

Figure 4.17: Example of false detection area inspected during field trip 

From Figure 4.18, it is clear that there are no square-like regions detected in these cell phone 
images. Upon inspection of the pavement at FMA and comparison with the drone images, it 
seems that the drone dataset does not present a completely accurate portrayal of the pavement 
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condition. For example, small, non-filled crack regions which are visible when walking on 
the pavement at the airport (and would be visible during a traditional pavement survey) are 
too small to be visible in the drone images from the initial data collection. A lower flyover 
height might help to improve the results of applying CrackIT to the drone images. 
Alternative smoothing methods, such as that of (29), have also been tested but have not yet 
improved the results. With further testing, alternative smoothing methods might also lead to 
improved results.  
 

 

Figure 4.18: a) Cell phone image of false detection area; b) CrackIT applied on cell phone 
image using best parameters from processing FMA dataset; c) results of applying CrackIT “out 

of the box” on cell phone image 

Some work on crack depth detection has also been conducted utilizing the Pix4D platform. 
Once a set of images from a drone flight are loaded into Pix4D, the software reconstructs a 
map of the terrain. From this reconstructed map, it is possible to calculate volume data for 
objects in the image. For example, utilizing a sample project provided with Pix4D, it is 
possible to calculate the volumes of houses and cars in the images. However, volume 
calculations of crack regions using Pix4D have not been successful, with the software 
generally computing a volume of 0 for any given small crack region. This difficulty is not 
surprising, given the large difference in the height of drone (e.g., 50 ft) flyover when 
compared with crack depth (e.g., 1 inch). Additionally, it is not surprising given the difficulty 
in visualizing open crack regions in the drone images. 
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4.3 Deep Neural Networks for Pavement 
Crack Detection 

The team also researched two deep neural networks approaches. The first one aims at 
detecting cracks using the transfer learning technique to avoid the time-consuming image 
annotation process. The second one is based on a promising deep learning approach called U-
Net (24). The detailed modeling processes are described in the following two subsections.  

4.3.1 Crack Detection 
Developing deep learning models for object (e.g., crack) detection usually requires a huge set 
of training data. To address the lack of training data issue, transfer learning is often adopted, 
which is an important and useful means of adapting pre-trained deep learning models to new 
datasets, either when the new dataset is small, when prototyping time is important, or both. In 
(18) and (19) transfer learning was applied to crack image classification using the VGG16 
Convolutional Neural Network (CNN) as the base network. This network was initially 
trained on the ImageNet Database (31), and was used as the base network for training a crack 
image classifier. In this present work, transfer learning is applied to the task of crack object 
detection. The work reported in this subsection is based on the initial dataset collected at 
FMA. 
 
In order to accomplish this goal, many steps were followed. First, a platform and CNN was 
selected for transfer learning. In this work, the Tensorflow Object Detection API (32) was 
selected as the platform for training a new object detector on the initial FMA dataset. This 
API provided a variety of models which were pre-trained on various massive image 
databases such as COCO (33). In this work, the SSD Mobilenet_V1 network pre-trained on 
COCO was selected as the base network for training the new detector for the FMA data. This 
network architecture was also utilized for training a crack detector by Maeda et al. (30).  
 
In order to train an object detection network, images were labeled with ground truth 
bounding boxes which differentiate crack and non-crack regions. Additionally, the SSD 
Mobilenet network was trained using images of size 300x300 pixels. To prepare a dataset to 
develop the object detector, three sample images from the initial FMA dataset were resized 
from 3648x4864 pixels to 3600x4800 pixels, and were then broken into 192 chunks of size 
300x300 (just as was done above in the section on CrackIT and shown in Figure 4.11). Each 
of these 300x300 chunks was then labeled with ground truth bounding boxes using the 
Python tool LabelImg (34). An example is shown in Figure 4.19. Note that in Figure 4.19, 
the filled crack area is annotated by a rectangular bounding box. Therefore, utilizing this SSD 
Mobilenet network model, cracked areas were detected and marked also by a rectangular box 
instead of at the pixel level as in Figure 4.6. 
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Figure 4.19: Screenshot of utilizing LabelImg to draw ground truth bounding boxes 

LabelImg automatically generates xml files which contain the image annotation (bounding 
box) data. However, to utilize the Tensorflow Object Detection API, the image data must be 
in TFRecord format. Thus, these xml files of bounding box data were converted to TFRecord 
files, which could then be utilized for transfer learning. In total, 576 images were used, with 
490 (~85%) utilized for training and 86 (~15%) for testing. 
 
The first attempt to develop a model on this data was trained for 20,000 steps, utilized a 
constant learning rate of .0001, did not use data augmentation in the pre-processing, did not 
utilize dropout, and eventually attained a mAP (mean average precision) of ~.3176.1 There 
seemed to be issues with the model overfitting the training data, with the testing loss 
ultimately at a high value of ~22. The results of this model are shown in Figure 4.20, in 
which the x-axes are for neural network training iteration, and the y-axes are for learning 
rate, mAP, and loss function value at each iteration, respectively. The learning rate, mAP, 
and loss function value do not have units.  
 

 

Figure 4.20: From left to right: Learning rate, mAP, loss for the first attempt 

In order to deal with the issue of overfitting, data augmentation pre-processing steps were 
added to the training of the model in the second attempt. These included random flipping and 
cropping of the training data. After 100,000 training steps with an initial learning rate of 

                                                 
1 mAP is calculated at an IoU threshold of .5. 
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.000001, decaying to an ultimate value of 3.7735e-7, and utilizing dropout at a rate of .2, the 
network achieved a higher mAP of .4653 as in Figure 4.21.  
 

 

Figure 4.21: From left to right: Learning rate, mAP, loss for second attempt 

To test the model further, a new random split of the training and testing data was conducted 
in the third attempt. A model was trained and tested on this new split for ~185,000 steps with 
a learning rate of .000001, which decayed every 5,000 steps to a final rate of 1.4989e-7. Data 
augmentation was utilized, as was a dropout rate of .2. Ultimately, a mAP of .5867 was 
achieved on this split as in Figure 4.22. This was a further improvement over previous 
results. 
 

 

Figure 4.22: From left to right: Learning rate, mAP, loss for third attempt 

 

 

Figure 4.23: Two example results of transfer learning: Right subimage of each pair is the 
ground truth, while left is bounding box predicted by neural network. 

One issue for the Tensorflow Object Detection API based crack detector is the detection of 
small, non-filled crack regions. The performance of deep learning methods depends heavily 
on the training data. There are significantly more filled crack regions present in the initial 
FMA dataset than non-filled regions. Therefore, the developed detector is unable to 
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consistently or accurately detect non-filled cracks. In order to continue to improve the results 
of the transfer learning object detection method, several potential steps may be taken 
including generating more ground-truth labeled (i.e., boxed) training data, continued 
hyperparameter fine-tuning, and possibly utilizing a different base network for transfer 
learning. Another issue is that the Tensorflow Object Detection API method only boxes the 
crack regions and does not tell how long or wide those cracks are. To address these issues, a 
U-Net deep learning model (24) is adopted and described in the next subsection. 

4.3.2 Crack Segmentation 
Given the promising performance of deep neural networks for image segmentation and object 
detection, this study applied a U-Net model to analyzing pavement images. U-Net is a CNN 
architecture initially developed for segmentation of neuronal structures in electron 
microscopic stacks. In its original application, it was utilized to learn a segmentation mask of 
neuronal boundaries (24) in Figure 4.24.  
 

 

Figure 4.24: Example of neuronal image and segmentation 

The task of segmenting neuronal boundaries is similar to the task of segmenting cracks and 
creating a map of the cracks in a pavement image. The Keras implementation of U-Net (25) 
was utilized in this work. The team started to experiment with the U-Net model using the 
initial set of FMA data. Since this U-Net network was designed for grayscale images of size 
512x512, all input images were first converted to grayscale. Some of these images were then 
resized to be broken up into non-overlapping blocks of size 512x512 if needed. 
 
Annotating pavement images for U-Net is at the pixel level, and it is even more time-
consuming than labeling images for the Tensorflow Object Detection API in the previous 
subsection. Therefore, this study utilized the Crack500 dataset that consists of 2,244 already 
annotated images. In addition, this study selected some drone images obtained at the 50 ft 
altitude during the second FMA data collection trip. These images (5472 pixels x 3648 
pixels) were further divided into smaller pieces (512 pixels x 512 pixels), and 160 of them 
were randomly chosen. These new images were then annotated manually (as illustrated in 
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Figure 4.6) and used for model training and testing. Table 4.2 below shows how the input 
data was separated into training and testing datasets. 

Table 4.2: Data used in U-Net modeling 
Dataset Name Total Images Training Images Testing Images 

FMA 160 70 90 
Crack500 2,244 1,896 348 

4.3.2.1 Measurement of Performance 
Crack segmentation is essentially a classification task at the pixel level. Furthermore, it is a 
difficult classification problem due to the highly imbalanced instances, i.e., much less crack 
pixels than non-crack pixels. To accurately measure the performance of the proposed model, 
the following F1 score, Precision, and Recall metrics are presented first, and later an 
Intersection over Union (IoU) is introduced and used in this research. 
 

𝐹𝐹1 = 2 ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

 (1) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (2) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (3) 

 
Where TP denotes True Positive, FP denotes False Positive, and FN denotes False Negative. 
F1 considers both Precision and Recall, and is calculated as the harmonic average of 
Precision and Recall. F1 score value ranges between 0 and 1. Larger F1 scores mean better 
model performances.  
 
Many previous classification studies consider Precision as the main performance metric, 
which can be problematic. Precision may work if different outcome categories have 
approximately the same number of observations. However, pavement crack datasets are often 
characterized by a highly imbalanced class distribution. Based solely on the Precision 
performance metric, the best-performing model may favor non-crack pixels and generate 
poor results for crack pixels. Such a model does not provide much useful information for 
crack detection and may lead to biased if not erroneous conclusions. Therefore, F1 (see Eq. 
(1)) is often used in recent studies. 
 
In this research, another intuitive and informative metric, IoU, is introduced and adopted. As 
shown in Figure 4.25 (35), IoU is defined as the area of intersection divided by the area of 
union. Intersection represents the area covered by both the ground truth and prediction, while 
union includes the area in either the ground truth or prediction. If the prediction matches the 
ground truth perfectly, then the corresponding IoU would be 100%.  
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Figure 4.25: Illustration of how IoU is defined 

4.3.2.2 Modelling 
Data augmentation was employed to increase the amount of training data for the U-Net 
model. For hyperparameters of tuning, The Adam optimizer was utilized with a learning rate 
of .0001. The number of training episodes was set to 1000, and binary cross-entropy was 
adopted as the loss function. ReLu activation function was used for all layers except for the 
last one, which utilized the sigmoid function. Additionally, the batch size was set to 5. 
 
Both the Crack500 and FMA datasets were used to train the U-Net model. To find out 
whether a U-Net model trained on the Crack500 dataset can perform well on the FMA 
dataset, two U-Net models were generated. The first U-NetCrack500 model was trained solely 
based on the Crack500 dataset using 1,896 images (See Table 4.2). The second U-
NetCrack500&FMA model was trained using 1,896 Crack500 and 70 FMA images.  
 
The U-NetCrack500 model was initially evaluated based on the Crack500 data using the 
remaining 348 images set aside for testing, and its performance was very promising. This 
model was further tested on the FMA data and resulted in less accurate performance, which 
is not surprising and could be attributed to the differences between the two datasets. The 
Crack500 dataset was collected using a camera about 7 ft above the ground, while the FMA 
dataset was collected 50 ft above the ground. Given the limited size of the FMA dataset, 
training a U-Net model solely based on it is difficult. Therefore, the U-NetCrack500&FMA model 
was developed and tested on the FMA data. The detailed model evaluation results are 
presented in the following section.  
  

Ground Truth Prediction 

Intersection Union 
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4.3.2.3 Results 
Table 4.3 presents the performance results of the two U-Net models and compares them with 
the results reported in a 2019 research paper that also used the Crack500 data. From the 
evaluation results based on the Crack500 data, U-Net clearly outperforms (IoU=0.6) the 
benchmark FPHBN model (28). 
 
However, the Crack500 data was collected using cell phones, while the FMA data was 
captured using a drone 50 ft above the runway. Due to the differences between the Crack500 
and FMA datasets, applying the U-NetCrack500 model directly to the FMA data did not 
generate satisfactory results (IoU=0.3). By combining only 70 annotated images from the 
FMA dataset with the Crack500 data for model training, the U-NetCrack500&FMA model was 
able to produce significantly better performance (IoU=0.56) compared to the U-NetCrack500 
model on the FMA testing data.  

Table 4.3: Model performance comparison 
Evaluated 
based on 

Model Performance  
(IoU) 

Crack500 Benchmark FPHBN model 
from an IEEE 2019 paper (28) 

0.49 

U-NetCrack500 0.6 
FMA U-NetCrack500 0.3 

U-NetCrack500&FMA 0.56 
 
The IoU results are useful for model comparision, since large values represent better 
performances. In addition, Figure 4.26 is included to visually illustrate the prediction 
performances of the U-NetCrack500 model on some randomly selected Crack500 testing data. 
Images from the first row are the original pavement data; images in the second row are the 
ground truth (i.e., true cracks); and images in the last row are the prediction results generated 
by the U-NetCrack500 model. Comparing the ground truth and prediction results in Figure 4.26 
suggests that the U-NetCrack500 model performs very well and is able to accurately capture all 
major cracks. 
 
Similarly, the prediction results of the U-NetCrack500 and U-NetCrack500&FMA models on the 
FMA testing data are further illustrated in Figure 4.27. A comparison of Figures 4.26 and 
4.27 clearly suggests that the Crack500 and FMA datasets are very different. Crack500 data 
has a higher resolution and differences between cracks and non-cracks can be easily 
distinguished. On the other hand, FMA data overall is darker and has a lower resolution. 
Some of the cracks are difficult to identify even manually with human intelligence. In Figure 
4.27, the third and fourth rows show the results of the U-NetCrack500 and U-NetCrack500&FMA 
models, respectively. Compared to the ground truth (i.e., the 2nd row), the U-NetCrack500&FMA 
model clearly is able to identify more cracks than the U-NetCrack500 model. Given the limited 
time, this research only annotated 160 FMA images. If more annotated FMA images are used 
in U-Net training, its prediction performance is expected to be further improved. 
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Note: 1st Row: Original Images; 2nd Row: Ground Truth; 3rd Row: Predictions 

Figure 4.26: Prediction results of U-NetCrack500 on Crack500 data 

 

 
Note: 1st Row: Original Images; 2nd Row: Ground Truth; 3rd Row: U-NetCrack500 Predictions; 4th Row: U-

NetCrack500&FMA Predictions 

Figure 4.27: Prediction results of U-NetCrack500 and U-NetCrack500&FMA on FMA data  

Additionally, the developed U-NetCrack500 model was also applied to some pavement images 
generated by a laser pavement scanning system. Such a system is usually mounted on a 
vehicle (about 2 meters/6.6 ft above the ground) and used by many state departments of 
transportation to collect highway pavement condition data. The testing results are presented 
in Figure 4.28. The highway pavement images have not been annotated and the comparison 
is directly between the raw images and the predicted results. The highway pavement images 
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are taken about 2 meters/6.6 ft above the ground and are closer to the Crack500 data in terms 
of resolution than the FMA data. This probably explains why the U-NetCrack500 model’s 
performance on this dataset is very encouraging, although it is trained on a different set of 
images. This suggests that the U-NetCrack500 model has great generalization ability and can 
potentially be used directly by highway departments on datasets that are similar to the 
Crack500. 
 

 
Note: 1st Row: Original Images; 2nd Row:- Predictions 

Figure 4.28: Prediction results of U-NetCrack500 on highway pavement image data  

 

 

Figure 4.29: Application of U-Net to initial FMA data 

Additionally, the U-Net model has been applied to the first set of FMA images (see Section 
4.1.1) taken at 120 feet above the FMA runways. A subset of the images was used to train the 
U-Net model, which was evaluated on some separate testing images. A sample predicted 
image is provided in Figure 4.29. Again, the performance of U-Net appears to be very 
promising. 
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4.4 Closing Summary of Data and Analysis 

This pilot study collected runway pavement images using UAS from Fitchburg Municipal 
Airport (FMA). These images together with some online pavement image datasets were used 
to evaluate the crack detection performance of a MATLAB toolbox called CrackIT and two 
deep learning methods. Overall, the two deep learning methods outperformed the CrackIT 
toolbox. Both deep learning methods are able to generate satisfactory crack detection results. 
However, the SSD Mobilenet_V1 network only highlights the detected cracks with 
rectangular boxes. On the other hand, the U-Net model can detect cracks at the pixel level, 
which is an important feature needed for calculating PCI values. 
 
Deep learning methods typically require a huge set of annotated (labelled) training datasets 
for model development. This can sometimes be a major obstacle for the applications of deep 
learning models. This pilot study utilized some free pavement image data that has already 
been annotated together with a small set (70) of annotated pavement images captured at the 
FMA by a drone, and the trained U-Net model performed well on both the FMA testing data 
and some images collected using a laser pavement scanning system, suggesting that the 
develop model has great potential to be used for both airport runways and highway 
pavements alike. 
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5.0 Conclusions and Future Work 

This research consists of two major components: (1) a review of existing studies on 
pavement conditions analysis and related UAS applications; and (2) evaluation of promising 
methods for pavement condition data analysis. The literature review results suggest that the 
use of UAS for pavement condition assessment is still in its infancy with little experience and 
information available. For integration with UAS, photogrammetry appears to be the most 
popular technique, while the use of multi- or hyperspectral imaging is getting increasing 
attention. The integration of LiDAR with UAS for pavement condition assessment has not 
been thoroughly explored yet, although it does show potential.  
 
Besides the abovementioned sensing technologies, new algorithms for analyzing pavement 
condition data are also reviewed with a specific focus on deep learning. The results suggest 
that many deep neural networks models have been developed to detect cracks from images 
and achieved considerable success. However, most of the methods are designed to identify 
and highlight cracked regions with a rectangular box, instead of identifying cracks at the 
pixel level, which is an important step towards calculating pavement’s PCI value. To develop 
deep neural networks based crack detection algorithms, it is important to have a large 
database of pavement images with cracks clearly labeled. Transfer learning appears to be one 
effective way to get around this issue. 
 
The research also collects some runway pavement images using UAS from Fitchburg 
Municipal Airport (FMA). These images are used to evaluate the pavement crack detection 
performance of a MATLAB toolbox called CrackIT and two deep learning methods. Overall, 
the two deep learning methods outperform the CrackIT toolbox. Among the two deep 
learning methods, the U-Net model has the advantage of generating crack detection results at 
the pixel level. It also performs very well on the FMA data given a limited training dataset.  
 
Going forward, additional research is needed to understand how to determine PCI values 
from the pixel-level crack detection results, and compare the PCI values with the assessment 
results of qualified engineers. Also, a programmable procedure needs to be established to 
generate reliable and consistent PCI outcomes from UAS images. Recently, multi- or 
hyperspectral imaging has received much attention. The integration of such sensors with 
UAS for pavement condition assessment could be another interesting research direction. To 
facilitate highway applications, fixed wing drones can be considered to further expand the 
coverage and speed of UAS based pavement condition data collection, and their applicability 
needs to be evaluated. 
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