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Executive Summary 

This Evaluation of UAS Highway Speed-Sensing Applications was undertaken as part of the 
Massachusetts Department of Transportation (MassDOT) Research Program. This program is 
funded with Federal Highway Administration (FHWA) State Planning and Research (SPR) 
funds. Through this program, applied research is conducted on topics of importance to the 
Commonwealth of Massachusetts transportation agencies.   
 
Unmanned Aerial Systems (UAS) capability improvements and their ever-increasing use 
across industries provide an opportunity to revolutionize traffic data collection techniques. 
Previously, aerial studies of highway vehicle speeds were infeasible due to the high cost of 
helicopters, and because studies conducted at ground level could only capture speed data at 
specific locations along roadways. For example, MassDOT’s 2017 document “Procedures for 
Speed Zoning on State and Municipal Roadways” states that “it would be ideal to have speed 
checks at an infinite number of locations so that the 85th percentile speed could be computed 
at all points.” To address this need, the use of UAS to collect traffic speed data on roadways 
is being investigated. In addition to speed data collection, UAS have the potential to improve 
the efficiency and accuracy of other transportation data collection such as origin-destination 
studies. 
 
The objectives of this research are to: 

• Conduct a field study comparing the use of UAS to traditional speed data collection 
instruments on roadways in order to evaluate the feasibility of UAS as a traffic data 
collection tool; 

• Develop a methodology defining how aerial data can be utilized in the speed limit–
setting process for surface transportation needs by using the data collected in the 
field; 

• Explore additional UAS traffic data collection uses for surface transportation needs 
beginning with an exploration of origin-destination studies.  

 
The drone used in this study was a DJI Phantom 3 Pro. This drone’s camera has a field of 
view (FOV) of 94 degrees and was flown at varying heights below the maximum allowable 
altitude of 400 feet. The altitude of each flight was chosen based on the minimum height to 
capture the full intersection or roadway segment. 
 
Using the data collected in the field and a literature review, a methodology was developed to 
understand the accuracy of the data and how it may be useful in the speed-limit setting 
process. Two studies were completed to understand the accuracy and cost of using UAS as 
compared to traditional methods: one for volume data collection and another for speed data 
collection. Using UAS and video processing, our method was found to have a count accuracy 
of 93% on average. Further, the speed data collection using our developed method had a 
relative error on average of 6.6%. At 50 mph, this error would be +/- 3 mph. For the speed-
limit setting process, more detailed speed data may be required. However, it is noted that the 
speeds collected through our method were in the same range as the errors experienced 
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through the use of LiDAR and radar sensors, which are traditionally used today. These 
sensors have a range of error from -1 mph to +3 mph.  
 
Compared to traditional methods, our developed method has a similar upfront monetary cost 
of equipment. The large difference between the methods is the time-cost. One UAS flight is 
able to capture all of the vehicles passing through a location through the use of a video; 
however, LiDAR and radar sensors, when used manually, only collect one vehicle’s data at a 
time. Thus, UAS on medium to high volume roadways have the potential to be more time-
cost effective than traditional methods. 
 
In order to achieve successful implementation of the developed methods, future work is 
needed. The algorithms and processes used to automate the analyses currently require a deep 
understanding of image processing and a strong proficiency in an engineering language, such 
as Matlab or Python. 
 
Future work should focus on training a diverse multitude of models so that the computer 
vision processing can be applied to any UAS video with minimal human intervention. These 
models would then need to be incorporated into a software program with a graphical user 
interface (GUI). Such a program and interface would enable any user to process their own 
UAS videos with minimal training and expertise. 
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1.0 Introduction 

This Evaluation of UAS Highway Speed-Sensing Applications was undertaken as part of the 
Massachusetts Department of Transportation (MassDOT) Research Program. This program is 
funded with Federal Highway Administration (FHWA) State Planning and Research (SPR) 
funds. Through this program, applied research is conducted on topics of importance to the 
Commonwealth of Massachusetts transportation agencies.   
 
Unmanned Aerial Systems (UAS) capability improvements and their ever-increasing use 
across industries provide an opportunity to revolutionize traffic data collection techniques. 
Previously, aerial studies of highway vehicle speeds were infeasible due to the high cost of 
helicopters and because studies conducted at ground level could only capture speed data at 
specific locations along roadways. For example, the Massachusetts Department of 
Transportation’s (MassDOT’s) 2017 document “Procedures for Speed Zoning on State and 
Municipal Roadways” states that “it would be ideal to have speed checks at an infinite 
number of locations so that the 85th percentile speed could be computed at all points”(1). To 
address this need, the use of UAS to collect traffic speed data on roadways is being 
investigated. In addition to speed data collection, UAS have the potential to improve the 
efficiency and accuracy of other transportation data collection such as origin-destination 
studies. 
 
The objectives of this research are to: 

• Conduct a field study comparing the use of UAS to traditional speed data collection 
instruments on roadways in order to evaluate the feasibility of UAS as a traffic data 
collection tool; 

• Develop a methodology defining how aerial data can be utilized in the speed limit–
setting process for surface transportation needs by using the data collected in the 
field; 

• Explore additional UAS traffic data collection uses for surface transportation needs 
beginning with an exploration of origin-destination studies.  

 
Historically, speed limits were set based on the design speed of the roadway and then later 
adjusted based on the 85th percentile operating speeds of motorists traveling on that 
roadway. In recent years, this methodology has been called into question due to rising fatality 
rates among vulnerable road users (i.e., bicyclists and pedestrians). Expert systems have been 
developed to assist engineers and public officials during the speed limit-setting process 
better. While these systems do account for crash history and land use, operating speeds are 
still a key input. As such, there exists a need to improve upon speed collection procedures by 
developing a low-cost methodology to capture continuous vehicle speeds that would allow 
for precise locations of speed zone transitions to be known. 
 
Previous literature shows that small Unmanned Aircraft Systems (sUAS) are already being 
used for numerous civil engineering applications such as bridge inspection and crash 
reconstruction. This research seeks to expand sUAS applications to include speed data 
collection for the reasons mentioned above, while also including turning movement counts 
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(TMCs) and origin-destination (OD) studies. TMCs and OD studies are costly, yet important, 
early steps in transportation infrastructure studies. These studies provide information to the 
design engineers on the base traffic conditions of the roadway network. Such studies are 
typically performed using human technicians placed at the intersections being studied. sUAS 
have the potential to reduce the individual human hours, which can provide cost-savings for 
these studies. It is noted that all UAS in this section refer to sUAS, unless otherwise 
specified. This type of aircraft is less than 55 pounds and therefore only requires a Part 107 
license to operate commercially; heavier aircraft require more advanced operators and 
exemptions under the Federal Aviation Administration (FAA).  

1.1 Literature Review 

UAS have been utilized in the transportation industry in recent years to decrease cost and 
increase safety (2). This new lightweight, low-cost technology is portable and applicable for 
many different tasks, including bridge inspections, 3D mapping, and crash reconstruction (2). 
These devices are able to collect detailed information and capture aerial images with 
generally little amounts of effort and time. In recent years, UAS have begun to be 
appreciated for applications in traffic monitoring (2–7). Their ability to capture video above a 
roadway can be combined with object-tracking techniques to track vehicles and extract 
vehicle data such as speed, counts, and trajectory data (8–10). This data collection method 
can be useful for traffic engineering studies and can save time in the field, as UAS are able to 
collect large amounts of data in shorter amounts of time than traditional methods. In 
Massachusetts, the process for setting speed limits requires data collection through the study 
of many locations (1). MassDOT acknowledges that, ideally, observations are taken 
continuously throughout a proposed speed zone. However, in their most recent edition of 
“Procedures for Speed Zoning on State and Municipal Roadways” in 2017, MassDOT asserts 
that continuous data is not practical to collect (1). With UAS technology, continuous speed 
data collection becomes possible.  
 
Speed is a substantial contributor to crashes in the United States. From 2005 to 2014, 
speeding was a factor in over 112,000 fatalities, representing 31% of all traffic fatalities 
during that period (11). As speed limits promote roadway safety, they must be set reasonably 
and appropriately; they must reflect the roadway environment and driver expectations. If 
operating speed data is able to be collected continuously along a study area, providing more 
detailed data, then the operating speeds in that area would be better understood. With this 
higher level of understanding, it is expected that this data would result in speed limits that are 
more effective and promote increased safety. Overall, using UAS for speed data collection in 
the speed limit–setting process has the potential to improve safety and increase efficiency for 
the public agencies responsible for the process. 

1.1.1 Speed Limit Setting 
Traditionally, speed limits on newly constructed roadways are established from the design 
speed of the roadway segment. Generally, many speed limits have remained unchanged since 
they were set during original construction, but are no longer appropriate for the current 
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conditions. Speed limit modification studies are induced in different ways, including through 
town or city officials receiving complaints from the public or through an investigation of 
crash history. 

1.1.1.1 Speed Limit Selection Process 
State and local governments are responsible for the speed limit selection process for 
roadways in the United States (12). The National Cooperative Highway Research Program 
Report 500, which provides guidance on the Strategic Highway Safety Plan of the American 
Association of State Highway and Transportation Officials (AASHTO), states that a speed 
limit should depend on four factors: design speed, vehicle operating speed, safety experience, 
and enforcement experience (13). Design speed is based on a major portion of the roadway, 
not necessarily its most critical design feature, such as a sharp curve (13). As many design 
factors, such as adjacent land use and road type, for example, are based on anticipated use, a 
design speed does not always match the actual operating speed of a roadway (11). Vehicle 
operating speed is considered from a range of 85th percentile speeds taken from various spot-
speed surveys of free-flowing vehicles at specific points on a roadway. The 85th percentile 
speed is widely recognized as the most utilized analytical method for selecting the posted 
speed limit as it includes many drivers’ speeds, or rather 85% of vehicles on a roadway are 
not exceeding that speed (11, 13). However, the National Transportation Safety Board 
concluded in its 2017 Safety Study that “the MUTCD (Manual on Uniform Traffic Control 
Devices) guidance for setting speed limits in speed zones is based on the 85th percentile 
speed, but there is not strong evidence that, within a given traffic flow, the 85th percentile 
speed equates to the speed with the lowest crash involvement rate on all road types” (11). 
Additionally, a 2016 Insurance Institute for Highway Safety report stated that the 85th 
percentile speed was not a stationary point, but rather a moving target that increases when 
speed limits are increased (14). 
 
Safety experience, or crash frequencies and outcomes, are also considered in the AASHTO 
guidance of the speed setting process (13). To consider factors other than operating speed, 
such as crash history,  in a consistent manner, the Federal Highway Administration (FHWA) 
developed an expert web-based system, known as USLIMITS2. This tool is designed to help 
practitioners set “reasonable, safe, and consistent speed limits for specific segments of roads” 
(15). The input variables into the system include road function, crash history, pedestrian 
activity, and existing vehicle operating speeds. For engineers, the system can provide an 
objective second opinion (15). Enforcement experience is the final factor that is considered 
by AASHTO in the process of setting speed limits (13).  
 
Within the Commonwealth of Massachusetts, the process for establishing new speed limits 
depends upon roadway ownership (1). MassDOT procedures declare that in each case of 
exploring a new speed limit, an engineering study must be completed, which includes speed 
data collection based on free-flow traffic. The locations in which this speed data must be 
collected is dependent upon locality and uniformity of both physical geometric conditions 
and traffic conditions, but is typically spaced at intervals equal to or less than 0.25 miles (1). 
With a potential of long roadway sections of even just five miles or longer in need to be 
studied, the minimum number of study locations can be large. Currently, it is in general 
practice to collect speeds using a RADAR or LiDAR gun on the side of a roadway outside of 
plain view during weekday, off-peak hours under ideal weather conditions (1). These devices 
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can only collect speed at a singular point along a roadway. MassDOT acknowledges that 
ideally these observations would be taken continuously throughout a proposed speed zone. 
However, in their most recent edition of “Procedures for Speed Zoning on State and 
Municipal Roadways” in 2017, MassDOT asserts that continuous data is not practical to 
collect (1). At each study location, a minimum of 100 or more speed observations must be 
recorded in each direction; on low traffic volume roadways, observations may end after two 
hours if that value is not reached (1). Depending on the number of study locations, this can 
be a time-consuming and expensive process. LiDAR guns themselves cost $2,000 to $3,000 
(16). As a possible example, for a five mile stretch of roadway with 750 vehicles per hour, 
data would need to be collected at 20 locations. At each of those locations, the technician, or 
data collector, would have to manually use their LiDAR gun to record the speed of a vehicle 
and then write it down on their data sheet. In these specific roadway conditions and assuming 
that half of the vehicles travel at free-flow speed (375 vehicles per hour), 100 vehicles 
worthy of data collection would pass by the technician after just 16 minutes. However, not 
every consecutive vehicle can be recorded by the technician, as multiple vehicles may pass 
close to the same time. Given this, it is assumed that it would take the technician 
approximately 20 minutes to collect the data at a single location. Multiplying this by 20 
locations, it would take the technician approximately 6.7 hours of just data collection to 
obtain enough data for this type of study. It is noted that this time does not include travel 
time between the site locations and filling out summary sheets of each location. After field 
work, this data is now in paper form, so all 2,000 recorded speeds must be manually input 
into a computer and then checked by another technician. This may take approximately four 
labor hours in total. Thus, just for this fieldwork data collection process of the vehicle speeds, 
approximately 11 labor-hours are needed.  
 
For each study collection in the field, a “Sheet Distribution Worksheet” is required to be 
filled out with the following information: 95th percentile speed; 85th percentile speed; 50th 
percentile speed; mode; and pace (1). Further, a “Speed Control Summary Sheet” must be 
prepared at each study location, which requires all existing geometric conditions and 
constraints to be noted and mapped, including vertical curves, grade (if known), traffic 
volumes, side streets and major driveways, and adjacent land uses (1). Finally, among other 
factors in the speed setting process, such as crash history, the collected speeds are analyzed 
to create a safer speed limit for a given length of roadway (1). After a new speed limit is set, 
it is recommended in MassDOT procedures that a follow-up study be completed, requiring 
more time in the field and cost (1). 

1.1.1.2 Point Speed Capture Limitations in the Speed Setting Process 
Traditionally, speed data collection methods have utilized point speed capture, with 
continuous speed data considered impractical to collect (1). Point speed capture devices, such 
as RADAR, LiDAR, pneumatic tubes, and inductive loops, can each only collect speed data 
at a specific point along a roadway. As described above, the speed limit-setting process 
requires the existing operating speed along a study section of roadway to be fully analyzed at 
multiple points along the roadway. Utilizing point speed capture devices can be an expensive 
and time-consuming process over a stretch of roadway. Continuous speed data, if it is able to 
be collected along a roadway segment, would provide benefits such as inexpensive collection 
and a shorter turnaround time. Additionally, continuous data collection could provide new 
opportunities in the speed limit-setting process, such as determining specific locations where 
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the speed limit should change. Today, smartphone apps and GPS devices are able to capture 
this data; however, a shortcoming of this type of data collection is that it is not entirely 
limited to free-flow speeds, as there is a lack of information related to the time headway 
between vehicles (16, 17). 
 
As point speed capture data collection devices only allow for speed data to be collected at a 
single point along a roadway, only time-mean speed can be collected. According to the 
FHWA Travel Time Data Collection Handbook, time-mean speed is the “arithmetic average 
speed of all vehicles for a specified period of time” (Equation 1-1) (18). This differs from 
space-mean speed, which is defined as the “average speed of vehicles traveling a given 
segment of roadway during a specified period of time and is calculated using the average 
travel time and length for the roadway segment” (Equation 1-2) (18). In general, time-mean 
speed is associated with a point over time and space-mean speed is associated with a section 
of roadway. It is also stated that the direct collection of space-mean speed, rather than time-
mean speed, is necessary to compute a theoretically correct speed (18, 19). 

Time-Mean Speed: 𝑣𝑣𝑇𝑇𝑇𝑇𝑇𝑇������ = ∑𝑣𝑣𝑖𝑖
𝑛𝑛

=
∑𝑑𝑑
𝑡𝑡𝑖𝑖
𝑛𝑛

 (1-1) 

Space-Mean Speed: 𝑣𝑣𝑇𝑇𝑇𝑇𝑇𝑇������ = 𝑑𝑑
∑𝑡𝑡𝑖𝑖
𝑛𝑛

= 𝑛𝑛×𝑑𝑑
∑𝑡𝑡𝑖𝑖

 (1-2) 

 
where: 𝑑𝑑 = distance traveled or length of roadway segment 
 𝑛𝑛 = number of observations 
 𝑣𝑣𝑖𝑖 = speed of the ith vehicle 
 𝑡𝑡𝑖𝑖 = travel time of the ith vehicle 

1.1.2 Impacts of Speed Limits 
Speed limits are often a point of interest and controversy in a community. FHWA conveyed 
this aspect through their report “Methods and Practices for Setting Speed Limits: An 
Information Report” by stating, “Selecting an appropriate speed limit for a facility can be a 
polarizing issue for a community. Residents and vulnerable road users generally seek lower 
speeds to promote quality of life for the community and increased security for pedestrians 
and cyclists; motorists seek higher speeds that minimize travel time. Despite the controversy 
surrounding maximum speed limits, it is clear that the overall goal of setting the speed limit 
is almost always to increase safety within the context of retaining reasonable mobility” (12). 
In MassDOT’s own guide of procedures for speed zoning, this statement is referred to while 
reinforcing that speed limit setting is no easy task. This is why Massachusetts only 
establishes posted speed limits after an engineering study has been conducted (1). Thus, as 
many crashes are due to speeding as described in this section, speed limit-setting must be 
done with care to ultimately create the safest roadway environment.  
 
The National Highway Traffic Safety Administration considers a crash to be “speeding-
related” if a driver was “charged with a speeding-related offense or if an officer indicated 
that racing, driving too fast for conditions, or exceeding the posted speed limit was a 
contributing factor in the crash” (20). In 2016, 27% of those killed in a crash involved at least 
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one speed driver. From 2015 to 2016, speeding-related fatalities increased by four percent 
from 9,723 to 10,111 (21). In the United States, speeding is a clear issue. However, speed 
limits cannot simply be changed to motivate drivers to operate at slower speeds. Speed limits 
must be set appropriately, as simply raising or lowering a posted speed limit without 
additional enforcement, educational programs, or other engineering measures, has little effect 
on the speed at which drivers will operate (22). Ultimately, people drive at a speed that they 
find reasonable and appropriate. If the engineers and agencies that set speed limits want 
drivers to respect speed limits, the speed limits must reflect the reality of the driving 
conditions. This cannot be done solely through enforcement, which could foster resentment 
instead of respect. Following proper speed limit-setting procedures and collecting accurate 
data can allow for appropriate speed limits to be set, creating a safer roadway environment.  

1.1.3 Traditional Speed Collection Techniques 
There are three categories of portable speed detector devices: intrusive, nonintrusive, and off-
roadway (23). Appendix A—Traditional Speed Collection Techniques outlines examples of 
each of these types of technology, providing advantages and disadvantages. Each type of 
technology described in Appendix A are all point speed capture devices.  

1.1.4 Aerial Image Processing 
To collect more detailed information at a specific location, mounted video cameras can be 
placed to record the roadway. These devices are used in conjunction with video image 
processor systems to detect vehicles as well as specific data, such as speed. This technology 
has been understood and utilized for several years (24, 25). Processors analyze successive 
video frames to extract this data using algorithms and object tracking (25). Object tracking in 
video is often separated into three distinct areas: target representation, target 
detection/recognition, and target tracking (8). Each of these three components is described in 
further detail in this section. 

1.1.4.1 Target Representation 
To be able to accurately detect and track an object of interest, the system must understand 
what it is looking for under altering conditions. This can be accomplished through feature 
extraction, which plays a critical role in tracking (8, 26). Common visual features utilized in 
these algorithms include color, object boundaries, optical flow, and texture (26). Using these 
features, the goal of target representation is to create a model of the object of interest. This 
model includes the object’s appearance, size, and shape, along with some prominent features 
obtained from the feature extraction process in each image, which ignores the unuseful 
background in the image. This model can be created by extracting features on several 
thousand images of the object from a specific vantage point, or it can be selected either 
automatically online or by a user in the video sequence (8). 

1.1.4.2 Target Recognition 
Target recognition is the process of the target object being detected in a specific scene. To 
accurately detect an object, the model created in the target representation procedure must be 
used, and a search metric and a matching criteria to find this model by its features in a video 
frame must be defined (8). This search criterion separates the background from the object in 
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a single video frame. This is done on every frame, with each frame considered one at a time. 
Some more high-level detectors utilize spatial information between several frames to detect 
an object, which reduces the number of misclassifications (8). 

1.1.4.3 Target Tracking 
Target tracking is the process of estimating the location of a particular target over a period of 
time (8). There exist multiple types of trackers, including point trackers, kernel trackers, and 
silhouette trackers (26). Kernel trackers, in particular, are commonly used to calculate the 
motion between frames. These trackers rely on an object’s appearance and shape. Point 
trackers, in comparison, track objects between neighboring frames described by defined 
points. For this type of tracker, a detection method must be applied to extract the points in 
each frame (8). 

1.1.4.4 Issues with Target Tracking 
The majority of nonstationary video tracking devices, such as Unmanned Aerial Vehicles 
(UAV), assume a flat world and that egomotion is translational (27). Fortunately, since UAV 
record video at relatively low altitudes (often less than 400 feet above the ground, due to 
FAA Part 107 regulations), the assumption of a flat world holds in almost all cases. The 
second assumption, that egomotion is translational, is true when minimal rotation occurs 
between frames at the feature level (27). Egomotion is defined as “any environmental 
displace of the observer” (28). In the case of a UAV in the sky, it is the assumption that the 
UAV will not rotate when recording video to use in the tracking process, so the movement of 
a feature can be classified as purely translational. Each of these assumptions simplify the 
processing necessary to stabilize UAV video, as well as show the importance of stabilizing 
the video while it is being captured (27). This can be minimized by flying UAV only in fair 
weather conditions. However, given the nature of UAV flying in the air, it is assumed that 
they will have some disturbance due to factors such as wind. To accurately take this into 
account, the vehicle motion that is tracked by the UAV is calculated as the sum of the real 
motion of the vehicle and that of the camera (4). 
 
Stabilization of the UAS and camera for accurate recording is an important issue to address 
when utilizing UAS for object tracking, as even a small wind force can lead to a large error 
on the ground. Stabilization of a camera on a UAS can be achieved through three steps: (1) 
using a gimbal, (2) completing a video analysis using a stabilization filter, and (3) tracking a 
stationary object through the entire video (3). Most UAV hold a gimbal for video 
stabilization. This allows for the rotation of the camera about a single axis, reducing 
movement while hovering. A stabilization filter eliminates camera shakiness while making 
panning, rotation, and zooming smoother. Finally, tracking a stationary object throughout the 
entire video allows for error due to camera and UAV movements to be taken into account, 
allowing the difference between the stationary object and object of interest to be calculated; 
thus, the movement of only the objects of interest can be separated. This is completed 
through the analysis of each video frame; at each frame, the difference between the 
coordinates of this specific stationary object can be applied to another object that is tracked 
(3). This final step is a way of considering that vehicle motion tracked by the UAV is the 
sum of the real motion of the vehicle and that of the camera (4). 
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1.1.4.5 Commercial Video Processing for Traffic Data Collection using Mounted Cameras 
Many companies have commercialized automated vehicle tracking and traffic data 
processing across the globe. Miovision, for example, offers TrafficLink Detection to 
customers. This involves the installation of a single 360-degree camera at an intersection, and 
provides always-on turning movement counts, lane-by-lane volumes, and classifications for 
vehicle type (29). Other companies, such as Marr Traffic, Mike Henderson Consulting LLC, 
and L2 Data Collection Inc., conduct similar data collection through the use of mounted 
video cameras (30–32). 

1.1.4.6 UAS Video Aerial Image Processing 
One company that uses UAS-captured video aerial image processing for traffic data is 
DataFromSky, a company based in the Czech Republic (33). Their system only requires 
aerial video and a description of the scene to provide trajectories of every detected vehicle in 
the video. These vehicles are then labeled in the video by a unique ID, along with a record of 
the vehicle’s position, speed, and acceleration. DataFromSky is also able to analyze vehicle 
trajectories to calculate traffic flow characteristics that are defined by the 2010 Highway 
Capacity Manual (10). Additionally, they are able to provide gap acceptance, critical gaps, 
capacity, and capacity estimations, average speed, and vehicle counts. DataFromSky has 
partnered with several companies, including Traffic Analysis & Design, Inc. in the United 
States, who serve the states of Minnesota and Wisconsin. They have also cooperated with 
PTV Group to export results from DataFromSky and input it into PTV Vissim, including 
traffic counts, vehicle classification, turning movements, speeds for model calibration, 
accelerations, travel times (defined between two gates), and gap in seconds (33). 
DataFromSky’s capabilities with UAS video data show that the range of possibilities today 
using UAS for traffic monitoring is extensive. To understand how their methods would 
compare with the developed method, an analysis was completed, as described later in this 
section. 

1.1.5 Unmanned Aerial System Applications 
UAS, including large UAS, have historically been used for military applications. However, 
with the commercialization and reduction in cost and size of UAV in recent years, the 
potential uses for these devices has grown. UAS are comprised of three components: (1) the 
aircraft, or UAV; (2) communication and control; and (3) the pilot on the ground. There are 
two types of UAV: fixed wing and multirotor. Fixed wing UAV have an airplane-like design, 
generating lift from air passing underneath, and multirotor UAV have several rotors with 
propellers which push air downwards (34). While the fixed-wing design allows for a longer 
flight time, the aircraft must always be moving forward at a certain minimum speed to 
generate enough lift to stay in the air. Thus, it is not possible to keep the UAV hovering at a 
single location of interest. Further, fixed-wing aircraft require a large, open location for take-
off and landing (34). Given these disadvantages, which do not affect multirotor aircraft, the 
multirotor aircraft is recommended to be used for data collection, especially for speed data 
collection. 
 
UAS applications have been explored for many uses, including for traffic monitoring, 
structural inspection, topographic surveying and mapping, and crash reconstruction (35). In a 
survey report by AASHTO in 2016, four specific benefits of UAS use were highlighted: 
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improved safety, time savings, decreased cost, and even decreased congestion, as there would 
no longer be a need to shut down lanes for stationary vehicles and machinery to complete 
tasks such as bridge inspections (2). 

1.1.5.1 Traffic Monitoring 
In recent years, UAS have been introduced to the transportation community as a cost-
effective solution to collect trajectory data from the sky and replace the old approach of using 
pre-installed static cameras. Table 1.1, adapted from Barmpounakis et al., presents a 
subjective comparison of static camera use and UAS use for traffic monitoring and other 
related applications based on research found in previous literature. 

Table 1.1: Comparison between a static camera and an unmanned aerial system 

Metric 
 
Static Camera 
 

 
UAS 
 

Security/Privacy Medium Low 
Cost (acquiring and maintenance) Low Low 
Reusability Low High 
Energy efficiency Low High 
Deployment difficulty Low Low 
Operational time High Low 
Operation under adverse weather Medium Low 
Safety Risks Low Medium 
Endurance High Low 
Video post-processing skills required Medium High 
Data transfer, communication and storage Low High 
Operation skills required Low Medium 
Training requirement Low Medium 
Complexity Medium Medium 

Source: adapted from Barmpounakis et al. (6) 

Most multi-rotor UAS have the flexibility to collect large amounts of aerial data almost 
anywhere in a matter of minutes. Additionally, UAS can be programmed to automatically fly 
a particular route to collect specific aerial imagery, creating simplicity in the flying process 
for the pilot. Their small size is also beneficial to collect naturalistic data over a roadway, 
allowing for a more nonintrusive way of recording traffic data. However, a noteworthy 
limitation of multi-rotor UAS are their small battery capacities, which only allow them to fly 
for short periods of time; often for only 20 to 30 minutes (4, 7). However, provided that UAS 
can fly above a highway and collect the speeds of many vehicles at once, it is easily possible 
to collect more traffic data during that short amount of time than traditional methods. 
MassDOT procedures require that 100 vehicle speeds be collected during a weekday at off-
peak hours at a singular location on a roadway for the speed limit–setting process, as 
mentioned above (1). Depending on the off-peak volume of the roadway of interest, this may 
not take UAS much time to collect data, especially as compared to manual collection by a 
RADAR or LiDAR gun. 
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For example, on Thursday, November 17, 2016, count data was collected by MassDOT in 
Athol, Massachusetts, on the Mohawk Trail, a portion of Route 202 (36). From the period 
between 11 a.m. and 3 p.m., the average traffic volume was approximately 750 vehicles per 
hour. Assuming an ideal case of all vehicles traveling at free-flow speed, a UAS would only 
need to actively collect data in the sky for approximately eight minutes for 100 vehicle 
speeds to be collected. Even in a less than ideal case including fewer free-flow vehicles and 
assuming that only 50% of vehicles will be traveling at free-flow speed, the UAS would only 
need to collect data for 16 minutes. In the same case, but collected manually by an observer 
with a RADAR gun, the observer would have to visually see which vehicles are traveling at 
free-flow speed and directly record those vehicle’s speeds from the roadside. However, it 
would take more time, as if multiple vehicles traveling at free-flow speed were passing the 
observer at the same time (or even close to it), only one of those vehicle’s speed could be 
collected and recorded as the observer would need to use the gun to collect the data and then 
note it. Thus, this type of data collection would be much more time-intensive than through 
the use of a UAS. 
 
It is noted that for locations with really low volumes, data collection via UAS may not 
provide significant benefits over traditional roadside manual collection given that every 
vehicle would be traveling at free flow speeds and would not be obscuring other vehicles. 
 
Overall, it is possible that for many roadway situations, the short battery life of a multi-rotor 
UAS may not cause any issues. Extra batteries may also be carried if more than one 
deployment is necessary. Another issue may be that, according to FAA regulations Part 107, 
UAV can only be flown in fair wind and weather conditions; this limits their use. These 
weather conditions are also necessary to collect accurate data from a UAS, given that wind 
and other weather conditions can cause the camera connected to the UAV to shake. Since 
MassDOT procedures require that data be collected under ideal weather conditions for the 
speed setting process, this should not be an issue for the data collection (1). Finally, it is 
noted that UAS must be operated by a Part 107 certificate holder, if flown for non-
recreational uses. This certificate requires a written exam to be passed, which costs $75 and 
must be retaken every two years to maintain certification. 
 
Studies were completed using UAS for traffic surveillance, as well as roadway incident 
monitoring, as discussed by Lee et al. and Wang et al. (4, 5). When utilizing UAS for traffic 
monitoring, it is important to consider data collection resolution and ground sampling 
distance (GSD), to therefore consider accuracy error. The most basic parameter of resolution 
is the number of pixels of the recorded area; as pixels increase at a given altitude of 
recording, and therefore, at a given fixed sensor width that the camera lens is covering, 
resolution increases (3). This is due pixel size; the less unit area a pixel covers, the higher 
resolution the image is. Decreasing the unit area covered by a pixel can also be changed by 
decreasing the altitude of where the image is taken. In a study completed in 2016 by Wang et 
al., vehicle detection for traffic monitoring was found to be most accurate when the altitude 
of the UAV (a DJI Phantom 2 in this study) was within the range of 100 meters (328 feet) to 
120 meters (393 feet), covering a road section length of 190 meters (623 feet) and 228 meters 
(722 feet), respectively. In this study, the camera utilized had a resolution of 1920 x 1080 
pixels, and horizontal field of view of 94.4 degrees, vertical field of view of 55.0 degrees, 
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and diagonal field of view of 107.1 degrees. It is noted that the video recording was done in a 
fashion that the vehicles traveling were positioned horizontally. Further, when the altitude 
increased from 120 meters to 150 meters (492 feet), the accuracy of tracking decreased from 
approximately 99.8% to 96.1% (4). Per FAA Part 107 regulations, UAV may not operate 400 
feet above the highest structure in its vicinity, so flying below 400 feet when recording is 
optimal in this regard. Wang et al. utilized a particular method to find these accuracy results; 
this method jointly utilized three image features to detect and track vehicles: edge, optical 
flow, and local feature point (4). This specific method was designed for vehicle detection and 
tracking to improve efficiency and accuracy. As discussed previously, video stabilization 
applications can increase accuracy of the tracking data (3). 
 
The ground sampling distance presents the spatial resolution. In short, the GSD is the true 
distance between two consecutive pixel centers measured on the ground. The higher the 
GSD, the lower the spatial resolution, and vice versa. GSD is calculated by dividing the size 
of a pixel (mm) on the sensor by the focal length (mm), and multiplying by the distance from 
the camera to the ground (cm) (37).   

1.1.5.2 Commercial Applications 
UAS are increasingly being employed for a number of applications outside of traffic 
monitoring, within and outside of the field of transportation. Given the large cost savings that 
is possible with using UAS over manual work, along with improved safety, time saving, and 
a reduced need for lane closures (if transportation-related work), they have been deemed as 
highly beneficial for industry tasks and projects by AASHTO. According to a survey report 
from AASHTO in 2016, bridge inspection costs can be saved when using UAV over manual 
inspections. It was estimated that over $4,000 could be saved during a bridge deck inspection 
using the technology (2). Additionally, UAS imagery has been found to be superior to 
conventional aerial photography because the camera on the UAV can be closer to the subject. 
This can be useful for surveying large areas, roadway mapping, and crash reconstruction (7). 
It is estimated that using a UAS to document a crash scene decreases the time spent on the 
roadway by 80% and the time spent taking measurements by 65% compared to traditional 
methods (7). In 2013, the Traffic Support Unit in the Highway Safety Division in Ontario 
mapped major collision scenes in just 22 minutes, on average, using UAS (7). This increases 
safety of first responders, reduces the economic impact on drivers from lost time, and 
increases the safety of the roadway through the reduction of possible secondary collisions. 

1.2 Literature Summary 

UAS are already being utilized in numerous transportation applications and have been proven 
to save time and cost in those efforts. In the development of this research of UAS for vehicle 
tracking purposes, the existing literature has and will continue to inform its direction. As an 
example, the research on operating characteristics of UAV (battery life, accuracy of vehicle 
tracking at various altitudes, etc.) and camera parameters (resolution, field of views) will be 
helpful in determining flight parameters. Additionally, the background literature with respect 
to speed studies is critical in determining the sample sizes of data needed, and thus flight 
durations. This is necessary to understand in order to gather a sufficient dataset for the speed 
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limit setting process. Further, existing methods for object tracking, as outlined in the 
literature, will be tested first for data post-processing to determine the most accurate and 
efficient way to obtain vehicle data from the video. Finally, it is clear that there is a strong 
need for an improved methodology to collect operating speeds and that UAS offer a 
promising solution to meet those needs. 
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2.0 Research Methodology 

This study investigated two primary applications of UAS: the capture and analysis of vehicle 
speeds and vehicle volumes. The methods employed for the two applications are documented 
herein. 

2.1 Volume 

Traffic volumes play a crucial role in decisions related to planning, design, operation, and 
management of roadways. Traditionally, short term traffic volume is collected through 
intrusive pneumatic tubes or manual counts. This sub-section further describes using UAS 
and vehicle tracking to collect this data.  
 
Multiple intersections were considered for initial data collection to determine which location 
would be most appropriate for further analyses. These locations included the roundabout 
intersecting North Pleasant Street, Eastman Lane, and Governors Drive on the University of 
Massachusetts Amherst campus, the roundabout in downtown Amherst intersecting East 
Pleasant Street and Triangle Street, and the double roundabouts at Atkins Corner in Amherst. 
Images taken from the UAS at each of these locations are shown in Figures 2.1, 2.2, and 2.3.  
 

 

Figure 2.1: North Pleasant Street/Eastman Lane/Governors Drive roundabout 
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Figure 1.2: East Pleasant Street/Triangle Street roundabout 

 

 

Figure 2.2: Double roundabout at Atkins Corner 

After trial flights, the location at Atkins Corner in Amherst was chosen due to its complexity. 
It was considered a location that would benefit most from UAS vehicle tracking as compared 
to traditional methods of vehicle counting.  
 
The drone used in this study was a DJI Phantom 3 Pro. This drone’s camera has a FOV of 94 
degrees and was flown at varying heights below the maximum of 400 feet. The altitude of 
each flight was chosen based on the minimum height to capture the full intersection. For the 
chosen double roundabout intersection, the drone was flown at 400 feet above ground level. 
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As the area of the required study area increased, the required drone altitude increased; in 
turn, resolution decreased. Given the specifications of the built-in standard camera on the 
Phantom 3 Pro, the GSD at a 400 feet (122 meter) flight was calculated to be 10.84 
centimeters/pixel (nadir-pointing). 
 
To obtain the most realistic results, twelve videos averaging seven minutes each were taken 
of the double roundabout during the morning peak hour from 7 a.m. to 9 a.m. as this timeset 
is most typically used for transportation planning. Each video was manually counted for 
vehicles to establish a ground truth by which the accuracy of the automated counting could 
be compared. 

2.1.1 Automated Vehicle Tracking Using Computer Vision 
The research team developed an automated vehicle tracking method using computer vision in 
this study by employing two primary steps, which included a You Only Look Once (YOLO)-
based vehicle detection model, and a Kalman filter-based vehicle tracking model. Figure 2.4 
shows the flowchart of the proposed method.  

 

Figure 2.3: Flowchart of proposed method for vehicle tracking 

 
STEP 1 Video Preprocessing: The objective of this step is to effectively downsample the 
video frames and the image resolution for each frame. An effective downsampling strategy 
could preserve all the necessary features in the image and the frame rate for the subsequent 
detection and tracking steps, respectively, while minimizing processing time. The 
downsampling of the video data was based on a frame downsample by a factor of 15, i.e., 
resulting in 2 fps, and a resolution downsample by a factor of 2 in both x and y-direction, i.e., 
resulting 1920 x 1080. The frame downsampling factor and the resolution downsampling 
factor were iteratively determined using a subset of the collected data by evaluating the 
corresponding detector rate and processing time.  
 
STEP 2 Vehicle Detection: The objective of this step is to identify the location of the 
vehicle appearing in each image frame. In this study, a deep learning framework called 
YOLO (38, 39) was employed for identifying the vehicles. The outcome of this method will 
present the bounding box of the detected vehicle in the image coordinate system. Figure 6 
shows an example of the detected vehicle. YOLO has been widely applied in vehicle 
detection using pre-trained models from datasets such as Microsoft Common Object in 
Context (COCO). However, very few models have been trained from UAV videos, which 
show different outlooks and features for captured vehicles as compared to more traditional 
datasets.  
 

STEP 1
Video Preprocessing

STEP 2
Vehicle Detection

STEP 3
Vehicle Tracking
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Therefore, the research team retrained a new model for the images captured from UAV based 
on an open vehicle dataset collected by Kharuzhy (40). The research team tuned the 
following hyperparameters that are associated with the efficiency of the training process, 
including learning rate (i.e., learning rate schedule and decay), batch size, momentum, and 
decay.  

• Learning Rate: The learning rate is defined as the step size of the gradient descent 
flow during the training process. Generally, a large learning rate may cause the model 
to converge rapidly to a suboptimal solution, while a small learning rate may cause 
the training process unnecessarily long. The learning rates need to be dynamically 
configured to balance the accuracy of the model and the efficiency of the training, 
through learning rate schedule and decay.  

o Learning Rate Schedule: In this study, the learning rate is increased from 
0.001 to 0.01 along with the epoch reaches 75th iteration, to ensure that the 
model can be training faster after the majority of the iterations has been 
completed, when it becomes less risky to be trapped at a suboptimal solution.  

o Decay: Aside from the abrupt changes in the learning rate as defined in the 
learning rate schedule, the decay defines the gradual changes of learning rate 
in consecutive iterations so that the learning rate is continuously decreasing as 
the training process advances further. In this study, the decay value of 0.00005 
is used as a default.    

• Batch Size: The batch size defines the number of training samples that will be 
propagated into the network for each iteration. Generally, a larger batch size will 
provide a better estimate of the gradient for the training process, so that the training 
will be rapidly converged (i.e., faster identification of the gradient descent). However, 
due to the limitation of the computation resources, it is not always feasible to use a 
large batch size. In this study, a batch size of 64 is used to balance the performance 
and the constraints of the computation resources (i.e., Nvidia GTX 1080 Ti in this 
study).  

• Momentum: The Momentum refers to a method that facilitates the gradient flow 
optimization in the most relevant direction by dampening the strength of the 
irrelevant directions (41). The momentum value is defined as the magnitude of such a 
dampening effect. A larger momentum would enable a much faster convergence be 
limiting the oscillation effect during the gradient descent in training. In this study, a 
momentum value of 0.9 is used to enable faster convergence without significantly 
suppressing the possible change of direction change in the gradient descent process.  
 

While the research team did not find significant accuracy differences by adjusting these 
parameters, it did identify that a more aggressive learning schedule with larger decaying 
values may significantly reduce the training time based on the limited number of UAV data 
in this study. In the processing of detection, once the model is trained, the detection process 
requires minimum manual intervention. However, the confidence level for the detected 
candidates needed to be “empirically” determined to optimize the precision-recall curve. In 
this study, a dataset containing 3,645 vehicles were used for determining the confidence 
level. Figure 2.5 shows the precision-recall curve. Based on the derived precision-recall 
curve, a confidence level of 0.5 was selected for the detection algorithm in this study, as it 
has the best balance between false positives and false negatives. 
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Figure 2.4: Precision-recall curve to determine confidence level 

 

 
Note: Purple boxes outline the vehicles. The first numbers are x and y coordinates of vehicles and w/h numbers 

describe pixel size of objects being tracked. 

Figure 2.5: Example of the detected vehicles 

STEP 3 Vehicle Tracking: The objective of this step is to associate the detected location of 
the vehicles (i.e., on the detector) from consecutive frames into the same track, so that the 
subsequent vehicle counting and speed computation become feasible. In this study, the 
detector is represented by the centroid of the bounding box from STEP 2. Figure 2.7 shows 
an example of a tracked vehicle superimposed on the captured frame. In this study, the 
Kalman filter (42) was employed to predict the motion of each detector. Based on the 
closeness of the predicted location and the observed location (i.e., the detector from the 
following frames), the current detector will be merged to the vehicle track or split into a new 
track (43). Although the research team attempted to achieve the best detection rates in STEP 
2, the vehicle tracking algorithm was able to correct a limited number of false positives and 
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false negatives when these cases did not propagate in many consecutive frames. In this study, 
the tracking strategy allows a trajectory removal if the detector appears in less than five 
frames, and allows a trajectory splitting if the detector no longer appears in more than ten 
frames.  
 

 
Note: Red line depicts the tracking of a vehicle that entered from bottom R and exited to top L. 

Figure 2.6: Example of vehicle tracking  

2.2 Speed 

As described throughout the literature review, speed data is needed in the speed limit setting 
process, among other transportation studies. This sub-section describes the methods of 
collecting speed data using a UAS and vehicle tracking methods. 
 
The same DJI Phantom 3 Pro drone was utilized for the speed experiments, and included the 
same camera specifications, a FOV of 94 degrees. Originally, this experiment was going to 
take place along a portion of South East Street in Amherst. However, it was found that we 
needed ground measurements to determine how much distance was represented by a single 
pixel. Through another research project, we already knew lane widths, shoulder widths, etc. 
for Route 9 in Amherst, so we switched our experiment to fly at that location. An image of 
this location is shown in Figure 2.8.  
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Note: Bottom-most vehicle was the probe vehicle and is indicated by blue “X.” 

Figure 2.7: Video still from Route 9 speed validation location  

To verify the accuracy of the speed data, probe drives were conducted simultaneously during 
video data collection. This was done by placing an “X” on the top of a vehicle and traversing 
the length of the roadway in the drone’s view, while the drone flew at an altitude of 100 
meters (328 feet). The probe vehicle drove at various speeds and tracked their speed using 
both their speedometer and a smartphone app. Given the specifications of the built-in 
standard camera on the Phantom 3 Pro, the GSD at a 100 meter flight was calculated to be 
8.89 centimeters/pixel (nadir-pointing).  

2.2.1 Automated Speed Processing  
In this study, the automated speed computation is based on the vehicle tracking results 
presented later in Section 3.1. The outcome of the vehicle tracking is a trajectory that is 
represented in the image coordinate system. In other words, the location of the vehicle within 
the trajectory is digitized based on the x, y coordinate of the image. To compute vehicle 
speed, the real-world representation of the locations with geometrical information is required. 
Therefore, in this study, the research team extended the vehicle tracking flowchart with two 
additional steps for speed computation. Figure 2.9 shows the updated flowchart for speed 
processing.  
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Figure 2.8: Flowchart with two additional steps for speed computation (in bold) and three steps 
for target tracking 

 
STEP 4 Camera Calibration: The objective of this step is to transform the image coordinate 
system to the world coordinate system so that the distance measured in the unit of the pixel 
can be translated in the unit of feet or miles. In this study, the research team developed a 
simple homography for transforming the coordinate pair, which is a 3x3 matrix. As the 
homography has eight degrees of freedom, at least four-point pairs are required for 
computing the homography matrix (44). Figure 2.10 illustrates an example of the 
transformation where the four points shown on the left are the ones represented in the image 
coordinate system, while the matching four points shown on the right are the ones 
represented in the world coordinate system. 
 

Note: Green box in L image is transformed to rectangle in R image from aerial perspective. 

Figure 2.10: Example of transformation 

STEP 5 Speed Computation: The objective of this step is to compute the vehicle speed for all 
extracted vehicle trajectories. In this study, the research team first computed the speed based 
on the distance measured in the world coordinate system in consecutive frames and divided 
the time (i.e., frame rate) between those consecutive frames. As presented in STEP 1 in 
Section 2.1.1, the original video was downsampled in frame rate by a factor of 15 accounting 
for the fact that the denominator of the speed computation in this step is 0.5 seconds. In any 
speed computation scenario, the accuracy of the vehicle localization (i.e., STEPs 2 and 3) and 
the accuracy of the camera calibration (i.e., STEP 4) may affect the accuracy of the speed 
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Video Preprocessing

STEP 2
Vehicle Detection

STEP 3
Vehicle Tracking

STEP 4
Camera Calibration

STEP 5 
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computation. The accuracy of the camera calibration can be easily maintained thanks to the 
consistency of the geometry measures, and the impact of the possible error source (i.e., 
quantization) is only negligible. However, the accuracy of the vehicle localization is 
challenging to maintain, as the vehicles are represented by the centroid of the detected 
bounding boxes. The accuracy for the detected/tracked centroids to reflect the vehicle’s 
actual location are prone to the change of view angle, partial occlusion, or imperfect 
detection, which are inevitable. The slight shift of the centroids in consecutive frames may 
create the locational disturbance. In this study, the data collected by UAV have the advantage 
of avoiding a drastic change of view angle and occlusions. Recognizing that the imperfect 
detection will persist in any vehicle detection and tracking algorithms but can be minimized 
(i.e., STEPs 2 and 3), the research team applied a simple median smoothing scheme on the 
derived speed with a window size of five, so that the randomly-occurred, imperfect detection 
(i.e., incorrect centroid) will be effectively disregarded. Figure 3.5 and Figure 3.6 show some 
of the examples before (i.e., blue lines) and after (i.e., orange lines) the filtering.  
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3.0 Results 

3.1 Volume 

The following sub-section describes the accuracy and cost of the methods used, as well as a 
comparison between commercial products and traditional methods. It is noted that while this 
analysis only explored an origin-destination study, it could also be used for a turning 
movement count (TMC) This could be explored in potential future work. 

3.1.1 Accuracy of Automated Tracking 
The recall of each video was calculated. The recall was calculated as the true positives 
divided by the true positives plus the false negatives. In other words, the recall was the actual 
number of vehicles that passed by that the software did pick up, divided by the total number 
of vehicles that actually did pass through the video. Thus, this recall is a good measure of 
accuracy. Across all of the videos analyzed, the recall was 93%. It is noted that the full tables 
of the ground truth, true positives, and false positives are included in Appendix B—Data 
Analysis Tables. 
 
The recall was separated by origin-destination. The labels for these are shown in Figure 3.1 
and broken down into the following: 

• TL (top left): From or to Bay Road, west side 
• BL (bottom left): From or to Route 116, south side 
• TR (top right): From or to Route 116, north side 
• BR (bottom right): From or to Bay Road, east side 

 

 

Figure 9: Origin-destination labels 
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Table 3.1 presents the recall for each origin-destination in the video. It is noted that N/A 
represents an origin-destination pair in the video where no vehicles were present. Each origin 
had three possible destination pairs, for a total of 12 pairs. The U-turn (ex. BL-BL) origin-
destination pairs were omitted as the traffic volume was near zero for each one. 

Table 3.1: Recall of each origin-destination pair in each video 
 

Timestamp TL-TR TL-BL TL-BR TR-TL TR-BL TR-BR BL-TL BL-TR BL-BR BR-TL BR-TR BR-BL 
7:00:00 100% 64% 80% 100% 68% N/A 67% 80% N/A 76% N/A 71% 
7:09:20 N/A 80% 100% N/A 90% N/A 76% 75% 100% 86% N/A 100% 
7:19:00 100% 75% 85% 100% 92% N/A 93% 96% 100% 94% N/A 89% 
7:28:20 100% 100% 100% 100% 90% N/A 96% 89% 100% 88% 100% 89% 
7:41:05 100% 100% 100% 83% 100% N/A 94% 100% 86% 90% N/A 89% 
7:50:26 100% 100% 100% 100% 94% 100% 88% 92% 100% 95% 100% 100% 
8:00:00 80% 92% 87% 100% 89% 100% 92% 90% 100% 100% 100% 86% 
8:09:20 100% 100% 100% 83% 100% 100% 83% 94% 100% 100% N/A 100% 
8:21:00 100% 93% 95% 100% 88% 100% 85% 90% 100% 87% 75% 91% 
8:30:20 86% 90% 100% 100% 94% 100% 83% 90% 83% 87% 100% 100% 
8:47:41 100% 100% 91% 100% 93% N/A 97% 89% 80% 88% 100% 86% 
8:57:14 100% 100% 100% N/A 80% N/A 86% 89% 100% 95% 100% 100% 

 
Precision, which are the true positives divided by the total of the true positives plus the false 
positives, averaged 93% as well. This is presented in Table 3.2. 

Table 3.2: Precision of each origin-destination pair in each video 
 

Timestamp TL-TR TL-BL TL-BR TR-TL TR-BL TR-BR BL-TL BL-TR BL-BR BR-TL BR-TR BR-BL 
7:00:00 100% 70% 80% 100% 87% N/A 73% 76% N/A 86% N/A 83% 
7:09:20 N/A 80% 100% N/A 90% N/A 81% 80% 100% 86% N/A 100% 
7:19:00 83% 100% 85% 100% 92% N/A 93% 92% 92% 86% N/A 100% 
7:28:20 100% 100% 89% 100% 100% N/A 92% 86% 100% 88% 100% 89% 
7:41:05 100% 100% 88% 100% 86% N/A 88% 96% 100% 96% N/A 100% 
7:50:26 80% 90% 100% 100% 84% 100% 94% 96% 100% 90% 100% 88% 
8:00:00 100% 92% 87% 100% 89% 100% 85% 86% 100% 93% 100% 86% 
8:09:20 100% 100% 100% 83% 100% 100% 100% 86% 100% 92% N/A 100% 
8:21:00 86% 100% 90% 100% 88% 100% 89% 97% 100% 87% 100% 100% 
8:30:20 86% 90% 100% 100% 94% 100% 88% 87% 100% 100% 100% 80% 
8:47:41 100% 84% 91% 100% 83% N/A 92% 82% 80% 93% 100% 92% 
8:57:14 100% 75% 88% N/A 100% N/A 86% 89% 100% 90% 100% 100% 

3.1.1.1 Impact of Lighting on Detection 
In the early morning, specifically in videos captured from 7 a.m to 7:20 a.m., accuracy was 
lower than the rest of the morning. This was due to the poorer lighting in the early morning, 
as the sun was still rising. This is represented in Figure 3.2 and Figure 3.3, which show the 
UAS captured images at 7 a.m. and 8:30 a.m., respectively. 
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Figure 10: Atkins Corner at 7:00 am depicting dark conditions 

 

 

Figure 11: Atkins Corner at 8:30 am depicting light conditions 

To overcome this issue with low-lighting, which interferes with detection, other detection 
methods could be explored. This is an important barrier to overcome, as traffic data during 
the peak hours from 7 a.m. to 9 a.m. and 4 p.m. to 6 p.m. is typical, and these times coincide 
with darkness during the winter months. 
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3.1.2 Processing Time 
The processing was based on a frame rate of two frames per second and resolution of 1920 x 
1080 pixels. In total, for 1.47 hours of video, the processing time for detection was 1.74 
hours, for tracking was 0.84 hours, and for the auxiliary time was 0.12 hours. In total, 2.71 
hours were required in automatic processing time for 1.47 hours of videos. Thus, for every 
one hour of video, approximately 1.8 hours of automatic processing was required. The details 
of the processing time for each video is provided in more detail in Table 3.3. 
 

Table 3.3: Processing time for each video 

Timestamp 
Video Length 

Manual 
(sec.) 

Automatic 
Duration  

(sec.) Frame Detection 
(sec.) 

Tracking 
(sec.) 

Auxiliary 
(sec.) 

Total 
(sec.) 

7:00:00 560.2 16788 2400.0 698.4 324.7 50.7 1073.8 
7:09:20 274.3 8221 1500.0 296.0 168.7 25.8 490.5 
7:19:00 560.4 16795 3000.0 678.5 366.4 55.0 1099.9 
7:28:20 465.6 13954 2580.0 558.2 320.9 45.7 924.8 
7:41:05 561.8 16838 3300.0 619.6 294.3 41.5 955.5 
7:50:26 382.1 11451 2100.0 490.1 264.7 39.7 794.5 
8:00:00 560.7 16805 4200.0 638.6 265.0 42.1 945.7 
8:09:20 285.0 8542 1920.0 328.0 195.2 26.3 549.5 
8:21:00 560.8 16806 3300.0 645.4 271.0 36.6 953.0 
8:30:20 346.8 10395 2400.0 440.7 196.1 27.1 663.9 
8:47:41 562.8 16867 4200.0 674.7 269.9 37.2 981.8 
8:57:14 167.2 5010 900.0 210.4 84.2 13.5 308.1 

3.1.3 Comparison of Existing Methods 
As previously mentioned, one commercial product that is able to analyze video data to 
extract vehicular data is DataFromSky. To compare how our analysis technique differs from 
theirs, a portion of the same video collected via UAS for our analysis was analyzed using one 
of their services, DataFromSky Light. This is a fully automatic traffic data extraction 
software from DataFromSky and offers a license-free version of their software and has most 
of the licensed DataFromSky full version functionalities, including traffic counting, headway 
statistics computation, trajectories visualization, and export of trajectories in various formats 
(45).  
 
For the use of this software version, DataFromSky recommends a high video resolution and 
object tracking size, among other specifications, though they state the service can provide 
accurate results even beyond these parameters. To use this free service, a video under 2GB 
was uploaded to a website. To achieve a size under 2GB, an approximate three-minute video 
was uploaded from a portion of the 7 a.m. video in our analysis. This video was chosen as it 
had the worst accuracy with a recall of 78% on average, and we wanted to explore if this 
method would be more accurate. The license-free software version was then downloaded, 
and after approximately four hours, the analysis was complete by DataFromSky Light. The 
viewer of this software is shown in Figure 3.4. 
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Figure 12: Screenshot from DataFromSky video analysis program 

In the three-minute video, a total of 15 vehicles were not detected, 18 vehicles had partial 
detection, and only two vehicles achieved full detection throughout their whole trip. The 
video misclassified cars as motorcycles 16% of the time. On their website for the full 
version, DataFromSky Light states that they can provide a guaranteed hit rate of over 96% 
(45). Using only the free version as a comparison, the accuracy of vehicle detection was 57% 
for at least partial detection, and only 5.7% for full detection. Again, through our analyses of 
the same video, the lowest detection was 78%. 
 
Using traditional methods, the accuracy ranges from 96% for pneumatic tubes to manual 
counting at approximately 100% (46).  

3.1.4 Cost Comparison 
In order to completely assess the viability of UAS as a substitute, or supplement, to existing 
traffic volume techniques, we completed a cost comparison. 

3.1.4.1 UAS with Automated Tracking 
The monetary cost of this collection method would include the UAS itself, which in the case 
of this project, was the DJI Phantom 3 Pro drone. This drone currently retails for 
approximately $1,000 or less. An additional cost of this technique would be a drone-certified 
pilot. A current drone license requires an exam to be taken, which costs $75 and needs to be 
re-taken every two years. This exam can be taken at most airports with prior scheduling. The 
time-cost of this developed method, as previously mentioned, would be the actual collection 
time, set up time of the vehicle tracking software, and the processing time. While the drone 
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flight collection time may vary, this project had a processing time of 1.8 hours of automatic 
processing for each one hour of video. 
 
Another option to obtain video from a UAS without purchasing one or flying it, would be to 
hire a pilot. UMassAir offers flight services; an informal quote was obtained and stated to 
cost $100 per hour. For this project, with two hours of data collected, it would cost $200 for 
UMassAir to collect the video. 

3.1.4.2 UAS with Existing Software 
For the commercial product of DataFromSky, the same drone flight to collect the data would 
be needed and the only difference would be its processing. Using DataFromSky Light, which 
is free to use, processing a three hour video would take more time, as only 2GB of video data 
(equating to approximately three minutes of video) can be uploaded at once. It took 
approximately four hours for the software to send back the results.  
 
One of the paid versions of DataFromSky is the DataFromSky Viewer. This cost per year per 
license was €1150 ($1,292 US as of June 2019) for the basic version, which includes 
counting at specific points, turning movement counts, and speed data, among other features. 
For their traffic analysis service, multiple fees for different aspects of the video are added to 
get a price. For example, for one hour of video of a traffic flow between 1,500 and 4,500 
vehicles per hour, the cost would be €465 ($522 US as of June 2019). Each of these cost 
breakdowns can be found in Appendix C—Quoted Cost Sheets. 

3.1.4.3 Traditional Methods 
Traditional methods to collect volume data at the chosen location of the double roundabout 
was also analyzed. Innovative Data, Inc. is one company that completes this type of data 
collection. A quote of this location for a 90 minute collection with data input into Excel came 
to $3,190. This quote can be found in Appendix C. 
 
For a simple four-way intersection where a TMC would be appropriate, the cost per hour for 
manual collection by a technician would be $55. Thus, compared to the UMassAir flight cost 
per hour of $100, it would more cost effective to complete a traditional TMC by hiring a 
technician using a count board. However, if the intersection is more complex and would 
require two or more technicians at a location at one time, it would likely be more cost 
effective to use a UAS and the developed vehicle tracking method. 

3.1.4.4 Cost Comparison Summary 
A comparison of the various methods for this study is summarized in Table 3.4. 
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Table 3.4: Cost comparison of methods 

Cost 
UAS Developed Method DataFromSky 

Innovative 
Data, Inc. In House Collection UMassAir 

Collection Paid Version 
DataFrom 
Sky Light 

One Time Cost $1,075 to $2,075 $0 $0 $0 $0 
Per Use Cost $0 $200 $385.50 $0 $3,190 

Processing Time-cost 2.71 hours 2.71 hours Unknown 
4 hours/3 

min of 
video 

0 hours 

Accuracy High High Unknown Low High 

3.2 Speed 

The following sub-section describes the outcomes of speed detection using computer vision, 
as well as its accuracy and cost compared to other methods. 

3.2.1 Accuracy 
The accuracy of the automated drives compared to the probe drives is presented in Table 3.5. 
 

Table 3.5: Accuracy of probe drives for southbound (SB) and northbound drives (NB) 

Drive 
Number Direction Actual Speed 

(mph) 
Average Measured Speed 

(mph) 
Relative 

Error 
1A SB 45 48.8 8.4% 
2A NB 44 47.5 8.0% 
1B SB 50 52.9 5.8% 
2B NB 51 52.4 2.8% 
1C SB 55 59.5 8.3% 
2C NB 54 57.3 6.2% 

   Average: 6.6% 
 
The relative error values ranged from 2.8% to 8.4%, with an average of 6.6% across all of the 
drives. This error was larger than anticipated and shows that further research must be 
completed to achieve better accuracy. The measured speeds across the roadway section 
during its length are presented in Figure 3.5 and Figure 3.6. Overall, given the lower 
accuracy of the data than anticipated, it is noted that this data would not yet be an accurate 
representation of the space-mean speed, as mentioned in the Literature Review section. 
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Figure 13: Southbound drive speeds 
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Note: Blue ‘x’s’ are individual measurements; red line is a best fit of the individual points; and green line is the 
ground truth speed. X-axis represents time passed by frame and y-axis represents vehicle speed (mph). 

Figure 14: Northbound drive speeds 

The partial version of DataFromSky does not provide speed in kilometers or miles per hour; 
thus, a comparison only with DataFromSky’s vehicle counting ability was able to be made, 
as presented in the previous section. The full version of DataFromSky has the additional 
capabilities of extracting detailed speed and acceleration data, lane utilization, and average 
speeds. These details are shown in Appendix C. However, a speed comparison was unable to 
be completed. 
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Traditional methods of speed data collection on a short term basis are pneumatic tubes, 
LiDAR, or radar. Pneumatic tubes were found to have a speed error of 4.2%, or 
approximately between -2 mph and +2 mph at an actual speed of 45 mph (47). LiDAR and 
radar sensors have accuracies between -1 mph and +3 mph (48, 49). 
 
Comparing an average error of 6.6% from the probe drives to 4.2% from pneumatic tubes, it 
is clear that the new data collection method for speed may not yet be on par with traditional 
methods, but is also not that far off. The vibrations of speed computation are mainly due to 
the speed being computed based on the differential of distance measured frame by frame. 
Any quantization error in the vehicle detection and in the camera calibration, mainly due to 
the difficulty of digitizing the road edges consistently and assuming the road width remains 
the same, may introduce a small disturbance in distance measurement. Along with small 
viabrations attributed to the hovering UAS, this results in vibrations in speed. Future testing 
and work is recommended to further study different methods to gain a better accuracy that is 
closer to the error, or better, than traditional methods. 

3.2.2 Cost 
The cost of speed data collection using our developed method is similar to the cost of 
collecting volume data, as the data collection time and cost is the same. This would include 
the drone cost (approximately $1000 to $2000 for the DJI Phantom 3 Pro) and time-cost of 
collecting the data in the field through a flight. 
 
The time-cost of some traditional methods, such as LiDAR and radar, are larger than using a 
UAS in the field, as UAS are able to collect data from almost all of the vehicles passing by, 
rather than just the ones that a data collector chooses to point their sensor at in the field. 
Further, processing time for the collected LiDAR and radar data exists as well, as it must be 
input into a computer and analyzed manually or through another program. This differs from 
pneumatic tubes, which are able to collect data from every passing vehicle. However, the 
time-cost of pneumatic tubes is also time-consuming, as they require time to be installed into 
the pavement and removed, as well as processing time of the data after extraction, especially 
at more challenging locations with higher traffic volumes. As an example, a time quote 
provided by Innovative Data, LLC stated that at more challenging locations, tube and 
equipment preparation would take 0.5 hours, field installation and removal would take 0.5 
hours per installation site, and downloading and processing the data would take 0.25 hours. 
Moreso, at some very high volume locations, such as a state highway, police detail would be 
required to install and remove these tubes to create a safer environment for the technicians 
working on the roadway. Thus, at high volume or generally unsafe locations to install 
pneumatic tubes, UAS data collection would be most useful. 
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4.0 Implementation and Technology Transfer 

This research project made great progress in developing a method to capture traffic speeds 
and volumes using a small unmanned aerial vehicle. In order to achieve successful 
implementation of the developed methods, future work is needed. The algorithms and 
processes used to automate the analyses currently require a deep understanding of image 
processing and a strong proficiency in an engineering language, such as Matlab or Python. 
 
Future work should focus on training a diverse multitude of models so that the computer 
vision processing can be applied to any UAS video with minimal human intervention. These 
models would then need to be incorporated into a software program with a graphical user 
interface (GUI). Such a program and interface would enable any user to process their own 
UAS videos with minimal training and expertise. 
 
In the meantime, UAS could be used for niche applications with manual processing of the 
resultant videos. Such applications would include origin-destination studies at large rotaries 
or adjacent roundabouts, such as the one analyzed in this study. 
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5.0 Conclusions 

This project explored the use of UAS as a traffic data collection tool as compared to 
traditional speed data collection instruments on roadways through a field study. Previous 
literature has found that UAS are being utilized for survey work and are new devices used in 
the field of traffic data collection. Using the data collected in the field and a literature review, 
a methodology was developed to understand the accuracy of the data and how it may be 
useful in the speed-limit setting process. Two studies were completed to understand the 
accuracy and cost of using UAS as compared to traditional methods: one for volume data 
collection and another for speed data collection. Using a UAS and video processing, our 
method was found to have a count accuracy of 93% on average. Further, the speed data 
collection using our developed method had a relative error on average of 6.6%. For the 
speed-limit setting process, more detailed speed data may be required. However, it is noted 
that the speeds collected through our method were in the same range as the errors 
experienced through the use of LiDAR and radar sensors, which are traditionally used today. 
These sensors have a range of error from -1 mph to +3 mph.  
 
Compared to traditional methods, our developed method has a similar upfront monetary cost 
of equipment. The large difference between the methods is the time-cost. One UAS flight is 
able to capture all of the vehicles passing through a location through the use of a video; 
however, LiDAR and radar sensors, when used manually, only collect one vehicle’s data at a 
time. Thus, UAS on medium to high volume roadways have the potential to be more time-
cost effective than traditional methods.  
 
Future work to further develop the use of UAS for traffic monitoring could include turning 
movement counts, conflict-event studies, intersection delay measurements, parking 
utilization tracking, and queue studies. Additionally, further research work could continue 
exploring the best vehicle tracking methods using UAS to gain the most accurate results, 
including researching the use of a thermal camera instead of a standard camera in dark 
lighting. Thermal cameras are already being used on UAS in other industries (50). Finally, 
these future results may include volume and speed studies along with the development of a 
software platform to aid with the implementation of UAS for traffic data collection. 
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7.0 Appendices 

7.1 Appendix A: Traditional Speed 
Collection Techniques 

7.1.1 Intrusive Devices 
Currently, there are five types of intrusive speed collection devices that are common to use 
today: inductive loops, pneumatic tubes with Automatic Traffic Recorders (ATRs), 
piezoelectric sensors, bending plates, and magnetic detectors (23). Each of these devices are 
analyzed in this section. 

7.1.1.1 Inductive Loops 
Inductive loops are wire loops that are installed in the pavement of a roadway to detect 
various traffic data, including speed data (25). However, to collect speed data, multiple 
detectors are often required. Typically, these devices are utilized to collect long-term traffic 
data at a location, as they need to be installed into the roadway using saws, which may cause 
disruption of traffic for installation and repair (25). 

7.1.1.2 Pneumatic Tubes 
Pneumatic road tubes with ATRs are rubber tubes that are placed across a roadway to detect 
vehicles through pressure changes that are produced as vehicles pass over the tubes. While 
they are accurate at collecting speed data (51), they require labor to be installed and 
uninstalled at specific locations on a roadway. This requires a temporary interruption of 
flowing traffic at many locations, depending on the time of installation and roadway 
volumes. During this installation and uninstallation, workers must cross the roadway, which 
creates a safety hazard. In some circumstances, police are required to be present throughout 
this process to provide the safest environment for roadway users and the installation workers. 
This type of data collector differs from many of the other traditional intrusive and 
nonintrusive devices, as they are not permanent and are meant to be placed at a specific 
location for only a short time. 

7.1.1.3 Piezoelectric Sensors 
Piezoelectric sensors gather traffic information, such as speed, by detecting the passing of a 
tire. Similarly to inductive loops, they also require traffic disruption for installation and 
repair, making them more useful for long-term data collection locations (25). 

7.1.1.4 Bending Plates 
Bending plate systems record the strain as a vehicle passes over it and calibrates to calculate 
vehicle speed, as well as pavement and suspension dynamics. These systems are commonly 
used to collect data for weight enforcement purposes (25). 

7.1.1.5 Magnetic Detectors 
Magnetic detectors indicate the presence of a metallic object through the detection of 
perturbation in Earth’s magnetic field. The installation of these detectors requires that either 



42 
 

pavement be cut or tunneling is used under the roadway, which in turn requires traffic 
interruption through a lane closure. They are typically unable to detect stopped vehicles (25).  

7.1.2 Nonintrusive Devices 
Nonintrusive devices are typically systems that require minimal disruption to traffic when 
installed and maintained. They are placed above ground, either overhead or on the side of the 
roadway. Types of these devices include microwave radar, laser radar, passive infrared, 
ultrasonic, and passive acoustic array (25, 52).  

7.1.2.1 Microwave Radar 
Microwave radar devices utilize a radar sensor mounted over the middle of a lane or at the 
side of a roadway. These devices transmit a continuous Doppler waveform that can provide 
measurements of vehicle count and speed (52). 

7.1.2.2 Laser Radar 
Laser radar devices utilize a sensor that is typically mounted over a lane, which can provide 
vehicle data on volume, speed, length of the vehicle, and classification. Modern laser radar 
sensors can produce two- and three-dimensional imagery of vehicles (52). 

7.1.2.3 Passive Infrared Sensors 
Passive infrared sensors detect energy through two sources: (1) energy emitted from vehicles, 
road surfaces, and other objects in their field of view and (2) energy emitted by the 
atmosphere and reflected by vehicles, road surfaces, or other objects into the sensor aperture. 
These sensors can be mounted overhead of traffic or on the side of the roadway. Multiple 
detection zones of the sensor are needed for it to measure vehicle speed and length (52). 

7.1.2.4 Ultrasonic Sensors 
Ultrasonic sensors transmit pressure waves to sound energy that are above the human audible 
range. These sensors can be placed adjacent to the roadway or mounted overhead. Ultrasonic 
sensors can measure speed when programmed or placed in a correct manner to do so (52). 

7.1.2.5 Passive Acoustic Array Sensors 
Passive acoustic array sensors detect acoustic energy or audible sounds produced by vehicles 
and are able to count vehicles and measure their speed. These devices can be placed on the 
side of a roadway at specific angles and distances from the vehicles on the roadway to collect 
data accurately (52).  

7.1.3 Off-Roadway Devices 
Manual data collection equipment, such as radar guns, laser guns, and stopwatches, are still 
widely utilized for temporary data collection (51). In the Commonwealth of Massachusetts, 
these types of devices are most often utilized in the data collection process for the speed 
limit–setting process (1). Often, permanent data collection devices are not already at a 
location where the data needs to be collected, and installing a permanent device is 
unnecessary, given the need for short-term data. In this section, laser guns, radar guns, and 
stopwatch manual counts are described. 
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7.1.3.1 Laser Gun 
Laser guns, or LiDAR guns, use light detection and ranging technology that emit a series of 
infrared laser light pulses. When pointed toward a moving vehicle, this device is able to 
measure both the range and speed of the vehicle. This technology can be programmed to 
work in inclement weather and work through glass, though it does have a narrow field of 
view to report selected vehicles (51). When used according to correct guidelines, these 
devices are accurate within +1 mph to -2 mph (48). 

7.1.3.2 Radar Gun 
Radar guns can measure speed when pointed at a moving vehicle in the line-of-sight. These 
devices have a wide field of view and are programmed to report the fastest vehicle in its view 
(51). When used according to correct guidelines, these devices are accurate within +1 mph to 
-2 to -3 mph (49). 

7.1.3.3 Stopwatch Manual Count 
Manual counts, also known as running speed, are done using a stopwatch and two known 
start and stop locations. An observer starts and stops the stopwatch as a vehicle enters and 
departs the specified points marked in the section. The speed of the vehicle captured is then 
calculated dividing the distance between the two marked points by the time recorded (51). As 
humans have inconsistent and less accurate reaction times than automated devices, this type 
of count is rarely used for any type of engineering study. 
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7.2 Appendix B: Traditional Speed 
Collection Techniques 

Table 7.1: Ground Truth 

Timestamp TL-TR TL-BL TL-BR TR-TL TR-BL TR-BR BL-TL BL-TR BL-BR BR-TL BR-TR BR-BL 
7:00:00 1 11 5 1 19 0 12 20 0 25 0 7 
7:09:20 0 5 3 0 10 0 17 16 1 14 0 1 
7:19:00 5 4 13 1 12 0 15 47 11 34 0 9 
7:28:20 2 3 8 2 10 0 25 28 3 26 1 9 
7:41:05 4 10 7 6 19 0 32 47 7 48 0 9 
7:50:26 4 9 5 1 17 1 33 26 1 20 2 7 
8:00:00 5 12 15 2 19 1 25 42 4 37 2 14 
8:09:20 4 2 3 6 14 1 12 32 3 23 0 6 
8:21:00 6 15 19 4 26 1 20 40 4 23 4 11 
8:30:20 7 10 9 5 18 1 18 29 6 23 4 4 
8:47:41 8 16 11 2 27 0 34 46 5 43 3 14 
8:57:14 2 3 7 0 5 0 7 9 1 19 1 3 

 

Table 7.2: True Positive 

Timestamp TL-TR TL-BL TL-BR TR-TL TR-BL TR-BR BL-TL BL-TR BL-BR BR-TL BR-TR BR-BL 
7:00:00 1 7 4 1 13 0 8 16 0 19 0 5 
7:09:20 0 4 3 0 9 0 13 12 1 12 0 1 
7:19:00 5 3 11 1 11 0 14 45 11 32 0 8 
7:28:20 2 3 8 2 9 0 24 25 3 23 1 8 
7:41:05 4 10 7 5 19 0 30 47 6 43 0 8 
7:50:26 4 9 5 1 16 1 29 24 1 19 2 7 
8:00:00 4 11 13 2 17 1 23 38 4 37 2 12 
8:09:20 4 2 3 5 14 1 10 30 3 23 0 6 
8:21:00 6 14 18 4 23 1 17 36 4 20 3 10 
8:30:20 6 9 9 5 17 1 15 26 5 20 4 4 
8:47:41 8 16 10 2 25 0 33 41 4 38 3 12 
8:57:14 2 3 7 0 4 0 6 8 1 18 1 3 
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Table 7.3: False Positive 

Timestamp TL-TR TL-BL TL-BR TR-TL TR-BL TR-BR BL-TL BL-TR BL-BR BR-TL BR-TR BR-BL 
7:00:00 0 3 1 0 2 0 3 5 0 3 0 1 
7:09:20 0 1 0 0 1 0 3 3 0 2 0 0 
7:19:00 1 0 2 0 1 0 1 4 1 5 0 0 
7:28:20 0 0 1 0 0 0 2 4 0 3 0 1 
7:41:05 0 0 1 0 3 0 4 2 0 2 0 0 
7:50:26 1 1 0 0 3 0 2 1 0 2 0 1 
8:00:00 0 1 2 0 2 0 4 6 0 3 0 2 
8:09:20 0 0 0 1 0 0 0 5 0 2 0 0 
8:21:00 1 0 2 0 3 0 2 1 0 3 0 0 
8:30:20 1 1 0 0 1 0 2 4 0 0 0 1 
8:47:41 0 3 1 0 5 0 3 9 1 3 0 1 
8:57:14 0 1 1 0 0 0 1 1 0 2 0 0 
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7.3 Appendix C: Quoted Cost Sheets 
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