Water Quality Data Interpretation & Reporting

Kimberly Groff, MassDEP Ralph Abele, EPA Region I

April 26, 2017
Watershed Planning Program Workshop

General Monitoring Process

When designing a monitoring program Surface Water Quality Standards (SWQS) need to be considered

Different Data Collectors, Different Questions

Example Monitoring Objectives/??

MassDEP and the Clean Water Act	Stakeholder Activities
1. Assess the status or condition of waters	What is the condition of the river? Does the river meet the standards for Class B waters?
2. Develop and implement pollution control strategies	What are the nutrient loads in the river that will meet standards? What are the sources?
3. Measure the effectiveness of water quality programs	How effective are the WWTP upgrades that I am implementing?

Now that I have my data what is next?

- Interpretation relative to the standards
- Function of the study design objectives
- Opportunities for other secondary uses of data

Assessment: MassDEP Standards

Management Goals

- Aquatic Life
- Fishable/Swimmable

314 CMR 4.0

- Waterbody Classification
- Criteria
- Antidegradation

MassDEP Numeric Criteria

- Four criteria explicitly listed in the SWQS (pH, T, DO, Bacteria)
- SWQS need to include magnitude, frequency or duration
- Reference for AWQC and Human Health for toxics

Narrative Criteria

- Many "Free From" statements in the standards that do not have criteria assigned Nutrient Example:
 - "unless naturally occurring, all surface water shall be free from nutrients in concentrations that would cause or contribute to impairment of existing or designated uses..."
 - The indicators and thresholds used to interpret impairment attributed to nutrients are in the *Consolidated Assessment* and Listing Methodology (CALM)

SWQS and CALM

- Standards
 - Inventory of waters (A,B, SA, SB)
 - Management goals (PWS, Aquatic Life)
 - Designated uses (CWF, ORW)
 - Criteria (numeric and narrative)
 - Antidegradation
- CALM -
 - more indicators than in the standards
 - Includes threshold, frequency and duration
 - Used to develop standards for adoption

Assessment: CALM

- What information is used to determine if WQS are met
- Equations/Algorithms
- Aquatic Life
 - Indicators (physical, biological, chemical)
 - by waterbody type
 - Fishery Type
 - Replication/Confidence

Recipes for data interpretation

Consolidated Assessment and Listing Methodology (CALM)

for the 2016 Reporting Cycle We Lakes and Eduaries Designated Cold Waters **Existing Use Cold Waters Develop River Name** etts Division of Watershed Mar

CALM Assessment: Indicators

Use	Indicator
Aquatic Life	DO, pH, Temperature, Phosphorus, Nitrogen,
	Toxics (metals, ammonia, chloride, chlorine)
Aquatic Life	Benthic Macroinvertebrate, Fish Community,
	Primary Producers (e.g., algae, chlorophyll a)
Primary	Bacteria (E. coli, Enterococci) concentrations,
Recreation	Secchi depth
Secondary	Bacteria (E. coli, Enterococci) concentrations
Recreation	
Aesthetics	deposits; debris, scum; odor, color, taste,
	turbidity

CALM - Primary Producer Biological Screening Guidelines for Excess Nutrients

Use is Supported			Use is Impaired		
Rivers	Lakes	Estuaries	Rivers	Lakes	Estuaries
Wadeable rivers:	phytoplankton	Eelgrass bed	Wadeable rivers:	phytoplankton	Substantial
benthic	Chlorophyll a ≤16	habitat in AU	benthic	Chlorophyll a >16	decline in AU (= or
chlorophyll a	μg/L*,	area is	chlorophyll a	μg/L*,	exceed 10% of
samples <200	<25% of the total lake	increasing or	samples >200	>25% of the total lake	eelgrass bed
mg/m ^{2*} ,	area covered by non-	fairly stable (i.e.,	mg/m ^{2*} ,	area covered by non-	area), Chlorophyll
filamentous algal	rooted macrophyte(s)	no or minimal	filamentous	rooted macrophyte(s)	a >10 μg/L*,
cover <u><</u> 40%*,	and/or algal	loss),	algal cover	and/or algal	some macroalgae
Deep rivers:	mats/films/clumps*,	Chlorophyll a ≤5	>40%*,	mats/films/clumps*,	accumulations*
phytoplankton	occasional non-	μg/L*, little to	Deep rivers:	cyanobacteria	
Chlorophyll a ≤16	harmful ephemeral	no macroalgae	phytoplankton	blooms that result in	
μg/L*, occasional	algal blooms*, no	accumulations*	Chlorophyll a	advisories (recurring	
non-harmful	HABs (cyanobacterial		>16 ug/L*	and/or prolonged).	
ephemeral algal	or non-		cyanobacteria	These indicators may	
blooms*,	cyanobacterial		blooms that	also be applied to	
no HABs	blooms)*		result in	impounded reaches	
(cyanobacterial			advisories	of River AUs	
or non-			(recurring		
cyanobacterial			and/or		
blooms)*			prolonged)		

Implement Pollution Control:

- What standards/targets?
- What is the extent of the impairment?
- What are the sources of pollution?
- What is the load that will restore water quality?
- What combination of measures will meet the load?

Mystic River – Example Targets

- Mean chlorophyll-a: <10 ug/L
- Peak chlorophyll-a: <18.9 ug/L
- Total Phosphorus lakes/impoundments: <0.050 mg/L
- Total Phosphorus streams:<0.100 mg/L

Is Water Quality Improving?

- White Island Pond impaired for phosphorus
- Source (stormwater and cranberry bogs)
- Partners implemented BMPs
 - decreased use of fertilizer
 - Alum treatment

MassDEP Reports

- Integrated Report
- Comprehensive Assessment and Listing Methodology (CALM)
- Assessment Reports
- Technical & TMDL Reports
- QAed Data
- GIS Layers
- dep/water/watersheds/waterquality-assessments.html

Permit Holders/NGO /Consultants Reports

- Technical Reports
- QAed Data
- Discharge monitoring reports
- MS4 Annual Reports
- Report Cards

Questions

Kimberly Groff
MassDEP
Kimberly.groff@state.Ma.us
508-932-5528

Ralph Abele EPA Region I abele.ralph@epamail.epa.gov (617) 918-1629