

Climate Resilience Design Standards (CRDS) Tool: A resource for mainstreaming climate resilience in Massachusetts projects.

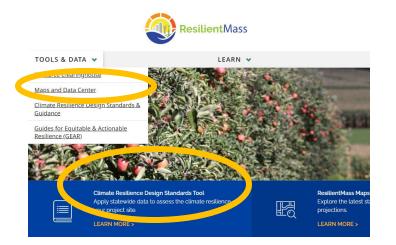
Caitlin Spence, PhD Assistant Climate Scientist / Hydroclimatology MA Executive Office of Energy and Environmental Affairs

Presentation to the Massachusetts Water Resources Commission January 9, 2025

Overview

- EEA Office of Climate Science
- What is the CRDS tool?
- Tool recommendations by climate hazard
- Tool recommended precipitation design standards
- Data deep dive> Climate-Informed Design Precipitation for Massachusetts
- Q&A

ResilientMass Plan Action: Launch an Office of Climate Science to...


- Serve as an authoritative resource, provide subject matter expertise on statewide climate data and models, and support consistent application of climate change information across agencies.
- Convene the academic climate science community and identify opportunities to partner with universities on climate science needs and next steps.

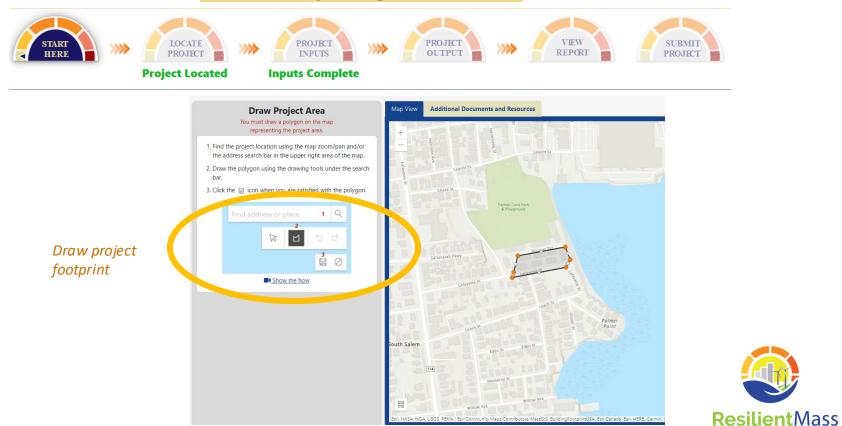
climatescience@mass.gov

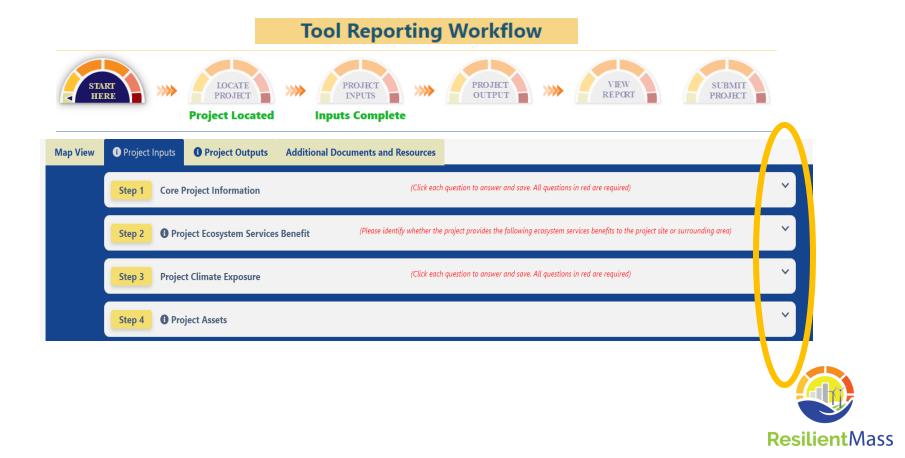
Climate Resilience Design Standards Tool: Overview

- Makes preliminary climate resilience analysis more broadly accessible
- Provide recommendations based on consistent use of state's climate data
- Provide a unified planning and design support tool that state agencies can use to administer grant programs

When to use this tool:

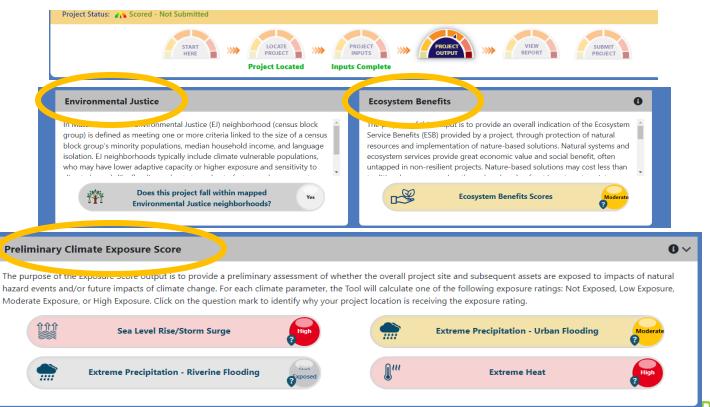
- Improving a state grant application
- Project siting
- Project planning and design/procurement/

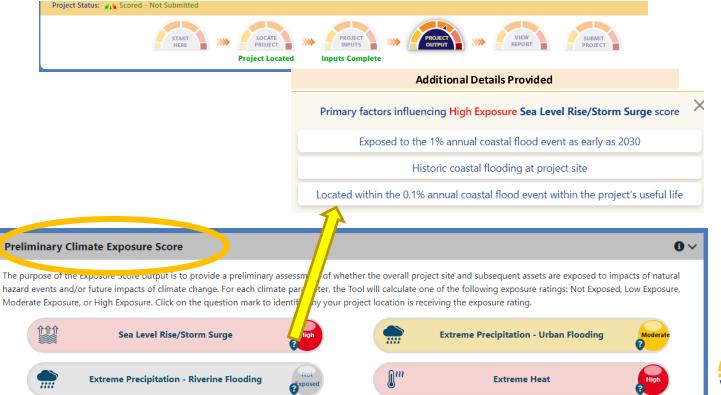

Climate Resilience Design Standards Tool: Overview

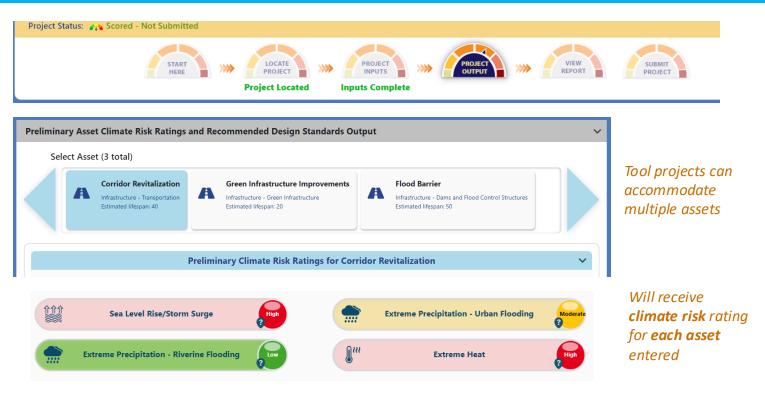


Recommended design considerations

CRDS Tool: Overview


Tool Reporting Workflow




Tool Reporting Workflow

pitation –

While it is possible to get a "no exposure" **project** score for "Sea Level Rise/Storm Surge" or "Extreme Precipitation – Riverine Flooding" because geographically dependent, the tool will still give an **asset risk score** (low).

Recommended Design Standards for test

Climate Resilience Design Standards are recommended for each asset and climate parameter. Tiered methodologies, or methodologies to calculate design criteria values, are intended for projects that will be designed for today's climate and plan for the future. The three tiers represent various recommended levels of effort for determining design criteria values, dependent upon the consequences of failure of an asset as a function of scope, time, and severity.

How to Estimate Projected Annual/Summer/Winter Average Temperatures Values

Asset Name	Recommended Planning Horizon	Recommended Percentile	Tiered Methodology	Step-by-Step Methodology
test	2030	50th	Tier 1	Downloadable Methodology PDF

*Note: Projected Annual/Summer/Winter Average Temperatures are not currently available through this Tool. Users should follow the step-by-step instructions outlined in the downloadable methodology PDF to estimate the projected Annual/Summer/Winter Average Temperatures based on the recommended planning horizon, percentile, and tiered methodology. The three tiers represent various anticipated levels of effort for calculating design criteria values, dependent upon the consequences of failure of an asset as a function of scope, time, and sevenity and useful life of the asset.

How Annual/Summer/Winter Average Temperatures may inform Planning	~
How Annual/Summer/Winter Average Temperatures may inform Early Design	~
How Annual/Summer/Winter Average Temperatures may inform Project Evaluation	~

Will receive recommended standards and design criteria for **each asset** entered:

- Average temperature (annual/seasonal)
- Days per year over 90F
- Days per year over 95F
- Days per year under 32F
- Cooling, Heating, and Growing Degree-Days
- Heat index (instructions to calculate)

2024 Updates in queue for deployment

~

Guidance for how to consider outputs

Total Precipitation Depth for 24-hour Design Storms is the total amount of rain in inches that falls over a period of 24-hours. It can be any 24-hour period, not just a traditional calendar day. This is given for a specific design storm (return period) such as the 100-year or 10-year storm (1% or 10%). Peak Intensity is the maximum rate of rainfall in inches per hour of a 24-hour design storm".

Projected Total Precipitation Depth and Peak Intensity values can be used to assess potential flooding impacts and inform design of green and grey infrastructure solutions to mitigate flooding and manage stormwater.

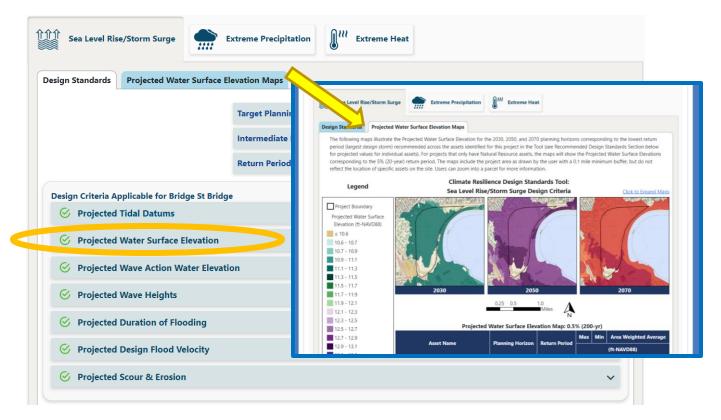
Projected Total Precipitation Depth Values and Peak Intensity Methodology

The Tool uses climate projections developed by Cornell University as part of the EEA's Massachusetts Climate and Hydrologic Risk Project. Assets receive a projected value for the 24-bit of the construction Depth associated with a recommon of the period (design storm) and planning horizon.

Asset Nam	Recommended Planning Recommended Return Period Projected 24-hr Total Step-by-Step Proipitation Depth (inches) Peak Intensity									
Test20.	2050 100-Year (1%) 9.9 Downloadable Methy									
otal storm o	depth output: <u>Tier 3 methodol</u>	ogy PDF.	4-hour design storms, and those resu	Its be compared to the provided						
otal storm (ogy PDF. rm Planning	4-hour design storms, and those resu							
otal storm (How Total F How Total F	depth output: <u>Tier 3 methodol</u> Precipitation Depth may info	ogy PDF. rm Planning rm Early Design	4-hour design storms, and those resu							

Will receive recommended standards and design criteria for **each asset** entered:

- What 24-hour design storm return period?
- Recommends considering alternative storm durations as relevant to project


Explore additional design storm precipitation values on external dashboard

×

	Target Plannin	g Horizon: 2070	
	Intermediate F	Planning Horizon: 2050	
	Return Period:	: 1000-yr (0.1%)	
esign Criteria Applicable for Bridge St Brid	ge		
Second Projected Tidal Datums			~
Second Strate Projected Water Surface Elevation		MC-FRM OUTPUTS	~
Projected Wave Action Water Eleva	tion		~
Second Wave Heights			~
Sector Projected Duration of Flooding			~
		Not part of MCFRM standard outputs	

Most of the coastal design criteria projected values are sourced from the Massachusetts Coast Flood Risk Model (MC-FRM) ResilientMass

Most of the coastal design criteria projected values are sourced from the Massachusetts Coast Flood Risk Model (MC-FRM Resilient Mass

CRDS Tool: Version History

Beta Tool (April 2021)

• MVP and Massworks requested Tool reports in grant applications

Version 1.0 (February 2022)

- Climate exposure updates
- Ecosystem service benefits updates
- Additional in-tool guidance

Version 1.1 (April 2022)

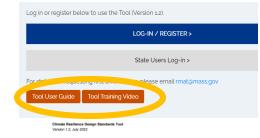
- MC-FRM Level 2 outputs (dynamic tables for applicable coastal design criteria)
- MA Climate Hydrologic Risk Project outputs (dynamic tables for applicable extreme precipitation design criteria)

Version 1.2 (July 2022)

• MC-FRM Projected Water Surface Elevation Maps (interactive in-tool interface and printed maps in project report)

Version 1.3 (2023)

• Update to Environmental Justice neighborhood dataset to reflect 2020 Census


Version 1.4 (2025) – In progress

- Updates to temperature design standards
- Additional MC-FRM maps
- Bug fixes

CRDS Tool: Support & Documentation

Key available resources:

Table of Contents

User

auide

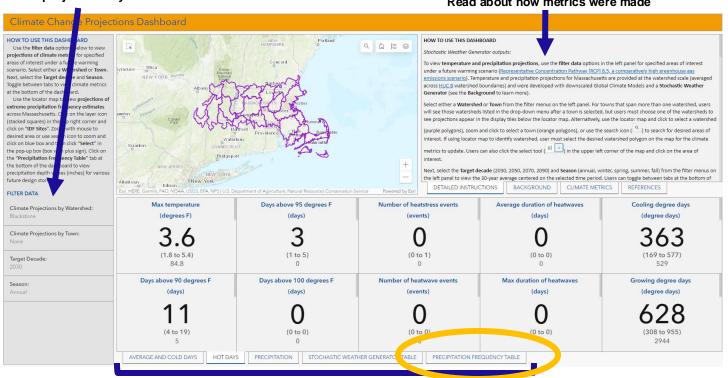
1. 1.0. 1.1. 1.2.	CLIMATE RESILIENCE DESIGN STANDARDS TOOL .2 How to Use this Document. .2 Introduction to the Tool .2 Key Tool Pages .4
2. 2.1.	TOOL FUNCTIONALITY AND FEATURES
2.2.	Page: Start Here
2.3.	Page: Locate Project
2.4.	Page: Project Inputs
2.5.	Page: Project Outputs
2.6.	Page: View Report
2.7.	Page: Submit Project

Tool (V1.2) Training Video - February, 2023

Guidance and Best Practices

The Climate Resilience Design Guidance provides general design guidance to consider while implementing resilience principles that are not specific to project type or climate hazards, and are illustrated through exam the Guidance considerations and document decision making throughout the planning process.

		Guidance and Best Practices PDF
Additional forms include:		Resilience Design Guidance Best Practices
 Site Suitability 	Considerations	Best Practice
Regional Coordination Flexible Adaptation Pathways	Site Suitability (SS)	Reduce exposure to climate hazards Mitigate adverse climate impacts and provide benefits Protect, conserve, and restore critical natural resources on-site and off-site
Climate resilience	Regional Coordination (RC)	Assess regional context of vulnerability Evaluate impacts beyond site-specific design Optimize capital investment opportunities A Prioritize services and assets that serve vulnerable populations
design guidance and best practices	Flexible Adaptation Pathways (AP)	Embed future capacity and design for uncertainty Design for incremental change Encourage climate mitigation and other co-benefits Prioritize nature-based solutions Prepare for current and future operational and maintenance needs


Documentation and training for technical data inputs

- Massachusetts Coast Flood Risk Model (MC-FRM) FAQ (April 6, 2022)
- Massachusetts Coast Flood Riks Model (MC-FRM) Online Trainings (April-May 2023)
- EEA's Climate and Hydrologic Risk Project Weather Generator Technical Document (April, 2022)
- EEA's Climate and Hydrologic Risk Project IDF Curves Technical Document (December, 2021)

https://resilient.mass.gov/rmat_home/designstandards/

Additional projections data: Climate projections dashboard

Get projections by location

Read about how metrics were made

ResilientMass

See projected metrics of interest

Climate projections dashboard: Planned Updates

Climate-Hydrologic Risk Project Projected Temperature & Precipitation Statistics

TEMPERATURE

Minimum, average & maximum Number of days over 90F, 95F & 100F Number of days under 32F & 0F Number of cold & heat wave events Number of heat & cold stress events Heating & cooling degree days Growing degree days Heat Index Dew Point (0.4%, 1%, 2%)

Minimum & maximum heat index Minimum & maximum dew point Maximum Dew Point Heating dry bulb (99% & 99.6%) Cooling dry bulb (0.4%, 1%, 2%) Mean coincident wet bulb (0.4%, 1%, 2%) Date of first & last frost Number of freeze/thaw events

PRECIPITATION

Total Maximum 24-hour 90th & 99th percentile 24-hour Number of days with more than 1", 2", & 4" Proportion of precipitation as rain vs. snow

Annual Return Periods:

2-, 5-, 10-, 20-, 50-, 100-, 200-, and 500-year 24hour & 48-hour 1000-year 24- & 48-hour

Average number of consecutive: Wet days Dry days

STREAMFLOW

Low-flow: 7q10 7q2

High-flow:

Peak discharge for 2-, 5-, 10-, 25-, 50-, 100-, and 500-year return periods

KEY

Existing Parameters from Phase 1 New parameters expected via Phase 2

Durations:

Average heat & cold wave duration Annual maximum heat & minimum cold wave duration

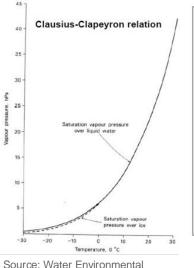
Climate projections dashboard: Precipitation Frequency Table

Climate Change Projections Dashboard

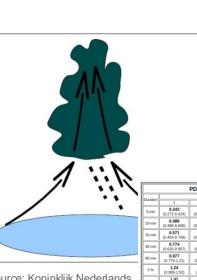
HOW TO USE THIS DASHBOARD Use the filter data options below to view projections of climate metrics for specified areas of interest under a future warming scenario. Select either a Watershed or Town. Next, select the Target decade and Season. Toggle between tabs to view climate metrics at the bottom of the dashboard. Use the locator map to view projections of extreme precipitation frequency estimates across Massachusetts. Click on the layer icon (stacked squares) in the top right corner and				€ Zoom Basin_I HU_8_	IDF Site 1884 ×			HOW TO USE THIS DASHBOARD Stochastic Weather Generator outputs: To view temperature and precipitation projections, use the filter data options in the left panel for specified areas of interest under a future warming scenario (Representative Concentration Pathway (RCP) 8.5, a comparatively high greenhouse gas emissions scenario). Temperature and precipitation projections for Massachusetts are provided at the watershed scale (averaged across HUC.8 watershed boundaries) and were developed with downscaled Global Climate Models and a Stochastic Weather Generator (see the Background to learn more). Select either a Watershed or Town from the filter menus on the left panel. For towns that span more than one watershed, users will see those watersheds listed in the drop-down menu after a town is selected, but users must choose one of the watersheds to see projections appear in the display tiles below the locator map. Alternatively, use the locator map and click to select a watershed (purple polygons), zoom and click to select a town (orange polygons), or use the search icon (^Q) to search for desired areas of interest. If using locator map to identify watershed, user must select the desired watershed polygon on the map for the climate metrics to update. Users can also click the select tool (^W) in the upper left corner of the map and click on the area of interest. Next, select the Target decade (2030, 2050, 2070, 2090) and Season (annual, winter, spring, summer, fall) from the filter menus on DETAILED INSTRUCTIONS of PACKGROUND CLIMATE METRICS						nhouse gas eed scale (averaged hastic Weather e watershed, users f the watersheds to to select a watershed
click on "IDF Sites". Zoom with mouse to desired area or use search icon to zoom and click on blue box and then click "Select" in the pop-up box (box with plus sign). Click on the "Precipitation Frequency Table" tab at the bottom of the dashboard to view precipitation depth values (inches) for various future design storms.	nt ty Hut ty Hut the source of	Cattin Lot Hill anth R/ e												ap for the climate n the area of
FILTER DATA	Site	Year	Duration	RI_ yr_50th	נו_2yr_5/ h	RI_5yr_50th	RI_10yr_	50th	RI_25yr_50th	1_50yr_50	RI_100yr_50th	RI_200yr_50th	RI_500yr_50th	RI_1000yr_50th
Climate Projections by Watershed: Blackstone	Site 1884	E.		0.4 (0.4 - 0.4)	0.4 (0.4 - 0.5)	0.5 (0.5 - 0.6)	0.6 (0.6 - 0.		0.7 (0.7 - 0.8)	0.8 (0.8 - 0.9)	0.9 (0.9 - 1)	1 (1 - 1.1)	1.1 (1.1 - 1.2)	1.2 (1.2 - 1.3)
Climate Projections by Town: None	Site 1884	2030	10m	0.5 (0.5 - 0.6)	0.6 (0.6 - 0.6)	0.7 (0.7 - 0.8)	0.9 (0.8 - 0.		1 (1 - 1.1)	1.1 (1.1 - 1.2)	1.3 (1.2 - 1.4)	1.4 (1.4 - 1.5)	1.6 (1.5 - 1.7)	1.7 (1.7 - 1.9)
Target Decade: 2030	Site 1884	2030	15m	0.6 (0.6 - 0.6)	0.7 (0.7 - 0.8)	0.9 (0.8 - 0.9)	1 (1 - 1.1		1.2 (1.2 - 1.3)	1.4 (1.3 - 1.4)	1.5 (1.4 - 1.6)	1.7 (1.6 - 1.8)	1.9 (1.8 - 2)	2 (2 - 2.2)
Season:	Site 1884	2030	60m	1.1 (1 - 1.2)	1.3 (1.2 - 1.4)	1.6 (1.5 - 1.7)	1.8 (1.8 - 1.		2.2 (2.1 - 2.3)	2.4 (2.3 - 2.6)	2.7 (2.6 - 2.9)	3 (2.9 - 3.2)	3.4 (3.2 - 3.6)	3.7 (3.5 - 3.9)
Annual	Site 1884	2030	02h	1.4 (1.3 - 1.5)	1.6 (1.6 - 1.7)	2 (1.9 - 2.1)	2.3 (2.2 - 2.		2.8 (2.7 - 3)	3.1 (3 - 3.3)	3.5 (3.3 - 3.7)	3.8 (3.7 - 4.1)	4.4 (4.2 - 4.7)	4.8 (4.7 - 5.2)
	Site 1884 <u>↓</u>	2030	03h	1.6 (1.5 - 1.7)	1.9 (1.8 - 2)	2.3 (2.2 - 2.5)	2.7 (2.6 - 2.		3.2 (3.1 - 3.4)	3.6 (3.5 - 3.8)	4 (3.9 - 4.3)	4.5 (4.3 - 4.8)	5.1 (5 - 5.5)	5.7 (5.5 - 6.1)
	AVERAGE AND	COLD DAYS	HOT DAYS	PRECIPITATION	STOCHASTIC V	/EATHER GENERA	TOR TABLE	PI	RECIPITATION FREQUI	ENCY TABLE			resilier	ιινιαδ

Map Te

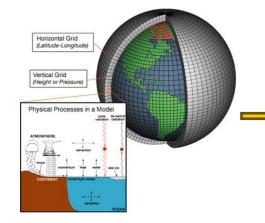
Intensity-Duration-Frequency (IDF) Statistics Reference: NOAA Atlas 14


V on St Blackstore	A Common and the	a) Calact location								
ain 551 Galesoy Park		AMS-based	precipitatio	n frequency	estimates v	/ith 90% coi	nfidence inte	rvals (in inc	hes) ¹	
Harover Fitton AV®	Duration				Annual exc	eedance probabili	ty (1/years)			
11 9 Fitton Field Amball Rd Kimball Rd	Duration	1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500	1/1000
Bin Corin Aumu Bin Halt Hall Hall	5-min	0.371 (0.297-0.457)	0.487 (0.389-0.604)	0.576 (0.456-0.717)	0.692 (0.527-0.906)	0.780 (0.580-1.04)	0.869 (0.624-1.21)	0.964 (0.656-1.39)	1.10 (0.714-1.65)	1.20 (0.761-1.85)
Golige of The Smith Hall Loyola Hall Hall	10-min	0.525 (0.421-0.648)	0.690 (0.551-0.856)	0.815 (0.646-1.02)	0.980 (0.747-1.28)	1.10 (0.821-1.48)	1.23 (0.883-1.72)	1.37 (0.928-1.97)	1.55 (1.01-2.34)	1.70 (1.08-2.62)
Hail Durand Librity Hail Coast	15-min	0.618 (0.495-0.761)	0.812 (0.648-1.01)	0.959 (0.761-1.20)	1.15 (0.879-1.51)	1.30 (0.966-1.74)	1.45 (1.04-2.02)	1.61 (1.09-2.32)	1.83 (1.19-2.75)	2.00 (1.27-3.08)
	30-min	0.841 (0.673-1.04)	1.11 (0.883-1.37)	1.31 (1.04-1.63)	1.57 (1.20-2.06)	1.77 (1.32-2.37)	1.98 (1.42-2.76)	2.19 (1.49-3.16)	2.49 (1.62-3.75)	2.73 (1.73-4.21)
6 4 4 4 5 1 City View St	60-min	1.06 (0.852-1.31)	1.40 (1.12-1.74)	1.66 (1.31-2.06)	1.99 (1.52-2.60)	2.24 (1.67-3.01)	2.50 (1.80-3.49)	2.78 (1.89-4.01)	3.16 (2.06-4.75)	3.46 (2.19-5.33)
endis St Recination Conter	2-hr	1.36 (1.09-1.66)	1.80 (1.44-2.22)	2.14 (1.70-2.65)	2.58 (1.98-3.36)	2.91 (2.18-3.90)	3.26 (2.36-4.56)	3.65 (2.49-5.24)	4.22 (2.75-6.31)	4.70 (2.98-7.18)
200m Avon St	3-hr	1.55 (1.26-1.90)	2.08 (1.68-2.55)	2.48 (1.98-3.06)	3.00 (2.31-3.90)	3.38 (2.55-4.52)	3.79 (2.77-5.31)	4.27 (2.92-6.11)	4.98 (3.25-7.42)	5.58 (3.55-8.50)
	6-hr	1.95 (1.59-2.37)	2.64 (2.14-3.22)	3.17 (2.55-3.89)	3.86 (3.00-5.00)	4.37 (3.32-5.82)	4.91 (3.62-6.86)	5.56 (3.81-7.90)	6.54 (4.28-9.68)	7.38 (4.70-11.2)
	12-hr	2.41 (1.98-2.91)	3.32 (2.71-4.02)	4.00 (3.24-4.88)	4.91 (3.83-6.32)	5.56 (4.25-7.37)	6.28 (4.64-8.71)	7.12 (4.90-10.1)	8.40 (5.52-12.3)	9.49 (6.07-14.3)
	24-hr	2.87 (2.37-3.45)	4.00 (3.28-4.81)	4.85 (3.96-5.87)	5.97 (4.69-7.64)	6.79 (5.21-8.93)	7.67 (5.70-10.6)	8.72 (6.02-12.2)	10.3 (6.82-15.1)	11.7 (7.52-17.5)
L	2-day	3.30 (2.74-3.93)	4.01 (3.82-5.52)	(4.61-6.75)	0.92 (5.47-8.82)	7.00 (6.09-10.3)	(6.68-12.3)	10.2 (7.05-14.2)	12.1 (8.03-17.6)	13.8 (8.90-20.5)
	3-day	3.58 (2.99-4.25)	5.00 (4.16-5.96)	6.08 (5.01-7.29)	7.50 (5.94-9.51)	8.52 (6.61-11.1)	9.64 (7.25-13.2)	11.0 (7.65-15.3)	13.1 (8.71-19.0)	15.0 (9.66-22.1)
	4-day	3.84 (3.21-4.54)	5.33 (4.44-6.33)	6.46 (5.34-7.72)	7.95 (6.32-10.1)	9.02 (7.02-11.7)	10.2 (7.68-13.9)	11.6 (8.10-16.1)	13.9 (9.20-20.0)	15.8 (10.2-23.2)
	7-day	4.54 (3.82-5.34)	6.16 (5.16-7.28)	7.39 (6.14-8.79)	9.02 (7.19-11.3)	10.2 (7.95-13.2)	11.5 (8.64-15.5)	13.0 (9.08-17.9)	15.3 (10.2-22.0)	17.3 (11.2-25.4)

If NOAA Atlas 14 precipitation values are based on historic storms, how rare would the same events be today or in the future?


ResilientMass Projected Design Storms: Basis

Massachusetts' Future IDF curves


Theoretical: 7% increase in atmospheric moisture-holding capacity per degree Celsius of warming.

Change.

Scenario, decade, and projected warming

RCP 8.5, 2050 \rightarrow 2 degrees Celsius

Global climate model

		· .											
	PDS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹												
Duration	Average recurrence interval (years)												
Durabon	1	2	5	10	25	50	100	200	500	1000			
5-min	0.343	0.400	0.494	0.572	0.679	0.761	0.845	0.936	1.06	1.16			
	(0.272-0.424)	(0.318-0.495)	(0.391-0.614)	(0.449-0.714)	(0.514-0.890)	(0.563-1.02)	(0.603-1.18)	(0.634-1.35)	(0.690-1.59)	(0.735-1.78)			
10-min	0.486 (0.386-0.600)	0.567 (0.450-0.702)	0.700 (0.553-0.870)	0.810 (0.637-1.01)	0.962 (0.729-1.26)	1.08 (0.797-1.45)	1.20 (0.855-1.67)	1.32 (0.898-1.91)	1.50 (0.976-2.25)	1.65 (1.04-2.52)			
15-min	0.571 (0.454-0.706)	0.667 (0.529-0.825)	0.824 (0.651-1.02)	0.953 (0.749-1.19)	1.13 (0.857-1.48)	1.27 (0.938-1.70)	1.41 (1.01-1.96)	1.56 (1.06-2.25)	1.77 (1.15-2.65)	1.94 (1.23-2.97)			
30-min	0.774	0.905	1.12	1.30	1.54	1.73	1.92	2.12	2.41	2.63			
	(0.615-0.957)	(0.718-1.12)	(0.884-1.39)	(1.02-1.62)	(1.17-2.02)	(1.28-2.31)	(1.37-2.67)	(1.44-3.06)	(1.56-3.61)	(1.67-4.04)			
60-min	0.977	1.14	1.41	1.64	1.95	2.18	2.42	2.68	3.04	3.33			
	(0.776-1.21)	(0.907-1.41)	(1.12-1.76)	(1.29-2.05)	(1.47-2.55)	(1.61-2.93)	(1.73-3.38)	(1.82-3.87)	(1.98-4.56)	(2.11-5.11)			
2-hr	1.24	1.46	1.82	2.13	2.54	2.86	3.19	3.57	4.13	4.61			
	(0.988-1.52)	(1.17-1.79)	(1.45-2.25)	(1.68-2.64)	(1.94-3.32)	(2.13-3.83)	(2.31-4.46)	(2.43-5.12)	(2.70-6.16)	(2.92-7.02)			
3-hr	1.41	1.68	2.11	2.47	2.97	3.33	3.73	4.20	4.91	5.51			
	(1.13-1.73)	(1.34-2.05)	(1.69-2.59)	(1.96-3.06)	(2.28-3.87)	(2.50-4.46)	(2.72-5.22)	(2.86-6.00)	(3.21-7.30)	(3.51-8.38)			
6-hr	1.76	2.11	2.69	3.17	3.83	4.32	4.85	5.50	6.48	7.32			
	(1.42-2.14)	(1.71-2.57)	(2.17-3.29)	(2.54-3.90)	(2.96-4.97)	(3.27-5.76)	(3.56-6.77)	(3.76-7.80)	(4.24-9.56)	(4.67-11.0)			
12-hr	2.17	2.63	3.38	4.01	4.87	5.51	6.20	7.03	8.30	9.39			
	(1.76-2.61)	(2.14-3.17)	(2.74-4.10)	(3.23-4.89)	(3.78-6.28)	(4.18-7.29)	(4.57-8.59)	(4.83-9.92)	(5.45-12.2)	(6.01-14.1)			
24-hr	2.57	3.14	4.08	4.85	5.91	6.70	7.56	8.59	10.2	11.5			
	(2.11-3.08)	(2.57-3.77)	(3.32-4.91)	(3.93-5.88)	(4.62-7.57)	(5.12-8.82)	(5.60-10.4)	(5.92-12.0)	(6.70-14.8)	(7.39-17.1)			
	2.94	3.61	4.70	5.60	6.85	7.77	8.77	10.00	11.9	13.5			

= 4.91*(1.07^2) = 5.62"

How can I use the scaled IDF dataset?

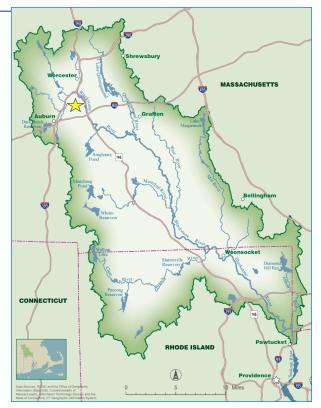
- Add as guidance/optional stretch reference in local stormwater ordinance
- Use to show future benefits in FEMA benefit-cost analysis
- Climate-informed stormwater infrastructure & BMP design

Office of Climate Science Climatescience@mass.gov https://www.resilient.mass.gov

Edwin.Sumargo@mass.gov Caitlin.Spence@mass.gov Margot.Mansfield@mass.gov

ResilientMass

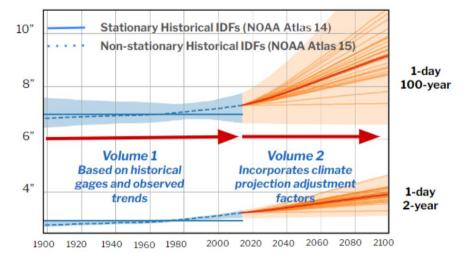
Next Steps & Open Questions


estimates (IDFs)

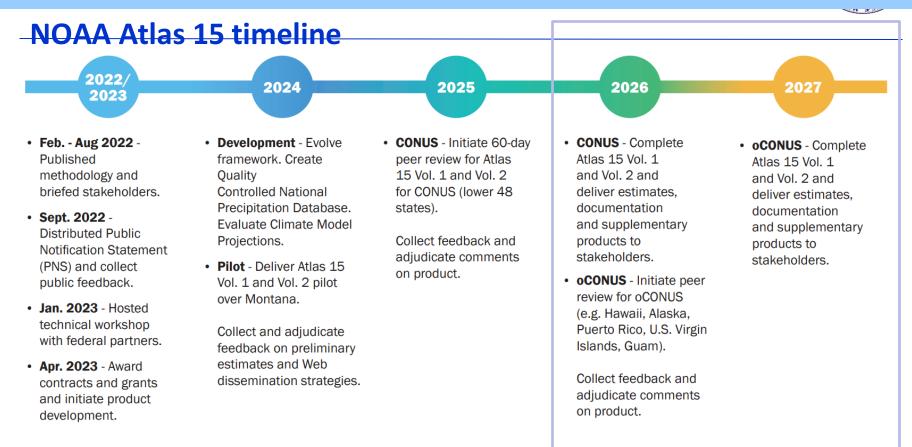
- Update scaled IDF dataset to reflect CMIP6 projected temperatures
- Investigate shifts in storm tracks, regional storm typologies, and storm frequencies
- Track NOAA Atlas 15 planned methods and milestones

Overview

- Evolving extreme precipitation in New England
- Data resource introduction: MA Climate-Scaled IDF Curves
- Example: Leominster 9/11/23 flooding
- NOAA Atlas 15: What we know now
- Next Steps


Source: Blackstone River Watershed Association http://www.thebrwa.org/map.htm

What is Atlas 15?


- Bipartisan Infrastructure Law (BIL) provides funding for NWS' Office of Weather Prediction (OWP) to
 - Update Atlas 14 methods explicitly accounting for climate change
 - Update precipitation depth/duration/frequency values across the US
- NOAA Atlas 15 Volume 1: Historic trends in observed values
- NOAA Atlas 15 Volume 2: Adjustment factors for Volume 1 values to reflect future climate projections

NOAA Atlas 15

New National Precipitation Frequency Standard

Historical and future intensity-duration-frequency estimates (IDFs)

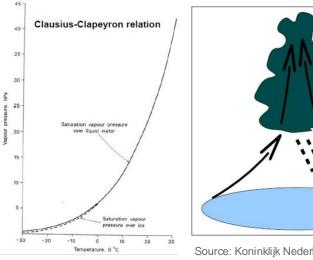
AMS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹											
Duration				Annual ex	ceedance probabili	ty (1/years)		<u>ר</u>			
Duration	1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500	1/1000		
6-hr	1.85 (1.48-2.28)	2.55 (2.03-3.14)	3.07 (2.43-3.80)	3.77 (2.89-4.86)	4.27 (3.22-5.62)	4.82 (3.54-6.58)	5.50 (3.75-7.49)	6.55 (4.30-9.17)	7.47 (4.78-10.6)		
12-hr	2.36 (1.91-2.87)	3.22 (2.60-3.94)	3.88 (3.10-4.76)	4.74 (3.67-6.05)	5.37 (4.07-6.99)	6.05 (4.46-8.16)	6.86 (4.72-9.28)	8.11 (5.35-11.3)	9.18 (5.90-13.0)		
24-hr	2.85 (2.33-3.44)	3.89 (3.17-4.71)	4.67 (3.78-5.68)	5.71 (4.46-7.21)	6.47 (4.94-8.33)	7.28 (5.40-9.71)	8.24 (5.70-11.1)	9.68 (6.41-13.4)	10.9 (7.04-15.3)		
2-day	3.26 (2.70-3.90)	4.47 (3.69-5.36)	5.39 (4.41-6.49)	6.60 (5.20-8.26)	7.48 (5.78-9.56)	8.43 (6.31-11.2)	9.55 (6.66-12.7)	11.2 (7.49-15.4)	12.7 (8.22-17.6)		
2-day									(

Washed out road in Leominster, CBS Boston September 2023 "...dropped nearly **ten inches of rain in six hours...** the rainfall was "a 200-year event", says Matthew Belk, a meteorologist with the National Weather Service in Boston." CBS News, Boston

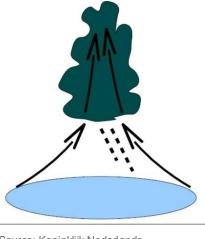
30

?

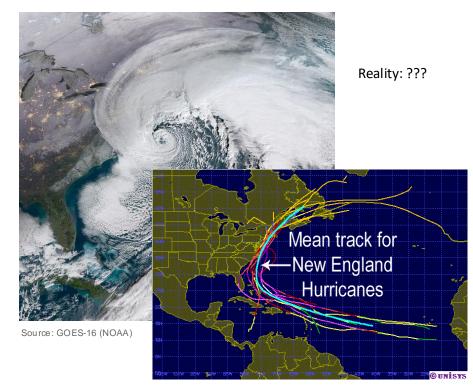
Duration				Annual ex	ceedance probabilit	v (1/vears)		•	Registing to:
Duration	1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500	The sector of the part of the sector
5-min	0.351 (0.279-0.439)	0.489 (0.388-0.614)	0.594 (0.467-0.749)	0.732 (0.555-0.964)	0.834 (0.620-1.12)	0.941 (0.678-1.32)	1.00 (0.720-1.51)	1.24 (0.806-1.82)	Named states bit das das states i for a granter tas Australia da sea i das das seas altig, area, 10 Margi honora il
10-min	0.497 (0.395-0.622)	0.693 (0.549-0.869)	0.841 (0.662-1.06)	1.04 (0.787-1.36)	1.18 (0.878-1.59)	1.33 (0.961-1.86)	1.51 (1.02-2.14)	1.76 (1.14-2.58)	Persenten (200)
15-min	0.585	0.816	0.990	1.22	1.39	1.57	1.77	2.07	2.32
	(0.465-0.732)	(0.646-1.02)	(0.780-1.25)	(0.925-1.61)	(1.03-1.87)	(1.13-2.19)	(1.20-2.52)	(1.34-3.04)	(1.47-3.4
30-min	0.809	1.13	1.38	1.70	1.94	2.19	2.48	2.90	3.26
	(0.644-1.01)	(0.898-1.42)	(1.09-1.74)	(1.29-2.24)	(1.44-2.61)	(1.58-3.07)	(1.68-3.52)	(1.89-4.26)	(2.06-4.
60-min	1.03 (0.823-1.30)	1.45 (1.15-1.82)	1.77 (1.39-2.23)	2.19 (1.66-2.88)	2.49 (1.85-3.36)	2.82 (2.03-3.94)	3.19 (2.16-4.53)	3.74 (2.43-5.49)	4.20 (2.66-6.2
2-hr	1.33	1.90	2.33	2.89	3.31	3.75	4.27	5.06	5.73
	(1.07-1.65)	(1.52-2.36)	(1.85-2.91)	(2.22-3.79)	(2.48-4.43)	(2.74-5.23)	(2.91-6.02)	(3.30-7.36)	(3.65-8.4
3-hr	1.55	2.21	2.70	3.36	3.84	4.36	4.98	5.91	6.71
	(1.25-1.91)	(1.77-2.73)	(2.16-3.37)	(2.59-4.38)	(2.90-5.13)	(3.20-6.06)	(3.40-6.98)	(3.87-8.56)	(4.28-9.6
6-hr	2.00	2.82	3.43	4.25	4.84	5.48	6.21	7.40	8.39
	(1.63-2.45)	(2.28-3.46)	(2.76-4.24)	(3.30-5.49)	(3.68-6.40)	(4.05-7.55)	(4.29-8.68)	(4.87-10.6)	(5.38-12
12-hr	2.56	3.53	4.26	5.22	3.92	6.68	7.56	8.89	10.0
	(2.10-3.11)	(2.88-4.29)	(3.45-5.21)	(4.08-6.67)	(4.53-7.75)	(4.95-9.09)	(5.23-10.4)	(5.88-12.6)	(6.46-14
24-hr	3.09	4.24	5.11	6.27	7.11	8.01	9.07	10.7	12.0
	(2.56-3.72)	(3.50-5.12)	(4.18-6.20)	(4.94-7.94)	(5.48-9.22)	(5.98-10.8)	(6.31-12.4)	(7.10-15.0)	(7.78-17
2-day	3.50	4.89	5.94	7.33	8.34	9.44	10.8	12.8	14.5
	(2.92-4.17)	(4.06-5.84)	(4.90-7.14)	(5.82-9.23)	(6.49-10.8)	(7.12-12.7)	(7.52-14.5)	(8.54-17.8)	(9.44-20
3-day	3.79 (3.18-4.50)	5.28 (4.41-6.28)	6.41 (5.31-7.66)	7.90 (6.30-9.88)	8.98 (7.01-11.5)	10.1 (7.69-13.6)	11.6 (8.12-15.6)	13.7 (9.21-19.1)	15.6 (10.2-22
4-day	4.06	5.60	6.76	8.30	9.42	10.6	12.1	14.3	16.2
	(3.42-4.79)	(4.70-6.63)	(5.63-8.05)	(6.65-10.3)	(7.38-12.0)	(8.07-14.1)	(8.51-16.2)	(9.62-19.8)	(10.6-22


"...about ten inches in the past 72 hours..." MassLive, September 2023

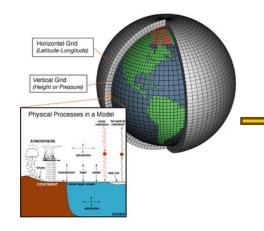
Town of North Attleborough Facebook, September 2023


"...nearly five inches of rain in four hours..." CBS News, Boston September 2023

Massachusetts' Future IDF curves


Theoretical: 7% increase in atmospheric moisture-holding capacity per degree Celsius of warming.

Source: Water Environmental Change.



Source: Quincy Vagell, 2014

Massachusetts' Future IDF curves

How does precipitation scale with temperature or dew point? Does precipitation increase more than theory would suggest? Less?

- Annually?
- Seasonally?
- Daily?
- Under different weather regimes?

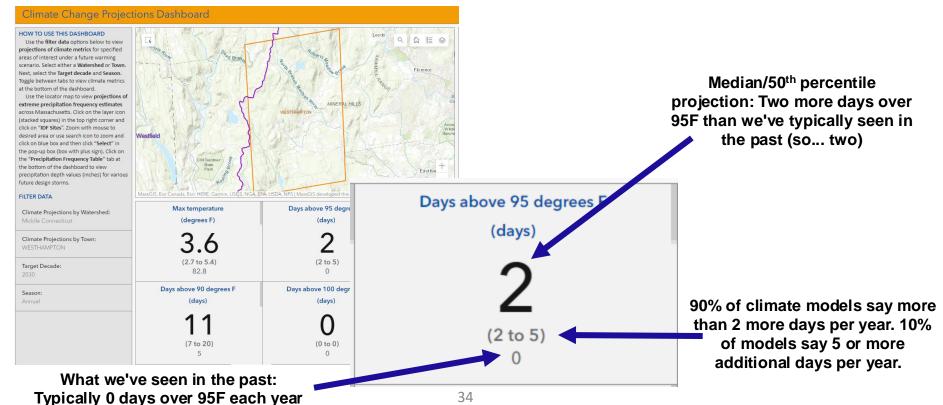
Scenario, decade, and projected warming

RCP 8.5, $2050 \rightarrow$ 2 degrees Celsius

Global climate model

NO	
----	--

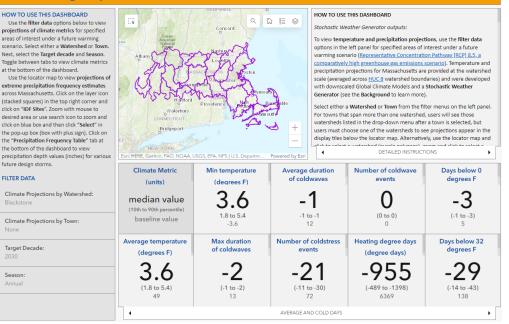
We can use a 7% per degree Celsius precipitation scaling rate.

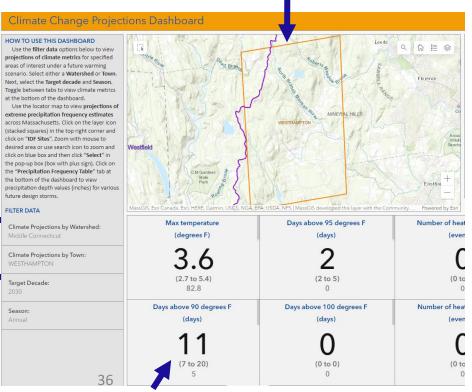

Lenoir, Najibi, and Steinschneider (2023)

PDS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration	Average recurrence interval (years)									
Durabon	1	2	5	10	25	50	100	200	500	1000
5-min	0.343	0.400	0.494	0.572	0.679	0.761	0.845	0.936	1.06	1.16
	(0.272-0.424)	(0.318-0.495)	(0.391-0.614)	(0.449-0.714)	(0.514-0.890)	(0.563-1.02)	(0.603-1.18)	(0.634-1.35)	(0.690-1.59)	(0.735-1.78)
10-min	0.486 (0.386-0.600)	0.567 (0.450-0.702)	0.700 (0.553-0.870)	0.810 (0.637-1.01)	0.962 (0.729-1.26)	1.08 (0.797-1.45)	1.20 (0.855-1.67)	1.32 (0.898-1.91)	1.50 (0.976-2.25)	1.65 (1.04-2.52)
15-min	0.571 (0.454-0.706)	0.667 (0.529-0.825)	0.824 (0.651-1.02)	0.953 (0.749-1.19)	1.13 (0.857-1.48)	1.27 (0.938-1.70)	1.41 (1.01-1.96)	1.56 (1.06-2.25)	1.77 (1.15-2.65)	1.94 (1.23-2.97)
30-min	0.774	0.905	1.12	1.30	1.54	1.73	1.92	2.12	2.41	2.63
	(0.615-0.957)	(0.718-1.12)	(0.884-1.39)	(1.02-1.62)	(1.17-2.02)	(1.28-2.31)	(1.37-2.67)	(1.44-3.06)	(1.56-3.61)	(1.67-4.04)
60-min	0.977	1.14	1.41	1.64	1.95	2.18	2.42	2.68	3.04	3.33
	(0.776-1.21)	(0.907-1.41)	(1.12-1.76)	(1.29-2.05)	(1.47-2.55)	(1.61-2.93)	(1.73-3.38)	(1.82-3.87)	(1.98-4.56)	(2.11-5.11)
2-hr	1.24	1.46	1.82	2.13	2.54	2.86	3.19	3.57	4.13	4.61
	(0.968-1.52)	(1.17-1.79)	(1.45-2.25)	(1.68-2.64)	(1.94-3.32)	(2.13-3.83)	(2.31-4.46)	(2.43-5.12)	(2.70-6.16)	(2.92-7.02)
3-hr	1.41	1.68	2.11	2.47	2.97	3.33	3.73	4.20	4.91	5.51
	(1.13-1.73)	(1.34-2.05)	(1.69-2.59)	(1.96-3.06)	(2.28-3.87)	(2.50-4.46)	(2.72-5.22)	(2.86-6.00)	(3.21-7.30)	(3.51-8.38)
6-hr	1.76	2.11	2.69	3.17	3.83	4.32	4.85	5.50	6.48	7.32
	(1.42-2.14)	(1.71-2.57)	(2.17-3.29)	(2.54-3.90)	(2.96-4.97)	(3.27-5.76)	(3.56-6.77)	(3.76-7.80)	(4.24-9.56)	(4.67-11.0)
12-hr	2.17	2.63	3.38	4.01	4.87	5.51	6.20	7.03	8.30	9.39
	(1.76-2.61)	(2.14-3.17)	(2.74-4.10)	(3.23-4.89)	(3.78-6.28)	(4.18-7.29)	(4.57-8.59)	(4.83-9.92)	(5.45-12.2)	(6.01-14.1)
24-hr	2.57	3.14	4.08	4.85	5.91	6.70	7.56	8.59	10.2	11.5
	(2.11-3.08)	(2.57-3.77)	(3.32-4.91)	(3.93-5.88)	(4.62-7.57)	(5.12-8.82)	(5.60-10.4)	(5.92-12.0)	(6.70-14.8)	(7.39-17.1)
	2.94	3.61	4.70	5.60	6.85	7.77	8.77	10.00	11.9	13.5

= 4.91*(1.07^2) = 5.62"

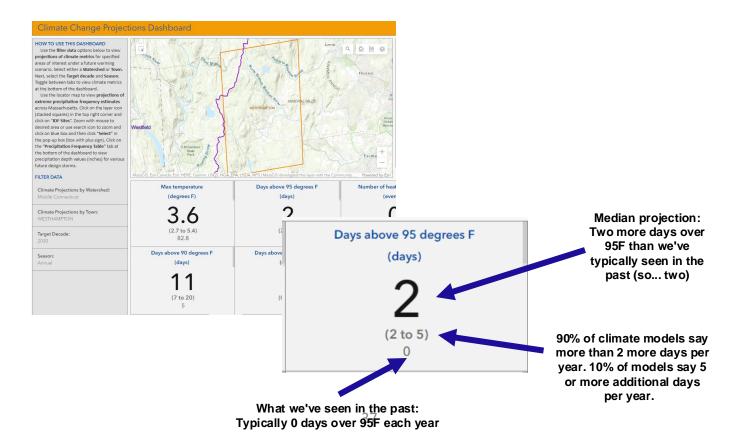
Additional projections data: Climate projections dashboard

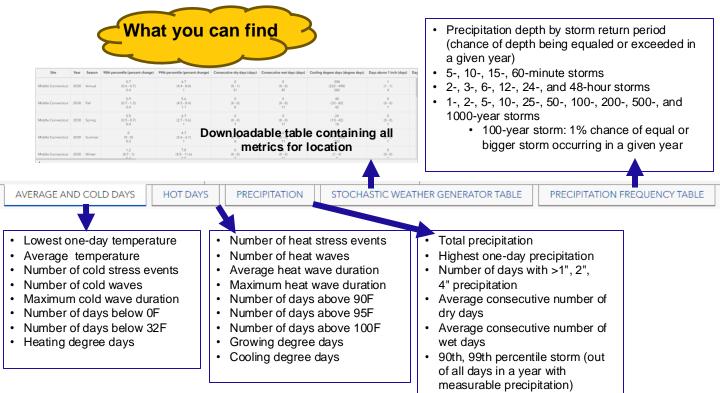

Climate Change Projections Dashboard


When to use the dashboard?

- Exploring future climate hazards for adaptation planning
- Designing stormwater infrastructure to last
- Screening for ecosystem/habitat risks
- And more!

Climate Change Projections Dashboard




Map zooms to selected area

Select either watershed OR town

Values update in panel

Climate Resilience Design Standards Tool: Overview

Goals:

- Make preliminary climate resilience analysis more broadly accessible
- Inform "climate smart" capital planning and procurement
- Provide resilience recommendations based on **consistent use** of state's climate data
- Provide a unified planning and design support tool that state agencies can use to administer grant programs
- Provide consistent information to municipalities hosted on resilient.mass.gov

CRDS Tool: Extreme Precipitation Design Values

Washed out road in Leominster, CBS Boston September 2023

"...dropped nearly ten inches of rain in six hours... the rainfall was "a 200-year event", says Matthew Belk, a meteorologist with the National Weather Service in Boston." CBS News, Boston

Town of North Attleborough Facebook, September 2023

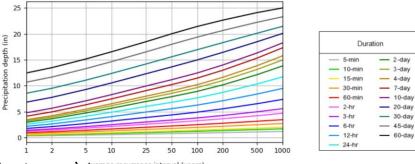
"...about ten inches in the past 72 hours..." MassLive, September 2023 "...nearly five inches of rain in four hours..." CBS News, Boston September 2023

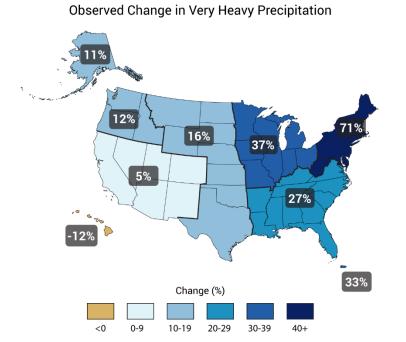
Farms flooding along Connecticut River. CBS News Boston, July 2023

FLOODING • SEP 11

Severe flash flooding prompts emergency in Leominster, impacts other parts of Mass.

As extreme precipitation flooding impacts Massachusetts, climate-informed design values allow risk-based flood management.


LEOMINSTER • SEP 12


Flooding in Leominster: Dams being shored up, Healey declares Mass. state of emergency

CRDS Tool: Extreme Precipitation Design Values

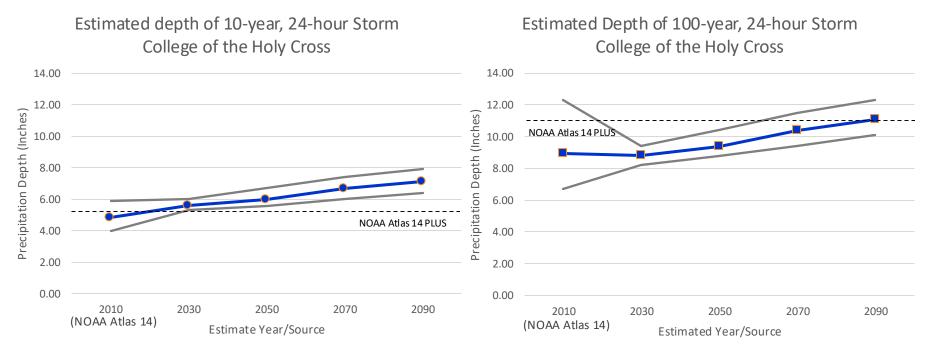
Precipitation intensity-duration-frequency (IDF) relationships

- What is IDF?
 - Intensity: How much rain (depth) per time?
 - Duration: How long does the storm last?
 - **Frequency**: What is the chance that the same or greater rainfall depth will fall in the same amount of time in a given year?
 - "Return Period" describes the approximate frequency a specific IDF storm could be expected.
- Examples
 - There is a 1 in 10 (10%) chance that a "10 year storm" will be equaled or exceeded in each year
 - There is a 1 in 100 (1%) chance that a "100-year storm" will be equaled or exceeded in each year
 - In Worcester, MA, the 10-year storm is ...
 - 4.85" in 24 hours
 - 2.14" in 2 hours
- Used in
 - Stormwater bylaws
 - Stormwater infrastructure & BMP design
 - Flood modelling (urban, flash floods, smalls streams) Average recurrence interval (years)

Source: National Climate Assessment, 2014

Table 4-76: Projected Frequency of Future Annual Extreme Precipitation Events in Massachusetts

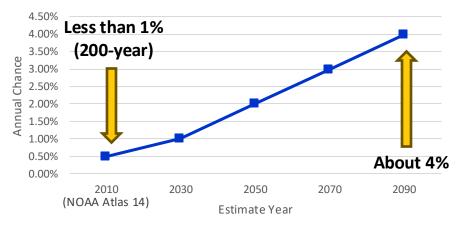
-	2030	2050	2070	2100
Number of Days >1" precipitation	7-9	8-10	8-10	8-11
Number of Days >2" precipitation	1	1-2	1-2	1-2


Source: resilient MA, 2018

Source: MA State Hazard Mitigation and Climate Adaptation Plan (SHMCAP), 2018.

What is the future of extreme precipitation in New England?

- Storms have become more extreme....
 - Between 1958 and 2012, the amount of precipitation which falls in the heaviest 1% of rain events increased 71% across New England
- And projections suggest the changes will continue to grow.
 - Downscaled precipitation projections published in 2016 suggest the number of days with more than 1" in MA will increase from less than 7 to up to 11, on average, each year.


Past and Future Storms at College of the Holy Cross


----- Lower and Upper Bound (Atlas 14 values use different method) -Estimate

What is the future chance of storms like the September 11, 2023 Leominster and North Attleborough storms?

Estimated Annual Chance of 9.5" Precipitation in 48 hours, **Leominster MA**

Annual Chance of 4.5" Precipitation in 3-4 hours, North Attleborough MA

IDF reference for future extreme precipitation?

AMS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration		1		Annual exceedance probability (1/years)						
Duration	1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500	1/1000	
5-min	0.371	0.487	0.576	0.692	0.780	0.869	0.964	1.10	1.20	
	(0.297-0.457)	(0.389-0.604)	(0.456-0.717)	(0.527-0.906)	(0.580-1.04)	(0.624-1.21)	(0.656-1.39)	(0.714-1.65)	(0.761-1.85)	
10-min	0.525	0.690	0.815	0.980	1.10	1.23	1.37	1.55	1.70	
	(0.421-0.648)	(0.551-0.856)	(0.646-1.02)	(0.747-1.28)	(0.821-1.48)	(0.883-1.72)	(0.928-1.97)	(1.01-2.34)	(1.08-2.62)	
15-min	0.618	0.812	0.959	1.15	1.30	1.45	1.61	1.83	2.00	
	(0.495-0.761)	(0.648-1.01)	(0.761-1.20)	(0.879-1.51)	(0.966-1.74)	(1.04-2.02)	(1.09-2.32)	(1.19-2.75)	(1.27-3.08)	
30-min	0.841	1.11	1.31	1.57	1.77	1.98	2.19	2.49	2.73	
	(0.673-1.04)	(0.883-1.37)	(1.04-1.63)	(1.20-2.06)	(1.32-2.37)	(1.42-2.76)	(1.49-3.16)	(1.62-3.75)	(1.73-4.21)	
60-min	1.06	1.40	1.66	1.99	2.24	2.50	2.78	3.16	3.46	
	(0.852-1.31)	(1.12-1.74)	(1.31-2.06)	(1.52-2.60)	(1.67-3.01)	(1.80-3.49)	(1.89-4.01)	(2.06-4.75)	(2.19-5.33)	
2-hr	1.36	1.80	2.14	2.58	2.91	3.26	3.65	4.22	4.70	
	(1.09-1.66)	(1.44-2.22)	(1.70-2.65)	(1.98-3.36)	(2.18-3.90)	(2.36-4.56)	(2.49-5.24)	(2.75-6.31)	(2.98-7.18)	
3-hr	1.55	2.08	2.48	3.00	3.38	3.79	4.27	4.98	5.58	
	(1.26-1.90)	(1.68-2.55)	(1.98-3.06)	(2.31-3.90)	(2.55-4.52)	(2.77-5.31)	(2.92-6.11)	(3.25-7.42)	(3.55-8.50)	
6-hr	1.95	2.64	3.17	3.86	4.37	4.91	5.56	6.54	7.38	
	(1.59-2.37)	(2.14-3.22)	(2.55-3.89)	(3.00-5.00)	(3.32-5.82)	(3.62-6.86)	(3.81-7.90)	(4.28-9.68)	(4.70-11.2)	
12-hr	2.41 (1.98-2.91)	3.32 (2.71-4.02)	4.00 (3.24-4.88)	4.91 (3.83-6.32)	5.56 (4.25-7.37)	6.28 (4.64-8.71)	7.12 (4.90-10.1)	8.40 (5.52-12.3)	9.49 (6.07-14.3)	
24-hr	2.87 (2.37-3.45)	4.00 (3.28-4.81)	4.85 (3.96-5.87)	5.97 (4.69-7.64)	6.79 (5.21-8.93)	7.67 (5.70-10.6)	8.72 (6.02-12.2)	10.3 (6.82-15.1)	11.7 (7.52-17.5)	
2-day	(2.74-3.93)	4.01 (3.82-5.52)	(4.61-6.75)	0.92 (5.47-8.82)	(6.09-10.3)	(6.68-12.3)	10.2 (7.05-14.2)	12.1 (8.03-17.6)	13.8 (8.90-20.5)	
3-day	3.58	5.00	6.08	7.50	8.52	9.64	11.0	13.1	15.0	
	(2.99-4.25)	(4.16-5.96)	(5.01-7.29)	(5.94-9.51)	(6.61-11.1)	(7.25-13.2)	(7.65-15.3)	(8.71-19.0)	(9.66-22.1)	
4-day	3.84	5.33	6.46	7.95	9.02	10.2	11.6	13.9	15.8	
	(3.21-4.54)	(4.44-6.33)	(5.34-7.72)	(6.32-10.1)	(7.02-11.7)	(7.68-13.9)	(8.10-16.1)	(9.20-20.0)	(10.2-23.2)	
7-day	4.54	6.16	7.39	9.02	10.2	11.5	13.0	15.3	17.3	
	(3.82-5.34)	(5.16-7.28)	(6.14-8.79)	(7.19-11.3)	(7.95-13.2)	(8.64-15.5)	(9.08-17.9)	(10.2-22.0)	(11.2-25.4)	
	5.00	603	0.00	0.00	44.4	43.5	44.0	46.2	10.2	

- NOAA Atlas 14 PLUS method
 - 10-year, 24-hour storm PLUS = 90% of the 10-year, 24-hour estimate upper bound
 - 10-year, 24-hour storm PLUS = 5.87"*0.9
 - 10-year, 24-hour PLUS = 5.28"
- Some guidelines recommend "NOAA Atlas 14 PLUS PLUS" method
 - 10-year, 24-hour storm PLUS PLUS = 10-year, 24-hour storm upper bound
 - = 5.87"

Climate Resilience Design Standards Tool

planning/	commended design parameter	Based on	
Standards Output Recommendations	Example	Relationship Driving Recommendation	
Planning Horizon ¹	2070	Useful Life	Longer useful life $ ightarrow$ later target decade
Return Period ^{2,8}	100-year (1% AEP)	Criticality ³ , Asset Type, and Useful/Exposure Service Life ⁴	More critical + longer useful life → higher return period
Percentiles⁵	50 th percentile	Criticality ³ and Construction Type	More critical $ ightarrow$ higher percentile
Design Criteria ⁶	 Projected Total Precipitation Depth for 24-hr Design Storm Projected Wave Action Water Elevation Projected Cooling Degree Days, etc. 	Asset Type and Location	
Tiered Methodology ⁷ to estimate projected design criteria values	Tier 3 – High Level of Effort	Criticality ³ and Useful Life	More critical + longer useful life → higher level of effort to estimate values