Introduction

Session 1: Basic Toxicology

Michael S. Hutcheson
MA Department of Environmental Protection
Bureau of Strategic Planning and Technology
Office of Research and Standards
One Winter Street
Boston, MA 02108

phone: (617) 292-5998
fax: (617) 556-1049
email: Michael.Hutcheson@state.ma.us
WWW: http://www.state.ma.us/dep/
UNDERSTANDING & USING THE NEW VPH/EPH APPROACH

- INTRODUCTION - Hutcheson
- BASIC TOXICOLOGY - Hutcheson
- ANALYTICAL METHODS - Anastas
- SCREENING - Duggan
- METHODS 1, 2 AND 3 - Locke
- IMPLEMENTATION ISSUES - Fitzgerald
BASIC TOXICOLOGY

Michael S. Hutcheson
Office of Research and Standards
Belief: PHC risks being incompletely characterized

One-half of MADEP/ BWSC sites are petroleum only

Another 10% of sites have petroleum constituents
SATURATED HYDROCARBONS:
paraffins, alkanes, methanes. Straight, branched, cyclic

UNSATURATED HYDROCARBONS
at least 2 carbon atoms joined by 2 or more double bonds.

ALKENES (olefins)

ALKYNYNES

BENZENE: single aromatic ring

ALKYLBENZENES

POLYNUCLEAR AROMATICS

AROMATICS
SATURATED HYDROCARBONS:
paraffins, alkanes, methanes. Straight, branched, cyclic

UNSATURATED HYDROCARBONS
at least 2 carbon atoms joined by 2 or more double bonds.

ALKENES (olefins)

ALKYLBENZENES

ALKYNES

BENZENE: single aromatic ring

ALKYLBENZENES

POLYNUCLEAR AROMATICS
SATURATED HYDROCARBONS:
paraffins, alkanes, methanes. Straight, branched, cyclic

\[
\begin{align*}
\text{C} & \text{-} \text{C} & \text{-} \text{C} & \text{-} \text{C} & \text{-} \text{C} \\
\text{C} & \text{-} \text{C} & \text{-} & \text{C} & \text{-} \text{C} \\
\text{C} & \text{-} \text{C} & \text{-} & \text{C} & \text{-} \text{C} \\
\end{align*}
\]
SATURATED HYDROCARBONS:
paraffins, alkanes, methanes. Straight, branched, cyclic

UNSATURATED HYDROCARBONS
at least 2 carbon atoms joined by 2 or more double bonds.

ALKENES (olefins)

ALKYNES

BENZENE: single aromatic ring

ALKYLBENZENES

POLYNUCLEAR AROMATICS

AROMATICs
ALKENES

C — C — C — C≡C

ALKYNES

C — C≡C — C
SATURATED HYDROCARBONS:
paraffins, alkanes, methanes. Straight, branched, cyclic

UNSATURATED HYDROCARBONS
at least 2 carbon atoms joined by 2 or more double bonds.

ALKENES (olefins)

ALKYNES

BENZENE: single aromatic ring

ALKYLBENZENES

AROMATICs

POLYNUCLEAR AROMATICS
BENZENE: single aromatic ring

ALKYLBENZENES

- o - xylene
- m - xylene
- p - xylene
- toluene
- ethyl benzene
POLYNUCLEAR AROMATICS

NAPHTHALENE
$C_{10}H_8$

PHENANTHRENE
$C_{14}H_{10}$

PYRENE
$C_{16}H_{10}$

BENZO(a)PYRENE
$C_{20}H_{12}$

DIBENZ(a,h)ANTHRACENE
$C_{22}H_{14}$

FLUORANTHENE
$C_{16}H_{10}$
PETROLEUM COMPOSITION

TERMINOLOGY

ALIPHATICS

- ALKANES (normal and iso-) (C\textsubscript{1} C\textsubscript{2})
 Saturated. Syn.: Paraffins (normal, iso-)

- ALKENES (unsaturated. C=C bonds)
 Syn.: olefins
 unsaturated aliphatics

- ALKYNES (C\textsubscript{1} C\textsubscript{2})

CYCLIC

- CYCLOPARAFFINS
- AROMATICS
Carbon Number

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C5</th>
<th>C10</th>
<th>C15</th>
<th>C20</th>
<th>C25</th>
<th>C30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 2 Fuel Oil/Diesel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 6 Fuel Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HYDROCARBON COMPOSITION OF UNLEADED FUEL

N-ALKANES
BRANCHED ALKANES
CYCLOALKANES
ALKENES
AROMATICS

CARBON # OR COMPOUND

% W/W
PHC SITE HEALTH RISK EVALUATION

Cancer: PAHs
Non-Cancer Evaluation
Implementation
Analytical
EVALUATION SEQUENCE

Composition Data

Non-Cancer Analysis

Cancer Analysis

I.D. Carcinogens

Determine ELCRs for Each Compound

Hazard Indices

Sum ELCRs
TPH PARAMETER:

- Total concentration of petroleum hydrocarbons in sample
- Method-specific results - can range from limited number of compounds, to entire range of C_4 to C_{32}
HISTORICAL HEALTH RISK APPROACHES

- TPH
- INDICATOR COMPOUNDS (BTEX)
- WHOLE PRODUCT TOXICITY
AVAILABLE TOXICITY INFORMATION

- WHOLE PRODUCT

- SPECIFIC COMPOUNDS

- STRUCTURE ACTIVITY RELATIONSHIPS
Oral Dose Response Values for Whole Petroleum Products

<table>
<thead>
<tr>
<th>Whole Product</th>
<th>RfD (mg/kg/day)</th>
<th>SF (mg/kg/day)^{-1}</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>0.2</td>
<td>0.0017</td>
<td>USEPA, 1992</td>
</tr>
<tr>
<td>JP-4</td>
<td>0.08</td>
<td>ND</td>
<td>USEPA, 1992</td>
</tr>
<tr>
<td>JP-5</td>
<td>0.02</td>
<td>ND</td>
<td>USEPA, 1992</td>
</tr>
<tr>
<td>No. 2/Diesel</td>
<td>ND</td>
<td>0.00109</td>
<td>Millner et al, 1992</td>
</tr>
</tbody>
</table>
Oral RFDs for Specific Petroleum Hydrocarbons

<table>
<thead>
<tr>
<th>Compound</th>
<th>Toxic Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (C6)</td>
<td>Hematological</td>
</tr>
<tr>
<td>w-Hexane (C6)</td>
<td>Neuropathy</td>
</tr>
<tr>
<td>Toluene (C7)</td>
<td>Liver, Kidney</td>
</tr>
<tr>
<td>Xylene (C8)</td>
<td>Hyperactivity</td>
</tr>
<tr>
<td>Ethyl Benzene (C8)</td>
<td>Liver, Kidney</td>
</tr>
<tr>
<td>Cumene (C9)</td>
<td>Kidney</td>
</tr>
<tr>
<td>Naphthalene (C10)</td>
<td>Hematological, Kidney, Liver</td>
</tr>
<tr>
<td>Acenaphthene (C12)</td>
<td>Liver</td>
</tr>
<tr>
<td>Biphenyl (C12)</td>
<td>Kidney/CNS</td>
</tr>
<tr>
<td>Fluorene (C13)</td>
<td>Hematological</td>
</tr>
<tr>
<td>Anthracene (C14)</td>
<td>None Obsv.</td>
</tr>
<tr>
<td>Pyrene (C16)</td>
<td>Kidney/Liver</td>
</tr>
<tr>
<td>Fluoranthene (C16)</td>
<td>Kidney/Liver</td>
</tr>
</tbody>
</table>

![Graph showing Log RFD (mg/kg/day) versus compounds](chart.png)
ALKANE TOXICITY

THRESHOLD
- NEPHROTOXICITY
- CNS EFFECTS, NARCOSIS
- SKIN/MEMBRANE IRRITATION
- PERIPHERAL NEUROPATHY

NON-THRESHOLD
- INSUFFICIENT DATA
AROMATIC HYDROCARBONS (C6 TO C8)

- Threshold Effects
 - Nephrotoxicity
 - CNS Effects
 - Hepatotoxicity

- Non-Threshold
 - Benzene - EPA Class A Carcinogen
MAJOR ISSUES

WEATHERING

DIFFERENTIAL TOXICITY

COSTS
POSSIBLE APPROACHES

TPH

FINGERPRINT

RANGES BASED ON CARBON NUMBER

FULL COMPOSITION CHARACTERIZATION
1) Divide C Range into Groups
2) I.D. Tox. Values for Chemicals in Each Group
3) Assign Tox. Values to Indicator Compounds
Approach cont.

- Reject whole product toxicity approach in most cases because of weathering/identification uncertainties.
- Develop analytical method which quantifies specific ranges of petroleum hydrocarbons.
RfDs for C Number Ranges - Alkanes/Cycloalkanes

<table>
<thead>
<tr>
<th>Reference Compound</th>
<th>Toxic Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-hexane (C6)</td>
<td>neurotoxicity</td>
</tr>
<tr>
<td>n-nonane (C9)</td>
<td>neurotoxicity</td>
</tr>
<tr>
<td>eicosane (C20)</td>
<td>functional changes/irritation</td>
</tr>
</tbody>
</table>

![Graph showing Log RfD values for different carbon numbers ranging from C5 to C32, with reference compounds and their toxic effects indicated.]
Proposed Alternate RfD for Aromatics/Alkenes

Reference Compound
- Naphthalene (C10)
- Acenaphthene (C12)
- Fluorene (C13)
- Anthracene (C14)
- Pyrene (C16)
- Fluoranthene (C16)

Toxic Effect
- Decreased body weight
- Hepatotoxic
- Hematological
- None Obsv.
- Nephrotoxic
- Nephrotoxic, hematological

[Bar chart showing log RfD values for various carbon numbers (C9 to C31)]
Chemical Groups, Indicators and Toxicity Values

<table>
<thead>
<tr>
<th>Alkanes/ Cycloalkanes</th>
<th>Reference Compound</th>
<th>Toxic Effect</th>
<th>Alternate RfD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{C}_5 - \text{C}_8$</td>
<td>n-hexane</td>
<td>neurotoxicity</td>
<td>0.06</td>
</tr>
<tr>
<td>$\text{C}9 - \text{C}{18}$</td>
<td>n-nonane</td>
<td>neurotoxicity</td>
<td>0.6</td>
</tr>
<tr>
<td>$\text{C}{19} - \text{C}{32}$</td>
<td>eicosane</td>
<td>irritation</td>
<td>6</td>
</tr>
<tr>
<td>Aromatics/ Alkenes</td>
<td>pyrene</td>
<td>neurotoxicity</td>
<td>0.03</td>
</tr>
<tr>
<td>$\text{C}9 - \text{C}{32}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Non-Cancer RfD (mg/kg/d)</td>
<td>Cancer Slope Factor (mg/kg/d)$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>0.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Xylene</td>
<td>2.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>0.005</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>-</td>
<td>7.3</td>
<td></td>
</tr>
</tbody>
</table>
Compound Specific Approach for:

<table>
<thead>
<tr>
<th></th>
<th>Oral RFD (mg/kg/day)</th>
<th>Cancer Slope Factor (mg/kg/day)<sup>1</sup> (MA RPF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Xylene</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>0.005</td>
<td>0.029</td>
</tr>
<tr>
<td>Benzo(a)Pyrene</td>
<td>-</td>
<td>7.3</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Methylnaphthalene</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Anthracene</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Benzo(a)Anthracene</td>
<td>NA</td>
<td>(0.1)</td>
</tr>
<tr>
<td>Chrysene</td>
<td>NA</td>
<td>(0.01)*</td>
</tr>
<tr>
<td>Benzo(b)Fluoranthene</td>
<td>NA</td>
<td>(0.1)</td>
</tr>
<tr>
<td>Benzo(k)Fluoranthene</td>
<td>NA</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)Pyrene</td>
<td>NA</td>
<td>(0.1)</td>
</tr>
<tr>
<td>Dibenzo(a,h)Anthracene</td>
<td>NA</td>
<td>(4.0)*</td>
</tr>
<tr>
<td>Benzo(g,h,i)Perylene</td>
<td>NA</td>
<td>(0.001)</td>
</tr>
</tbody>
</table>

* Different from USEPA RPFs
Application of the Proposed Approach for Alkane/Cycloalkane Fraction - Soil Exposure

Concentration of Petroleum Hydrocarbon	20 mg/kg	100 mg/kg	200 mg/kg
Dosage Calculation*	2.5×10^{-4} mg/kg/day	1.3×10^{-3} mg/kg/day	2.5×10^{-3} mg/kg/day
Proposed Alternate RfD	0.06	0.6	6
Hazard Index	4.2×10^{-3}	2.2×10^{-3}	3.8×10^{-4}
Total Hazard Index	6.8 $\times 10^{-3}$		

*Assume a 16 kg child consumes 200 mg soil per day, 365 days per year
SUMMARY OF THE TPH ALTERNATIVE

- FULLER ACCOUNTING OF HYDROCARBON CONTENT: USES C # RANGES
- DOSE-RESPONSE VALUES SPECIFIC TO EACH RANGE
- ACKNOWLEDGES QUALITATIVE DIFFERENCES IN TOXICITIES OF "TPH" VALUES
- MORE COMPLETE INFORMATION FOR HUMAN HEALTH RISK ASSESSMENT
Session 2: Analytical Methods
Analytical Methods for Characterizing Petroleum Contaminated Soil and Water

Nicholas D. Anastas

Department of Environmental Protection
What the Audience will Learn

- The Methods that are Available for Petroleum Characterization
- Use and Theory of VPH and EPH Analysis
- Principles of QA/QC
- Reporting VPH and EPH Results
- Use of VPH and EPH Results
Analytical Mandate

- Characterize petroleum from C5 thru C36
- Ranges set by the health-based approach
- Aliphatics/cycloalkanes must be separated from Aromatics
Vocabulary

- **EPH** Extractable petroleum hydrocarbons
- **VPH** Volatile petroleum hydrocarbons
- **TPH** Total petroleum hydrocarbons
 - (usually the sum of VPH + EPH)
 - T-EPH: MCP defined as > C9
- **FRACTIONS** Carbon number ranges of compounds from C5 through C36
Carbon Number Ranges defined by the Toxicology Data

- **VPH**
 - Aliph.
 - C5-C8
 - C9-C12
 - Aromatics
 - C9-C10
 - Benzene
 - Toluene
 - Ethylbenzene
 - Xylenes
 - MTBE

- **EPH**
 - Aliph.
 - C9-C18
 - C19-C36
 - Aromatics
 - C11-C22
 - C11-C22
 - PAHs
Gas Chromatography

- Separation of complex mixtures is based on differential sorption
- Column provides a sorptive surface
- Compounds that do not adsorb well will elute first; “stickier” compounds elute later
- Eluant flows into a detector which is either general or specific
Detectors can be general (FID) or specific (PID or MS)

Response of detector is based on characteristics of compounds in eluant
- FID: all carbon containing compounds
- PID: compounds with pi bonds

Response of a detector to the presence of compounds results in chromatograms
Chromatograms

- Responses are a series of “peaks”
- Peak heights represent the relative concentrations of detected compounds
- Retention time is the primary characteristic of the identity of a compound using FID or PID
- Retention time is based on boiling points and molecular structure
VPH Sampling Issues - Water

- Containers: glass; no headspace
- Preservation: HCL
- Holding Times: 14 days from sampling date
Methanol Preservation for Soils

- Necessary to minimize escape of VOCs from sample vials
- Use only 200ul of the extract
- Potential Problems
 - MEOH in the field
 - weighing proper amount of soil:MEOH
 - preweigh at lab
 - syringe and fill to the line
VPH Analysis Overview

- Purge and Trap
- Photoionization Detector (PID) and Flame Ionization Detection (FID) in series
FID is a universal detector (detects carbon)

PID is relatively* selective for compounds with pi bonds (* aliphatics also respond)

PID is more selective when the lamp voltage is $< 10.2 \text{ eV}$.
VPH vs. GRO

- GRO is FID only; no separation of aromatics
- Can assume worst-case conditions
- Cannot be used in the Massachusetts health-based approach without modifications
VPH vs. 8015M

- Same problems as with GRO
- Used to analyze for non-halogenated VOCs in the gasoline range
- Standardized using a gasoline standard
Potential Concerns with VPH

- Double counting
- Methanol Preservation
- Inherent Assumptions
 - RT is correct for individual cmpds.
EPH Sampling Issues

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Container</th>
<th>Preserv.</th>
<th>Holding Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous</td>
<td>1 liter amber glass</td>
<td>5ml 1:1 HCL; 4° C</td>
<td>Extract within 14 d Run extract w/40d</td>
</tr>
<tr>
<td>Soil/Sediment</td>
<td>4oz. wide mouth jar</td>
<td>4° C</td>
<td>Extract w/ 14d Run extract within 40 d</td>
</tr>
</tbody>
</table>
Extractable Petroleum Methods

- Extraction of compounds from media of interest using different solvents
- Fractionation of the mixture of complex hydrocarbons into aliphatic/cyclics and aromatic/unsaturated compounds
- Separation of the fractionated mixtures into carbon number ranges by FID
Fractionation of EPH Components

- Sample loaded onto column (post-KD)
- First solvent is hexane (removes non-polar aliphatics and alicyclics)
- Second solvent is methylene chloride (removes aromatics; including PAHs)
Fractionation Considerations

- **Silica Gel Cartridges**
 - limited capacity
 - moisture
 - bleeding of plasticizers

- **Columns**
 - labor intensive
 - higher capacity

- **HPLC**
 - Very high theoretical plates (more separation/fractionation power)
 - Expensive and not generally available
Fractionation Check Solution

- FCS is necessary to ensure that there is no breakthrough of one fraction into another
 - aromatics into the aliphatic
 - aliphatics into the aromatic
- Whole Product or Compound Specific
Two separate runs for each sample
Evaluate FCS
Proper assignment of RT windows
Integration of individual peaks and UCM
Identification of targeted analytes including PAHS
Use of GCMS to confirm PAHs
EPH vs. 8270

- GC vs. GCMS methods
- EPH does not generate unequivocal identification of compounds, e.g., PAHS
- 8270 not developed to separate petroleum hydrocarbons into fractions
Method 8100 was designed to detect PAHs

- Is a GC-FID Method
- If run as written, will not detect aliphatics
 - does not divide mixture into ranges

Method can be modified; 8100M (no silica clean-up) to detect aliphatics
California and Wisconsin Methods

- GC-FID Analysis
- No fractionation into aliphatics and aromatics
- Carbon number range up to 20-24
Infra-red Analysis (418.1)

- Generally a screening method
- Detects compounds with a C-H stretch at 2930 cm⁻¹
- Lose low and high end compounds
- Will not detect aromatics
- Should be used in the new Health-Based approach with caution
Quality Assurance: An integrated system of management activities to ensure that a process is of the quality expected.

Quality Control: An overall system of technical activities to monitor the attributes and performance of a process compared to defined standards.
Components of QA/QC

- Establishing Detection Limits
- Blanks
- Calibration
- Surrogates
- Spikes
- Duplicates
Reasons to Have QA/QC

- Precision
- Accuracy
- Representativeness
Precision

- How close the results are to each other
- Precision is measured by using duplicates
- Field and Lab duplicates
- Relative Percent Difference
Accuracy

- Measures how close a result is to a true or known value
- Monitored in analytical method using spiked samples
Detection Limits

Types of Detection Limits: Instrument (IDL), Method (MDL) and Practical (PQL)

- **IDL**: The lowest amount of material that can be determined to be different from the baseline under optimal conditions.

- **MDL**: Minimum amount of material that can be measured and reported with 99% confidence that the analyte concentration is greater than zero under method conditions.

- **PQL**: Considers other method peculiarities. Has a "comfort factor" of 3 - 10x MDL built in.
Blanks

- Used to monitor for contamination
 - System or Instrument Blanks
 - Field Blanks
 - Trip Blanks
 - Matrix Blanks
Calibration

- Must generate a reference point for compound retention times and for calibration
- Regression lines are generated for calculating the concentration in samples
- Internal vs External Calibration
Surrogates

- Compounds that are added at known concentrations to monitor accuracy
- Monitor conditions of the analysis
Spikes and Spike Duplicates

Used to monitor for:
- precision
- accuracy
- matrix effects
<table>
<thead>
<tr>
<th>QA Principles</th>
<th>Parameter</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Precision</td>
<td>Endpoint</td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td>Duplicates</td>
</tr>
<tr>
<td></td>
<td>Representativeness</td>
<td>Spike Recoveries</td>
</tr>
<tr>
<td></td>
<td>Completeness/Comparability</td>
<td>Sample Conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DQO</td>
</tr>
</tbody>
</table>
VPH Calibration

- 3-Level Initial Calibration
- Daily Continuing Calibration
- Surrogate is 2,5-dibromotoluene
- Aliphatic:
 - C5-C8 (pentane to nonane)
 - C9-C12 (nonane to 2,5-DBT)
- Aromatic:
 - C9-C10 (nonane to 2,5 DBT)
Individual or Collective RFs

RPD
- 3 Level: 20%
- Daily: 25%

Surrogate Recovery: 80- 120%
- Currently being evaluated
<table>
<thead>
<tr>
<th>Hydrocarbon Range</th>
<th>Beginning Marker Compound</th>
<th>End Marker Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5-C8 Aliphatics (FID)</td>
<td>Pentane</td>
<td>Just before Nonane</td>
</tr>
<tr>
<td>C9-C12 Aliphatics (FID)</td>
<td>Nonane</td>
<td>Naphthalene</td>
</tr>
<tr>
<td>C9-C10 Aromatics (PID)</td>
<td>1,2,4-trimethylbenzene</td>
<td>Naphthalene</td>
</tr>
</tbody>
</table>
EPH Calibration

- 5 level calibration
- Daily continuing calibration
- Surrogates: OTP (ortho terphenyl) and OCD (octachlorodecane)
- Aliphatic: C9 - C18; C19 - C36
- Aromatic: C11 - C22, including individual PAHs
Individual or Collective RFs

RPD:
 - 5 level 20%
 - Daily 25%

Surrogate Recovery 60-140%
EPH Marker Compounds

<table>
<thead>
<tr>
<th>Hydrocarbon Range</th>
<th>Beginning Marker Compound</th>
<th>Ending Marker Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9-C18 Aliphatics</td>
<td>Nonane</td>
<td>Just before Nonadecane</td>
</tr>
<tr>
<td>C19-C36 Aliphatics</td>
<td>nonadecane</td>
<td>Hexatriacontane</td>
</tr>
<tr>
<td>C11-C22 Aromatics</td>
<td>Just after Naphthalene</td>
<td>Benzo[g,h,i]perylene</td>
</tr>
</tbody>
</table>
Certified Laboratories

- Certification is only one aspect of a complete QA/QC Plan
- Certification does not necessarily mean that your data are acceptable
- Certification is useful for:
 - identifying existence of facility and equipment
 - demonstrating that a lab can meet certain QA requirements
 - demonstrating that a lab can pass PE
There is currently no certification program for the analysis of soils. A robust QA/QC program is therefore critical to ensure data quality.
Current Certification for Soil Analysis

- DEP does not currently certify labs for soil analysis
- The MCP does not require that a certified lab be used
Summary

- Now have the knowledge of what types of data are necessary for input into the Health-based approach for characterizing petroleum contaminated media
- Are familiar with the available VPH and EPH methodologies used to generate those data
- Are aware of some of the concerns with other available methods for petroleum analysis
Session 3: Screening

John Duggan
MA Department of Environmental Protection
Northeast Regional Office
Bureau of Waste Site Cleanup
10 Commerce Way
Woburn, MA 01801

phone: (617) 932-7727
fax: (617) 932-7615
email: John.Duggan@state.ma.us
WWW: http://www.state.ma.us/dep/
Screening for Petroleum Hydrocarbons

- Better, cheaper and/or faster site characterization;

- General Performance Standards: Comparing to VPH and EPH data; Applying information collected.
Applications: Site Assessment

- Identification of: hot-spots; discrete areas of contamination; locations for follow-up sampling
- Periodic monitoring
Applications: Soil Management

Use to:
- segregate contaminated soil
- provide greater certainty at closure

“clean” R. Waste

Department of Environmental Protection - VPH/ EPH Spring Training 1997
Economic/Logistical Benefits

Save Time
- minimize field time
- speed up restoration measures

Save Money
- lower labor and equipment needs
- targeted assessment and remediation
- collect more data

Department of Environmental Protection - VPH/EPH Spring Training 1997
Regulatory Framework

310 CMR 40.0017, Environmental Sample Collection and Analysis

- Data must be scientifically valid and defensible;
- Documentation of:
 - sampling procedures;
 - analytical method(s);
 - performance of the method(s).
Scientifically Valid and Defensible

- Use appropriate sampling protocols:
 - for the medium(a) sampled;
 - for the analyte(s) measured.

- Use appropriate analytical methods and instruments
40.0017(2): Analytical Methods

- published methods;
- unpublished methods;
- modifications of published methods.
Data Quality Requirements

- Depends on “use” of the data preliminary indicator data vs. stand-alone data suitable to assess risk

- Supporting Documentation
 - comparability to other data
 - calibration, detection limits, precision and accuracy, etc.
Recommended Screening Procedures

<table>
<thead>
<tr>
<th>Petroleum Product</th>
<th>VPH</th>
<th>EPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Fresh Diesel/#2 Fuel Oil</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Weathered Diesel/#2 Fuel Oil</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>#3-#6 Fuel Oils</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Waste (Crankcase) Oil</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Jet Fuel/Kerosene</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mineral/Dielectric Oils</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Unknown Oils/Sources</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Department of Environmental Protection - VPH/EPH Spring Training 1997
Typical Composition of Petroleum Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Carbon Range</th>
<th>Percent Aliphatic</th>
<th>Percent Aromatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>C₄ - C₁₂</td>
<td>35% - 80%</td>
<td>10% - 40%</td>
</tr>
<tr>
<td>#2/Diesel</td>
<td>C₈ - C₂₁</td>
<td>60% - 70%</td>
<td>30% - 40%</td>
</tr>
<tr>
<td>#3-#6 Fuel Oil</td>
<td>C₈ - C₃₀+</td>
<td>20% - 50%</td>
<td>30% - 40+%</td>
</tr>
<tr>
<td>Waste (Crankcase) Oil</td>
<td>C₁₅ - C₅₀+</td>
<td>50% - 90%</td>
<td>10% - 30%</td>
</tr>
<tr>
<td>Jet Fuel/Kerosene</td>
<td>C₉ - C₁₆</td>
<td>60% - 80%</td>
<td>5% - 20%</td>
</tr>
<tr>
<td>Dielectric Oils</td>
<td>C₁₂ - C₂₂ (?)</td>
<td>80+%</td>
<td>?</td>
</tr>
</tbody>
</table>

a includes BTEX compounds
VPH Screening

Jar Headspace

- For soil and groundwater samples
- Relies on partitioning between phases
- Total VOCs vs. Individual Compounds
- PID vs. FID
VPH Screening

- Fiber optic based technologies:
 - in-well monitoring;
 - direct measurements;
 - selective detection;
 - calibration requirements;
 - confirmatory lab analysis
EPH Screening

Immunoassays

- rely on a field extraction
- sensitive to aromatics, not aliphatics
- calibration requirements
- comparison to non-screening data

Department of Environmental Protection - VPH/EPH Spring Training 1997
Emulsion-based kits
- rely on a field extraction
- less discriminating between aromatic and aliphatic groups
- calibration requirements
- compare to non-screening data
MA DEP/LSPA Spring Training Seminar
Understanding and Using the New VPH/EPH Approach

Session 4:
Methods 1, 2 and 3

Paul W. Locke
MA Department of Environmental Protection
Bureau of Strategic Planning and Technology
Office of Research and Standards
One Winter Street
Boston, MA 02108

phone: (617) 556-1160
fax: (617) 556-1049
email: Paul.Locke@state.ma.us
WWW: http://www.state.ma.us/dep/
Methods 1, 2 and 3
Derivation of MCP Numerical Standards

- Groundwater:
 GW-1, GW-2 and GW-3

- Soil:
 S-1, S-2 and S-3; direct contact and leaching-based

- Upper Concentration Limits (UCLs)

- Reportable Concentrations (RCs)
Groundwater GW-1

- Adopt an existing MMCL or Drinking Water Guideline, or if there is none:

STEP 1
- Identify the **lowest value**

STEP 2
- Identify the **highest value**

MCP GW-1 Standard

Non-cancer Risk-Based Concentration
Cancer Risk-Based Concentration
Ceiling Concentration
50% Odor Recognition Threshold

Background
Lowest Value from Step 1
Practical Quantitation Limit (PQL)
Basis of New GW-1 Standards

<table>
<thead>
<tr>
<th>Fraction</th>
<th>ug/L</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH (Generic)</td>
<td>200</td>
<td>Lowest EPH fractional standard</td>
</tr>
<tr>
<td>C5 - C8 Aliphatic</td>
<td>400</td>
<td>Threshold Effects</td>
</tr>
<tr>
<td>C9 - C12 Aliphatic</td>
<td>4,000</td>
<td>Threshold Effects</td>
</tr>
<tr>
<td>C9 - C18 Aliphatic</td>
<td>4,000</td>
<td>Threshold Effects</td>
</tr>
<tr>
<td>C19 - C36 Aliphatic</td>
<td>5,000</td>
<td>Ceiling Concentration</td>
</tr>
<tr>
<td>C9 - C10 Aromatic</td>
<td>200</td>
<td>Threshold Effects</td>
</tr>
<tr>
<td>C11 - C22 Aromatic</td>
<td>200</td>
<td>Threshold Effects</td>
</tr>
</tbody>
</table>

Massachusetts Department of Environmental Protection - VPH/EPH Spring Training 1997
Groundwater GW-2

Non-cancer Risk-Based Concentration
Ceiling Concentration
Cancer Risk-Based Concentration
50% Odor Recognition Threshold

STEP 1
Identify the lowest value or air background (if higher)

STEP 2
Transport Model Vapor Through Unsaturated Zone

STEP 3
Choose Lower Value
- Ceiling Concentration
- Calculated Source Concentration in Groundwater

STEP 4
Identify the highest value
- MCP GW-2 Standard
- Groundwater Background
- Lowest Value from Step 3
- Practical Quantitation Limit (PQL)

Massachusetts Department of Environmental Protection - VPH/EPH Spring Training 1997
Basis of New GW-2 Standards

<table>
<thead>
<tr>
<th>Fraction</th>
<th>ug/L</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH (Generic)</td>
<td>1,000</td>
<td>Lowest EPH fractional standard</td>
</tr>
<tr>
<td>C5 - C8 Aliphatic</td>
<td>1,000</td>
<td>Risk Management</td>
</tr>
<tr>
<td>C9 - C12 Aliphatic</td>
<td>1,000</td>
<td>Risk Management</td>
</tr>
<tr>
<td>C9 - C18 Aliphatic</td>
<td>1,000</td>
<td>Risk Management</td>
</tr>
<tr>
<td>C19 - C36 Aliphatic</td>
<td>N/A</td>
<td>Considered non-volatile</td>
</tr>
<tr>
<td>C9 - C10 Aromatic</td>
<td>5,000</td>
<td>Risk Management</td>
</tr>
<tr>
<td>C11 - C22 Aromatic</td>
<td>50,000</td>
<td>Ceiling</td>
</tr>
</tbody>
</table>
Groundwater GW-3

<table>
<thead>
<tr>
<th>Fresh Water Acute Criteria</th>
<th>Fresh Water Chronic Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Acute Criteria</td>
<td>Marine Chronic Criteria</td>
</tr>
</tbody>
</table>

STEP 1
Lowest of Available AWQC or derived value if AWQC is not available.

STEP 2
Multiply by the Groundwater/Surface Water Dilution/Attenuation Factor.

STEP 3
- Ceiling Concentration
- Calculated Source Concentration in Groundwater
- Choose Lower Value

STEP 4
- Groundwater Background
- Lowest Value from Step 3
- Practical Quantitation Limit (PQL)
- Identify the highest value

MCP GW-3 Standard

Massachusetts Department of Environmental Protection - VPH/EPH Spring Training 1997
Basis of New GW-3 Standards

<table>
<thead>
<tr>
<th>Fraction</th>
<th>ug/L</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH (Generic)</td>
<td>20,000</td>
<td>Lowest EPH fractional standard</td>
</tr>
<tr>
<td>C5 - C8 Aliphatic</td>
<td>40,000</td>
<td>Aquatic Toxicity - Hexane</td>
</tr>
<tr>
<td>C9 - C12 Aliphatic</td>
<td>20,000</td>
<td>Aquatic Toxicity - Decane</td>
</tr>
<tr>
<td>C9 - C18 Aliphatic</td>
<td>20,000</td>
<td>Aquatic Toxicity - Decane</td>
</tr>
<tr>
<td>C19 - C36 Aliphatic</td>
<td>50,000</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C9 - C10 Aromatic</td>
<td>4,000</td>
<td>Aquatic Toxicity - Ethylbenzene</td>
</tr>
<tr>
<td>C11 - C22 Aromatic</td>
<td>30,000</td>
<td>PAHs AWQC</td>
</tr>
</tbody>
</table>
Soil Standards - Direct Contact

STEP 1
- Non-cancer Risk-Based Concentration
- Cancer Risk-Based Concentration
- Ceiling Concentration

Identify Lowest Value

STEP 2
- Background
- Lowest Value from Step 1
- Practical Quantitation Limit (PQL)

Identify the highest value

MCP Soil Direct Contact Standards (Table 5)

Massachusetts Department of Environmental Protection - VPH/EPH Spring Training 1997
Basis of New S-1 Direct Contact Standards

<table>
<thead>
<tr>
<th>Fraction</th>
<th>mg/kg</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH (Generic)</td>
<td>800</td>
<td>Lowest EPH fractional standard</td>
</tr>
<tr>
<td>C5 - C8 Aliphatic</td>
<td>100</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C9 - C12 Aliphatic</td>
<td>1,000</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C9 - C18 Aliphatic</td>
<td>1,000</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C19 - C36 Aliphatic</td>
<td>2,500</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C9 - C10 Aromatic</td>
<td>100</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C11 - C22 Aromatic</td>
<td>800</td>
<td>Noncancer Effects</td>
</tr>
</tbody>
</table>

Massachusetts Department of Environmental Protection - VPH/EPH Spring Training 1997
Basis of New S-2 Direct Contact Standards

<table>
<thead>
<tr>
<th>Fraction</th>
<th>mg/kg</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH (Generic)</td>
<td>2,000</td>
<td>Lowest EPH fractional standard</td>
</tr>
<tr>
<td>C5 - C8 Aliphatic</td>
<td>500</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C9 - C12 Aliphatic</td>
<td>2,500</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C9 - C18 Aliphatic</td>
<td>2,500</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C19 - C36 Aliphatic</td>
<td>5,000</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C9 - C10 Aromatic</td>
<td>500</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C11 - C22 Aromatic</td>
<td>2,000</td>
<td>Noncancer Effects</td>
</tr>
</tbody>
</table>

Massachusetts Department of Environmental Protection - VPH/EPH Spring Training 1997
Basis of New S-3 Direct Contact Standards

<table>
<thead>
<tr>
<th>Fraction</th>
<th>mg/kg</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH (Generic)</td>
<td>5,000</td>
<td>Lowest EPH fractional standard</td>
</tr>
<tr>
<td>C5 - C8 Aliphatic</td>
<td>500</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C9 - C12 Aliphatic</td>
<td>5,000</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C9 - C18 Aliphatic</td>
<td>5,000</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C19 - C36 Aliphatic</td>
<td>5,000</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C9 - C10 Aromatic</td>
<td>500</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C11 - C22 Aromatic</td>
<td>5,000</td>
<td>Ceiling</td>
</tr>
</tbody>
</table>

Massachusetts Department of Environmental Protection - VPH/ EPH Spring Training 1997
Soil Standards - Considering Leaching to Groundwater

STEP 1

- Non-cancer Risk-Based Concentration
- Cancer Risk-Based Concentration
- Ceiling Concentration
- Leaching-Based Concentration (specific to each GW Category)

STEP 2

Identify the highest value

- Background
- Lowest Value from Step 1
- Practical Quantitation Limit (PQL)

MCP Soil Standards (Tables 2, 3 and 4)

Massachusetts Department of Environmental Protection - VPH/ EPH Spring Training 1997
S-1, S-2 and S-3 Standards Based on Leaching Consideration

<table>
<thead>
<tr>
<th>Standard</th>
<th>C9 - C10 Aromatic (100 mg/kg)</th>
<th>C11 - C22 Aromatic (200 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1/GW-1</td>
<td>C9 - C10 Aromatic (100 mg/kg)</td>
<td>C11 - C22 Aromatic (200 mg/kg)</td>
</tr>
<tr>
<td>S-2/GW-1</td>
<td>C9 - C10 Aromatic (100 mg/kg)</td>
<td>C11 - C22 Aromatic (200 mg/kg)</td>
</tr>
<tr>
<td>S-3/GW-1</td>
<td>C9 - C10 Aromatic (100 mg/kg)</td>
<td>C11 - C22 Aromatic (200 mg/kg)</td>
</tr>
</tbody>
</table>
Upper Concentration Limits (UCLs)

STEP 1
- Identify the highest GW Standard

STEP 2
- Multiply by 10

STEP 3
- Choose the lower value

MCP GW UCL

STEP 1
- Identify the highest Soil Standard

STEP 2
- Multiply by 10

STEP 3
- Choose the lower value

MCP SOIL UCL
Basis of New Soil UCLs

<table>
<thead>
<tr>
<th>Fraction</th>
<th>mg/kg</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH (Generic)</td>
<td>10,000</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C5 - C8 Aliphatic</td>
<td>5,000</td>
<td>10 x highest Method 1 standard</td>
</tr>
<tr>
<td>C9 - C12 Aliphatic</td>
<td>20,000</td>
<td>Risk Management</td>
</tr>
<tr>
<td>C9 - C18 Aliphatic</td>
<td>20,000</td>
<td>Risk Management</td>
</tr>
<tr>
<td>C19 - C36 Aliphatic</td>
<td>20,000</td>
<td>Risk Management</td>
</tr>
<tr>
<td>C9 - C10 Aromatic</td>
<td>5,000</td>
<td>10 x highest Method 1 standard</td>
</tr>
<tr>
<td>C11 - C22 Aromatic</td>
<td>10,000</td>
<td>Ceiling</td>
</tr>
</tbody>
</table>
Basis of New Groundwater UCLs

<table>
<thead>
<tr>
<th>Fraction</th>
<th>ug/L</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH (Generic)</td>
<td>100,000</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C5 - C8 Aliphatic</td>
<td>100,000</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C9 - C12 Aliphatic</td>
<td>100,000</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C9 - C18 Aliphatic</td>
<td>100,000</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C19 - C36 Aliphatic</td>
<td>100,000</td>
<td>Ceiling</td>
</tr>
<tr>
<td>C9 - C10 Aromatic</td>
<td>100,000</td>
<td>Risk Management</td>
</tr>
<tr>
<td>C11 - C22 Aromatic</td>
<td>100,000</td>
<td>Ceiling</td>
</tr>
</tbody>
</table>

Massachusetts Department of Environmental Protection - VPH/EPH Spring Training 1997
Reportable Concentrations (RCs)

RCGW-1
The lowest of the following Method 1 standards: GW-1, GW-2 and GW-3

RCGW-2
The lowest of the following Method 1 standards: GW-2 and GW-3

RCS-1
The lowest of the following Method 1 standards: S-1/GW-1, S-1/GW-2, S-1/GW-3, S-2/GW-1 and S-3/GW-1

RCS-2
The lowest of the following Method 1 standards: S-2/GW-2, S-2/GW-3, S-3/GW-2 and S-3/GW-3
New Groundwater RCs

<table>
<thead>
<tr>
<th>Fraction</th>
<th>RCGW-1 mg/L</th>
<th>RCGW-2 mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH (Generic)</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>C5 - C8 Aliphatic</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>C9 - C12 Aliphatic</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C9 - C18 Aliphatic</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C19 - C36 Aliphatic</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>C9 - C10 Aromatic</td>
<td>0.2</td>
<td>4</td>
</tr>
<tr>
<td>C11 - C22 Aromatic</td>
<td>0.2</td>
<td>30</td>
</tr>
</tbody>
</table>

Massachusetts Department of Environmental Protection - VPH/ EPH Spring Training 1997
New Soil RCs

<table>
<thead>
<tr>
<th>Fraction</th>
<th>RCS-1 (mg/kg)</th>
<th>RCS-2 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH (Generic)</td>
<td>200</td>
<td>2,000</td>
</tr>
<tr>
<td>C5 - C8 Aliphatic</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>C9 - C12 Aliphatic</td>
<td>1,000</td>
<td>2,500</td>
</tr>
<tr>
<td>C9 - C18 Aliphatic</td>
<td>1,000</td>
<td>2,500</td>
</tr>
<tr>
<td>C19 - C36 Aliphatic</td>
<td>2,500</td>
<td>5,000</td>
</tr>
<tr>
<td>C9 - C10 Aromatic</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>C11 - C22 Aromatic</td>
<td>200</td>
<td>2,000</td>
</tr>
</tbody>
</table>
Method 1

Selection of Method: 310 CMR 40.0942

Considerations:

• Existing Method 1 Standard for all Contaminants of Concern

• Contamination present in a medium other than soil or groundwater

• Bioaccumulating chemicals present in the top two feet of soil
Method 1

Contaminants of Concern

Section 2.4 of Guidance Document

VPH/EPH Considerations

Chemicals which would be included in the VPH/EPH fraction ranges would not be considered distinct Contaminants of Concern unless there is already a Method 1 standard for that chemical. (e.g., Trimethylbenzenes would be included in the C9-C10 Aromatics and would not be a separate CoC)
Method 1

Other Environmental Media

Ambient or Indoor Air, surface water, sediments...

VPH/EPH Considerations

• Odors detected in indoor or ambient air is indicative of the presence of OHM in “another environmental medium”. The health risk posed by exposures which would thus occur must be evaluated.

• Odors detected in a boring or test pit would not, by themselves, invalidate the use of Method 1.
Method 1
Exposure Point Concentrations, Hot Spots and Risk Characterization

* VPH/EPH Considerations

Each VPH/EPH fraction is treated as if it were a single entity or a unique chemical. The general rules which apply to Method 1 Risk Characterizations also apply when VPH/EPH fractions are the Contaminants of Concern.
Method 2

Purpose of a Method 2

Risk Characterization

- Create a standard when there is no Method 1 standard for a chemical

- Modify existing Method 1 standards for fate and transport considerations
Method 2

Limitations on Use of Method 2

Considerations:

• Contamination present in a medium other than soil or groundwater

• Bioaccumulating chemicals present in the top two feet of soil
Method 2
Modifying Existing GW Standards

* GW-1: No modifications allowed
 (310 CMR 40.0982(1))

* GW-2: Modification of VPH/EPH standards limited to a demonstration of “No Impact”

* GW-3: Modifications based upon fate & transport considerations and/or “No Impact” demonstration.
Method 2
Modifying Existing Soil Standards

- Soil modifications limited to adjustment of the leaching component of the Method 1 standards

VPH/EPH Consideration:

Only a small number of the new VPH/ EPH fractional standards are based upon the leaching component.
Method 2

Exposure Point Concentrations, Hot Spots and Risk Characterization

* VPH/EPH Considerations

Each VPH/EPH fraction is treated as if it were a single entity or a unique chemical. The general rules which apply to Method 2 Risk Characterizations also apply when VPH/EPH fractions are the Contaminants of Concern.
Method 3

Contaminants of Concern

- TPH, VOCs and PAHs
- VPH/EPH, VOCs and PAHs
- Trimethylbenzenes and other OHM which would be picked up under TPH or VPH/EPH would not be a CoC

(See Session 5 for more detail about using old TPH data.)
Method 3
Toxicity Values

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Oral RfD mg/kg/day</th>
<th>Inhalation RfC ug/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5 - C8 Aliphatic</td>
<td>0.06</td>
<td>200</td>
</tr>
<tr>
<td>C9 - C12 Aliphatic</td>
<td>0.6</td>
<td>2000</td>
</tr>
<tr>
<td>C9 - C18 Aliphatic</td>
<td>0.6</td>
<td>2000</td>
</tr>
<tr>
<td>C19 - C36 Aliphatic</td>
<td>6</td>
<td>N/A</td>
</tr>
<tr>
<td>C9 - C10 Aromatic</td>
<td>0.03</td>
<td>60</td>
</tr>
<tr>
<td>C11 - C22 Aromatic</td>
<td>0.03</td>
<td>71</td>
</tr>
</tbody>
</table>

Massachusetts Department of Environmental Protection - VPH/ EPH Spring Training 1997
Method 3

Exposure Point Concentrations, Hot Spots and Risk Characterization

VPH/EPH Considerations

Each VPH/EPH fraction is treated as if it were a single entity or a unique chemical. The general rules which apply to Method 3 Risk Characterizations also apply when VPH/EPH fractions are the Contaminants of Concern.
Method 3
Risk Characterization

* **Health**
 Cumulative Noncancer Risk Limit...HI=1
 Excess Lifetime Cancer Risk Limit...1 in 100,000

* **Safety**
 e.g. explosive levels of gasoline

* **Public Welfare**
 Odor Issues, UCLs

* **Environment**
 UCLs, DEP developing Stage I Screening Levels

Massachusetts Department of Environmental Protection - VPH/EPH Spring Training 1997
Response Action Outcomes (RAOs)

Not Related to VPH/EPH, but...

- Risk isn’t everything.
 Elimination of continuing sources (40.1003(5)) and background (40.1020) required

- New A-4/B-3 RAO Categories
 Situations under which soil concentrations may exceed Upper Concentration Limits.
MA DEP/LSPA Spring Training Seminar
Understanding and Using the New VPH/EPH Approach

Session 5:
Implementation Issues

John Fitzgerald
MA Department of Environmental Protection
Northeast Regional Office
Bureau of Waste Site Cleanup
10 Commerce Way
Woburn, MA 01801

phone: (617) 932-7702
fax: (617) 932-7615
email: jfitzgerald@state.ma.us
WWW: http://www.state.ma.us/dep/
Implementation and Application

VPH/EPH Approach
Terminology and Ground Rules

- VPH EPH TPH ...
- Aliphatic...Alkane... Alkene... Al Gore....
- Fractions... Ranges... Gasoline Ranges... Electric Ranges.......

Massachusetts Department of Environmental Protection - VPH / EPH Spring Training 1997
Universe of Hydrocarbons

Petroleum Hydrocarbons

C5

C36+
“Total” Petroleum Hydrocarbons (TPH)
TPH and EPH

TPH

C9-C18 Aliphatics

C11-C22 Aromatics

C19-C36 Aliphatics

C9 C36

Massachusetts Department of Environmental Protection - VPH / EPH Spring Training 1997
C5 - C8 Aliphatics

C9-C12 Aliphatics

BTEX

C9-C10 Aromatics

C5

C12

C5

C12

C36

Massachusetts Department of Environmental Protection - VPH / EPH Spring Training 1997
Standards

- There are no “VPH” or “EPH” cleanup Standards

- VPH and EPH are analytical test methods, and groupings of hydrocarbon fractions
Fractions

- Using VPH Method, you can determine:
 - C5-C8 Aliphatic Hydrocarbons
 - C9-C12 Aliphatic Hydrocarbons
 - C9-C10 Aromatic Hydrocarbons

- Using EPH Method, you can determine:
 - C9-C18 Aliphatic Hydrocarbons
 - C19-C36 Aliphatic Hydrocarbons
 - C11-C22 Aromatic Hydrocarbons
Fractions and Target Analytes

- By definition, collective hydrocarbon fractions exclude “Target Analytes”

- “Target Analytes” are petroleum constituents for which there are Method 1 Standards:
 - BTEX
 - MTBE
 - PAHs
Using Method 1 is a TWO step process:

- **Step 1:** identify and evaluate Target Analytes of interest (e.g., BTEX, PAHs)

- **Step 2:** identify and evaluate hydrocarbon fractions of interest, to address the rest of the hydrocarbon mixture
Application Issues

- When to test for VPH?
 EPH? Both?

- When to test for Target Analytes?

- When to test soil?
 Groundwater? Both?

- How to use TPH/Screening data?
Disclaimer!

- Guidance and “Rules of Thumbs” are based upon currently available information and are designed to be protective at most sites of concern.

- There may be unusual release or site conditions where the provided guidance may not be appropriate.
<table>
<thead>
<tr>
<th>Petroleum Product</th>
<th>VPH</th>
<th>EPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Fresh Diesel/#2 Fuel</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Weathered Diesel/#2 Fuel</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>#3-#6 Fuel Oil</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Mineral/Dielectric Oils</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Massachusetts Department of Environmental Protection - VPH/EPH Spring Training 1997
VPH? EPH? Both?

<table>
<thead>
<tr>
<th>Petroleum Product</th>
<th>VPH</th>
<th>EPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Fuel JP-4</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Jet Fuel Jet A</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Waste Crankcase Oil</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Unknown Oils/Source</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Massachusetts Department of Environmental Protection - VPH / EPH Spring Training 1997
EPH? VPH? Both?

- Caveats:
 - VPH testing recommended for drinking water wells impacted by any petroleum product
 - May eliminate VPH testing for fuels based upon VOC screening
 - “Fresh” soil/water samples defined as > 100 ppmv total organic vapor headspace
Target Analytes

- **Gasoline Releases**
 - Determine BTEX and MtBE in soil and groundwater; lead and EDB where indicated

- **#2 Fuel Oil Releases**
 - Determine BTEX in groundwater if shallow gw or sensitive (GW-1) areas
Target Analytes

- **#2 Fuel Oil Releases**
 - Test for PAHs in soil if TPH > 500 µg/g
 - Test for PAHs in groundwater if near drinking water supplies

- **Waste (Crankcase) Oil**
 - Test for PAHs in soil and groundwater
PAHs

PAHs of Interest for #2 Fuel Oil:

- acenaphthene
- naphthalene
- 2-methylnaphthalene
- phenanthrene
Soil? Groundwater? Both?

Site-Specific decision, based upon:
- volume/mechanism of release
- depth to groundwater
- extent of site investigation/knowledge
- sensitivity of receptors:
 - direct contact - soil
 - ingestion/inhalation - gw
Soil? Groundwater? Both?

- **Rules of Thumb:**
 - Gasoline Releases:
 - Characterize groundwater in most cases
 - #2 Fuel Oil Releases
 - Evaluate groundwater if shallow or if in sensitive (GW-1) area
 - Near drinking water supplies
 - Evaluate gw in most cases

Massachusetts Department of Environmental Protection - VPH / EPH Spring Training 1997
To Filter, or not to Filter.....

- Not a simple or universal answer

- Performance standard:
 - Determine concentrations of contaminants moving through an aquifer, and/or impacting a receptor

- Filtering EPH gw samples may be appropriate in some cases, if conducted in this context
Using Old/New “TPH” Data

- Future TPH data may be used directly to characterize C9 and heavier hydrocarbons (e.g., fuel oil), by using the TPH Method 1 standards.

- Old TPH data and new TPH/screening data may be used indirectly, by “converting” the TPH value into EPH fractional concentrations.
Converting TPH data

- Making informed judgments on the chemistry of the TPH value(s), relative to percentage of aliphatics/aromatics, based upon:
 - chemistry/weathering of spilled product
 - available VPH/EPH data
 - default compositional assumptions
Recommended TPH Compositional Assumptions - Soil

<table>
<thead>
<tr>
<th>Petro Product</th>
<th>C11-C22 Aromatics</th>
<th>C9-C18 Aliphatics</th>
<th>C19-C36 Aliphatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel/#2 & Crankcase</td>
<td>60%</td>
<td>40%</td>
<td>0%</td>
</tr>
<tr>
<td>#3-#6 Fuel Oil & JP-4</td>
<td>70%</td>
<td>30%</td>
<td>0%</td>
</tr>
<tr>
<td>Kerosene & Jet-A</td>
<td>30%</td>
<td>70%</td>
<td>0%</td>
</tr>
<tr>
<td>MODF</td>
<td>20%</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>Unknown Oil</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Recommended Compositional Assumptions - Water

- **TPH data:**
 - All non-targeted (PAH) compounds should be considered C11-C22 Aromatics

- **Gasoline Range Organic data:**
 - All non-BTEX/ MtBE hydrocarbons should be considered C9-C10 Aromatics
LSP must use professional judgment in using and applying TPH/screening data in the VPH/EPH approach!

Key factors to consider:
- knowledge of released petro product
- reliability, validity, and bias of TPH/screening techniques
- sensitivity of pollutant receptors
Compositional Variability

- One VPH/EPH sample usually not adequate to define hydrocarbon chemistry and relative aliphatic/aromatic percentages at a site

- Sample chemistry can vary significantly across a site
Compositional Variability

Fuel Oil Spill at a Residential Property

Soil Samples

Massachusetts Department of Environmental Protection - VPH / EPH Spring Training 1997
Compositional Variability

- Considerations:
 - source vs migration areas
 - fate/transport conditions and parameters
 - presence of micro-environments
Characterization Options - The Easy Way

- Step 1: Get VPH and/or EPH fractional data
- Step 2: Calculate Exposure Point Concentration (EPC)
Characterization Options - The Harder Way

- Obtain VPH/ EPH data from key areas and critical exposure pathways
- Supplement with screening/ TPH data
- Consider chemistry of petroleum products, fate/ transport factors, VPH/ EPH data, and default conservative compositional assumptions
- Determine fractional composition/ EPC for risk assessment/ Method 1 Standards
Ground Rules

- If using MCP Method 1 Fractional Standards, must have at least some actual VPH/EPH fractional data - not just assumed values.

- In Method 3 assessment, more flexibility to “make a case” that fractional concentrations have been adequately established, without having actual VPH/EPH data.
Regulatory Stuff

- Phasing in Approach
- MCP requirements
- Old/ Closed sites
- What to do NOW
Phasing in the new Approach

- Effective date of MCP changes: Fall 1997

What happens on Effective Date?
- New Reportable Concentrations in effect
- New Method 1 Cleanup Stds in effect
- New UCLs in effect

*** No Grandfathering Provisions ***
Regulatory Requirements/Context

- MCP will not “mandate” testing for VPH/EPH fractions

- Like any other standard, LSPs must decide when it is necessary to address/ demonstrate compliance with these standards

- Alternative approaches acceptable via Method 3 Risk Characterizations
After effective date of MCP changes, there will be an expectation that LSPs will address VPH/EPH concerns at ALL new and open sites, per Response Action Performance Standard of 40.0191.

Prior to effective date of MCP changes, there is an expectation that LSPs will address VPH/EPH concerns only at those FEW sites with direct and compelling exposure concerns.
Reopening Old Cases

Direct and Compelling Exposures:

- Drinking water wells impacted by gasoline releases
- Persistent indoor air impacts from gasoline releases
Applying a New Standard?

- No.

- Risk standards in effect since 1988

- VPH/EPH not a new standard, but a new tool to evaluate and characterize risks, and document compliance with existing risk management standards
What can/should/must be done NOW?

- Use existing MCP standards and traditional approaches UNLESS direct and compelling exposure concerns

- Electively use proposed Method 1 Standards and UCLs as part of a Method 2 characterization per 40.0982(7)

- If site will not be closed out by effective date, consider use of VPH/EPH now
Guidance Document will be finalized and issued prior to effective date of MCP changes.

Questions? Contact John Fitzgerald at:

(617) 932-7702, or

John.Fitzgerald@state.ma.us
For a Closer Look.....

VPH/EPH Bibliography

Spring 1997

DEP Publications:

• Interim Final Petroleum Report: Development of Health-Based Alternative to the Total Petroleum Hydrocarbon (TPH) Parameter, August, 1994
 Summary: Original report presenting the toxicological basis of the proposed new VPH/EPH approach

• Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), Public Comment Draft 1.0, August, 1995

• Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), Public Comment Draft 1.0, August 1995
 Summary: Detailed Analytical Methods

 Summary: Detailed discussion and recommendations on how to develop MCP Method 1 cleanup standards, and otherwise incorporate new VPH/EPH approach into MCP regulatory process

• Revisions to the Massachusetts Contingency Plan, 310 CMR 40.0000 - Public Comment Draft, January 17, 1997
 Summary: Proposed VPH/EPH fractional standards; discussion of risk management issues; spreadsheets of standard calculations.

All DEP publications available on the World Wide Web at http://www.state.ma.us/dep/deppubs.htm

Beyond TPH - Understanding and Using the New VPH/EPH Approach
DEP/LSPA Spring 1997 Training Seminar

- over-
Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) Publications

 Summary: Overview of TPHCWG framework and approach

- **Selection of Representative TPH Fractions Based on Fate and Transport Considerations**, Volume III in a Series, Final Draft, 2/27/97

 Summary: Extensive data on physical properties of hydrocarbon compounds, discussion on fate/transport, recommendations on physical/chemical properties for aliphatic and aromatic fractions

- **Development of Fraction Specific Reference Doses (RfDs) and Reference Concentration (RfCs) for Total Petroleum Hydrocarbons (TPH)**, Volume IV In a Series, 1996

 Summary: Extensive data on toxicological properties of hydrocarbon compounds, mixtures, and products; recommended toxicological parameters for aliphatic and aromatic fractions. NOTE: The information and recommendations contained in this report have not been peer-reviewed, and are currently being evaluated by MADEP.

- *click on “publications”*

State of Wisconsin Publications

- **Studies of Sampling, Storage and Analysis of Soils Contaminated with Gasoline & Diesel**

 Summary: Extensive data, information, and recommendations on soil sampling, storage, and preservation.

Wisconsin Publications available on World Wide Web at http:www.dnr.state.wi.us/eq/errhw/

- *document to look for: SCSSREP.ZIP* -