Department of Public Safety Introduction to Residential HVAC System Basics

0

by State Building Inspector

Introduction to Residential HVAC System Basics

How they are affected by the I-Codes

- 2009 International Residential Code
- 2009 International Mechanical Code
- 2012 International Energy Conservation
- Code 780 CMR 8th Edition Amendments

Introduction to Residential HVAC Systems And how they are affected by the I-Codes

- HVAC Science Basic "Rule of Thumb"
- **BTU** = The energy required to raise the temperature of one pound of water 1 degree fh 1hr at sea level
- **43 BTUs** per sq ft. of habitable space
- **Absolute Zero** = absence of heat -459.6 f (*very cold!*)

Introduction to Residential HVAC Systems And how they are affected by the I-Codes

- **1-TON of Cooling** = The energy required to melt a one ton (2000lbs) ice block in a 24hr period
- (144 BTU per pound x 2000lbs = 288,000 divided by 24hrs = 12,000 BTUs per hour)
- 400 CFM per TON of cooling
- **Cooling Tonnage** one ton of cooling for every 700 sq. ft. (could be more but no less for rule)
- Ventilation design basics (again for the rule of thumb) Heating Supply/Return 100/80% Cooling 80/100% Supply/Return "the bicycle wheel effect"

Introduction to Residential HVAC Systems And how they are affected by the I-Codes

- **"Rule of Thumb"** Air Duct Calculation 7" dia. Duct = 150 cfm, 8" dia. duct = 200 cfm and 9" dia. duct 300 cfm
- "Rule of Thumb" duct sizing 1sq. ft. = 1 CFM (probably less again this is a rule of thumb) always require a Manual "J" heat loss calculation. The contractor/designer should also use a Manual "S" for proper equipment selection and sizing, a Manual "D" for proper Duct Sizing
- **PSI Hydronic "Rule of Thumb"** 1 lbs of pressure lifts water 4.5 feet minimum boiler water pressure for a two story house is 12 pounds (industry standard is working pressure 15-25lbs relief valve set at 35lbs)

Introduction to Residential HVAC Systems

And how they are affected by the I-Codes

DISCLAIMER!!!

- These examples are **"rules of thumb"** they are developed for reasonable code compliance.
- They should not be used for designing a system.

• **Basic Components of the Warm Air Furnace**:

- Burner and Controls, High Limit Switch/ Low Limit Switch, Heat Exchanger and or Heating Box, Blower, Return air Inlet, Filter, Warm air Outlet and the Flue Connection.
- Basic Theory of the Warm Air Furnace: Thermostat call for heat, the controls energize the burner heating the heat exchanger to the point that the pre-set bi-metal switch connects or "makes" to energize the blower sending warm air through the plenum into the ducts into the living area and finally satisfying the thermostat shutting off the furnace.

• **Basic Components of the Hydronic Boiler**:

Burner and Controls, Combustion Chamber, Hydronic Heat Exchanger (Tubes, Finns or Pins), Circulator Pumps, Air Scoops, One way Check valves, Back Flow Preventer, Supply Water Cut-off, Aquastat, Pressure Reducing Valve, Relief Valve, Hydronic piping connecting to the Base Board Fin-Tube Units.

• **Basic Theory or the Hydronic Boiler:**

Thermostat calls for heat the controls energize the burner heating the combustion chamber heating the hydronic heat exchanger and heating the water in the heat exchanger reservoir, the water heats to the point that the aquastat switch connects or "makes" at this time the aquastat energizes the circulator pump and warm water flows through the hydronic piping connecting to the base board heating units sending the heated water to the bas board fin tube units the heat is transferred by way of convection from the fin tubes base boards to the living area the water is then returned to the boiler to start the process over again until the thermostat is satisfied. As a note most hydronic boilers are "warm start" Boilers, that means the water in the boiler stays heated at a pre-determined temperature so it is ready to heat the system when there is a call for heat. The "warm start" boilers are usually fitted with a direct water heater (which means the domestic hot water coil is in the boiler's water jacket) or an indirect hot water heater (which means the domestic hot water coil is place outside or indirectly placed outside of the hydronic boiler's water jacket) this makes for a very efficient way to supply domestic hot water to the residence.

- **Basic Components of the Hydro-Air System:**
 - The Hydro Air System is a Hybred that combines the benefits of the hydronic boiler and the ventilation system of the warm air system. They accomplish this by using a hydronic boiler to heat a hydronic heat exchanger that is place in the plenum of the duct work, the air handler then blows air over the heat exchanger's coil warming the air in the plenum through the duct and heating the Living Area.

• **Basic theory of the Hydro-Air System**:

The hydro air system is a hybrid system using the benefits of both the warm air furnace and the hydronic boiler. By placing a hydronic heat exchanger in the plenum of the duct work typically used for a warm air system the resident has the benefit and comfort of the hydronic system along with the practicality of the warm air system. Let's see how it works. As with both previous designs the thermostat calls for heat the hydronic boiler's controls energize the burner the burner then heats up the combustion chamber the combustion chamber heats the hydronic heat exchanger which heats the water in the exchanger the aquastat is energized or "makes" energizing the circulator pumps the warm water is pumped thru the hydronic piping that is connected to the heat exchanger coil placed in the plenum of the duct work, the air handler blows air over the coils of the heat exchanger and heated air moves through the plenum into the branch lines though the ducts heating the living space until the thermostat is satisfied. Another major advantage of the hydro air system is the ductwork can also be used for your air conditioning system.

• **Basic Components of the A/C System:**

Thermostat, Compressor, Fan, Condensing Coil, Line Set and A-Coil (Evaporator)

• **Basic Air Condition Theory:**

The compressor compresses the refrigerant gas putting it under heat pressure up to 200+ degrees fh!, the pressurized and heated refrigerant is then forced into the condensing coil, the fan in the condensing coil draws outside air in and it starts to cool the refrigerant cooling it to the point that the refrigerant begins to condense into a liquid state, by the time the refrigerant leaves the condensing coils it has been converted to a liquid state, the refrigerant now enters the supply line (liquid line) and is on its way, still under pressure, to the A-Coil Evaporator and this is where the magic happens. (Do you remember we were talking about boiling points?) The liquefied refrigerant enters the A-Coil Evaporator and is de-pressurized and yes you guessed it the refrigerant cools, cooling the A-coil in the plenum the air handler blows air over the coil's cooling fins and cools the living area, the refrigerant than goes to the suction line and back to the compressor where the process starts over again.

• **Basic components of the Duct System:**

Plenums: box like chamber connected to the furnace, two types return and supply should be dimensional compatible to the furnace and be at least 14" tall.

Trunks: these are usually rectangular and connect to the plenum and run through the center of the house (usually in attic or basement).

- <u>Branches</u>: smaller ducts could be round or rectangular and connect the trunk to the individual registers .
- **<u>Dampers</u>**: in a quality system there will be locking dampers found in each branch to allow for balancing of the system.
- **<u>Boot</u>**: connects the branch line to the conditioned space.
- **Register:** the finishing component to keep objects from falling into the boot, has an integral damper (usually found on the supply side) to help fine tune the system balance .
- <u>Supports</u>: duct supports shall be at least 1/2" wide 18 gage metal strap or 12 gage galvanized wire at intervals not to exceed 10 feet.

• <u>Flexible Ducts vs. Flexible Connector:</u>

2009 IMC-603.6.1 "Flexible air ducts both metallic and nonmetallic, shall be tested in accordance with UL 181. Such ducts shall be installed in accordance with IMC 304.1 (see hand-out). Flexible air ducts length shall not be limited but installed to manufactures instructions."

IMC 603.6.2 "Flexible air connectors, (not to be confused with IMC 603.6.1 Flexible air ducts) flexible air connectors have a lesser testing protocol than the testing protocol for flexible air ducts. The length of the flexible air connector is limited to 14 feet, flexible air connectors cannot pass through any walls, floors or ceiling, whether the assembly is fire rated or not. Flexible air connector is identified by the round or oval label, making them readily distinguishable from rectangular flexible air duct. Read more on this subject in the 2009 IMC Chapter 6.

Installation Guidelines

4.1 Code Reference

4

The "authority having jurisdiction" should be referenced to determine what law, ordinance or code shall apply in the use of flexible duct.

Ducts conforming to NFPA 90A or 90B shall meet the following requirements:

- a. Shall be tested in accordance with Sections 5-21 of Underwriters Laboratories Standard for Factory-Made Air Ducts and Air Connectors, UL 181.
- b. Shall be installed in accordance with the conditions of their listing.
- c. Shall be installed within the limitations of the applicable NFPA 90A or 90B Standard.

4.2 General

12

MDC

Flexible

Duct

Per

ion

叁 Edition

The routing of flexible duct, the number of bends, the number or degrees in each bend and the amount of sag allowed between support joints will have serious effects on system performance due to the increased resistance each introduces. Use the minimum length of flexible duct to make connections. It is not recommended that excess length of ducts be installed to allow for possible future relocations of air terminal devices.

Avoid installations where exposure to direct sunlight can occur, e.g. turbine vents, sky lights, canopy windows, etc. Prolonged exposure to sunlight will cause degradation of the vapor barrier. Direct exposure to UV light from a source lamp installed within the HVAC system will cause degradation of some inner core/liner materials.

Terminal devices shall be supported independently of the flexible duct.

Repair torn or damaged vapor barrier/jacket with duct tape listed and labeled to Standard UL 181B. If internal core is penetrated, replace flexible duct or treat as a connection.

4.3 Installation and Usage

Install duct fully extended, do not install in the compressed state or use excess lengths. This will noticeably increase friction losses.

Figure 6

Figure 7

Figure 603.6(4) INSTALLATION INSTRUCTIONS FOR FLEXIBLE AIR DUCTS AND AIR CONNECTORS (Courtesy of Air Diffusion Council) (Continued)

Figure 603.6(4)—continued INSTALLATION INSTRUCTIONS FOR FLEXIBLE AIR DUCTS AND AIR CONNECTORS (Courtesy of Air Diffusion Council) (Continued)

Installation Guidelines . . . continued

4.5 Installation instructions for Air Ducts and Air Connectors - Nonmetallic with Plain Ends

Connections

Splices

1. After desired length is determined, cut completely around and through duct with knife or scissors. Cut wire with wire cutters. Fold back jacket and insulation.

2. Slide at least 1* [25 mm] of core over fitting and past the bead. Seal core to collar with at least 2 wraps of duct tape. Secure connection with clamp placed over the core and tape and past the bead.

jacket with at least 2 wraps of duct tape. A clamp may be used in place of or in combination with the duct 1. Fold back jacket and insulation from core. Butt two cores together on a 4" [100 mm] length metal sleeve.

2. Tape cores together with at least 2 wraps of duct tape. Secure connection with 2 clamps placed over the taped core ends and past the beads.

3. Puil jacket and insulation back over cores. Tape jackets together with at least 2 wraps of duct tape.

NOTES: 1.

tape.

14

ADC

Flexible Duct Performance &

Installation ŝ

- For uninsulated air ducts and air connectors, disregard references to insulation and jacket. 2
- Use beaded sheet metal fittings and sleeves. з.
- Use tapes listed and labeled in accordance with Standard UL 181B and marked "181B-FX".
- Nonmetallic clamps shall be listed and labeled in accordance with Standard UL 181B and marked "181B-C". 4 Use of nonmetallic clamps shall be limited to 6 in. w.g. [1500 Pa] positive pressure.

Figure 603.6(4)—continued INSTALLATION INSTRUCTIONS FOR FLEXIBLE AIR DUCTS AND AIR CONNECTORS (Courtesy of Air Diffusion Council) (Continued)

TRATIONAL MECHANICAL CODE® COMMENTARY

4.6 Alternate Installation Instructions for Air Ducts and Air Connectors -Nonmetallic with Plain Ends

Connections and Splices

Step 1

After desired length is determined, cut completely around and through duct with knife or scissors. Cut wire with wire cutters. Pull back jacket and insulation from core.

Step 2

Apply mastic approximately 2" [50 mm] wide uniformly around the collar of the metal fitting or over the ends of a 4" [100 mm] metal sleeve. Reference data on mastic container for application rate, application thickness, cure times and handling information.

Step 3

Slide at least 2* [50 mm] of core over the fitting or sleeve ends and past the bead.

Step 4

Secure core to collar with a clamp applied past the bead. Secure cores to sleeve ends with 2 clamps applied past the beads.

Step 5

Pull jacket and insulation back over core ends. Tape jacket(s) with at least 2 wraps of duct tape. A clamp may be used in place of or in combination with the duct tape.

NOTES:

- 1. For uninsulated air ducts and air connectors, disregard references to insulation and jacket.
- 2. Use beaded sheet metal fittings and sleeves.
- 3. Use mastics listed and labeled in accordance with Standard UL 181B and marked "181B-M" on container.
- Use tapes listed and labeled in accordance with Standard UL 181B and marked "181B-FX". 5.
- Nonmetallic clamps shall be listed and labeled in accordance with standard UL 181B and marked "181B-C". Use of nonmetallic clamps shall be limited to 6 in. w.g. [1500 Pa] positive pressure.

Figure 603.6(4)—continued INSTALLATION INSTRUCTIONS FOR FLEXIBLE AIR DUCTS AND AIR CONNECTORS (Courtesy of Air Diffusion Council) (Continued)

15

4

Edition

Installation Guidelines . . . continued

4.7 Installation Instruction for Air Ducts and Air Connectors - Metallic with Plain Ends

Connections and Splices

1. After cutting duct to desired length, fold back jacket and insulation exposing core. Trim core ends squarely using suitable metal shears. Determine optional sealing method (Steps 2 or 5) before proceeding.

2. When mastics are required and for pressures 4" w.g. [1000 Pa] and over, seal joint with mastic applied uniformly to the outside surface of collar/sleeve. (Disregard this step when not using mastics and proceed to Step 3).

Collar Sleeve

3. Slide at least 1" [25 mm] of core over metal collar for attaching duct to take off or over ends of a 4" [100 mm] metal sleeve for splicing 2 lengths of duct.

4. Secure to collar/sleeve using #8 sheet metal screws spaced equally around circumference. Use 3 screws for diameters under 12" [300 mm] and 5 screws for diameters 12" [300 mm] and over.

5. For pressures under 4" w.g. [1000 Pa] seal joint using 2 wraps of duct tape applied over screw heads and spirally lapping tape to collar/sleeve. (Disregard this step when using mastics per Step 2).

6. Pull jacket and insulation back over core. Tape jacket with 2 wraps of duct tape. A clamp may be used in place of or in combination with the duct tape.

1

- Use tapes listed and labeled to Standard UL 181B and marked "181B-FX".
- 4.

Nonmetallic clamps shall be listed and labeled in accordance with Standard UL 181B and marked "181B-C".

Figure 603.6(4)—continued INSTALLATION INSTRUCTIONS FOR FLEXIBLE AIR DUCTS AND AIR CONNECTORS (Courtesy of Air Diffusion Council) (Continued)

Installation Guidelines . . . continued

4.8 Supporting Flexible Duct

Flexible duct shall be supported at manufacturer's recornmended intervals, but at no greater distance than 5' [1.5 m]. Maximum permissible sag is ½" per foot [42 mm per meter] of spacing between supports.

A connection to rigid duct or equipment shall be considered a support joint. Long horizontal duct runs with sharp bends shall have additional supports before and after the bend approximately one duct diameter from the center line of the bend.

5' [1.5 m] SAG ½" Per Foot [42 mm/m] of Support Spacing

Figure 10

Hanger or saddle material in contact with the flexible duct shall be of sufficient width to prevent any restriction of the internal diameter of the duct when the weight of the supported section rests on the hanger or saddle material. In no case will the material contacting the flexible duct be less than $1\frac{1}{2}$ " [38 mm] wide.

Figure 12

Factory installed suspension systems integral to the flexible duct are an acceptable alternative hanging method when manufacturer's recommended procedures are followed.

Flexible ducts may rest on ceiling joists or truss supports. Maximum spacing between supports shall not exceed the maximum spacing per manufacturer's installation instruction. Support the duct between a metal connection and bend by allowing the duct to extend straight for a few Inches before making the bend. This will avoid possible damage of the flexible duct by the edge of the metal collar.

CEILING JOIST

Note: Factory-made air ducts may not be used for vertical risers in air duct systems serving more than two stories.

.

Aure Duct Performance & Installation Standards, 4th Edition

Figure 603.6(4)—continued INSTALLATION INSTRUCTIONS FOR FLEXIBLE AIR DUCTS AND AIR CONNECTORS (Courtesy of Air Diffusion Council)

Mechanical Aspects of Residential HVAC System

- <u>Ducts</u>, <u>Duct Sealing</u> and <u>Insulation Requirements</u>:
- IECC Duct Sealing Methods (2009 IRC M1601.4.1 and 2012 IECC-R403.2.2)
- M1601.4.1 "Joint and seams shall be air tight by means of Tapes, Mastics, Liquid Sealants, Gasketing and or other approved closure methods. Crimp Joints for round metal ducts shall have contact lap of at least 1-1/2" and shall have mechanically fastened by at least three screws or rivets equally spaced.
- The "What and Where" of Duct Insulation (2012 IECC- R403.2.1) "Supply ducts in attics shall be insulated to a minimum of R-8. All other ducts shall be insulated to a minimum of R-6 (exception: duct or portions therefore located completely inside the thermosenvelope. If any portion of the system is outside of the thermosenvelope <u>the system must be duct tested.</u>
- Installation of Flexible Ducts SMACMA Installation Guide (See Hand-out).

Heating & Ventilation Air Conditioning Equipment Sizing:

- IRC- M-1401.3
- ACCA- Manual-J
- ACCA Manual-S
- ACCA Manual-D

- Heating and Cooling Sizing
- Before you can start a plan review you must understand what you are reviewing. The 2009 IRC Chapter 14 sec.M1401.3 "Sizing" State that the heating and cooling equipment shall be sized in accordance with The Air Conditioning Contractors of America ACCA Manual "J" and ACCA Manual "S".
- Let's look into the Manual J load calculation. The Manual J load calculation contains a simplified method of calculating heating and cooling loads for winter and summer.

- Designer's Objectives
- To design a mechanical system that can add or remove heat energy at a rate that will allow the home's indoor environment to achieve the design conditions.
- This will keep the occupants comfortable and safe.

Root Cause Heat Transfer (flow of heat)

- A structure loses or gains heat in three ways:
- **Conduction** When heat is transferred through walls, floors, ceilings, door and glass. It passes from warm areas to cooler areas.
- **Radiation** When heat is transferred from its source to an object without heating the medium, a good example is the sun.
- **Convection -** When fluids or gases of different temperatures mix they assume the weighted average temperature.

How a House Gains Heat Summer

(see hand out)

- Roof
- Doors
- Windows
 - Walls
 - Floor
- Occupants
- Equipment

Figure 4-1 Summer Cooling Loads

How a House Looses Heat Winter

(see Hand out)

- Roof
- Doors
- Windows
 - Walls
 - Floor
- Equipment

Figure 1-1 Winter Heating Loads

Applied Heat Transfer

• SUMMER

Heat flows into the home "Sensible Heat"- dry heat (drybulb; thermometer) "Latent Heat"- wet heat (wetbulb; humidity) Heat Gain so we need cooling

WINTER

Heat flows out of the home "Sensible Heat" only

Heat loss so we need heating

It's The Science of Thermodynamics

• First law of Thermodynamics:

"Energy can neither be created or destroyed, but can be converted from one form to another with some amount of heat given off during the conversion".

• Second law of Thermodynamics:

"Over time, differences in temperature and pressure will decrease, leading to thermodynamic equilibrium".

It's The Science of Thermodynamics

• First law of Thermodynamics:

"Energy can neither be created or destroyed, but can be converted from one form to another with some amount of heat given off during the conversion".

• Second law of Thermodynamics:

"Over time, differences in temperature and pressure will decrease, leading to thermodynamic equilibrium".

Nature doesn't like temperature differences, so heat flows from one region of high temperature to a region of lower temperature until both are equal.

We don't like temperature differences, so we've designed objects and processes to slow this physical phenomena down. (i.e. Clothing, Shelter, Heating and Cooling).

The Big Question is:

What is a "LOAD CALCULATION"?

- Well in layman's terms- A load calculation is an account of the total heat flows into and out of a home (depending on the time of year)
- Why do we need to know the heating and cooling load calculation?
- The designer needs to know this rate in order to choose the correct equipment to make the occupants comfortable and safe (sounds familiar), to satisfy the building code and to keep energy cost down.

Manual "J" Load Calculation Method

- **Manual "J"** requires two sets of design conditions
- **Heat loss** (Winter Peak Loads)
- *Heat loss (*winter*) Outdoor design temperatureheating 99% dry bulb (db)
- *Indoor design temperature 70 degrees f db
- **Heat gains** (*Summer Peak Loads*)
- *Heat gain (*summer*) Outdoor design temperature- cooling 1% db

*Indoor design temperature 75 degrees f db

Design Temperatures

Outdoor Design Temperature

- Must be for the homes specific location
- 30 yr. average, compiled by ASHRAE
- Manual "J" Tables 1A and 1B
- Updated in 2014

Indoor Design Temperature

 Within the ASHREA comfort zone chart (per ANSI/ASHRAE 55 Thermal Environmental Conditions for Human Occupancy Standards).

Loads That Must Be Accounted For

As applicable for the specific structure:

- **Fenestration** (Windows, Glass Doors, Skylights)
- Orientation of the structure: What direction does the front door face N,S,E,W,... This is important because of the movement of the sun though-out the day , and it will have a huge effect on loads from windows, glass doors and skylights.
- **Opaque Panels-wood/metal doors**, above and below grade walls, partition walls, ceilings and floors.
- **Infiltration:** movement of heat through structure.
- **Ventilation** mechanical and or manual.
- **Internal** number of occupants.
- Appliances, Equipment and Lighting.

FORM J—1 Including Calculation Procedures A, B, C, D Copyright by the Air Conditioning Contractors of America 1513 16th Street N.W. Washington, D.C. 20036 Printed in U.S.A. 1986

.

_		·
ſ	Plan No.	
L	Calculated by	

WORKSHEET FOR MANUAL J

LOAD CALCULATIONS FOR RESIDENTIAL AIR CONDITIONING

	Nomo Exam	ple Problem							
FOI.	Address								
	City and Chat	a as Braviana							
0	City and State	e or Province							
БУ:	Contractor								
	Address					-			
	City								,
				Desian	Conditions	1			
		Winter					Summer		
Outsi	idedb -5	°F Inside db	70	•F	Outside	db88	°F Inside dt	75	•F
Winte	er Design Temr	perature Difference	75	•F	Summer	Design Temp	erature Differen	ce15	-•F
	beolgi rom				Room R	H 55%	Daily Rang	e M	
				Heatin	a Summary				
Total	Heat Loss for	Entire House /I ine	15) -	A A	47,808				Btuh
Venti	Intice CEM -	none	10/	Winter De	sion Tempe	rature Differe	nce =		•F
Ventil	Required for V	optilation Air = 1.1	Y	_ white De	CEM X	stature Differe	•F -	0	Btub
Deale	Required for v	d Baguiramant -	^	47.808	(house)	0	(Vent) -	47,808	Btub
Desig	In Heating Loa						(reny = _		
		10 000		Coolin	g Summary				
Total	Sensible Gain	10,009	Btuł	n (Calculatio	on Procedu	re D) Design	l'emperature Sw	ings	
Total	Latent Gain +	3,635	Btuł	n (Calculatio	on Procedu	re D) Normal	3* (X) 4.5* ()	
Tetel	Cons i l	. 20.004							
Total	= Sens. + L	at. =	Btuh			Ventilat	ion CFM =	none	
Total	= Sens. + L	at. =	Btuh	Equipme	ent Summa	Ventilat TY	ion CFM =	none	
Make	= Sens. + L	Model	Btuh	Equipme	ent Summa	Ventilat ry	ion CFM =	none	
Make	ing Input (Btuh	Model	Btuh	Equipme ting Output	ent Summa Type t (Btuh)	Ventilat ry	Efficiency.	none	
Make Heati Sensi	ing Input (Btuh	Model Model tuh	Btuh . Hea La	Equipme ting Output tent Cooling	ent Summa Type t (Btuh) g (Btuh)	Ventilat ry	Efficiency)	
Make Heatin Sensi COP/E	ing Input (Btuh ible Cooling (B EER/SEER/HSI	at. = Model) tuh PF	Btuh . Hea La	Equipme ting Output tent Cooling Cooling CFN	ent Summa Type t (Btuh) g (Btuh) M	Ventilat ry	Efficiency Efficiency Total (Btuh Heating CFM)	
Make Heatin Sensi COP/8 Space	ing Input (Btuh ible Cooling (B EER/SEER/HSI e Thermostat	at. = Model tuh PF Heat (Hea Hea La C	Equipme ting Output tent Cooling Cooling CFM Cool (ent Summa Type t (Btuh) g (Btuh) M)	Ventilat ry 	Efficiency Total (Btuh Heating CFM) Night Setback	:()
Make Heatin Sensi COP/E Space	ing Input (Btuh Ible Cooling (B EER/SEER/HSI e Thermostat	at. = Model tuh PF Heat (Hea Hea La C)	Equipme ting Output tent Cooling Cooling CFM Cool { Constru	ent Summa Type t (Btuh) g (Btuh) g (Btuh) M) uction Data	Ventilat ry Heat/Cool (ion CFM = Efficiency. Total (Btuh Heating CFM))Night Setback	:()
Make Heatin Sensi COP/E Space	ing Input (Btuh Ible Cooling (B EER/SEER/HSI e Thermostat	at. = Model tuh PF Heat (Hea La C	Equipme ting Output tent Cooling Cooling CFM Cool { Constru-	ent Summa Type t (Btuh) g (Btuh) d) uction Data Floor .	Ventilat ry Heat/Cool (ion CFM = Efficiency. Total (Btuh Heating CFM)) Night Setback	:()
Make Heatil Sensi COP/E Space Windo	= Sens. + L	at. = Model tuh PF Heat (Hea La Ca C	Equipme ting Output tent Cooling Cooling CFM Cool (Constru-	ent Summa Type t (Btuh) g (Btuh) g (Btuh) g (Btuh) g (Btuh) g (Btuh) g (Btuh) g (Btuh) h (Btuh) b (Btuh) y (Btuh) b (Btuh) y (Btuh) b (Btuh) g (Btuh) b (Btuh) g (Btuh) b (Btuh) b (Btuh) g (Btuh) b (Btuh) b (Btuh) b (Btuh) b (Btuh) b (Btuh) g (Btuh) b (Btuh)b (B	Ventilat	ion CFM = Efficiency, Total (Btuh , Heating CFM))	:()
Make Heatin Sensi COP/E Space Windo	= sens. + L	at. = Model tuh PF Heat (Hea La C C	Equipme ting Output tent Cooling Cooling CFM Cool (Constru-	ent Summa Type t (Btuh) g (Btuh) g (Btuh) g (Btuh) y uction Data Floor Partitle	Ventilat ry Heat/Cool (ion CFM = Efficiency, Total (Btuh . Heating CFM))	:()
Make Heatin Sensi COP/E Space Windo	= sens. + L	at. = Model tuh PF Heat (Hea La C	Equipme ting Output tent Cooling CFM Cool (Constru-	ent Summa Type t (Btuh) g (Btuh) g (Btuh) y uction Data Floor Partitio	Ventilat ry Heat/Cool (ion CFM = Efficiency, Total (Btuh Heating CFM))	:()
Make Heatin Sensi COP/a Space Windo	= sens. + L	at. = Model tuh PF Heat (Hea La C }	Equipme ting Output tent Cooling Cooling CFM Cool (Constru-	ent Summa Type t (Btuh) g (Btuh) g (Btuh) } uction Data Floor Partitio	Ventilat	ion CFM = Efficiency, Total (Btuh Heating CFM)	Night Setback	
Make Heati Sensi COP/E Space Windo Doors Walls	= sens. + L	at. = Model tuh PF Heat (Hea Hea La C)	Equipme ting Output tent Cooling Cool (Constru-	ent Summa Type t (Btuh) g (Btuh) g (Btuh) y uction Data Floor Partitio Basem	Ventilat ry Heat/Cool (ons	ion CFM = Efficiency. Total (Btuh Heating CFM)	Night Setback	:()
Make Heati Sensi COP/s Space Windo Doors Walls	= sens. + L	at. = Model tuh PF Heat (Hea Hea La C)	Equipme ting Output tent Cooling Cool (Constru-	ent Summa Type t (Btuh) g (Btuh) g (Btuh) y uction Data Floor Partition Basem	Ventilat	ion CFM = Efficiency, Total (Btuh Heating CFM)	Night Setback	:()
Make Heati Sensi COP/E Space Windo	ing Input (Btuh Ible Cooling (B EER/SEER/HS) e Thermostat ows	at. = Model tuh PF Heat (Hea Hea La C)	Equipme ting Output tent Cooling Cool (Constru-	ent Summa Type t (Btuh) g (Btuh) g (Btuh) y uction Data Floor Partitle Basem	Ventilat	ion CFM = Efficiency. Total (Btuh Heating CFM)	Night Setback	:()
Make Heati Sensi COP/E Space Windo Doors Walls	= Sens. + L	at. = Model tuh PF Heat (Hea Hea C	Equipme ting Output tent Cooling Cooling CFM Cool { Constru-	ent Summa Type t (Btuh) g (Btuh) g (Btuh) y uction Data Floor Partitle Basem Ground	Ventilat	Efficiency. Total (Btuh Heating CFM)	Night Setback	:()
Make Heati Sensi COP/E Space Windo Doors Walls Roof	= Sens. + L	at. = Model tuh PF Heat (Hea Hea C	Equipme ting Output tent Cooling CFM Cool (Constru-	ent Summa Type t (Btuh) g (Btuh) g (Btuh)) uction Data Floor Partitle Basem Ground	Ventilat ry Heat/Cool (ons	ion CFM = Efficiency, Total (Btuh Heating CFM)	Night Setback	:()
Make Heati Sensi COP/E Space Windo Doors Walls Roof Ceilin	s	at. = Model tuh PF Heat (Hea	Equipme ting Output tent Cooling CFM Cool (Constru-	ent Summa Type t (Btuh) g (Btuh) g (Btuh)) uction Data Floor Partitle Basem Ground	Ventilat ry Heat/Cool (ons	ion CFM = Efficiency, Total (Btuh Heating CFM)	Night Setback	:()

DETAILED CODE REFERENCES TO ACCA STANDARDS – 2009

Code Body	Code	ACCA Reference	Code Statement
		{2015 UMC §601.2} [Manual D Residential Duct Systems]	601.2 Sizing Requirements (in Chapter 16 – DUCT SYSTEMS): Duct systems used with blower-type equipment that are portions of a heating, cooling, absorption, evaporative cooling, or outdoor-air ventilation system shall be sized in accordance with Chapter 17, or by other approved methods.
International Association of Plumbing and Mechanical	Uniform Mechanical Code	{2015 UMC §601.2} [Manual Q Low Pressure Low Velocity Duct Systems Design] {2009 UMC §1106.1}	<u>1106.1 Human Comfort (in Chapter 11 ~ REFRIGERATION)</u> . Cooling equipment used for human comfort in dwelling units shall be sized to satisfy the calculated loads determined in accordance with the reference standards in Chapter 17 or other approved methods.
Officials		[Manual J Residential Load Calculation] { 2009 UMC §1106.1} [Manual N Commercial Load Calculations]	Chapter 17 Referenced Standards Table 1701.1 Referenced Standards - ACCA Manual D-2002 - ACCA Manual J-2003 - ACCA Manual N-2008 - ACCA Manual Q-2003
International Code Council	International Residential Code	{2009 IRC §M1401.3} [Manual J Residential Load Calculation] {2009 IRC §M1401.3} [Manual S Residential Equipment Selection] {2009 IRC §M1601.1 and§M1602.2 } [Manual D Residential Duct Systems]	 M1401.3 Equipment and appliance sizing. Heating and cooling equipment and appliances shall be sized in accordance with ACCA Manual S based on building loads calculated in accordance with ACCA Manual S based on building loads calculated in accordance with ACCA Manual J or other approved heating and cooling calculation methodologies. M1601.1 Duct design. Duct systems serving heating, cooling and ventilation equipment shall be installed in accordance with the provisions of this section and ACCA Manual D, the appliance manufacturer's installation instructions or other approved methods. M1602.2 Return air openings. Outdoor and return air for a forced-air heating or cooling system shall not be taken from the following locations: 3. A room or space, the volume of which is less than 25 percent of the entire volume served by the system. Where connected by a permanent opening having an area sized in accordance with ACCA Manual D, adjoining rooms or spaces shall be considered as a single room or space for the purpose of determining the volume of the rooms or spaces. Exception. The minimum volume requirement shall not apply where the amount of return air taken from a room or space is less than or equal to the amount of supply air delivered to the room or space.
	International Energy Conservation Code	{2009 IECC §R403.6} [Manual J Residential Load Calculation] {2009 IECC §R403.6 } [Manual S Residential Equipment Selection]	R403.6 Equipment sizing (Mandatory). Heating and cooling equipment shall be sized in accordance with Section M1401.3 of the International Residential Code.
	International Mechanical Code	{ 2009 IMC §603.2} [Manual D Residential Duct Systems]	603.2 Duct sizing. Ducts installed within a single dwelling unit shall be sized in accordance with ACCA Manual D or other approved methods. Ducts installed within all other buildings shall be sized in accordance with the ASHRAE Handbook of Fundamentals or other equivalent computation procedure.

REGISTER, DIFFUSEA AND GRILLE SIZES

MANUAL J HOUSE EXTENDED PLENUM DUCT DESIGN

Figure 6.22

FINAL DUCT DESIGN FOR THE J-HOUSE

Residential Plans Examiner Review Form for HVAC System Design (Loads, Equipment, Ducts)

Form RPER 1.01 8 Mar 10

County, Town, Municipality, Jurisdiction Header Information

Contractor	REQUIRED ATTACHMENTS ¹	ATTA	CHED
	Manual J1 Form (and supporting worksheets):	Yes 🗌	No [
Mechanical License #	or MJ1AE Form ² (and supporting worksheets):	Yes 🗌	No [
	OEM performance data (heating, cooling, blower):	Yes 🗌	No 🗌
Building Plan #	Manual D Friction Rate Worksheet:	Yes 🗌	No 🗌
	Duct distribution system sketch:	Yes 🗌	No [

Home Address (Street or Lot#, Block, Subdivision)

HVAC LOAD CALCULAT	ION (UMC 1106.1)			
Design Conditions		Building	Construction Info	ormation	
Winter Design Conditions		Buildin	g		
Outdoor temperature		F Orientat	ion (Front door faces)		
Indoor temperature	•	F North,	, East, West, South, Northeas	t, Northwest, Southeast, S	southwest
Total heat loss	Bti	u Number	r of bedrooms		
	s	Conditio	oned floor area	Sq Ft	
Outdoor temperature	•	F Number	r of occupants		
Indoor temperature	•	F Window	WC		
Grains difference	∆Gr@ %R	h Eave ov	erhang depth	Ft	Roof
Sensible heat gain	Btu	u Internal	shade		<i Eave ∏</i
Latent heat gain	Btu	U Blinds,	drapes, etc		Depth Window
Total heat gain	Btu	U Number	r of skylights		Т
HVAC EQUIPMENT SELE	CTION				
Heating Equipment Data	(Cooling Equipment Data	3	Blower Data	
Equipment type		Equipment type	-		CEM
Furnace, Heat pump, Boiler, etc.		Air Conditioner, Heat pump, etc		Heating CFM	
Model		Model		Cooling CFM	CFM
Heating output capacity	Btu	Sensible cooling capacity	Btu	-	
Heat pumps - capacity at winter design	outdoor conditions	Latent cooling capacity	Btu	I	
Auxiliary heat output capacity	Btu	Total cooling capacity	Btu	l	
HVAC DUCT DISTRIBUT	ION SYSTEM D	ESIGN (UMC 601.2)			
Design airflow	CFM	Longest supply duct:	Ft Duct N	laterials Used (circle)
			Trunk l	Duct: Duct board, F	lex, Sheet metal,
External Static Pressure (ESP)	IWC	Longest return duct:	Ft	Lined sheet m	ietal, Other (specify)
Component Pressure Losses (CPL)	IWC	Total Effective Length (TEL)	Ft Branch	Duct: Duct board,	Flex, Sheet metal,
Available Static Pressure (ASP) ASP = ESP - CPL	IWC	Friction Rate: Friction Rate = (ASP × 100) + TEL	IWC	Lined sheet r	netal, Other (specify)
Edeclare the load calculation, ec above, Funderstand the claims	quipment selection, made on these form	and duct system design were is will be subject to review ar	e rigorously perform nd verification.	ed based on the t	uilding plan listed
Contractor's Printed Name			Dat	te	
Contractor's Signature					
Reserve	ed for use by Coun	ty Town Municipality or	Authority having i	urisdiction.	
		(y) Forther and the second	riotinority noticity ,	annsanzenann	

¹ The AHJ shall have the discretion to accept Required Attachments printed from approved ACCA software vendors, see list on page 2 of instructions.

² If abridged version of Manual J is used for load calculation, then verify residence meets requirements, see Abridged Edition Checklist on page 13 of instructions.

Verification Points

- **Manual "J"** has tables that contain specific values used in calculating individual loads.
- We will not go into the tables at this training but we will go over "Verification Points" to ensure code compliance.
- Using the ACCA Residential Plans Examiner Review Form, we will go over 40 points of compliance in the following sections:
- HVAC Load Calculation-Manual "J"
- HVAC Equipment Selection-Manual "S"
- HVAC Duct Distribution System Design Manual "D"

Residential Plans Examiner Review Form for HVAC System Design (Loads, Equipment, Ducts)

Form RPER 1.01 8 Mar 10

County,	Town,	Mu	nicipal	lity, Ju	urisdiction
	Concernance of the second s				

Header Information

Contractor	REQUIRED ATTACHMENTS ¹	ATTA	ACHED
	Manual J1 Form (and supporting worksheets):	Yes 🗌	No
Mechanical License #	or MJ1AE Form ² (and supporting worksheets):	Yes 🗍	No
	OEM performance data (heating, cooling, blower):	Yes 🗌	No
Building Plan #	Manual D Friction Rate Worksheet:	Yes 🗌	No
	Duct distribution system sketch:	Yes 🗌	No

Home Address (Street or Lot#, Block, Subdivision)

HVAC LOAD CALCUL	ATION (IRC M1	401.3)	Buildi	ng Construct	tion Infor	mation		C. C.
Winter Design Condition	36		Buil	ding		mation		
Outdoor temperature	1.	°F	Orie	ntation (Front do	oor faces)	7.		
Indoor temperature	2.	°F	Ν	lorth, East, West, Sou	th, Northeast, N	Northwest, Southeast,	Southwest	
Total bast loss	14	Btu	Num	ber of bedroom	S	8.		
Summer Design Conditi		Bitt	Con	ditioned floor ar	ea	🥑 🖉 Sq Ft		
Outdoor temperature	3	°F	Num	ber of occupant	c	10		
indoor temperature	4.	°F	Win	dows		10,	Deef	
Grains difference 🛛 🍃	ΔGr@ 6.9	% Rh	Eave	overhang depth	1	ff. Ft	Rudi	L
Sensible heat gain	15.	Btu	Inter	nal shade		12.	Eave D	
Latent heat gain	16.	Btu	Blir	nds, drapes, etc			Depth	Vindow
Total heat gain	17.	Btu	Num	ber of skylights		13.	Т	
HVAC EQUIPMENT SE	LECTION (IRC)	M1401.	.3)			male Har		THE
Heating Equipment Data		Coo	ling Equipment Da	ata		Blower Data	State of the local division of the local div	CONTRACTOR OF
Equipment type	18.	Eq	quípment type	22.			20	CEM
Furnace, Heat pump, Boiler, etc.			Air Conditioner, Heat pump, et	c		Heating CHM	21.	
Model	19.	M	odel	23.		Cooling CFM	28.	CFM
Heating output capacity	20. Btu	I Se	nsible cooling capacity	24.	Btu			
Heat pumps - capacity at winter desi	gn outdoor conditions	Lat	tent cooling capacity	26.	Btu			
Auxiliary heat output capacity	21. Btu	To	tal cooling capacity	26.	Btu			
HVAC DUCT DISTRIBU	TION SYSTEM	DESI	GN (IRC M1601.1)					in the
Design airflow	29. CFM	Long	jest supply duct:	33 . Ft	Duct Mate	rials Used (circle)		
External Static Pressure (ESD)	INVC	Long	act roturn duct	2 d Et	Trunk Duc	t: Duct board, Fle	ex, Sheet me	tal,
External static Pressure (ESP)	50, IVC	LONG	jest return date.	34.11		37		speeny)
Component Pressure Losses (CPL)	31 IWC	Tota	l Effective Length (TEL)	35. Ft	Branch Du	ct: Duct board, F	lex, Sheet m	etal,
Available Static Pressure (ASP)	32. IWC	Fric	ction Rate:	36. IWC		Lined sheet m	etal, Other (specify)
ASP = ESP - CPL		Fr	riction Rate = (ASP \times 100) \div TEL			58.	Training of the local division of the local	
I declare the load calculation, a above, I understand the claim	equipment selections made on these for	on, and c orms wil	duct system design we I be subject to review	ere rigorously p and verification	performed n	based on the bi	uilding plar	listed
Contractor's Printed Name			39.		Date			
- Contractor's Signature			40.		-			23
	20	and the		A set of the set of the	Data Schoole	directions.	1.210 1 2	
Reserve	reamon use by Co	enney 10	own, womeipailty, o	r Authonity ha	iving juns	enetion.		

¹ The AHJ shall have the discretion to accept Required Attachments printed from approved ACCA software vendors, see list on page 2 of instructions.
 ² If abridged version of Manual J is used for load calculation, then verify residence meets requirements, see Abridged Edition Checklist on page 13 of instructions.

HVAC LOAD CALCULATION (IRC M1401.3)

Design Conditions

Winter Design Conditions

Outdoor temperature	۴	
Indoor temperature	 °F	
Total heat loss	 Btu	

Summer Design Conditions

Building Construction Information

Building

Orientation (Front door faces)

North, East, West, South, Northeast, Northwest, Southeast, Southwest

Number of bedrooms

Conditioned floor area

Sq Ft

Line # 1 - Winter outside design temperature: Ensure this value comes from Manual "J" Table 1A or 1B. Manual J sec. A.5-1 "use of this set of conditions is mandatory, unless a code or regulations specifies another set of regulations".

HVAC LOAD CALCULATION (IRC M1401.3)

Design Conditions

Winter Design Conditions

Г	
 °F	
 Btu	
	۲ ۴۲ Btu

Summer Design Conditions

Building Construction Information

Building

Orientation (Front door faces)

North, East, West, South, Northeast, Northwest, Southeast, Southwest

Number of bedrooms

Conditioned floor area

Line # 2 - Winter Indoor Temperature: Should be 70 degrees: Manual J sec. A.5-3 "Heating and cooling load estimates shall be based on indoor design conditions... ANSI/ASHREA values which are 70 degrees.

Summer Design Conditions

	°F
	°F
∆ Gr @	% Rh
	Btu
	Btu
	Btu
	Δ Gr @

Line # 3 - Summer Outdoor Temperature: Ensure this value comes from Manual "J" Table 1A or 1B "Use of this sect of conditions is mandatory, unless a code or regulation specifies another set of conditions".

Summer Design Conditions

°F
۴
Gr @% Rh
Btu
Btu
Btu

Line # 4 - Summer Indoor Design Conditions: Manual "J" sec. A5-3 "Heating and cooling loads estimates shall be based on shall be based on indoor design conditions... ANSI/ASHEA values of 75 degrees.

Summer Design Conditions

Outdoor temperature	٦
Indoor temperature	°F
Grains difference & Gr @ %	Rh
Sensible heat gain	Btu
Latent heat gain	Btu
Total heat gain	Btu

Line # 5 - Summer Design Grains: Design Grains correspond to Relative Humidity, this value is to be determined by Manual "J" Table 1A.

Line # 6 - Relative Humidity: IECC Fig. 301.1 "Climate Zones".

uliding Construction Informat	lion
Building	
Orientation (Front door faces)	
North, East, West, South, Northeast, Northw	vest, Southeast, Southwest
Number of bedrooms	
Conditioned floor area	Sq Ft
Number of occupants	
Windows	Roof -
Eave overhang depth	Ft
Internal shade Blinds, drapes, etc	Eave Depth Window
Number of skylights	Ť

Line #7 - Orientation: Verification must be made to the structures orientation. Manual "I" sec. A5-4 Plans, Sketches and Notes states, "sketches and notes shall provide the following information. Sketches based on plan take-offs or field observations must have an arrow or directional rosette that points to the north".

Building Construction Information

Building

Orientation (Front door face North, East, West, South, North	≥s) east, Northwest, So	utheast, S	outhwest
Number of bedrooms			
Conditioned floor area		Sq Ft	
Number of occupants			
Windows			Roof -
Eave overhang depth		Ft	
Internal shade			Eave
Blinds, drapes, etc			Depth Window
Number of skylights			Т

Line # 8 - Number of Bedrooms: Verify the number of bedrooms match the plan.

Building Construction Information

Building

Orientation (Front door faces)

North, East, West, South, Northeast, Northwest, Southeast, Southwest

Line # 9 - Floor Area: Ensure the floor area matches the plans.

Building Construction Information

Building

Orientation (Front door faces)

North, East, West, South, Northeast, Northwest, Southeast, Southwest

Line # 10 - Occupants: Ensure this value equals the number of bedrooms plus one. Manual "J" sec. 3.11 "occupants produce sensible and latent heat loads".

B	uilding Construction Info	rmation		
	Building			
	Orientation (Front door faces)			
	North, East, West, South, Northeast,	Northwest, So	outheast,	Southwest
	Number of bedrooms			
	Conditioned floor area		Sq Ft	
	Number of occupants			
	Windows			Roof -
	Eave overhang depth		Ft	<
	Internal shade Blinds, drapes, etc			Eave Depth Window
	Number of skylights			Ч

Line # 11 - Window overhangs: Manual "J" sec. 2-3 (Manual J Mandatory Requirements) Item # 6 "...overhangs adjustments shall be applied to all windows and glass doors. Including purpose-built day-lighting windows".

Bui	ilding Construction Information	n		
	Building			
0	Orientation (Front door faces)			
	North, East, West, South, Northeast, Northwest,	Sout	theast, S	Southwest
I	Number of bedrooms	_		
	Conditioned floor area	_ s	5q Ft	
1	Number of occupants			
•	Windows			Roof -
· ·	Eave overhang depth	_ F	-t	<
	Internal shade			Eave
	Blinds, drapes, etc			Depth Window
	Number of skylights			Т

Line # 12 - Window Internal Shade: Manual "J" sec. 2-3 (Mandatory Requirements) item # 7 "Take credit for internal shade (the default is a medium color blind with slats at 45 degrees, or the use of the actual device, this applies to all vertical glass, this does not apply to purpose-built day-light windows)" unless there is contrary evidence, HVAC system designers shall default to a "medium color blind with slats at 45 degrees".

Building Construction	Information
Building	
Orientation (Front door fac	es)
North, East, West, South, North	theast, Northwest, Southeast, Southwest
Number of bedrooms	
Conditioned floor area	Sq Ft
Number of occupants	
Windows	Boof 4
Eave overhang depth	Ft
Internal shade Blinds, drapes, etc	Eave Depth Window
Number of skylights	Ч

Line # 13 - Number of Skylights: Skylights have a large impact on the heating and cooling load calculations. Ensure the number of skylights on the building plans are represented accurately.

HVAC LOAD CALCULATION (IRC M1401.3)

Design Conditions

Winter Design Conditions		
Outdoor temperature		°F
Indoor temperature		°F
Total heat loss		Btu
Summer Design Conditio	ns	
Outdoor temperature		°F
Indoor temperature		°F
Grains difference	∆ Gr @	% Rh
Sensible heat gain		Btu
Latent heat gain		Btu
Total heat gain		Btu

Line # 14 - Total Heat Loss: This value is used to select the heating system, you may wish to verify this value is the sum of all the individual loads.

Summer Design Conditions

Outdoor temperature		°F
Indoor temperature		°F
Grains difference	Δ Gr @	% Rh
Sensible heat gain		Btu
Latent heat gain		Btu
Total heat gain		Btu

Line # 15 - Sensible Heat Gain: This value represents the amount of dry heat the cooling system must remove according to the calculations.

CONDUCTION ALCO Summer Design Conditions °F Outdoor temperature Number of occupants °F Indoor temperature Windows ∆Gr@ %Rh Eave overhang depth Ft Grains difference Btu Sensible heat gain Internal shade Btu Blinds, drapes, etc Latent heat gain Number of skylights Btu Total heat gain

Roof

Eave Depth

Window

CONDUCTION ALCO Summer Design Conditions °F Outdoor temperature Number of occupants °F Indoor temperature Windows Roof ∆Gr@ %Rh Eave overhang depth Ft Grains difference Btu Sensible heat gain Internal shade Eave Depth Btu Blinds, drapes, etc Latent heat gain Number of skylights Btu Total heat gain

Line # 17 - Total Heat Gain: This value is used to size the cooling system; the total cooling capacity shall equal the sensible and latent heat gains (lines 15 & 16 must equal line 17).

Window

HVAC EQUIPMENT SELECTION (IRC M1401.3)

Heating Equipment Data	Cooling Equipment Data	Blower Data
Equipment type Furnace, Heat pump, Boiler, etc.	Equipment type Air Conditioner, Heat pump, etc	Heating CFM CFN
Model	Model	Cooling CFM CFN
Heating output capacity Btu	Sensible cooling capacity	Btu
Heat pumps - capacity at winter design outdoor conditions	Latent cooling capacity	Btu
Auxiliary heat output capacity Btu	Total cooling capacity	Btu
Heating output capacity Btu Heat pumps - capacity at winter design outdoor conditions Auxiliary heat output capacity Btu	Sensible cooling capacity Latent cooling capacity Total cooling capacity	Btu Btu Btu

Line # 18 - Equipment Type: A description of the type of heating source used: furnace, Boiler...

HVAC EQUIPMENT SELECTION (IRC M1401.3)

Ē	leating Equipment Data	Cooling Equipment Da	ta	Blower Data	
	Equipment type Furnace, Heat pump, Boiler, etc.	Equipment type Air Conditioner, Heat pump, etc		Heating CFM	CFM
	Model	Model		Cooling CFM	CFM
	Heating output capacity Btu	Sensible cooling capacity	Btu	-	
	Heat pumps - capacity at winter design outdoor conditions	Latent cooling capacity	Btu		
	Auxiliary heat output capacity Btu	Total cooling capacity	Btu		
		,			

Line # 19 - Model of Heating Equipment: List the model(s) of heating equipment (should be verified).

HVAC EQUIPMENT SELECTIC Heating Equipment Data	ON (IRC M	1401.3) Cooling Equipment Da	ata	Blower Data	
Equipment type Furnace, Heat pump, Boiler, etc.		Equipment type Air Conditioner, Heat pump, et		——— Heating CFM	CFM
Model		Model		Cooling CFM	CFM
Heating output capacity	Btu	Sensible cooling capacity		Btu	
Heat pumps - capacity at winter design outdoor	conditions	Latent cooling capacity		Btu	
Auxiliary heat output capacity	Btu	Total cooling capacity		Btu	

Line # 20 - Heating Output Capacity: The amount of maximum **OUTPUT** heating capacity available from the heating unit shall be equal to, but not to exceed 140% of heat loss value found on Line 14.

	HVAC EQUIPMENT SELECTION (IF	RC M1	1401.3)					
	Heating Equipment Data		Cooling Equipment Da	ata		Blower Data		
	Equipment type Furnace, Heat pump, Boiler, etc.	-	Equipment type Air Conditioner, Heat pump, et			Heating CFM	C	FM
0	Model		Model			Cooling CFM	C	FM
	Heating output capacity	Btu	Sensible cooling capacity		Btu	_		
	Heat pumps - capacity at winter design outdoor conditions	ţ	Latent cooling capacity		Btu			
	Auxiliary heat output capacity	3tu	Total cooling capacity		Btu			

Line # 21 – Auxiliary Heating Output Capacity: If a heat pump is to be used supplemental heat may be required, consult the designer for justification.

Cooling Equipment Data		Blower Data	
Air Conditioner, Heat pump, etc		Heating CFM	CFM
Model		Cooling CFM	CFM
Sensible cooling capacity	Btu		
Latent cooling capacity	Btu		
Total cooling capacity	Btu		

Line # 22 – Cooling Equipment Type: A description of the cooling equipment that will be installed: air conditioner, heat pump, etc ...

\underline{C}	ooling Equipment Data		Blower Data	
	Equipment type Air Conditioner, Heat pump, etc		Heating CFM	CFM
	Model		Cooling CFM	CFM
	Sensible cooling capacity	Btu	_	
	Latent cooling capacity	Btu		
	Total cooling capacity	Btu		

Line # 23 – Model of Cooling Equipment: The model of cooling equipment to be installed.

<u>(</u>	Cooling Equipment Data		Blower Data	
	Equipment type Air Conditioner, Heat pump, etc	·	Heating CFM	CFM
	Model		Cooling CFM	CFM
	Sensible cooling capacity	Btu	_	
	Latent cooling capacity	Btu		
	Total cooling capacity	Btu		

Line # 24 - Sensible Cooling Capacity: The sensible cooling capacity of the equipment should satisfy the sensible cooling requirements on line 15.

Cool	ing Equipment Data		Blower Data	
Equ /	uipment type Air Conditioner, Heat pump, etc		Heating CFM	CFM
Мо	del		Cooling CFM	CFM
Ser	sible cooling capacity	Btu		
Lat	ent cooling capacity	Btu		
Tot	al cooling capacity	Btu		

Line # 25 - Latent Cooling Capacity: Latent cooling capacity is rarely listed on the manufacturer's performance data plate. However, it can be derived from subtracting the sensible cooling(dry) line 24 from the total cooling capacity line 26.

Cooling Equipment Data		Blower Data	
Equipment type Air Conditioner, Heat pump, etc		Heating CFM	CFM
Model		Cooling CFM	CFM
Sensible cooling capacity	Btu	_	
Latent cooling capacity	Btu		
Total cooling capacity	Btu		

Line # 26 - Total Cooling Capacity: The amount of maximum cooling capacity available from the equipment shall not exceed 115% of heat gain value of line 17.

Cooling Equipment Data		Blower Data	
Equipment type Air Conditioner, Heat pump, etc		Heating CFM	
Model		Cooling CFM	CFM
Sensible cooling capacity	Btu		-
Latent cooling capacity	Btu		
Total cooling capacity	Btu		

Line # 27 - Heating CFM (*cubic feet per minute***):** The volume of air required to deliver the heating BTUs for the structure.

Cooling Equipment Data		Blower Data	
Equipment type Air Conditioner, Heat pump, etc		Heating CFM	CFM
Model		Cooling CFM	CFM
Sensible cooling capacity	Btu		
Latent cooling capacity	Btu		
Total cooling capacity	Btu		

Line # 28 - Cooling CFM: The volume of air to deliver total cooling capacity to the structure.

HVAC DUCT DISTRIBUTION	SYSTEM I	DESIGN (IRC M1601.1)		
Design airflow	CFM	Longest supply duct:	Ft	Duct Materials Used (circle) Trunk Duct: Duct board, Flex, Sheet metal,
External Static Pressure (ESP)	IWC	Longest return duct:	Ft	Lined sheet metal, Other (specify)
Component Pressure Losses (CPL)	IWC	Total Effective Length (TEL)	Ft	Branch Duct: Duct board, Flex, Sheet metal,
Available Static Pressure (ASP)	IWC	Friction Rate:	IWC	Lined sheet metal, Other (specify)
ASP = ESP - CPL		Friction Rate = (ASP × 100) + TEL		

Line # 29 - Design Air Flow: The volume of air delivered by a piece of equipment at a given fan speed, voltage, and amount of pressure (the larger of heating or cooling CFM line 27 and 28).

HVAC DUCT DISTRIBUT	FION SYST	EM C	DESIGN (IRC M1601.1)			
Design airflow	C	FM	Longest supply duct:		Ft	Duct Materials Used (circle) Truck Duct: Duct board Elex. Sheet metal
External Static Pressure (ESP)		WC	Longest return duct:		Ft	Lined sheet metal, Other (specify)
Component Pressure Losses (CPL)		WC	Total Effective Length (TEL)		Ft	Branch Duct: Duct board, Flex, Sheet metal,
Available Static Pressure (ASP)		WC	Friction Rate:	IV	VC	Lined sheet metal, Other (specify)
ASP = ESP - CPL			Friction Rate = (ASP × 100) + TEL			

Line # 30 - Static pressure: The static pressure is the amount of pressure in inches of water column the appliance's blower can push through and still deliver the stated volume of air in line 29.

	HVAC DUCT DISTRIBUT	ION SYSTE	EM DE	SIGN (IRC M1601.1)			
	Design airflow	CF	-M L	ongest supply duct:		Ft	Duct Materials Used (circle)
)	External Static Pressure (ESP)	IW	NC L	ongest return duct:		Ft	Trunk Duct: Duct board, Flex, Sheet metal, Lined sheet metal, Other (specify)
	Component Pressure Losses (CPL)	IV	NC T	otal Effective Length (TEL)		Ft	Branch Duct: Duct board, Flex, Sheet metal,
	Available Static Pressure (ASP)	IV	NC	Friction Rate:	1	NC	Lined sheet metal, Other (specify)
	ASP = ESP - CPL			Friction Rate = (ASP × 100) + TEL			

Line # 31 - Component Pressure Loss: The total resistance or pressure created by accessories like filters, refrigeration coils, grills, registers, dampers...

	HVAC DUCT DISTRIBUT	ION SYST	TEM [DESIGN (IRC M1601.1)		
	Design airflow	(CFM	Longest supply duct:	Ft	Duct Materials Used (circle)
)	External Static Pressure (ESP)		IWC	Longest return duct:	 Ft	Trunk Duct: Duct board, Flex, Sheet metal, Lined sheet metal, Other (specify)
	Component Pressure Losses (CPL)		IWC	Total Effective Length (TEL)	 Ft	Branch Duct: Duct board, Flex, Sheet metal,
	Available Static Pressure (ASP)		IWC	Friction Rate:	 VC	Lined sheet metal, Other (specify)
	ASP = ESP - CPL			Friction Rate = (ASP × 100) + TEL		

Line # 32 - Available Static Pressure (*ASP*): The difference between the static pressure (line 30) and the component pressure loss (line 31).

Longest supply duct:	Ft	Duct Materials Used (circle)			
Longest return duct:	Ft	Trunk Duct: Duct board, Flex, Sheet metal, Lined sheet metal, Other (specify)			
Total Effective Length (TEL)	Ft	Branch Duct: Duct board, Flex, Sheet metal,			
Friction Rate:	IWC	Lined sheet metal, Other (specify)			
Existion Rate = (ASP \times 100) + TEL					

Line # 33 - Longest Supply duct: The effective length of the longest supply duct run. Different duct fittings create differing amounts of resistance. The calculation is based on the resistance factor of a straight run in feet.

Longest supply duct:	Ft	Duct Materials Used (circle)
	· v	Trunk Duct: Duct board, Flex, Sheet metal,
Longest return duct:	Ft	Lined sheet metal, Other (specify)
Total Effective Length (TEL)	Ft	Branch Duct: Duct board, Flex, Sheet metal,
Friction Rate:	IWC	Lined sheet metal, Other (specify)
Friction Rate = (ASP × 100) + TEL		

Line # 34 - Longest Return Duct: Same properties as line 33 but applies to the return ducts.

Longest supply duct:	Ft	Duct Materials Used (circle) Trunk Duct: Duct board, Elex, Sheet metal.
Longest return duct:	Ft	Lined sheet metal, Other (specify)
• Total Effective Length (TEL)	Ft	Branch Duct: Duct board, Flex, Sheet metal,
Friction Rate:	IWC	Lined sheet metal, Other (specify)
Friction Rate = (ASP × 100) + TEL		

Line # 35 - Total Effective Length: The sum total of supply and return effective lengths add line 33 and 34.

 Longest supply duct:
 Ft
 Duct Materials Used (circle)

 Longest return duct:
 Ft
 Trunk Duct: Duct board, Flex, Sheet metal, Lined sheet metal, Other (specify)

 Total Effective Length (TEL)
 Ft
 Branch Duct: Duct board, Flex, Sheet metal, Lined sheet metal, Other (specify)

 Friction Rate:
 IWC
 IWC

Line # 36 - Friction Rate: (ASPx100) divided by TEL = FR) <u>WHAT</u>! Line 32 multiply by 100 then divide by line 35 this will give the friction loss. Friction loss must be greater than .06 IWC. and less than 0.18 IWC (yes another "rule of thumb").

Longest supply duct:	Ft	Duct Materials Used (circle) Truck Duct: Duct board, Elex, Sheet metal.
Longest return duct:	Ft	Lined sheet metal, Other (specify)
Total Effective Length (TEL)	Ft	Branch Duct: Duct board, Flex, Sheet metal,
Friction Rate:	IWC	Lined sheet metal, Other (specify)
Friction Rate = (ASP × 100) + TEL		

Line # 37 - Duct Material used: Have the designer to justify the material used and the calculated friction properties.

Longest supply duct:	Ft	Duct Materials Used (circle) Trunk Duct: Duct board, Flex, Sheet metal, Lined sheet metal, Other (specify)
Longest return duct:	Ft	
Total Effective Length (TEL)	Ft	Branch Duct: Duct board, Flex, Sheet metal, Lined sheet metal, Other (specify)
Friction Rate:	IWC	
Friction Rate = (ASP × 100) + TEL		

Line # 38 - Branch Duct: Specify Type - must verify.

I declare the load calculation, equipment selection, and duct system design were rigorously performed based on the building plan listed above, I understand the claims made on these forms will be subject to review and verification.

Contractor's Printed Name

Date

Contractor's Signature

Reserved for use by County, Town, Municipality, or Authority having jurisdiction.

¹ The AHJ shall have the discretion to accept Required Attachments printed from approved ACCA software vendors, see list on page 2 of instructions.
 ² If abridged version of Manual J is used for load calculation, then verify residence meets requirements, see Abridged Edition Checklist on page 13 of instructions.

Line # 39 - Contractor's printed name.

I declare the load calculation, equipment selection, and duct system design were rigorously performed based on the building plan listed above, I understand the claims made on these forms will be subject to review and verification.

Contractor's Printed Name

Date

Contractor's Signature

Reserved for use by County, Town, Municipality, or Authority having jurisdiction.

¹ The AHJ shall have the discretion to accept Required Attachments printed from approved ACCA software vendors, see list on page 2 of instructions.
 ² If abridged version of Manual J is used for load calculation, then verify residence meets requirements, see Abridged Edition Checklist on page 13 of instructions.

Line # 40 - Contractor's Signature.

2009 International Residential Code

- HVAC Load Calculation -
- Line # 1- Winter outside design temperature: Ensure this value comes from Manual "J" Table 1A or 1B. Manual J sec. A.5-1 "use of this set of conditions is mandatory, unless a code or regulations specifies another set of regulations".
- Line # 2- Winter Indoor Temperature: Should be 70 degrees. Manual J sec. A.5-3 "Heating and cooling load estimates shall be based on indoor design conditions... ANSI/ASHREA values which are 70 degrees.
- Line # 3- Summer Outdoor Temperature: Ensure this value comes from Manual "J" Table 1A or 1B "Use of this sect of conditions is mandatory, unless a code or regulation specifies another set of conditions".

- HVAC Load Calculation –
- Line # 4 Summer Indoor Design Conditions: Manual "J" sec. A5-3 "Heating and cooling loads estimates shall be based on shall be based on indoor design conditions... ANSI/ASHEA values of 75 degrees.
- Line # 5 Summer Design Grains: Design Grains correspond to Relative Humidity, this value is to be determined by Manual "J" Table 1A.
- Line # 6 Relative Humidity: IECC Fig. 301.1 "Climate Zones".
- Line # 7 Orientation: Verification must be made to the structures orientation. Manual "J" sec. A5-4 Plans, Sketches and Notes states, "sketches and notes shall provide the following information. Sketches based on plan take-offs or field observations must have an arrow or directional "i" e that points to the north".

- HVAC Load Calculation –
- Line # 8 Number of Bedrooms: Verify the number of bedrooms match the plan.
- Line # 9 Floor Area: Ensure the floor area matches the plans.
- Line # 10 Occupants: Ensure this value equals the number of bedrooms plus one. Manual "J" sec. 3.11 "occupants produce sensible and latent heat loads".
- Line # 11-Window overhangs: Manual "J" sec. 2-3 (Manual J Mandatory Requirements) Item # 6 "...overhangs adjustments shall be applied to all windows and glass doors. Including purpose-built day-lighting windows".

- HVAC Load Calculation –
- Line # 12 Window Internal Shade: Manual "J" sec. 2-3 (Mandatory Requirements) item # 7 "Take credit for internal shade (the default is a medium color blind with slats at 45 degrees, or the use of the actual device, this applies to all vertical glass, this does not apply to purpose-built day-light windows)" unless there is contrary evidence, HVAC system designers shall default to a "medium color blind with slats at 45 degrees".
- Line # 13 Number of Skylights: Skylights have a large impact on the heating and cooling load calculations. Ensure the number of skylights on the building plans are represented accurately.

- HVAC Load Calculation –
- Line # 14 Total Heat Loss: This value is used to select the heating system, you may wish to verify this value is the sum of all the individual loads.
- Line # 15 Sensible Heat Gain: This value represents the amount of dry heat the cooling system must remove according to the calculations.
- Line # 16 Latent Heat Gain: This value represents the amount of moist heat (humid) the cooling system must remove according to the calculations.
- Line # 17 Total Heat Gain: This value is used to size the cooling system; the total cooling capacity shall equal the sensible and latent heat gains (lines 15 & 16 must equal line 17).
- Manual "S" HVAC Equipment Selection.

- HVAC Load Calculation –
- Line # 18 Equipment Type: A description of the type of heating source used: furnace, Boiler...
- Line # 19 Model of Heating Equipment: List the model(s) of heating equipment (should be verified)
- Line # 20 Heating Output Capacity: The amount of maximum OUTPUT heating capacity available from the heating unit shall be equal to, but not to exceed 140% of heat loss value found on Line 14.
- Line # 21 Auxiliary Heating Output Capacity: If a heat pump is to be used supplemental heat may be required, consult the designer for justification.

- HVAC Load Calculation –
- Line # 22 Cooling Equipment Type: A description of the cooling equipment that will be installed: air conditioner, heat pump, etc ...
- Line # 23 Model of Cooling Equipment: The model of cooling equipment to be installed.
- Line # 24 Sensible Cooling Capacity: The sensible cooling capacity of the equipment should satisfy the sensible cooling requirements on line 15.
- Line # 25 Latent Cooling Capacity: Latent cooling capacity is rarely listed on the manufacturer's performance data plate. However, it can be derived from subtracting the sensible cooling(dry) line 24 from the total cooling capacity line 26.
- Line # 26 Total Cooling Capacity: The amount of maximum cooling capacity available from the equipment shall not exceed 115% of heat gain value of line 17.

- HVAC Load Calculation –
- Manual "D" HVAC Duct Distribution system Design
- Line # 27 Heating CFM (*cubic feet per minute*): The volume of air required to deliver the heating BTUs for the structure.
- Line # 28 Cooling CFM: The volume of air to deliver total cooling capacity to the structure.
- Line # 29 Design Air Flow: The volume of air delivered by a piece of equipment at a given fan speed, voltage, and amount of pressure (the larger of heating or cooling CFM line 27 and 28).
- Line # 30 Static pressure: The static pressure is the amount of pressure in inches of water column the appliance's blower can push through and still deliver the stated volume of air in line 29.

- Line # 31 Component Pressure Loss: The total resistance or pressure created by accessories like filters, refrigeration coils, grills, registers, dampers...
- Line # 32 Available Static Pressure (*ASP*): The difference between the static pressure (line 30) and the component pressure loss (line 31).
- Line # 33 Longest Supply duct: The effective length of the longest supply duct run. Different duct fittings create differing amounts of resistance. The calculation is based on the resistance factor of a straight run in feet.
- Line # 34 Longest Return Duct: same properties as line 33 but applies to the return ducts.

- Line **# 35 Total Effective Length:** The sum total of supply and return effective lengths add line 33 and 34.
- Line # 36 Friction Rate (ASPx100) divided by TEL = FR) <u>WHAT</u>! Line 32 multiply by 100 then divide by line 35 this will give the friction loss. Friction loss must be greater than .06 IWC. and less than 0.18 IWC (yes another "rule of thumb").
- Line # 37 Duct Material used. Have the designer to justify the material used and the calculated friction properties.
- Line # 38 Branch Duct: specify Type must verify.
- Line # 39 Contractor's printed name.
- Line # 40 Contractor's Signature.

- If you follow the 40 verification points you will notice they build and reference each components, I found it is very difficult to doctor or fudge these numbers if you follow the "rules of thumb" and the residential plans examiner review form for HVAC system design.
- In addition to this form you should be receiving a full set of plans and calculations including the Manual "J" J-1 form, OEM performance date for heating, cooling and blower... in compliance with Manual "S" equipment selection, Manual "D" friction rate worksheet and a duct distribution system sketch.

Department of Public Safety Introduction to Residential HVAC System Basics

That completes our seminar on Introduction to Residential HVAC.

THANK YOU!

Harold Leaming

DPS Building Inspector

