Physical, Chemical, and Biological Evaluation of Waterbodies in the Connecticut River Watershed of Massachusetts

prepared by Biodrawversity LLC

prepared for Massachusetts Department of Conservation and Recreation, Lakes and Ponds Program

November 2010

Physical, Chemical, and Biological Evaluation of Waterbodies in the Connecticut River Watershed of Massachusetts

Prepared for:

Massachusetts Department of Conservation and Recreation Lakes and Ponds Program 251 Causeway Street, Suite 700 Boston, Massachusetts 02114-2104

Prepared by:

433 West Street, Suite 6 Amherst, Massachusetts 01002

November 2010

Physical, Chemical, and Biological Evaluation of Waterbodies in the Connecticut River Watershed of Massachusetts

EXECUTIVE SUMMARY

Biodrawversity LLC assessed 26 lakes and reservoirs and four rivers in the Connecticut River watershed to determine presence of zebra mussels (*Dreissena polymorpha*) and to evaluate the potential for these waterbodies to support zebra mussels based on physical, chemical, and biological parameters. Fieldwork was conducted during May and June of 2010. Data were collected at one to five sites per lake (40 total sites), six sites in the Connecticut River, and one site each in the Westfield River, Deerfield River, and Chicopee River. Most of the following parameters were recorded for each waterbody: secchi depth, water temperature, water chemistry (dissolved oxygen, pH, alkalinity, conductivity, calcium, total nitrogen as N, total phosphorus as P, and total suspended solids). Presence of adult zebra mussels or veligers, physical habitat characteristics, and species composition and abundance of submerged aquatic plants, snails, and native freshwater mussels were also documented. This report also uses data from the Acid Rain Monitoring (ARM) Project of the University of Massachusetts Water Resources Research Center and the Phase I Zebra Mussel Assessment in Berkshire County (Biodrawversity 2009) to provide a comprehensive risk assessment for 166 waterbodies (including multiple sites along the mainstem Housatonic and Connecticut Rivers) in central and western Massachusetts. This included 108 waterbodies in the Connecticut River watershed and 58 waterbodies in the Housatonic River and Hudson River watersheds of Berkshire County.

Neither zebra mussel adults nor veligers were detected during the survey, although the physical and chemical suitability of waterbodies for zebra mussels varied considerably and four lakes showed characteristics somewhat favorable for zebra mussel colonization, reproduction, and growth. A total of 56 aquatic plant species, 14 snail species, and seven native mussel species were documented during the study. Among the waterbodies sampled, species richness of aquatic snails ranged from zero to seven (average = 3.0), and three lakes considered most susceptible to zebra mussel invasion contained a higher average species richness of aquatic snails (combined average = 6.0) than low-risk lakes (combined average = 2.4). Species richness of native freshwater mussels ranged from zero to six (average = 1.4) among the waterbodies and showed no trend with regard to water chemistry. Lakes and ponds usually contained only one or mussel two species, whereas six mussel species were documented in the Connecticut River. Known biological indicators of an aquatic ecosystems' vulnerability to zebra mussel invasion (e.g., presence of the submerged aquatic algae *Chara* and calciphilous aquatic snails) were not observed in this study although *Chara* had been documented in Congamond Lakes prior to this study. A non-native bivalve, the Asian clam (*Corbicula fluminea*), was encountered in the Connecticut River (Easthampton), Aldrich Lake (Granby), Congamond Lakes (Southwick), and Five Mile Pond (Springfield).

Research suggests that zebra mussels are not likely to become established in waterbodies with pH below 7.4 and calcium below 12.0 mg/L. Higher pH and calcium levels are more suitable for this species. The following water chemistry thresholds were used to determine susceptibility to zebra mussels:

- Low Risk: pH <7.4, Calcium <12.0 mg/L, Alkalinity <20.0 mg/L
- Medium Risk: pH 7.4-8.0. Calcium 12.0-20.0 mg/L, Alkalinity 20.0-65.0 mg/L
- High Risk: pH >8.0, Calcium >20.0 mg/L, Alkalinity >65.0 mg/L

For waterbodies in the Connecticut River watershed, including those monitored as part of the ARM Project, pH ranged from 4.9 to 8.7 (average = 6.7), and calcium concentrations ranged from 0.4 to 27.0 mg/L (average = 6.6 mg/L). These pH and calcium values indicated a very low risk that zebra mussels could become established in the region; only nine of 109 (8.3 percent) waterbodies assessed were considered to have medium or high risk of zebra mussel establishment based on water chemistry parameters. Moreover, several small and eutrophic ponds in the highly urbanized Springfield area (Watershops Pond, Porter Lake, Silver Lake, and Harts Pond) had pH and calcium levels near or within the optimal range for zebra mussels, but physical and biological parameters of these urban ponds made them less suitable than the chemistry data indicated. Based on the dual role of water chemistry and physical habitat, only four of the waterbodies assessed in the Connecticut River watershed are considered susceptible to zebra mussel invasion, including Pequot Pond (Westfield), Congamond Lakes (Southwick), Ashfield Lake (Ashfield), and Wrights Pond (Holyoke). All but the latter experience moderate to heavy recreational use (boating and angling) that increases the likelihood of zebra mussel introduction. We recommend public education, boat ramp inspections, and monitoring for Pequot Pond, the Congamond Lakes, and Ashfield Lake.

Zebra mussel education and monitoring ramped up in Massachusetts in 2009 after zebra mussels were discovered in Laurel Lake in Lee.

INTRODUCTION

Adult zebra mussels (Dreissena polymorpha) were detected in Laurel Lake in 2009, prompting a series of actions by state agencies that were summarized in the Massachusetts Interim Zebra Mussel Action Plan (DCR 2009). This was the first occurrence of zebra mussels in Massachusetts. The zebra mussel was accidentally introduced to North America in the late 1980s by commercial shipping vessels carrying freshwater ballast from the Black or Caspian Sea region of Eastern Europe (Hebert et al. 1989, Strayer 2009). Within ten years of its discovery in Lake Erie in 1987, the zebra mussel had spread throughout much of central and eastern North America, including susceptible waterbodies in New England and eastern New York. The United States Geological Survey's (USGS) Nonindigenous Aquatic Species (NAS) Program website provides time series maps, current sightings, and other information relevant to the spread of zebra mussels in all of North America.

Zebra mussels and the closely related quagga mussel (*Dreissena bugensis*) have caused ecological and economic damage throughout North America (MacIsaac 1996, Strayer 2009). Like blue or ribbed mussels in marine environments—and unlike any native freshwater mollusks in North America—adult dreissenid mussels attach to solid objects using strong byssal threads. Once established in a waterbody, they have the potential to alter basic ecosystem functions such as nutrient cycling and food web dynamics, they may eliminate native freshwater mussels via fouling and competition, and they can influence the transport and fate of contaminants (Nalepa 1993, Bruner *et al.* 1994a-b, MacIsaac 1996, Strayer 1999).

The discovery of zebra mussels in Laurel Lake raised concern that this species might exist in other waterbodies in the region, or that some waterbodies might be susceptible to zebra mussels due to suitable water chemistry and prevalence of dispersal vectors. In general, waterbodies with high calcium concentrations and high pH are considered most suitable for zebra mussel growth and reproduction (Strayer 1991, Murray *et al.* 1993, Smith 1993, Cohen and Weinstein 2001). In Massachusetts, only the Hoosic and Housatonic River watersheds had been characterized as highly susceptible to zebra mussel invasion according to these water chemistry criteria (Smith 1993). The Connecticut River watershed (with the exception of

biodrawversit

Adult zebra mussel from the Housatonic River in Massachusetts.

the Millers and Chicopee watersheds) and most of eastern Massachusetts were considered moderately to marginally susceptible. Due to low pH and low calcium, waterbodies in the Millers and Chicopee watersheds, the coastal plain of southeastern Massachusetts, and Cape Cod were considered immune to zebra mussels (Smith 1993). There is considerable variation in the water chemistry of lakes and streams in these regions. Therefore, specific studies of numerous waterbodies were needed to predict where zebra mussels would be most likely to survive, if they were to be spread more widely in the region.

A Phase I Assessment of 20 Berkshire County lakes and the Housatonic River was completed in October 2009 that documented zebra mussels in the mainstem Housatonic River for the first time and identified susceptible waterbodies in Berkshire County (Biodrawversity 2009). Biodrawversity was contracted to conduct a Phase II Assessment of waterbodies in the Connecticut River watershed (Figure 1) in 2010 to determine (1) if zebra mussels were already present and (2) the susceptibility of waterbodies to the establishment of zebra mussel populations based on physical, chemical, and biological parameters. The Phase II Assessment included a synthesis of ARM data to expand the risk assessment to waterbodies in the Connecticut River watershed that were not included in the 2010 field assessment, and for the Housatonic and Hudson watersheds of Berkshire County.

STUDY SITE SELECTION

A total of 26 lakes and four rivers were selected for field assessments in 2010 (Table 1, Figure 2). Lakes were selected based on available water chemistry data and degree of public access, as well as to provide adequate spatial coverage of the target geographic area. Based on zebra mussels well-documented water chemistry requirements, we knew in advance that some target waterbodies were resistant to zebra mus-

sels because of low pH and low calcium yet we gathered field data to provide a more comprehensive assessment. Lakes were divided into three categories (Table 1):

watershed and red dots for 2010 survey sites.

Table 1. Waterbodies surveyed in 2010 and number of survey sites for each. The lake categories "primary", "secondary", and "additional" are described in the text.

Waterbody	Town	Subwatershed	Date	# Sites
Primary Lakes				
Ashfield Lake	Ashfield	Deerfield	6/22/10	3
Congamond Lakes	Southwick	Westfield	6/18/10	5
Five-Mile Pond	Springfield	Connecticut	6/11/10	1
Littleville Lake	Chester	Westfield	6/15/10	3
Pequot Pond	Westfield	Westfield	6/15/10	4
Secondary Lakes				
Aldrich Lake	Granby	Connecticut	6/1/10	1
Cranberry Pond	Sunderland	Connecticut	6/3/10	1
Lake Warner	Hadley	Connecticut	6/1/10	1
Lake Wyola	Shutesbury	Connecticut	6/3/10	2
Lower Highland Lake	Goshen	Connecticut	6/6/10	1
Upper Highland Lake	Goshen	Connecticut	6/6/10	1
Porter Lake	Springfield	Connecticut	6/11/10	1
Watershops Pond	Springfield	Connecticut	5/19/10	1
Additional Lakes	5			
Arcadia Lake	Belchertown	Connecticut	6/2/10	1
Chicopee River Reservoir	Ludlow	Chicopee	6/4/10	1
Damon Pond	Chesterfield	Westfield	5/30/10	1
Forge Pond	Granby	Connecticut	6/2/10	1
Hammond Pond	Chesterfield	Westfield	5/30/10	1
Lake Mattawa	Orange	Millers	5/31/10	1
Lake Rohunta	Orange	Millers	5/31/10	1
Laurel Lake	Erving	Millers	6/4/10	1
Metacomet Lake	Belchertown	Connecticut	6/2/10	1
Pelham Lake	Rowe	Deerfield	6/21/10	3
Plainfield Pond	Plainfield	Deerfield	6/21/10	1
West Lake	Sandisfield	Farmington	6/9/10	1
Westfield Reservoir	Montgomery	Westfield	5/30/10	1
Rivers	0 ,			
Chicopee River	Chicopee	Chicopee	6/10/10	1
Connecticut River	Chicopee	Connecticut	6/10/10	1
Connecticut River	Easthampton	Connecticut	6/8/10	1
Connecticut River: Bartons Cove	Gill	Connecticut	6/7/10	1
Connecticut River	Hatfield	Connecticut	6/8/10	1
Connecticut River	Northfield	Connecticut	6/7/10	1
Connecticut River: Oxbow	Northampton	Connecticut	6/8/10	1
Deerfield River	Deerfield	Deerfield	6/7/10	1
Westfield River	Westfield	Westfield	6/10/10	1
	Total Survey Sites	6		49

- Primary Lakes: Included five lakes with higher pH and calcium levels that were more likely to support zebra mussels. All contained public boat access. These were surveyed for a minimum of one-half day by boat and at multiple sites throughout each lake. The full suite of physical, chemical, and biological parameters were recorded at these lakes.
- Secondary Lakes: Included eight lakes that we thought had marginal pH and calcium levels based on available information. These lakes tended to be small with only one primary access point and less frequent visitation by trailered boats than primary lakes. These were surveyed for one-half day or less. Sites were accessed by boat or by land, usually only at or near the primary access points. The full suite of physical, chemical, and biological parameters were usually recorded at these lakes but at fewer sites than in primary lakes.

Figure 2. Waterbodies assessed for water chemistry, physical habitat, and biology (zebra mussel adults or veligers, plants, and other molluscs) in the Connecticut River watershed in 2010. Green lines indicate town boundaries.

- 1. Pelham Lake, Rowe
- 2. Plainfield Pond, Plainfield
- 3. Ashfield Lake, Ashfield
- 4. Upper Highland Lake, Goshen
- 5. Lower Highland Lake, Goshen
- 6. Hammond Pond, Chesterfield
- 7. Damon Pond, Chesterfield
- 8. Littleville Lake, Chester
- 9. Westfield Reservoir, Montgomery 10. West Lake, Sandisfield
- 11. Pequot Pond, Westfield
- 12. Westfield River, Westfield

- 13. Congamond Lakes (North and South), Southwick 25. Lake Wyola, Shutesbury
- 14. Porter Lake, Springfield
- 15. Watershops Pond, Springfield 16. Five Mile Pond, Springfield
- 17. Chicopee River, Chicopee
- 18. Chicopee Reservoir (Red Bridge Pool), Ludlow
- 19. Aldrich Lake, Granby
- 20. Forge Pond, Granby
- 21. Metacomet Lake, Belchertown
- 22. Arcadia Lake, Belchertown
- 23. Lake Warner, Hadley
- 24. Cranberry Pond, Sunderland

- 26. Lake Rohunta, Orange 27. Lake Mattawa, Orange
- 28. Laurel Lake, Erving
- 29. Deerfield River, Deerfield
- 30. Connecticut River, Northfield
- 31. Connecticut River, Gill (Bartons Cove)
- 32. Connecticut River, Hatfield
- 33. Connecticut River, Northampton (Oxbow)

biodrawversity

research report

- 34. Connecticut River, Easthampton
- 35. Connecticut River, Chicopee

OFBA ramps, such as this one in Chicopee, were targeted for surveys in the Connecticut River.

• Additional Lakes: Included 13 lakes that we thought had unsuitable pH and calcium levels based on available information; some of these were also small and had limited access. Only field measurements of water chemistry (including pH, conductivity, temperature, and dissolved oxygen) were taken from ten of these lakes, more cursory biological surveys were conducted and usually from a single access point (none if access was denied), and plankton samples were only collected from waterbodies with pH above 7.0.

Survey sites within the five primary lakes were intended to include a minimum of three areas: (1) the lake outlet, (2) the public boat ramp, and (3) the deep basin. Sampling sites in the eight secondary and 13 additional lakes were usually restricted to primary access points, which often overlapped with outlets and deep areas. Many of the lakes were very small, shallow, eutrophic, heavily vegetated, and contained mostly soft substrates. Likely surfaces for zebra mussel colonization, such as rocky substrates, piers, anchors, mooring lines, concrete walls, bridge abutments and other surfaces were generally targeted for adult zebra mussel surveys. The number of sampling sites per lake ranged from one to five, for a total of 40 lake sites.

Nine sites in four rivers were also surveyed: six sites in the Connecticut River (including the Oxbow in Northampton), and one site apiece in the Westfield River (Westfield), Deerfield River (Deerfield), and Chicopee River (Chicopee). Connecticut River survey sites were at OFBA boat launches and survey sites at the other three rivers were at convenient access points.

METHODS

Specific methods used at each lake are noted in Appendix 1. Decontamination procedures generally followed guidelines in the Massachusetts Interim Zebra Mussel Action Plan (DCR 2009), supplemented with more specific measures for field technicians and SCUBA divers. The field crew possessed redundant sets of field gear so that field equipment was not transferred to a new waterbody without undergoing proper decontamination. This included boats, sample collecting equipment, SCUBA/snorkel gear, and wetsuits.

Physical and Chemical Parameters

- Laboratory Chemistry: One or two water samples were collected for all primary and secondary lakes but for only three of the additional lakes. A single water sample was collected for each of the river sites. Water samples were collected in early to mid-May, two to four weeks prior to biological surveys. Berkshire Envirolabs in Lee, Massachusetts, provided sample containers and completed the analyses, except for the Five Mile Pond sample that was analyzed by Spectrum Analytical in Agawam. Samples were kept on ice and brought to the lab each afternoon so that pH could be accurately measured. The lab measured the following six parameters: pH, alkalinity (mg/L), calcium (mg/L), total nitrate as N (mg/L), total phosphorus as P (mg/L), and total suspended solids (mg/L).
- Field Chemistry: Field measurements of pH, temperature, dissolved oxygen, and conductivity were recorded at all lakes and rivers using a YSI (Yellow Springs Instruments)

Model 200 DO probe and YSI pH 63 probe. Measurements were taken in early to mid-May two to four weeks prior to biological surveys, and some parameters (especially dissolved oxygen and temperature) were recorded a second time when biological sampling occurred.

- **Secchi Depth:** Secchi depth was recorded at survey sites where the bottom was not visible from the surface.
- **Physical Habitat:** Surveyors recorded the water depth, substrate characteristics, and shoreline condition at each survey site.

Biological Parameters

- Adult Zebra Mussels: Surveyors searched for adult zebra mussels by SCUBA diving, snorkeling in shallow water, and wading along shorelines to collect any live animals or shells with an aquatic D-frame net or clear-bottom bucket. Surveys were qualitative and focused on visual searches for adult or juvenile mussels. Surveyors looked on the undersides of hard objects and conducted tactile searches underneath rocks and undercut riverbanks. All surface types were surveyed at each site but hard substrates were targeted.
- Larval Zebra Mussels (Veligers): Plankton samples were collected from one to five locations within each lake and combined into a single composite sample for each lake. Surveyors used the 33-E28 Veliger Net from the Wildlife Supply Company (length = 80 inches; opening width = 20 inches, mesh size = 63 microns, dolphin bucket = 1,000 mL). Nets were connected to a 60-ft line marked in 3-ft (1-meter) increments, and a sliding line weight so that the net could quickly be lowered to the desired starting point. At shallow sites, horizontal plankton tows were collected from areas of relatively clear water (i.e., few macrophytes) at a depth that prevented the net from dragging on the bottom and scooping up mud. At deeper sites, plankton nets were lowered to within 3-6 feet of the bottom (or a maximum of 25 feet) while the boat was stationary, then the boat was driven at trolling speed for two or three minutes while the net collected plankton throughout the water column. At river sites, the plankton net was held in light current for two to three minutes. Contents were filtered and rinsed into a 500 mL container and preserved in 70 percent ethyl alcohol. The final composite samples were decanted several hours later, after contents had settled, and then topped off with fresh alcohol to ensure that alcohol concentrations were suitable for preservation. In the laboratory, samples were examined using a 45x dissecting microscope fitted with cross-polarized light (Johnson 1995).
- Snails and Native Mussels: Surveyors documented and/or collected snails and native mussels while searching for adult zebra mussels. Native mussels were identified in the field and released unharmed. In most cases, snails were identified in the field but some were also collected and preserved for identification in the laboratory using keys of Jokinen (1983, 1992) and Smith (1995). The species and relative abundance of snails and mussels were recorded for each survey site. Snails with a more patchy distribution or whose habitat did not overlap with our target habitats (e.g., shal-

Plankton tow in shallow water.

low littoral areas) were underrepresented in our samples.

- Aquatic Plants: Species composition and relative abundance of submerged aquatic plants were recorded at each survey site, and in some cases, other locations throughout the lake. Because the study focused on zebra mussels, a limited number of sites were surveyed per waterbody and a comprehensive botanical inventory of each lake and river was not completed. Furthermore, surveys were conducted before flowering and fruiting stages of most aquatic plants. Supplemental information on plant communities was gathered from other sources.
- GPS coordinates were taken to record locations of survey sites. Reference photographs of survey sites and other interesting or unique features of each waterbody were taken.

Mapping

• Bathymetric maps were available for many of lakes and ponds assessed in this study. In addition, 0.5-meter orthophotos for each lake were downloaded from the Massachusetts Office of Geographic Information Systems (MassGIS) and used to display survey sites. Field data were imported into ArcGIS 9.2 to create maps. Appendix 3 provides brief profiles of some waterbodies surveyed for this report.

Decontamination Procedure

- Decontamination procedures generally followed guidelines in the Massachusetts Interim Zebra Mussel Action Plan (DCR 2009), supplemented with more specific measures for field technicians and SCUBA divers who are specifically studying zebra mussels.
- The field crew possessed redundant sets of field gear so that field equipment was not transferred to a new waterbody without undergoing proper decontamination. This included boats (multiple canoes and kayaks were used), sample

collecting equipment, SCUBA/snorkel gear, wetsuits, etc.

• After use, equipment was either bagged so that it could be washed later, left to soak in buckets of vinegar, sprayed with a 10 percent bleach solution and left to dry, or soaked and/or wiped down with 90 percent isopropyl alcohol. Plant fragments were removed from all gear. Boats were used in one location per day, and they were cleaned with a hot powerwash each evening. Plankton nets, wetsuits, and SCUBA gear were washed in hot soapy water, sprayed with a 10 percent bleach solution, rinsed, and dried.

Supplemental Chemical Data

We reviewed available data on surface water chemistry of lakes and rivers in the region, with particular emphasis on three parameters considered most important to zebra mussels: pH, calcium, and alkalinity. Most supplemental data came from the ARM Project of the University of Massachusetts Water Resources Research Center (Appendix 2). The dataset included 108 waterbodies in the Connecticut River watershed when combined with the 2010 field data (among these 108 "waterbodies" were six sites in the mainstem Connecticut River). ARM data were gathered for waterbodies in the Housatonic and Hudson wa
 Table 2. Risk of zebra mussel colonization based on thresholds for three water chemistry parameters: pH, calcium, and alkalinity.

Risk	pН	Calcium (mg/L)	Alkalinity (mg/L)
Low	< 7.4	< 12.0	< 20.0
Medium	7.4 - 8.0	12.0 - 20.0	20.0 - 65.0
High	> 8.0	> 20.0	> 65.0

tersheds and combined with 2009 field data (Biodrawversity 2009) to create a dataset of 58 waterbodies for these two watersheds. The full dataset included 166 waterbodies or river sites in the Connecticut, Housatonic, and Hudson River watersheds. Thresholds for pH, calcium, and alkalinity were used to define risk categories for zebra mussel invasion (Table 2).

RESULTS

I. Physical and Chemical Parameters

Table 3 summarizes much of the physical and chemical data for the 30 waterbodies surveyed in 2010. In these waterbodies, pH ranged from 5.9 to 8.7 (average = 7.2), calcium concentrations ranged from 2.0-27.0 mg/L (average = 9.3), and alkalinity

Table 3. Physical and chemical data for the 26 lakes and four rivers in the Connecticut River watershed that were surveyed in 2010. Data for ARM waterbodies are provided in Appendix 2.

Waterbody	Acres	Depth (ft)	Secchi (ft)	DO (mg/L)	Temp1 (C)	Temp2 (C)	pH*	Calcium (mg/L)	Alkalinity (mg/L)	Nitrate (mg/L)	Phosphorus (mg/L)	TSS (mg/L)
Aldrich Lake	66	?-13	7.0	7.2	14.1	25.7	7.36	11	32	0.08	0.065	4
Arcadia Lake	-	-	-	-	24.9	-	7.17	-	-	-	-	_
Ashfield Lake	37	7-20	13.5	9.5	12.8	23.4	7.63	14	34	< 0.01	0.010	2
Chicopee River Reservoir	106	-	-	-	13.9	-	7.11	6	8	0.19	0.031	2
Chicopee River	-	-	*	9.8	15.6	21.2	7.25	5	8	0.24	0.022	1
Congamond Lakes (North)	465	?-40	5.0	12.7	16.8	25.5	8.21	16	46	0.32	0.028	4
Congamond Lakes (South)	465	2-40	_	-	15.6	-	7.71	14	42	0.33	0.029	2
Connecticut River: Chicopee	-	_	*	8.9	14.8	23.7	7.36	8	26	0.29	0.016	6
Connecticut River: Easthampton	-	-	*	8.4	12.9	23.2	7.52	10	26	0.29	0.015	3
Connecticut River: Gill	-	-	*	8.7	12.2	24.6	7.63	8	26	0.14	0.020	3
Connecticut River: Hatfield	-	-	-	8.5	12.3	24.3	7.58	8	26	0.17	0.026	6
Connecticut River: Northfield	-	-	*	8.4	10.6	23.2	7.52	8	29	0.14	0.022	2
Connecticut River: Oxbow	204	7-18	6.0	9.5	14.2	22.8	7.54	10	22	0.11	0.024	7
Cranberry Pond	27	4-26	*	-	14.0	-	6.96	5	12	0.02	0.011	1
Damon Pond	-	-	-	-	25.4	-	6.47	-	-	-	-	-
Deerfield River	-	-	*	-	10.9	-	7.26	8	6	0.12	0.036	<1
Five Mile Pond	48	12-35	*	8.6		22.2	7.48	6.5	16.6	< 0.01	0.032	13
Forge Pond	68	5-6	-	-	25.5	-	7.27	-	26.3	-	-	-
Hammond Pond	-	-	-	-	24.2	-	6.94	-	-	-	-	-
Lake Mattawa	112	17-40	-	8.3	24.3	24.2	7.25	-	-	-	-	-
Lake Rohunta	383	4-15	*	7.2	25.0	27.3	6.61	3	4	0.01	0.026	<1
Lake Warner	68	3-10	9.0	8.8	13.8	23.8	7.27	10	22	0.53	0.037	4
Lake Wyola**	129	11-33	*	8.2	13.2	24.1	6.17	5	<2	0.01	0.014	3
Laurel Lake	51	15-32	*	8.3	12.5	24.5	5.94	2	4	< 0.01	0.009	2
Littleville Lake**	275	34-86	14.0	9.5	15.1	21.9	7.24	5	10	0.03	0.007	2
Lower Highland Lake	88	9-16	*	8.3	12.1	24.7	6.99	3	6	< 0.01	0.005	1
Metacomet Lake	74	10-18	*	7.8	-	27.6	-	-	-	-	-	-
Pelham Lake	71	5-8	9.0	8.5	23.6	25.1	6.54	-	-	-	-	-
Pequot Pond**	198	15-31	12.5	10.4	16.1	22.8	7.67	20	39	0.18	0.020	3
Plainfield Pond***	57	5-9	*	7.5	23.6	24.3	6.88	-	6	-	-	-
Porter Lake	21	-	4.5	11.2	15.6	19.4	8.11	27	51	0.98	0.054	8
Upper Highland Lake	53	8-14	10.0	8.2	12.2	23.6	7.05	3	6	< 0.01	0.006	2
Watershops Pond	186	?-21	-	-	17.1	-	8.72	22	48	0.63	0.053	14
West Lake	60	8-13	*	7.9		20.1	7.35	7.2	22.9			
Westfield Reservoir	-	-	-		26		7.08	-	-	-	-	-
Westfield River	-	-	*	10.2	11.7	18.6	7.34	5	16	0.14	0.010	1

*Bold value indicates field measurement; all values not in bold were analyzed by Berkshire Envirolabs or Spectrum Analytical (Five Mile Pond)

Two water samples taken to the lab, average value reported. *Some chemistry data from ARM Project

Temp 1 = Recorded when water samples were taken, Temp 2 = Recorded during biological sampling when dissolved oxygen was recorded

Table 4	. Freshwater	snails	documented in	lakes	and rivers	during the	2010 surveys.
---------	--------------	--------	---------------	-------	------------	------------	---------------

	HeCa							ails							
	neua	HeAn	HeTr	PhGy	PhAn	AmLi	CaDe	PsCo	LaFu	ViGe	GyDe	GyPa	LyGr	CiCh	# Taxa
Aldrich Lake			Х	Х		Х	Х			Х					5
Ashfield Lake		Х		Х			Х			Х					4
Chicopee Reservoir						Х							Х		2
Chicopee River			Х	Х		Х			Х						4
Congamond Lakes	Х		Х	Х	Х	Х	Х				Х				7
Connecticut River		Х		Х		Х	Х	Х						Х	6
Cranberry Pond														Х	1
Deerfield River															0
Five Mile Pond						Х				Х				Х	3
Forge Pond				Х		Х		Х						Х	4
Lake Mattawa	Х			Х		Х									3
Lake Rohunta		Х				Х	Х								3
Lake Warner				Х		Х		Х							3
Lake Wyola							Х								1
Laurel Lake															0
Littleville Lake							Х			Х					2
Lower Highland Lake						Х									1
Metacomet Lake				Х		Х		Х							3
Pelham Lake															0
Pequot Pond	Х	Х		Х		Х				Х	Х			Х	7
Plainfield Pond		Х					Х								2
Porter Lake			Х	Х						Х			Х	Х	5
Upper Highland Lake		Х				Х				Х		Х			4
West Lake		X								X					2
Westfield River		<i>,</i> (Х			Х	Х			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					3
# Waterbodies	3	7	5	11	1	15	9	4	1	8	2	1	2	6	_
Helisoma campanulatum	HeCa		Amnicola I	imosa			AmLi		Gyraulus d	leflectus			GyDe		
Helisoma anceps	HeAn			na decisum			CaDe		Gyraulus d				GyPa		
Helisoma trivolvis	HeTr			cinia colum	ella		PsCo		Lyogyrus g				LyGr		
Physa gyrina	PhGy		Laevapex f				LaFu		Cipangopa	ludina chine	ensis		CiCh		
Physa ancillaria	PhAn		Viviparus g	eorgianus			ViGe								

ranged from 4.0-51.0 mg/L (average = 22.3). These values are higher than the regional average because we selected waterbodies that were more suitable for zebra mussels, with a few exceptions such as Laurel Lake, Lake Rohunta, and Lake Wyola that we knew were unsuitable. Among the 108 waterbodies in the Connecticut River watershed considered in this assessment, including the ARM waterbodies, pH ranged from 4.9 to 8.7 (average = 6.7), calcium concentrations ranged from 0.4 to 27.0 mg/L(average = 6.6 mg/L), and alkalinity ranged from -0.5 to 51.0mg/L (average = 12.2 mg/L). This larger dataset is probably a better indication of the regional susceptibility to zebra mussels. Only four waterbodies had a pH higher than 8.0, including one of the Congamond Lakes (Southwick), Porter Lake (Springfield), Harts Pond (Agawam), and Watershops Pond (Springfield). The latter three are urban ponds in the greater Springfield area, and along with Pequot Pond (Westfield), they are the only ones with with calcium levels higher than 20.0 mg/L.

II. Molluscs

Mollusc surveys were conducted in a total of 21 lakes and four rivers, and neither zebra mussel adults nor veligers were detected. Fourteen aquatic snail species were encountered during the survey and species richness ranged from zero to seven (average = 3.0) among the waterbodies (Table 4). The three lakes considered most susceptible to zebra mussel invasion (Ashfield Lake, Pequot Pond, and Congamond Lakes) contained a higher average species richness of aquatic snails (combined average = 6.0) than low-risk lakes (combined average = 2.4). Most snail species encountered are widespread in southern New England and not indicative of calcareous conditions. The most common native snail species were *Amnicola limosa*, *Physa gyrina*, and *Campeloma decisum*. *Amnicola limosa* was found in 12 lakes and three rivers, *Physa gyrina* was found in nine lakes and two rivers, and *Campeloma decisum* was found in seven lakes and two rivers. The non-native *Viviparus georgianus* was present in eight lakes and none of the river sites, making it far less prevalent in the region that it was in the Berkshire County lakes surveyed in

State-listed freshwater mussels were found during the survey, including this yellow lampmussel (*Lampsilis cariosa*; Endangered) from the Connecticut River.

Table 5. Native freshwater mussels and the non-native Asian clam (Corbicula)
fluminea) documented in lakes and rivers during the 2010 surveys.

				Biva	lves				
Waterbody	CoFI	PyCa	EICo	AnIm	LaRa	LaCa	LeOc	AlUn	# Taxa
Aldrich Lake	Х	Х	Х						2
Ashfield Lake		Х							1
Chicopee Reservoir			Х						1
Chicopee River			Х						1
Congamond Lakes	Х	Х	Х						2
Connecticut River	Х	Х	Х	Х		Х	Х	Х	6
Cranberry Pond		Х							1
Deerfield River			Х						1
Five Mile Pond		Х	Х						2
Forge Pond									0
Lake Mattawa			Х						1
Lake Rohunta			Х						1
Lake Warner		Х	Х						2
Lake Wyola									0
Laurel Lake			Х						1
Littleville Lake		Х	Х						2
Lower Highland Lake		Х							1
Metacomet Lake			Х						1
Pelham Lake		Х							1
Pequot Pond		Х	Х		Х				3
Plainfield Pond		Х							1
Porter Lake		Х							1
Upper Highland Lake									0
West Lake									0
Westfield River			Х					Х	2
# Waterbodies	3	13	15	1	1	1	1	2	
Corbicula fluminea	CoFl		Lampsilis	radiata			LaRa		
Pyganodon cataracta	PyCa		, Lampsilis				LaCa		
Elliptio complanata	ElCo		,	a ochracea			LeOc		
Anodonta implicata	AnIm		Alasmido	onta undula	nta		AlUn		

2009. The non-native *Cipangopaludina chinensis*, which was not detected in Berkshire County during the Phase I Assessment, was found in five lakes and in the Connecticut River.

Seven native mussel species were encountered during the survey (Table 5). *Elliptio complanata* was found in 11 lakes and all rivers and *Pyganodon cataracta* was found in 12 lakes and one river. *Lampsilis radiata* was only found in Pequot Pond, and four species—including *Lampsilis cariosa*, *Leptodea ochracea*, *Anodonta implicata*, and *Alasmidonta undulata*—were confined to the Connecticut River or Westfield River. Three of the mussel species are protected in Massachusetts and location data was submitted to the Massachusetts Natural Heritage and Endangered Species Program. A non-native bivalve, the Asian clam (*Corbicula fluminea*), was encountered in the Connecticut River, Aldrich Lake (Granby), Congamond Lakes (Southwick), and Five Mile Pond (Springfield). To our knowledge, these are the first reports of the Asian clam upstream of the Holyoke Dam in the Connecticut River and in Aldrich Lake.

III. Aquatic Plants

Species composition of aquatic plants was recorded for 19 lakes. A list of 30 genera and 56 species (including nine genera not identified to species) was compiled from field observations or available reports (Table 6). Our field observations were biased toward the more common aquatic plants that are recognizable early in the growing season, and thus our lists may have greatly underestimated species richness and community composition in most waterbodies. Other investigators had conducted moderately to highly rigorous aquatic plant inventories in Lake Rohunta, Laurel Lake, Lake Wyola, and Congamond Lakes. Average plant species richness for these four lakes was 24.7, whereas the 2010 fieldwork reported an average plant species richness of only 7.3 for the other 15 lakes. We cannot draw any conclusions about aquatic plant community patterns in these lakes because plant surveys were a small part of the fieldwork and survey effort was not consistent among lakes.

The most prevalent native submergent aquatic plants were species in the genus *Potamogeton* (especially *P. epihydrus, P. amplifolius,* and *P. robbinsii*), *Elodea (E. nuttallii* or *E. canadensis), Vallisneria americana,* and species in the genus *Utricularia* (seven species; most common were *U. purpurea* and *U. radiata*). Some of the more prevalent non-native submergent species included *Myriophyllum spicatum, Ceratophyllum demersum,* and *Najas minor. Trapa natans* was also observed in Forge Pond in Granby.

DISCUSSION

As described in the 2009 Phase I Assessment, weight-of-evidence suggests that zebra mussels may exist within a range of chemical conditions and are more likely to become established in waterbodies with high pH (>8.0) and high calcium

(>20.0 mg/L). Studies that reviewed water chemistry parameters in waterbodies where zebra mussels are established are more informative than studies that attempt to predict where zebra mussels might occur based on thresholds. Zebra mussels are established in several northeastern lakes and rivers whose calcium concentrations may seem marginal based on early predictions, such as Lake Zoar in Connecticut (17.0 mg/L), Lake Bomoseen in Vermont (18.0 mg/L calcium), West Twin Lake in Connecticut (21.0 mg/L calcium), and portions of the lower Hudson River and middle and northern Lake Champlain (Cohen and Weinstein 2001, Pete Stangel, Vermont Agency of Natural Resources, personal communication). In 2010, zebra mussels were discovered in Lake Zoar and Lake Lillinonah in Connecticut (Biodrawversity 2010), which are large impoundments of the lower Housatonic River. More than 800 zebra mussels were collected from these two impoundments. Most individuals (>90 percent) were found in Lake Zoar, yet water chemistry in Lake Zoar is considered marginal (pH = 7.6, calcium = 17.0 mg/L). Although Lake Lillinonah is upstream of Lake Zoar and has higher calcium levels (23.1 mg/L) and similar pH (7.5), far fewer animals were found in Lake Lillinonah. The presence of zebra mussels in Lake Zoar indicates that other waterbodies with suitable pH and calcium levels in the mid to upper teens might be more susceptible than previously thought.

In this study, lakes were categorized according to their potential to support reproduction and growth of zebra mussels based primarily on water chemistry (calcium, pH, and alkalinity) but physical habitat was also considered because many

Table 6. Aquatic plants observed, or reported to occur, in study lakes and rivers. WL: Rare species, on the state's Watch List.

Species				_																					E				
		Aldrich	Ashfield	Congamond	Cranberry	Five Mile	Forge	Laurel	Littleville	L. Highland	Metacomet	Pelham	Pequot	Plainfield	Rohunta	Porter	U. Highland	Warner	West	Wyola	Deerfield	Chicopee	Westfield	CT; Oxbow	CT; Easthampton	CT; Chicopee	CT; Gill	CT; Northfield	CT; Hatfield
	Origin	₹	As	ŭ	ų	É	ß	La	Ē	Ŀ	Σ	Ре	Ре	Ъ	Я	Po	⊡	ŝ	Š	Ś	ă	ò	Š	5	5	5	5	IJ	5
Submerged Plants																													
Cabomba caroliniana	1										Х				Х														
Callitriche sp.	N-I	Х		х	Х	Х																	Х	х	Х				
Ceratophyllum demersum Ceratophyllum echinatum	N N	х		х			Х						х		х	х		х		х				v			Х		
Elatine minima	N							х							X			X						х					
Elatine sp.	N			х				^																					
Elodea sp.	N	х	х	x	х	х	х		х		х					х		х				х		х			х	х	
Isoetes sp.	Ν											х	х				х			х									
Isoetes echinospora	Ν							Х																					
Lobelia dortmanna	Ν							Х																					
Myriophyllum heterophyllum	1														х														
Myriophyllum humile	Ν							Х																					
Myriophyllum spicatum	1			Х			х		Х		Х		Х							х				Х	Х		Х		
Myriophyllum tenellum	N			Х																									
Najas sp.	N-I			Х									Х																
Najas flexilis Najas gracillima	N			х				X							X														
Najas gracillima Najas guadalupensis	N N			v				х							х														
Najas guadalupensis Najas minor	I			X X																									
Podostemon ceratophyllum	N			^																		х							
Potamogeton amplifolius	N	х		х	х		х				х								х			~							
Potamogeton bicuspulatus	N	~		x	~		~				~								~										
Potamogeton confervoides (WL)	Ν							х																					
Potamogeton crispus	1			х			х									х						Х		х					
Potamogeton diversifolius	Ν							Х																					
Potamogeton epihydrus	Ν		Х		Х			Х		Х					х			Х		х							х		
Potamogeton gramineus	Ν			Х																									
Potamogeton illinoensis	Ν			Х																									
Potamogeton natans	N			Х											Х														
Potamogeton oakesianus	N							Х																					
Potamogeton perfoliatum	N			х																									
Potamogeton pulcher	N N														Х														
Potamogeton pusillus Potamogeton robbinsii	N			X X	х	х							х		X X					х									
Potamogeton sp.	N	х	х	x	x	x							x		^	х	х			x				х	х	х	х	х	х
Proserpinaca palustris	N	~	~	Χ	~	~							~		х	~	λ			x				~	~	~	~	~	~
Sagittaria cristata	N			х											~					~									
Scirpus subterminalis	Ν							х							х														
Stuckenia pectinata	Ν			х																									
Utricularia gibba	Ν												х		Х														
Utricularia intermedia	Ν				Х										х					х									
Utricularia macrorhiza	Ν				Х			Х		Х					Х														
Utricularia purpurea	Ν				Х			Х		Х	Х	Х		Х	Х				Х	Х									
Utricularia radiata	N							Х		Х		Х		Х	Х		Х			х									
Utricularia resupinata (WL)	N							Х																					
Utricularia sp.	N																х		Х										
Utricularia vulgaris	N		Х							х				х						Х									
Vallisneria americana Zosterella dubia	N N		Х	X X					Х				х										х	х		х	х		
Floating-leaved Plants	IN			X																									
Brasenia schreberi	Ν				х		х	х			х	¥		х	х				х	х									
Lemna minor	N	х		х	~		x	~			~	~		~	x	х		х	~	~									
Nuphar variegata	N			х	х		х	х					х	х	х					х									
Nymphaea odorata	Ν		х	х	х		х	х			х		х	х	х			х		х									
Nymphoides cordata	Ν							Х						х	х														
Spirodela polyrhiza	Ν	Х		х			х								х			х											
Trapa natans	1						х																						
Wolffia sp. Emergent Plants	Ν	х		Х			х											Х											
Eloeocharis acicularis	Ν							х				х	х		х		х												
Eleocharis palustris	Ν														Х														
Eleocharis robbinsii	Ν							Х																					
Eriocaulon aquaticum	Ν							х							х					х									
Gratiola aurea	Ν			х				Х					х																
Sparganium sp.	N	Х			Х		Х			х		Х					х	х	Х	х		Х	Х						
Sparganium americanum	N			х				Х							Х														
Sparganium chlorocarpum Total Species	Ν	9	6	31	13	4	13	24	3	6	7	6	12	7	x 28	5	6	8	5	16	0	4	3	7	3	2	6	2	1

Table 7. Number and percent of waterbodies in the Connecticut River watershed with pH, calcium, and alkalinity within high, medium, or low ranges for susceptibility to zebra mussels.

	Number of	Percent of
Parameter	Waterbodies	Waterbodies
pH (n = 108)		
High	4	3.7
Medium	16	14.8
Low	88	81.5
Calcium (n $=$ 77)		
High	4	5.2
Medium	5	6.5
Low	68	88.3
Alkalinity (n = 99)		
High	0	0
Medium	25	25.3
Low	74	74.7

ponds assessed in this study were very small, shallow, heavily vegetated, and eutrophic (none of these traits are particularly suitable for zebra mussels). Among the 2010 survey sites and the ARM waterbodies in the Connecticut River watershed (a total of 108 waterbodies or river sites), 12 waterbodies had at least marginal pH (>7.4), nine waterbodies had at least marginal calcium levels (>12.0 mg/L), and 25 waterbodies had at least marginal alkalinity levels (>20.0 mg/L) (Tables 7-8). For the three water chemistry parameters combined, only nine waterbodies were classified as having medium or high risk of zebra mussel invasion (Table 8, Figure 3). Of these, four are small waterbodies in urban environments whose water chemistry is strongly influenced by myriad effects of urbanization and whose physical habitat is generally not suitable for zebra mussels and that receive no boat traffic. These include Watershops Pond (Springfield), Porter Lake (Springfield), Harts Pond (Agawam), and Silver Lake (Agawam). Wright Pond (Holyoke) has marginal water chemistry for zebra mussels but it is also a municipal water supply with no boat access or fishing allowed. We did not assess the habitat or biological community of Wright Pond. McLoed Pond is a small pond embedded in the Catamont State Forest in Colrain and has unusually high calcium levels (13.2 mg/L) and pH (7.4) for small high-elevation ponds in the region; we consider this pond only marginally susceptible to zebra mussels.

Only three waterbodies in the watershed with suitable water chemistry (medium or high risk) were considered to have physical habitat that would support zebra mussels and are accessible. These included Congamond Lakes (Southwick), Pequot Pond (Westfield), and Ashfield Lake (Ashfield). We consider these lakes at medium to high risk although calcium levels in Congamond Lakes (15.0 mg/L) and Ashfield Lake (14.0 mg/L) are toward the low end of zebra mussel's tolerance range. Pequot Pond has calcium levels of 20.0 mg/L and a pH of 7.7, making its chemical environment more suitable for zebra mussels than some other waterbodies in New England where zebra mussels are already established. We believe it is unlikely that zebra mussels could become established in the Connecticut River in Massachusetts based on low calcium, although other studies have suggested the Connecticut River might be at risk (Murray et al. 1993, Smith 1993). We also do not consider the Quabbin Reservoir capable of supporting zebra mussels based on low pH, calcium, and alkalinity.

Figure 4 shows susceptibility of 166 waterbodies in central and western Massachusetts to the establishment of zebra mussels based on available water chemistry data. The regional analysis includes the Connecticut, Housatonic, and Hudson River basins of Berkshire, Hampden, Hampshire, and Franklin counties as well as western parts of Worcester County that occur within the Connecticut River watershed. Nearly all of the naturally susceptible waterbodies in this region occur in the low elevation areas of the Housatonic and Hoosic watersheds. This

Table 8. Risk assessment for waterbodies in the Connecticut River watershed based on water chemistry and physical habitat. Only waterbodies with medium or high risk based on one or more chemical parameters are listed here. Appendix 2 provides a complete list of waterbodies and chemical parameters.

			Ris	k Based on Wat	er Chemistry Ald	one	Considering	
Name	Town	Subwatershed	рН	Calcium	Alkalinity	Overall	Habitat	Data Source
Pequot Pond	Westfield	Connecticut	Medium	High	Medium	High	High	2010
Harts Pond	Agawam	Connecticut	High	Medium	Medium	High	Low	ARM
Porter Lake	Springfield	Connecticut	High	Medium	Medium	High	Low	2010
Watershops Pond	Springfield	Connecticut	High	Medium	Medium	High	Low	2010
Mcleod Pond; Crouch Pd	Colrain	Deerfield	Medium	Medium	Medium	Medium	?	ARM
Silver Lake	Agawam	Connecticut	Medium	Medium	Medium	Medium	Low	ARM
Ashfield Lake	Ashfield	Deerfield	Medium	Medium	Medium	Medium	Medium	2010
Wright Pond	Holyoke	Westfield	Medium	Medium	Medium	Medium	Medium	ARM
Congamond Lakes	Southwick	Westfield	High	Medium	Medium	Medium	Medium	2010
Newell Pond	Greenfield	Deerfield	Low	=	Medium	Low	Low	ARM
Robin Hood Lake	Becket	Westfield	Low	Low	Medium	Low	Low	ARM
Atwater Pond; Shade Pd	Sandisfield	Farmington	Low	Low	Medium	Low	Low	ARM
West Lake	Sandisfield	Farmington	Low	Low	Medium	Low	Low	ARM
Lake Warner	Hadley	Connecticut	Low	Low	Medium	Low	Low	2010
West Lake	Sandisfield	Farmington	Medium	Low	Medium	Low	Low	2010
Connecticut River	6 Sites	Connecticut	Medium	Low	Medium	Low	Low	2010
Aldrich Lake	Granby	Connecticut	Medium	Low	Medium	Low	Low	2010
Center Pond	Becket	Westfield	Medium	Low	Medium	Low	Low	2009
Five Mile Pond	Springfield	Connecticut	Medium	Low	Low	Low	Low	2010
Shaw Pond	Otis/Becket	Farmington	Medium	Low	Medium	Low	Low	2009

Figure 3. Risk assessment for waterbodies in the Connecticut River watershed based on water chemistry (2010 field studies and ARM data). Of these, only Congamond Lakes, Pequot Pond, and Ashfield Lake are thought to provide suitable habitat and are accessible.

Figure 4. Susceptibility of waterbodies in central and western Massachusetts to zebra mussels based on (a) pH, (b) calcium, (c) alkalinity, and (d) combination of a-c. Habitat suitability is not considered in these maps, although most medium and high risk waterbodies in the southern Connecticut River watershed do not provide suitable zebra mussel habitat.

Figure 5. Plot of pH versus calcium for waterbodies in (a) the Connecticut River watershed, and (b) the Housatonic and Hudson watersheds of Massachusetts for which data were available on both parameters. Medium and high risk waterbodies are shown using thresholds outlined in Table 2.

area is part of the Western New England Marble Valleys ecoregion that is characterized by calcium-rich soil and water and extensive groundwater aquifers. Plots of pH versus calcium for waterbodies in the Connecticut River watershed (Figure 5a) and the Housatonic and Hudson River watersheds (Figure 5b), with risk thresholds overlaid on the plots, clearly show differences in the suscepibility of waterbodies in these areas.

Heavy recreational use increases the probability of zebra mussel introduction. The scientific literature shows that multiple introductions are needed to establish a population (Johnson and Carlton 1996, Padilla *et al.* 1996, Schneider *et al.* 1998,

Kraft and Johnson 2000, Bossenbroek et al. 2001). Pequot Pond is very accessible, has multiple launch sites, and receives a fair amount of visitation. The Congamond Lakes are also very accessible, have multiple launch sites, and receive high visitation including competitive bass tournaments that draw anglers from around the region. This is one of the first lakes in southern New England where Asian clams became established and it is also infested with a variety of invasive aquatic plants. In 2008, 48 boats last used in zebra mussel infested waters (Lake George NY, Twin Lakes CT, Lake Ontario NY, and Lake Champlain VT) were launched in the Congamond Lakes (DCR 2008), indicating a high prevalence of potential dispersal vectors. Ashfield Lake is much smaller and primarily draws local anglers, especially because its small size and small ramp precludes foreign motorboats. Of the three lakes, Pequot Pond and Congamond Lakes are probably most in need of zebra mussel education and monitoring.

Despite the broad ecological tolerance of most snail species we encountered, there appeared to be a positive correlation between snail species richness, pH, and calcium (Figure 6). Poorly buffered, low-calcium lakes tended to have low species richness of aquatic snails compared to well-buffered high-calcium lakes. Neither of the two calciphilous snail species documented in the Phase I Assessment-Marstonia lustrica and Valvata tricarinata-were found in the 2010 study, but species richness of other documented snails followed the same trends observed

in the Phase I Assessment. Lakes assessed in the 2010 study usually lacked algae of the genus *Chara*, a biological indicator of calcareous lakes found in several lakes in Berkshire County. The one exception was Congamond Lakes where *Chara* was reported in a 2009 study (Northeast Aquatic Research 2009), although we did not detect *Chara* in our more limited surveys. Marl, a calcium precipitate that settles on the bottom of calcareous lakes and is therefore a reliable predictor of high calcium levels, was not observed in any of the 2010 study lakes but was observed in several Berkshire County lakes.

Although there are a small number of lakes in the Connect-

Figure 6. Correlation between snail species richness, pH, and calcium using data from the Phase I and Phase II zebra mussel assessments.

icut River watershed that might support zebra mussels, none are considered optimal for this species and they generally lack many of the strongest biological indicators of high-risk lakes that were documented in Berkshire County. Nevertheless, Pequot Pond has higher pH and calcium levels than several other waterbodies in the Northeast where zebra mussels are already established and should be considered at high risk. Congamond Lakes and Ashfield Lake may be less suitable for zebra mussels than Pequot Pond but might still be vulnerable. Anglers and boaters should carefully follow established decontamination procedures when visiting or leaving the Congamond Lakes, Pequot Pond, and Ashfield Lake. Signage and boat ramp monitoring are recommended. Periodic aquatic surveys are recommended to increase chances of early detection.

BIBLIOGRAPHY

- Biodrawversity. 2009. Zebra Mussel Phase I Assessment: Physical, Chemical, and Biological Evaluation of 20 Lakes and the Housatonic River in Berkshire County, Massachusetts. Report submitted to the Massachusetts Department of Conservation and Recreation, Lakes and Ponds Program.
- Biodrawversity. 2010. Distribution, Demographics, and Habitat of the Zebra Mussel (*Dreissena polymorpha*) in Lake Zoar and Lake Lillinonah in Southwest Connecticut. Report submitted to FirstLight Power Resources, Hartford, CT.
- Bossenbroek, J.M., C.E. Kraft, and J.C. Nekola. 2001. Prediction of long-distance dispersal using gravity models: zebra mussel invasion of inland lakes. *Ecological Applications* 11(6):1778-1788.
- Bruner, K.A., S.W. Fisher, and P.F. Landrum. 1994(a). The role of the zebra mussel, *Dreissena polymorpha*, in contaminant cycling: I. The effect of body size and lipid content on the bioconcentration of PCBs and PAHs. *Journal of Great Lakes Research* 20(4):725-734.

- Bruner, K.A., S.W. Fisher, and P.F. Landrum. 1994(b). The role of the zebra mussel, *Dreissena polymorpha*, in contaminant cycling: II. Zebra mussel contaminant accumulation from algae and suspended particles, and transfer to the benthic invertebrate, *Gammarus fasciatus*. *Journal of Great Lakes Research* 20(4):735-750.
- Cohen, A.N., and A. Weinstein. 2001. Zebra mussel's calcium threshold and implications for its potential distribution in North America. San Francisco Estuary Institute, Richmond, CA.
- Department of Conservation and Recreation (DCR). 2008. 2008 Boat Ramp Monitor Program Report. Prepared by the Massachusetts Department of Conservation and Recreation, Lakes and Ponds Program, Boston, MA.
- Department of Conservation and Recreation (DCR). 2009. *Interim Zebra Mussel Action Plan*. Prepared by the Massachusetts Department of Conservation and Recreation and the Massachusetts Department of Fish and Game, Boston, MA.
- Hebert, P.D.N., B.W. Muncaster, and G.L. Mackie. 1989. Ecological and genetic studies on *Dreissena polymorpha* (Pallas): a new mollusk in the Great Lakes. *Canadian Journal of Fisheries and Aquatic Sciences* 46:1587-1591.
- Johnson, L. 1995. Enhanced early detection and enumeration of zebra mussel (*Dreissena* spp.) veligers using cross-polarized light microscopy. *Hydrobiologia* 312:139-146.
- Johnson, L.E., and J.T. Carlton. 1996. Post-establishment spread in large-scale invasions: dispersal mechanisms of the zebra mussel *Dreissena polymorpha*. *Ecology* 77(6):1686-1690.
- Jokinen, E.H. 1983. *The Freshwater Snails of Connecticut*. Bulletin 109 of the State Geological and Natural History Survey of Connecticut. Department of Environmental Protection, Hartford, CT.
- Jokinen, E.H. 1993. *The Freshwater Snails (Mollusca: Gastropoda) of New York State*. New York State Museum Bulletin 482, Albany, NY.
- Kraft, C.E., and L.E. Johnson. 2000. Regional differences in rates and patterns of North American inland lake invasions by zebra mussels (*Dreissena polymorpha*). *Canadian Journal of Fisheries and Aquatic Sciences* 57(5):993-1001.
- MacIssac, H.J. 1996. Potential abiotic and biotic impacts of zebra mussels in the inland waters of North America. *American Zoologist* 36:287-299.
- Murray, T.E., P.H. Rich, and E.H. Jokinen. 1993. Invasion potential of the zebra mussel, *Dreissena polymorpha* (Pallas), in Connecticut: predictions from water chemistry data. Special Report No. 36, Connecticut Institute of Water Resources, University of Connecticut, Storrs, CT.
- Nalepa, T.F., and D.W. Schloesser. 1993. Zebra Mussels: Biology, Impacts, and Control. Lewis Publishers, Boca Raton, Florida.
- Northeast Aquatic Research. 2009. Aquatic Plant Mapping and Water Quality Monitoring in Congamond Lake 2009. Report prepared for the Southwick Conservation Commission.
- Padilla, D.K., M.A. Chotkowski, and L.A.J. Buchan. 1996. Predicting the spread of zebra mussels (*Dreissena polymorpha*) to inland waters using boater movement patterns. *Global Ecology and Biogeography Letters* 5(6):353-359.

- Schneider, D.W., C.D. Ellis, and K.S. Cummings. 1998. A transportation model assessment of the risk to native mussel communities from zebra mussel spread. *Conservation Biology* 12:788-800.
- Smith, D.G. 1993. The potential for spread of the exotic zebra mussel (*Dreissena polymorpha*) in Massachusetts. Massachusetts Department of Environmental Protection Report MS-Q-11.
- Smith, D.G. 1995. Keys to the Freshwater Macroinvertebrates of Massachusetts. Published by the author. 243 pages.
- Strayer, D.L. 1991. Projected distribution of the zebra mussel, Dreissena polymorpha, in North America. Canadian Journal of Fisheries and Aquatic Sciences 48:1389-1395.
- Strayer, D.L. 1999. Effects of alien species on freshwater mollusks in North America. *Journal of the North American Benthological Society* 18:74-98.
- Strayer, D.L. 2009. Twenty years of zebra mussels: lessons from the mollusk that made headlines. *Frontiers in Ecology and the Environment* 7(3):135-141.
- United States Geological Survey (USGS) Nonindigenous Aquatic Species Program. Zebra Mussel Page URL: http:// nas.er.usgs.gov/taxgroup/mollusks/zebramussel.

ACKNOWLEDGMENTS

Thanks to the Massachusetts Department of Conservation and Recreation, Lakes and Ponds Program, for their support of this work. Support staff included Tom Flannery, Jim Straub, Steve Asen, and Anne Carroll.

Appendix 1 Survey Locations and Methods in Target Waterbodies

			Methods										
							Lab	Field					
Waterbody/Site	Latitude	Longitude	SCUBA	Snorkel (1)	D-Net (1)	Plankton	Chem (2)	Chem (3)	DO (4)	Secchi (5)			
Aldrich Lake	42.283538	-72.532216	Х		Х	Х	X(1)	Х	Х	Х			
Arcadia Lake	42.313433	-72.428034						Х					
Ashfield Lake	10 500101	70 000575	V		V	X	N(1)	V	V	V			
Boat Ramp	42.529164	-72.800575	Х		Х	Х	X(1)	Х	Х	Х			
Ashfield 2	42.530751	-72.799297	Х										
Ashfield 3	42.533069	-72.802709	Х	V		V	V(1)	V					
Chicopee Reservoir	42.170664	-72.551737		X X	V	X X	X(1)	X X	V				
Chicopee River	42.150262	-72.606534		~	Х	~	X(1)	~	X X				
Congamond Lakes	40.041400	-72.757278	V	V	V	V	V(1)	V	~	Х			
North Boat Ramp Babb's Beach	42.041402	-72.751955	X X	X X	X X	Х	X(1)	X X		~			
	42.030070		~	X						V			
Kayak Access	42.019983	-72.763878	V		Х	V	V(1)	Х		Х			
South Boat Ramp	42.020726	-72.768638	Х	Х	Х	Х	X(1)	Х		Х			
Ayotte Ramp	42.007887	-72.766387	Х	Х	Х	Х		Х		Х			
Connecticut River								N/					
Chicopee	42.153291	-72.625677	Х			Х	X(1)	Х	Х				
Easthampton	42.288396	-72.618225	Х			Х	X(1)	Х	Х				
Gill	42.607644	-72.541690		Х	Х	Х	X(1)	Х	Х				
Hatfield	42.394002	-72.589958	Х		Х	Х	X(1)	Х	Х				
Northfield	42.715502	-72.453044	Х		Х	Х	X(1)	Х	Х				
Oxbow	42.291022	-72.632456	Х			Х	X(1)	Х	Х	Х			
Cranberry Pond	42.503210	-72.525140		Х	Х	Х	X(1)	Х					
Damon Pond	42.417348	-72.834562						Х					
Deerfield River	42.526600	-72.632300		Х		Х	X(1)	Х					
Five-mile Pond	42.139820	-72.509305	Х		Х	Х	X(1)	Х	Х	Х			
Forge Pond	42.275339	-72.470454	Х		Х	Х		Х		Х			
Hammond Pond	42.410453	-72.799478						Х					
Lake Mattawa	42.570433	-72.327450		Х	Х	Х		Х	Х				
Lake Rohunta	42.565597	-72.273055		Х	Х		X(1)	Х	Х				
Lake Warner	42.385829	-72.581083	Х	Х	Х	Х	X(1)	Х	Х	Х			
Lake Wyola													
Boat Ramp	42.496678	-72.428338	Х	Х	Х		X(1)	Х					
Dam	42.501976	-72.436087	Х			Х	X(1)	Х					
Laurel Lake	42.622067	-72.377867		Х	Х		X(1)	Х	Х				
Littleville Lake									Х				
Littleville 1	42.293591	-72.899532	Х	Х	Х		X(2)	Х					
Littleville 2	42.268928	-72.879976	Х	Х	Х	Х		Х		Х			
Littleville 3	42.263061	-72.880123	Х	Х	Х			Х					
Lower Highland Lake	42.454628	-72.798488	Х		Х	Х	X(1)	Х	Х	Х			
Metacomet Lake	42.303632	-72.430546		Х	Х			Х	Х	Х			
Pelham Lake									Х				
Dam	42.699724	-72.894361	Х		Х	Х		Х		Х			
Percy's Point	42.702204	-72.891689		Х		Х							
Pelham 3	42.698233	-72.868920	Х										
Pequot Pond									Х				
Boat Ramp	42.178942	-72.696935	Х	Х	Х	Х	X(2)	Х		Х			
Pequot 2	42.187646	-72.696022	Х	Х	Х			Х					
Pequot 3	42.185462	-72.691626	Х	Х	Х	Х		Х					
Pequot 4	42.181186	-72.691218	Х	Х	Х			Х					
Plainfield Pond	42.539758	-72.958162	Х		Х	Х		Х	Х				
Porter Lake	42.074291	-72.569018			Х	Х	X(1)	Х	Х				
Upper Highland Lake	42.457269	-72.797214	Х		X	Х	X(1)	X	Х	Х			
Watershops Pond	42.104163	-72.549690					X(1)	X					
West Lake	42.129337	-73.162086	Х		Х	Х	X(1)	X	Х				
Westfield Reservoir	42.192612	-72.810558					2.5	X					
Westfield River	42.128285	-72.743339	Х		Х	Х	X(1)	Х	Х				

(1) Snorkel refers to visual surveys while snorkeling in shallow water, whereas D-net refers to surveys done while wading in shallow water and using an aquatic D-net to collect organisms.

(2) pH, alkalinity, calcium, TSS, total nitrates, total phosphates at Berkshire Envirolabs or Spectrum Analytical. Number of sample bottles in parentheses.

(3) DO, pH, conductivity, and temperature at time of water sample collection

(4) Secchi depth not recorded for shallow lakes where the bottom was always visible from the surface.

(5) Dissolved oxygen data for lakes and ponds was collected both near the surface and near the bottom, or as deep as the equipment permitted. Only near-surface DO data was collected for rivers.

Appendix 2 Location, Chemistry Data, and Risk Assessment for Regional Waterbodies

SOURCES OF INFORMATION

2009 = Biodrawversity. 2009. Zebra Mussel Phase I Assessment: Physical, Chemical, and Biological Evaluation of 20 Lakes and the Housatonic River in Berkshire County, Massachusetts. Report submitted to the Massachusetts Department of Conservation and Recreation, Lakes and Ponds Program.

2010 = Biodrawversity. 2010. Zebra Mussel Phase II Assessment. Physical, Chemical, and Biological Evaluation of Waterbodies in the Connecticut River Watershed of Massachusetts. Report submitted to the Massachusetts Department of Conservation and Recreation, Lakes and Ponds Program.

ARM = Acid Rain Monitoring Project Data, a project of the Water Resources Reseach Center at the University of Massachusetts Amherst. Online database at: www.umass.edu/tei/wrrc/arm/

News	Тания	Country	Major	Watavah a d		Calaium	Allealinit	Longitude	Latitud -	Course	Diele
Name	Town	County	Watershed	Watershed	<u>pH</u> 7.4	Calcium	Alkalinity	Longitude	Latitude	Source 2010	Risk
Aldrich Lake	Granby	Hampshire	Connecticut	Connecticut		11.0	32.0	-72.5322	42.2835		Low
Ames Pond	Shutesbury Dalton	Franklin Berkshire	Connecticut Housatonic	Connecticut Housatonic	5.4 5.9	1.2 3.1	0.3 2.4	-72.4186 -73.1594	42.4978 42.5089	ARM ARM	Low Low
Anthony Pond	Belchertown					3.1	Z.4 -	-73.1594 -72.4280		2010	Low
Arcadia Lake		Hampshire	Connecticut	Connecticut	7.2				42.3134		
Ashfield Lake	Ashfield	Franklin	Connecticut	Deerfield	7.6	14.0	34.0	-72.8006	42.5292	2010	Medium
Ashley Lake	Washington	Berkshire	Housatonic	Housatonic	7.7	5.4	42.3	-73.1631	42.3806	ARM	Low
Ashley Reservoir	Dalton	Berkshire	Housatonic	Housatonic	7.2	4.4	11.6	-73.1964	42.4133	ARM	Low
Ashmere Lake	Hinsdale/Peru	Berkshire	Housatonic	Housatonic	7.6	10.0	31.5	-73.0814	42.4368	2009	Low
Atkins Reservoir	Shutesbury	Franklin	Connecticut	Connecticut	6.1	2.2	1.0	-72.4875	42.4258	ARM	Low
Atwater Pond	Sandisfield	Berkshire	Connecticut	Farmington	7.2	7.0	20.8	-73.1544	42.1083	ARM	Low
Bassett Pond	New Salem	Franklin	Connecticut	Millers	5.5	1.1	0.9	-72.2815	42.5093	ARM	Low
Beaver Pond	Monson	Hampden	Connecticut	Chicopee	6.5	-	9.8	-72.9824	42.2166	ARM	Low
Beinecke Pond	Great Barrington	Berkshire	Housatonic	Housatonic	8.1	25.7	72.2	-73.3186	42.2286	ARM	High
Belmont Reservoir	Hinsdale	Berkshire	Housatonic	Housatonic	4.9	1.2	-0.2	-73.1500	42.4314	ARM	Low
Benedict Pond	Great Barrington	Berkshire	Housatonic	Housatonic	7.0	2.0	8.0	-73.2865	42.2039	2009	Low
Benton Pond	Otis	Berkshire	Connecticut	Farmington	6.9	-	17.3	-73.0467	42.1844	ARM	Low
Berry Pond	Hancock	Berkshire	Hudson	Kinderhook	6.4	2.8	2.0	-73.3189	42.5053	ARM	Low
Bickford Pond	Hubbardston	Worcester	Connecticut	Chicopee	6.1	-	1.5	-71.9276	42.4859	ARM	Low
Big Pond	Otis	Berkshire	Connecticut	Farmington	6.9	10.0	-	-73.0491	42.1942	2009	Low
Blair Pond	Blandford	Hampden	Connecticut	Westfield	6.6	-	7.0	-72.9775	42.1780	ARM	Low
Bog Pond	Savoy	Berkshire	Connecticut	Deerfield	7.2	6.1	11.4	-73.0375	42.6412	ARM	Low
Bog Pond; Anthony Pond	Savoy	Berkshire	Connecticut	Deerfield	6.0	6.1	3.9	-73.0367	42.6406	ARM	Low
Bourne Pond	Richmond	Berkshire	Housatonic	Housatonic	8.2	35.1	98.3	-73.3694	42.3778	ARM	High
Brass Mill Pond	Williamsburg	Hampshire	Connecticut	Connecticut	7.3	-	15.6	-72.7065	42.3770	ARM	Low
Brookside Pond	Great Barrington	Berkshire	Housatonic	Housatonic	7.7	14.0	52.7	-73.3536	42.1758	ARM	Medium
Browning Pond	Oakham	Worcester	Connecticut	Chicopee	6.5	-	4.3	-71.9969	42.3133	ARM	Low
Buck Pond	Westfield	Hampden	Connecticut	Westfield	7.1	-	19.5	-72.7022	42.1712	ARM	Low
Buckley-Dunton Lake	Becket	Berkshire	Connecticut	Westfield	6.1	2.3	2.1	-73.1375	42.3125	ARM	Low
Burnett Pond	Savoy	Berkshire	Connecticut	Deerfield	6.6	-	8.5	-73.0458	42.6158	ARM	Low
Card Pond	West Stockbridge	Berkshire	Housatonic	Housatonic	7.1	-	32.0	-73.3667	42.3267	ARM	Low
Carter Pond	Petersham	Worcester	Connecticut	Chicopee	6.9	-	7.9	-72.1838	42.4358	ARM	Low
Center Pond	Becket	Berkshire	Connecticut	Westfield	7.4	6.0	22.0	-73.0697	42.2984	2009	Low
Cheshire Reservoir	Cheshire	Berkshire	Housatonic	Housatonic	8.0	29.5	104.0	-73.1667	42.5556	2009	High
Chicopee Brook Pond	Monson	Hampden	Connecticut	Chicopee	6.8	6.5	12.4	-72.3097	42.1197	ARM	Low
Chicopee Reservoir	Ludlow	Hampden	Connecticut	Chicopee	7.1	6.0	8.0	-72.4076	42.1778	2010	Low
Chicopee River	Chicopee	Hampden	Connecticut	Chicopee	7.3	5.0	8.0	-72.6065	42.1503	2010	Low
Chimney Corners Pond	Becket	Berkshire	Connecticut	Westfield	6.3	3.9	4.5	-73.0742	42.2811	ARM	Low
Choquettes Pond	Clarksburg	Berkshire	Hudson	Hoosic	7.8	15.4	35.2	-73.0742	42.2011	ARM	Medium
Church Hill Pond	Otis	Berkshire	Connecticut	Farmington	6.7	6.2	9.0	-73.0703	42.2264	ARM	Low
Clam River	Sandisfield	Berkshire	Connecticut	Farmington	7.0	- 0.2	9.0 11.2	-73.0703	42.2204	ARM	Low
Clapp Pond	Washington	Berkshire	Housatonic	Housatonic	6.2	3.1	3.0	-73.1792	42.0031	ARM	Low
Cleveland Bk Reservoir	Hinsdale	Berkshire	Housatonic		7.2	6.9	3.0 12.5			ARM	Low
				Housatonic				-73.1125	42.4656		
Cloverdale Lane Pond	Rutland	Worcester	Connecticut	Chicopee	6.1	0.5	5.9	-71.9727	42.3993	ARM	Low
Cobble Mtn. Reservoir	Blandford	Hampden	Connecticut	Westfield	6.7	2.5	4.5	-72.9058	42.1349	ARM	Low
Cold River	Florida	Berkshire	Connecticut	Deerfield	6.6	3.4	4.9	-72.9269	42.6394	ARM	Low
Cone Brook Pond	Richmond	Berkshire	Housatonic	Housatonic	8.0	55.5	176.4	-73.3701	42.3404	ARM	High
Congamond Lakes	Southwick	Hampden	Connecticut	Westfield	8.0	15.0	44.0	-72.7573	42.0414	2010	Medium
Connecticut River	Northfield	Franklin	Connecticut	Connecticut	7.5	8.0	29.0	-72.4530	42.7155	2010	Low
Connecticut River	Gill	Franklin	Connecticut	Connecticut	7.6	8.0	26.0	-72.5417	42.6076	2010	Low
Connecticut River	Chicopee	Hampden	Connecticut	Connecticut	7.4	8.0	26.0	-72.6257	42.1533	2010	Low
Connecticut River	Hatfield	Hampshire	Connecticut	Connecticut	7.6	8.0	26.0	-72.5900	42.3940	2010	Low
Connecticut River	Easthampton	Hampshire	Connecticut	Connecticut	7.5	10.0	26.0	-72.6182	42.2884	2010	Low

biodrawversity research report

Appendix 2. (continued)

Name Der del control Materiano Materiano Perturbation Control control Der del control Control contro Control control Cont			_	Major								_
Carwall Pind Workingtan Berkein's Connectos Workingtan Parates Parates<												
Correspond Space Space Space Space												
Cover Pond Gameter Wareter Connectors Wiles 1.8 -0.8 J. 2.8 J. J. 2.8 J. J. 2.8 J. J. 3.8 L. 3.8 J. 3.8 J. 3.8 L. 3.8 J. 3.8 J. 3.8 J. 3.8 J. 3.8 L. 3.8 L. 3.8 J. 3.8 L. 3.8 L. 3.8 J. 3.8 <thj. 3.8<="" th=""> J. 3.8 J. 3.8</thj.>		0										
CamberyPard Surveival Mard Society Park Berakim Connection Con												•
Charbary Wates Notabridge Berlahn Houstone												
Cane Lake Mess Nochröge Resaure Housatome B BBS 2 PRE2 -73.888 42.381 ARM Low Cyntal Lake Parter Hangelan Connection Connection Resource												
Mison Period Diss Besime Connector Dirangian 6.6 7.7 8.8 -7.3088 4.23181 APM Low Cystel Like Rimmand Berkeline Houstenne	,											0
Cyntal Lake Painer Hamedren Connection Connection B.0 0.8 P.2.58.1 V.2.588.4 V.2.588.4 <thv.2.588.4< th=""> V.2.588.4 V.2.588.4<td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></thv.2.588.4<>		•										0
Cyatal Lake Rehmond Berskive Housatorn Housatorn Bos B0 B0.4 C.7.3155 42.1898 ARM Linx Damon Pand Cheerleida Hangeline Connextorn Karl Low Low </td <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					0							
Chim Prond Opies Berlaime Housachine 6.8 9.8 1.4.0 -7.218.94 2.418.94 APM Low Divis Privad Shifelid Berlaine Housachine 47 2.8 10. -7.28.49 42.1123 APM Low Davis Privad Shifelid Berlaine Connector Medica 43.8 43.9 42.8525 APM Low Demond Nrat Forda Berlaine Connector Generation 43.8 43.9 43.952 APM Low Demond Nrat Refaire Connector Forda 5.8 5.8 5.8 5.9 -71.270 43.952 APM Low Demond Nrat Medica Hangedon Housacon Housacon 6.8 4.8 4.9 -73.178 42.388 APM Low Arthenine Resona Housacon Housacon 6.3 -8 -8 -73.178 42.388 APM Low Arthenin Resona Sonapliethe Housacone												
Danon Prind Chestenfield Bersteine Constrained Bersteine Field Parallel Parallel <td></td>												
Date Brand Destartion 4.0 4.7 2.8 1.0 -7.8.08 4.2.130 ARM Law Deerfield Formaria Deerfield 6.7 8.5 -7.2.084 4.2.30 ARM Law Deerfield Part Min Deerfield 7.3 8.5 -7.2.032 4.2.30 ARM Law Demond frow Part Min Deerfield 7.3 8.5 7.2.032 4.2.30 ARM Law Demond frow Part Min Destartion Connectart 7.3.0 2.2.0 7.3.023 4.2.130 ARM Law Demond frow Part Min Destartion Housattorn												
Day Mill Yand Empletion Warrestar Connection Deerfield 6.1 6.4 6.3 77.6783 42.732 APM Low Deerfield River Deerfield Fankin Connection Deerfield 7.3 5.5 5.5 7.6.7578 42.737 APM Low Demrond Yand Rotterion Connection Grammation 5.9 5.5 5.0 7.6.7578 42.717 AL175 APM Low Demrond Yand Mastricine Connection 5.9 5.5 5.0 7.6.7578 42.717 AL175 APM Low East Instan Park Housettorn 6.0 1.0 7.42.978 APM Low Fibe Park Wardell Strongling Berlahine Connection 7.3 - - 7.7.2298 42.918 APM Low Fibe Park Strongling Berlahine Connection 7.3 - - 7.7.2793 4.2183 APM Low Gamel Likeo <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
Derindel Nevre Porizia Derindia Connaction Derindia 6.7 3.5 5.9 7.7.87 Athl Low Demond Pord Derindia Franciski Connaction Derindia 6.8 6.1 6.9 7.6.323 4.2.324 Athl Low Dan Fond Mestrici Barrychen Connaction Westrici 5.5 5.0 7.3 7.3 7.3 Athl Low Dan Fond Mestrici Barrychen Connaction 8.3 0.4 1.8 7.3 1.37 8.3 Athl Low Fishe Pord Mestrici Fishesit Fond Connaction 7.3 0.5 1.6 7.2 7.3 8.4 7.3 0.5 1.6 7.5 0.5 1.6 7.5 0.5 1.6 7.5 0.5 1.6 7.5 0.5 1.6 7.5 0.5 1.6 7.5 0.5 1.6 7.5 0.5 1.6 7.5 0.5 1.6 7.5 <td></td>												
Deenfel New Deenfel New Perfeid Frain New	,											
Demonde Nord Fundance States Connectado Chaopee 6.8 6.1 6.9 6.7 7.30728 4.23821 ARM Low Doe Fond Westfield S.5 6.4 1.9 -7.30728 4.21785 ARM Low Est Indes Fond New Mathoroug Berkhite Housatoric 6.3 2.9 1.3 -7.31283 4.20898 ARM Low Fields Fond Warnfalton Berkhite Housatoric 6.3 1.6 -7.32284 4.23888 ARM Low Fields Fond Warnfalton Berkhite Connectatot Con												
Dimmedication Dimmedication Family Description Disp Disp< Disp< Disp< <td></td>												
Den Prond Westfield Harmorden Constraint 5.5 D.4 1.9 -7.2017 4.21756 ARM Low Fanhan Reservoir Washington Berkhin Housatoric 6.3 2.9 1.3 -73.192 4.23895 ARM Low Fiske Prad Washington Berkhin Housatoric Connecticut 7.3 7.3 2.22 4.23895 ARM Low Fiske Prad Wardell Harnophin Connecticut 7.3 - - 7.3 2.22 2.2185 2.010 Low Fine Mile Prad Berkhine Connecticut 7.3 6.0 1.30 -7.3107 4.21874 Low Low Genewood Prad Templehon Westhinkt Connecticut 7.3 6.0 1.30 -7.3107 4.2183 ARM Low Genewood Prad Templehon Westhinkt Mesthinkt Baskan A.3 -7.3107 4.2183 ARM Low Genewood Prad Templehon												
East Index New Mariborough Berjshire Housatoric 6.9 7.4 10.0 7.3124 4.2080 ARM Low Feltor Lake Weshington Berkhire Housatoric 6.0 - 2.7 -7.3244 4.23805 ARM Low Field Plad Synrighied Hampden Connecticut 7.5 -5 1.6 -7.24.263 4.21985 2.010 Low Grane Lake Peru Berschire Connecticut 7.5 - -7.24.707 4.21898 2.010 Low Game Lake Peru Berschire Connecticut 7.6 - -7.24.707 4.24.838 ARM Low Game Lake Law/Trightam Berschire Connecticut Mastratic 6.0 1.8 - -7.2 7.9 4.41.9 0.0 Low Low <t< td=""><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					0							
Famba Reservic Weshington Berkshire Houstonic 6.3 2.9 1.3 7.32042 42.889 ARM Low Fekn Pond Wennell Famikin Connacticut 5.3 - 1.1 -7.22.820 42.5155 ARM Low Feve Mile Pond Springfield Harmaghine Connacticut Connacticut 7.3 6.1 7.2.4020 42.5159 ARM Low Gamet Lake Paru Berkshire Connacticut Connacticut 7.3 6.1 7.2.4075 42.2158 2.4003 ARM Low Gamet Lake Paru Berkshire Connacticut Kestifield 4.3 - -3.1 7.2.4258 4.24 7.2.103 ALM Low Haimmon Dond Chasterine Haidson Babish 4.3 - -7.2.1357 4.2.1083 ARM Low Haimmon Dond Chasterine Haidson Babish 4.3 - -7.2.1751 4.2.088 ARM Low												
Febro Disk Prime Berkshine Houstonic 6.00 - 2.7 2.72.228 42.8155 ARM Low Fike Mile Pand Springfield Hamplen Connectout 7.8 - - 7.2.039 42.138 2.010 Low Grame Lake Pru Berkshire Connectout Connectout 7.3 - - 7.2.0475 42.0433 ARM Low Grame Lake Pru Berkshire Connectout Hill 5.1 3.2 0.8 7.3.1078 42.0103 ARM Low Grame Mond Mount Maningum Praine Donnectout Balsh 3.1 -7.3.1172 42.0183 ARM Low Harris And Againam Hampshire Connectout Connectout 6.1 2.1 -7.2.108 42.0183 ARM Low Hay Macdow New Marborough Berksire Connectout Connectout 6.1 2.1 -7.2.1081 42.2181 ARM Low High		•										
Fishe Pand Wendel Fanklin Connection 5.3 - 0.1 7.7.2320 42.515 APM Low Forge Pond Granby Hampshire Connection 7.3 6.6 7.5.030 42.1388 2.010 Low Gamet Lake Paru Berkshire Connection 7.3 6.4 4.3 4.4 7.0.475 42.2083 ALM Low Gamet Lake Paru Berkshire Huatson: 7.3 8.0 1.3.0 7.2.1018 4.2.554 ALM Low Gaulder Phad Maurut Washington Berkshire Connection 8.0 - - 7.2.4375 4.2.108 ALM Low Hammond Phond Connection Nation Ration - - - 7.2.4375 4.2.108 ARM Low Heys Pond Oas Berkshire Connection 6.1 2.5 4.2 - 7.2.104 4.2.318 ARM Low Heys Pond Das		•										
Fire Mich Pond Springfield Hampden Connecticut 75 6.5 16.8 7-25038 42.188 20.10 Low Gamel Lake Peru Berkshire Connecticut Westleft 6.4 4.4 6.4 7.3.075 42.289 AZD Low Genee Pond Impletion Workshire Housatone 5.1 3.2 0.8 7.3.075 42.289 AZD Low Genee Pond Morter Mathington Refaine Basisin 5.1 3.2 0.3 7.3.2785 42.1083 AAN Low Hammond Pand Onseticut Gonnecticut 6.1 2.5 2.2 7.2.431 42.378 AAN Low Hawy Madoro Mathine Hams find Connecticut 6.1 2.4 7.2.443 42.378 AAN Low Hawy Madoro Mathine Hams find Connecticut Connecticut 6.1 -2 4.2.1 7.2.443 42.378 AAN Low Hay Madoro Mathine Hamsatone		0										
Forge Pond Granb [*] Hampshire Connecticut Versite Sector Sector Sector <td></td>												
Game Peru Berkshrie Connecticut Wesfield 6.4 4.3 6.4 -73.0475 42.4083 ARM Low Goese hond Lace/Ymphan Berkshrie Housand 74 6.0 72.0410 42.5422 ARM Low Greenwood Pond Monthyning Refrict Humon Berkshrie Humon ARM Low Harmond Pond Chesterfield Hampshire Connecticut Rot 8.2 5.2 4.2 -72.198 2.4105 2.010 Low Hybesport Parkam Hampshire Connecticut Rot 8.3 4.2 -72.4712 2.2128 ARM Low Hybesport Parkam Housatoric Housatoric Housatoric Rot 3.3 4.0 -73.172 2.2289 ARM Low Hybesport Parkam Housatoric Housatoric Rot 3.3 4.0 -73.0210 2.2375 4.2172 2.009 High Housatoric Housatoric												
Goose Pond Lear/Yimpham Bershire Housatonic 73 6.0 1.3 2.0 0.8 -73.1808 4.2874 20.80 Low Guider Pand Mount Washington Bershire Hudson Baish A.3 - -73.475 42.183 ARM Low Hummord Pand Cheneticat Westfield 6.9 - - -72.4715 42.031 ARM Hum Hundy Paserovin Paham Hangthine Connecticut 6.1 -2 2.4 -72.118 42.0498 ARM Low Hundy Paserovin Paham Hangshire Connecticut 6.1 - -2 4.72.404 42.3816 ARM Low Hunsstonic River Lenox Bershire Housatonic 7.9 32.0 13.1 -73.404 42.393 2.09 High Housatonic River Lenox Bershire Housatonic 7.9 32.0 13.1 -73.414 42.217.1 2.099 High Housa	0	,										
Greenwood Pond Templeton Worcester Connecticut Millers 5.1 3.2 0.8 -72.010 42.512 APM Low Hammond Pond Chesterliel Hammohe Connecticut Westfield 6.3 -7.27895 42.105 APM Low Hars Pond Operating Connecticut Connecticut 6.3 -7.27895 42.010 APM Low Hypes Rowin Paham Hampshine Connecticut Gonnecticut 6.1 2.5 4.2 -7.2408 42.89 APM Low Hypes Rowin Paham Hampshine Connecticut Visit Connecticut 6.1 2.5 1.2 -7.2404 42.89 APM Low Housatroin Rower Becket Berishine Housatroin Visit Connecticut 6.1 6.3 1.3 -7.2404 42.810 APM Low Housatroin Rower Lenox Berishine Housatroin Housatroin Rousatroin Rousatroin Rousatroin												
Guider Pond Moint Washington Berkshire Hudson Baish 4.3 - -7.4 37.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Harmsond Pond Chesterfield Hamgshine Connecticut Westfield 6.9 - - -72.7898 42.4105 2.010 Low Harts Pond Applexame Hamgshine Connecticut 6.1 2.5 4.2 -72.481 42.081 ARM Low Haws Pond New Macoox Berkshine Connecticut 6.1 2.5 4.2 -72.404 42.381 ARM Low Hays Pond Disk Berkshine Housatonic 6.4 3.9 4.0 -73.172 42.2083 ARM Low Housatonic Rver Lerox Berkshine Housatonic 7.9 3.2.0 13.1.0 -73.2474 42.393 20.09 High Housatonic Rver Lerox Berkshine Housatonic 7.9 3.2.0 13.0 -73.2474 42.3475 2009 High Housatonic Rver Stockbridge Berkshine Housatonic Rver 3.0 13.0 -73.2474 42.347 2.009 High <												
Harts Pond Agawam Hampber Connecticut 8.0 26.5 2.4 2.7.2105 4.2.0371 ARM High Hawley Reservor New Marlborough Berkshire Connecticut Farmington 73 -72 A131 A20351 ARM Low Haylsep Shord Diss Berkshire Connecticut Cal 3.9 4.0 -73.1472 4.22816 ARM Low Horn Pond Beoket Berkshire Connecticut Cal 3.9 4.0 -73.4261 4.23816 ARM Low Housatonic Rver Lenox Berkshire Housatonic 7.9 3.0 131.0 -73.2471 42.397 2009 High Housatonic Rver Stockhridge Berkshire Housatonic 8.1 4.0 131.0 -73.2472 42.2871 ARM Low Housatonic Rver Stockhridge Berkshire Housatonic 8.2 4.0 131.0 -73.4472 42.2876 ARM Low <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Hawkey Reservoir Peiham Hampshire Connecticut Family Family Connecticut Family												
Haya Randow Pond New Marlborough Berkshire Connectiout Famington 73 73 73 72 73 72 73 72		0										0
Hype Sprond Otis Berkshire Housatoric 6.4 3.9 4.0 7.21.472 42.2089 ARM Low Harn Reparting Berkshtre Connecticut 6.8 5.2 10.4 -72.2080 42.3816 ARM Low Housatonic River Lenox Berkshtre Housatonic 7.9 32.0 131.0 -73.2405 42.3939 2009 High Housatonic River Lenox Berkshtre Housatoric 7.9 35.0 131.0 -73.2472 42.2781 2009 High Housatoric River Stockhridge Berkshtre Housatoric 8.0 3.0 14.10 -73.3854 42.2513 2009 High Housatoric River Stockhridge Berkshtre Housatoric 7.2 18.0 7.3 7.3425 42.1678 ARM Low Lake Averic Stockhridge Berkshtre Housatoric 7.2 7.8 42.1678 ARM Low Lake Mareric Stockhridge Berks	,											
Hilf Responi Pelham Hampshire Connectiou Kertifiel 6.1 - 2.4 7.2 4.04 4.2.816 ARM Low Homs Pond Lenox Berkshire Housatonic 7.9 32.0 13.0 -73.2405 42.3839 20.09 High Housatonic River Lenox Berkshire Housatonic 7.9 32.0 13.10 -73.247.0 42.347.5 20.09 High Housatonic River Lenox Berkshire Housatonic 8.0 35.0 13.10 -73.324.4 42.347.5 20.09 High Housatonic River Stockkridge Berkshire Housatonic 8.2 4.00 13.0 -73.324.4 42.347.6 20.09 High Knights Pand Belchertown Hampshire Connecticut Koisatonic 8.4 32.0 13.0 -73.247.8 42.347.6 ARM Low Lake Aperic Monterey Berkshire Housatonic 7.6 1.40 -73.237.7 42.108.9 ARM	· ·	•			0							
Horn Pand Becket Berkshire Connectical Westfield 6.8 5.2 10.4 -73.0250 42.2825 ARM Low Housatonic River Lenox Berkshire Housatonic 7.9 35.0 131.0 -73.2447 42.3475 2009 High Housatonic River Lee Berkshire Housatonic 8.0 8.50 13.0 -73.247 42.2781 2009 High Housatonic River Stockbridge Berkshire Housatonic 8.3 4.00 13.00 -73.3274 42.2781 2009 High Housatonic River Stockbridge Berkshire Housatonic 8.3 4.0 14.10 -73.3425 42.2181 AVM Low Lake Averic Stockbridge Berkshire Housatonic 7.2 4.0 7.3.2750 42.1678 A2.091 12.0 -7.3.2750 42.6742 AVM Low Lake Carried Monterey Berkshire Housatonic 14.0 4.00 -72.3171												
Housstonic River Lenox Berkshire Housstonic 79 72 131.0 -73.24p5 42.393 2009 High Housstonic River Lenox Berkshire Housstonic 8.0 35.0 131.0 -73.24p5 42.391 2009 High Housstonic River Stockhridge Berkshire Housstonic 8.2 43.0 130.0 -73.24p1 42.2871 2009 High Housstonic River Stockhridge Berkshire Housstonic 8.2 43.0 130.0 -73.24p1 42.2871 20.09 High Krights Pord Belchertown Hampshire Connecticut Chicopec 5.5 -0.3 -72.4128 42.316 ARM Low Lake Denison Monterey Berkshire Housstonic R.4 4.0 4.0 -73.2750 42.1678 2009 High Lake Denison Monterey Berkshire Housstonic R.4 4.0 7.0 -77.2127 42.1639 2.00 AL <												
Housatonic River Lenox Berkshire Housatonic 79 53.0 13.1.0 -73.2447 42.3475 2009 High Housatonic River Lee Berkshire Housatonic 8.0 35.0 13.6.0 -73.272 42.2781 2009 High Housatonic River Stockbridge Berkshire Housatonic 8.3 8.3 14.1.0 -73.324 42.2781 2009 High Housatonic River Stockbridge Berkshire Housatonic 8.3 8.3 14.10 -73.325 42.167 AM Meduat Lake Averic Stockbridge Berkshire Housatonic 7.2 8.1 -73.325 42.167 2009 High Lake Denison Winchendon Worcester Connecticut Millers 6.0 5.2 1.7 -72.081 42.642 ARM Low Lake Iarinet Montery Berkshire Housatonic 8.6 9.3.1 7.8 -72.517 42.10.8 MM Low <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Housatonic River Lee Berkshire Housatonic Novastonic Solo 35.0 15.0 -73.272 42.2781 2009 High Housatonic River Stockbridge Berkshire Housatonic Na 40.0 139.0 -73.3264 42.2513 2009 High Knights Pond Beichertown Hampshire Connecticut Chicopee 5.5 - 0.33 -72.4128 42.2513 2009 High Lake Averic Stockbridge Berkshire Housatonic Ru 140.0 6.0 5.2 - 0.33 -72.4728 42.1678 2009 High Lake Denison Wonterey Berkshire Housatonic Ru 6.0 5.2 1.7 -72.0671 42.1674 RM Low Lake Denison Wonterey Berkshire Housatonic Ru 1.0 -73.2675 42.018 2009 High Lake Denison Montarye Franklin Connecticut Millers 7.3 1.0												•
Housatonic River Stockbridge Berkshire Housatonic Bousatonic 8.3 40.0 13.00 -73.3264 42.2870 2009 High Housatonic River Stockbridge Berkshire Housatonic R.5 - 0.3 -73.3654 42.2870 2009 High Lake Averic Stockbridge Berkshire Housatonic R.4 3.0 15.0 -73.3424 42.3167 ARM Medum Lake Averic Stockbridge Berkshire Housatonic R.4 3.0 15.0 -73.3424 42.6472 ARM Medum Lake Daried Monterey Berkshire Housatonic R.4 3.0 -7 -72.0787 42.149 ARM Low Lake Garied Monterey Berkshire Housatonic R.6 9 3.1 7.8 -72.5127 42.149 ARM Low Lake Matama Orange Frankin Connecticut Milers 6.6 3.0 40 -72.2171 42.6864												0
Housatonic River Stockhridge Berkshire Housatonic 8.3 43.0 14.10 -73.8654 42.2518 A2.09 High Knights Pond Belchertown Hangshire Conception 5.0 .03 -72.4128 42.3167 ARM Medium Lake Averic Stockhridge Berkshire Housatonic 7.2 18.9 35.1 -73.3425 42.1678 ARM Medium Lake Denison Monterey Berkshire Housatonic 7.8 14.0 46.0 -73.2081 42.1692 20.09 High Lake Carfield Monterey Berkshire Housatonic 7.8 14.0 46.0 -73.2081 42.189 ARM Low Lake Matawa Orange Fankin Connecticut Milers 7.3 - -72.2717 42.148 ARM Low Lake Matawa Orange Fankin Connecticut Connecticut 6.6 3.0 4.0 -72.2731 42.5666 2010 Low												0
Knights Pond Belchertown Hampshire Connecticut Chicopee 5.5 - 0.3 -72.4128 42.3516 ARM Low Lake Averic Stockbridge Berkshire Housatonic 72 18.9 35.1 -73.275 42.1678 A2.1678 A2.1698 A2.1899 A001 Accertariates Armone Armone Low Lake Anstheld Great Barrington Berkshire Housatonic R.6 19.0 - -73.2675 42.2018 A2001 Low Lake Mansfield Great Barrington Berkshire Connecticut Millers 6.6 3.0 4.0 -72.2714 42.358 A2010 Low Lake Mataic		0										•
Lake Avenic Stockhridge Berkshire Housatonic 7.2 18.9 35.1 -73.3425 42.3167 ARM Medium Lake Buel Monterey Berkshire Housatonic 6.4 32.0 -73.2071 42.1678 2009 High Lake Garfield Monterey Berkshire Housatonic 7.8 14.0 46.0 -73.2081 42.1693 2009 Medium Lake Garfield Monterey Berkshire Housatonic 6.8 19.0 - -73.3675 42.2018 2009 High Lake Mansfield Great Barrington Berkshire Housatonic 6.8 19.0 - -73.3675 42.2018 2009 High Lake Matawa Orange Frankin Connecticut Millers 6.8 19.0 - -72.2731 42.5656 2010 Low Lake Rhounta Orange Frankin Connecticut Millers 5.8 - 1.6 -71.9379 42.621 2010 Low <		•					43.0					•
Lake Buel Monterey Berkshire Housatonic Housatonic 8.4 32.0 132.0 -73.2750 42.1678 2009 High Lake Garifield Monterey Berkshire Housatonic 7.8 -72.0871 42.642 ARM Low Lake Garifield Monterey Berkshire Housatonic 7.8 -72.5127 42.1678 2.009 High Lake Lorraine Springfield Hampden Connecticut Chicopee 6.9 3.1 7.8 -72.5127 42.1674 2010 Low Lake Mansfield Great Barrington Berkshire Housatonic Kale 9.0 -7.3.875 42.2018 2.009 High Lake Marce Orange Frankin Connecticut Millers 6.6 3.0 4.0 -72.2751 42.6704 Not Low Lake Warer Hadley Hampshire Connecticut Millers 5.6 - 1.6 -71.9379 42.684 ARM Low Lake Wa	•											
Lake Denison Winchendon Worcester Connecticut Millers 6.0 5.2 1.7 -72.0871 42.6422 ARM Low Lake Garfield Monterey Berkshire Housatonic Flousatonic Nicopee 6.9 3.1 7.8 -72.088 42.189 Q009 Medium Lake Mansfield Great Barrington Berkshire Housatonic 8.6 19.0 - -73.3675 42.2018 2009 High Lake Matawa Orange Franklin Connecticut 6.6 3.0 4.0 -72.3275 42.189 RAM Low Lake Matawa Orange Franklin Connecticut 6.6 3.0 4.0 -72.2731 42.6868 2010 Low Lake Warner Hadley Hampshire Connecticut Connecticut 6.2 5.0 2.0 -72.4283 42.4967 2010 Low Lake Warner Hadley Franklin Connecticut Millers 5.9 2.0 4.0		•										
Lake GarfieldMontereyBerkshireHousatonicHousatonic7.814.046.0-73.208842.189920.9MediumLake LorraineSpringfieldHampdenConnecticutChicopee6.93.17.8-72.512742.1439ARMLowLake MattawaOrangeFranklinConnecticutMillers7.372.327542.57042010LowLake MattawaOrangeFranklinConnecticutMillers6.42.52.3-72.513342.5666ARMLowLake MattawaOrangeFranklinConnecticutMillers6.63.04.0-72.273142.5666ALMLowLake WarnerHadleyHampshireConnecticut7.310.02.0-72.513142.8684ARMLowLake WarnerHadleyHampshireConnecticut6.63.04.0-72.273142.6844ARMLowLake WattakErvingFranklinConnecticutMillers5.6-1.6-71.937942.62212010LowLaurel LakeErvingFranklinConnecticutMillers5.92.04.0-72.279442.62212010LowLaurel LakeErvingBerkshireHudsonicHudsonic7.25.010.0-72.895942.2936ARMLowLawel LakeChesterHampdenConnecticutKiffield725.010.0-72.2		,										
Lake Lorraine Springfield Hampden Connecticut Chicopee 6.9 3.1 7.8 -72.8172 42.1493 ARM Low Lake Mansfield Great Barrington Berkshire Housatonic 6.6 19.0 - -73.8675 42.2018 2009 High Lake Mattiwa Orange Frankin Connecticut 6.6 2.50 2.3 -72.8173 42.5606 ARM Low Lake Rohunta Orange Frankin Connecticut 6.6 3.0 4.0 -72.8173 42.5666 2010 Low Lake Watatic Ashburnham Worcester Connecticut 7.3 10.0 2.0 -72.8813 42.4967 2010 Low Lake Watatic Ashburnham Worcester Connecticut Millers 5.9 2.0 4.0 -72.8973 42.6821 2010 Low Lake Watatic Ashburnham Worcester Connecticut 70 5.0 4.0 73.856 42.0803 ARM												
Lake Mansfield Great Barrington Berkshire Housatonic Housatonic 8.6 19.0 - -73.3675 42.2018 2009 High Lake Mattawa Orange Franklin Connecticut Millers 7.3 - - 72.8133 42.5066 ARM Low Lake Resant Montague Franklin Connecticut 7.3 1.0 22.0 -72.8131 42.5666 2010 Low Lake Warner Haldy Hampshire Connecticut 7.3 10.0 22.0 -72.4281 42.8684 ARM Low Lake Warner Hadley Hampshire Connecticut 6.6 3.0 4.0 -72.4731 42.6884 ARM Low Lake Worla Shutesbury Franklin Connecticut Millers 5.9 2.0 4.0 -72.4283 42.4967 2010 Low Lawe Uake Keyla Eerylano Berkshire Housatonic 8.13 4.0 -72.4283 42.4961 2		,										
Lake MattawaOrangeFranklinConnecticutMillers7.372.327542.57042010LowLake PleasantMontagueFranklinConnecticutConnecticut6.42.52.3-72.513342.5606ARMLowLake RhuntaOrangeFranklinConnecticutMillers6.63.04.0-72.273142.56662010LowLake WarnerHadleyHampshireConnecticut7.310.022.0-72.581142.58682010LowLake WataticAshburnhamWorcesterConnecticut6.65.6-1.6-71.937942.6284AARMLowLake WyolaShutesburyFranklinConnecticut6.25.02.0-72.428342.49672010LowLaurel LakeLee/LenoxBerkshireHousatonic8.144.0162.0-73.262042.32192009HighLaurel LakeLee/LenoxBerkshireHousatonic8.14.40162.0-73.262042.23122010LowLowend PondGreat BarringtonBerkshireHousatonic7.720.16.6-1.39.945.6542.0803ARMLowLower Highland LakeGoshenHampshireConnecticut7.720.16.6-7.3.31742.2317ARMHighLower Highland LakeGoshenHampshireConnecticut7.720.1<		1 0										
Lake PleasantMontagueFranklinConnecticutConnecticut6.62.52.3-72.513342.5606ARMLowLake RohuntaOrangeFranklinConnecticutMillers6.63.04.0-72.273142.56562010LowLake WarnerHadleyHampshireConnecticutMillers6.63.02.0-72.581142.3688ARMLowLake WataticAshburnhamWorcesterConnecticutMillers5.6-1.6-71.937942.6884ARMLowLake WataticAshburnhamWorcesterConnecticut6.25.02.0-72.428342.49672010LowLaurel LakeErvingFranklinConnecticutMillers5.6-1.6-71.397942.68212010LowLaurel LakeLee/LenoxBerkshireHousatonicHousatonic8.144.0162.0-73.262042.32192010LowLorde PondMount WashingtonBerkshireHudsonBabish4.32.9-73.455642.0803ARMLowLorde PondGreat BarringtonBerkshireHousatonic7720.16.6-7.3.978242.517ARMLighLower Spectacle PondSandisfieldBerkshireConnecticut703.06.0-72.798542.45462010LowLower Spectacle PondSandisfieldBerkshireConnecticut7413.221.5 <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>19.0</td> <td>-</td> <td></td> <td></td> <td></td> <td>0</td>		•					19.0	-				0
Lake Rohunta Orange Franklin Connecticut Millers 6.6 3.0 4.0 -72.2731 42.5656 2010 Low Lake Warner Hadley Hampshire Connecticut Millers 5.6 - 1.6 -72.5811 42.3858 2010 Low Lake Watatic Ashburnham Worcester Connecticut Millers 5.6 - 1.6 -71.9379 42.6884 ARM Low Lake Wyola Shutesbury Franklin Connecticut Millers 5.9 2.0 4.0 -72.4723 42.6221 2010 Low Laurel Lake Lev/Lenox Berkshire Houstonic 8.1 44.0 162.0 -73.2620 42.321 2009 High Lee Pond Mount Washington Berkshire Houstonic 7.7 20.1 6.76 -73.3917 42.2317 ARM High Lower Highland Lake Goshen Hampshire Connecticut 7.0 5.0 6.0 -72.7855		0										
Lake WarnerHandberHampshireConnecticutConnecticut7.310.022.0-72.581142.88582010LowLake WataticAshburnhamWorcesterConnecticutMillers5.6-1.6-71.937942.6884ARMLowLake WyolaShutsburyFranklinConnecticutConnecticut6.25.02.0-72.428342.49672010LowLaurel LakeErvingFranklinConnecticutMillers5.92.04.0-72.377942.62212010LowLaurel LakeLee/LenoxBerkshireHousatonicHousatonic8.144.0162.0-73.262042.32192009HighLee PondMount WashingtonBerkshireHudsonBabish4.32.9-73.455642.0803ARMLowLong PondGreat BarringtonBerkshireHousatonicHousatonic7720.167.6-73.391742.2317ARMHighLower Highland LakeGoshenHampshireConnecticutConnecticut703.06.0-72.798542.5107ARMLowLower Spectacle PondSandifieldBerkshireHudsonHoosic6.6-10.6-73.079242.45462010LowMauserts PondClarksburgBerkshireHudsonHoosic7517.355.3-73.31442.1667ARMLowMill PondSheffieldBerkshireHousatoni		•										
Lake WataticAshburnhamWorcesterConnecticutMillers5.6-1.6-71.937942.6844ARMLowLake WolaShutesburyFranklinConnecticutConnecticut6.25.02.0-72.428342.49672010LowLaurel LakeErvingFranklinConnecticutMillers5.92.04.0-72.428342.62212009HighLaurel LakeLee/LnoxBerkshireHousatonicHousatonic8.14.32.9-73.455642.0803ARMLowLittleville LakeChesterHampdenConnecticutWestfield7.25.010.0-72.899542.29362010LowLong PondGreat BarringtonBerkshireHousatonicHousatonic7.720.16.6-7.1.357942.517ARMHighLowerl PondHubbardstonWorcesterConnecticutConceticut7.03.06.0-72.798542.4562010LowLower Spectacle PondSandisfieldBerkshireConnecticutFarmington6.54.86.3-73.118642.1667ARMLowMauserts PondCalrsburgBerkshireHudsonHonsicu7.9-8.5-73.371442.2137ARMLowMillerodColrainFranklinConnecticutDeerfield7.413.22.15-72.749242.651ARMLowMillerodSheffieldBerkshire <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
Lake WyolaShutesburyFranklinConnecticutConnecticut6.25.02.0-72.428342.49672010LowLaurel LakeErvingFranklinConnecticutMillers5.92.04.0-72.377942.62212010LowLaurel LakeLee/LenoxBerkshireHousatonicNousatonic8.144.0162.0-73.262042.32192009HighLee PondMount WashingtonBerkshireHudsonBabish4.32.9-73.455642.0803ARMLowLittleville LakeChesterHampdenConnecticutWestfield7.25.01.0-72.899542.2317ARMHighLowewell PondGreat BarringtonBerkshireHousatonicHousatonic7.720.167.6-73.391742.2317ARMLowLower Highland LakeGoshenHampshireConnecticutConnecticut7.03.06.0-72.798542.45622010LowMauserts PondClarksburgBerkshireConnecticutFarmington6.54.86.3-73.118642.1667ARMLowMaleed PondColrainFranklinConnecticutMeosatonic7.9-88.5-73.371442.1203ARMHighMillerodSheffieldBerkshireHousatonic7.9-88.5-73.371442.1203ARMLowMoleod PondColrainFranklinConnecticut		,										
Laurel LakeErvingFranklinConnecticutMillers5.92.04.0-72.377942.62212010LowLaurel LakeLee/LenoxBerkshireHousatonicHousatonic8.144.0162.0-73.262042.32192009HighLee PondMount WashingtonBerkshireHudsonBabish4.32.9-73.455642.0803ARMLowLittleville LakeChesterHampdenConnecticutWestfield7.25.010.0-72.899542.29362010LowLong PondGreat BarringtonBerkshireHousatonicHousatonic7.720.167.6-73.391742.6442010LowLower Highland LakeGoshenHampshireConnecticutConnecticut7.03.06.0-72.798542.45462010LowLower Spectacle PondSandisfieldBerkshireConnecticut7.03.06.0-72.798542.45462010LowMauserts PondClarksburgBerkshireConnecticutTermington6.54.86.3-73.118642.1667ARMLowMillerod PondColrainFranklinConnecticutDeerfield7.413.221.5-72.749242.6514ARMMediumMillerod PondSheffieldBerkshireHousatonic7.9-88.5-73.371442.1203ARMLowMillerod PondSheffieldBerkshireHousatonic												
Laurel LakeLee/LenoxBerkshireHousatonicHousatonic8.144.0162.0-73.262042.32192009HighLee PondMount WashingtonBerkshireHudsonBabish4.32.9-73.455642.0803ARMLowLittleville LakeChesterHampdenConnecticutWestfield7.25.010.0-72.899542.29362010LowLong PondGreat BarringtonBerkshireHousatonic7.720.167.6-73.391742.2317ARMHighLovewell PondHubbardstonWorcesterConnecticutChopee5.9-1.3-71.956942.5107ARMLowLower Highland LakeGoshenHampshireConnecticutConnecticut7.03.06.0-72.798542.45462010LowLower Spectacle PondSandisfieldBerkshireConnecticutFarmington6.54.86.3-73.118642.1667ARMLowMauserts PondClarksburgBerkshireHudsonHoosic6.6-10.6-73.079242.6514ARMLowMill PondSheffieldFanklinConnecticutDeerfield7.413.221.5-72.749242.6514ARMHousMill PondSheffieldBerkshireHousatonic7.9-88.5-73.371442.1203ARMHousMinott Pond SouthWestminsterWorcesterConnecticutMil		,										
Lee PondMount WashingtonBerkshireHudsonBabish4.32.9-73.455642.0803ARMLowLittleville LakeChesterHampdenConnecticutWestfield725.010.0-72.899542.29362010LowLong PondGreat BarringtonBerkshireHousatonicHousatonic7.720.167.6-73.391742.217ARMHighLovewell PondHubbardstonWorcesterConnecticutChicopee5.9-1.3-71.956942.5107ARMLowLower Highland LakeGoshenHampshireConnecticutConnecticut7.03.06.0-72.798542.45462010LowLower Spectacle PondSandisfieldBerkshireConnecticutFarmington6.54.86.3-73.118642.1667ARMLowMauserts PondClarksburgBerkshireHudsonHoosic6.6-10.6-73.079242.7367ARMLowMille PondSheffieldBerkshireHousatonicDeerfield7.413.22.15-72.749242.6514ARMMediumMiller PondSheffieldBerkshireHousatonicT.9-88.5-73.371442.2103ARMLowMiller PondWorcesterConnecticutMillers4.92.2-0.3-71.960442.5313ARMLowMohawk LakeStockbridgeBerkshireHousatonic7.5 <t< td=""><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		0										
Littleville LakeChesterHampdenConnecticutWestfield7.25.010.0-72.899542.29362010LowLong PondGreat BarringtonBerkshireHousatonic7.720.167.6-73.391742.2317ARMHighLovewell PondHubbardstonWorcesterConnecticutChicopee5.9-1.3-71.956942.5107ARMLowLower Highland LakeGoshenHampshireConnecticutConnecticut7.03.06.0-72.798542.45462010LowLower Spectacle PondSandisfieldBerkshireConnecticutFarmington6.54.86.3-73.118642.1667ARMLowMauserts PondClarksburgBerkshireHudsonHoosic6.6-10.6-73.079242.7367ARMLowMile PondClarianFranklinConnecticutDeerfield7.413.221.5-72.749242.6514ARMMediumMill PondSheffieldBerkshireHousatonic7.9-88.5-73.371442.1203ARMHighMinott Pond SouthWestminsterWorcesterConnecticutMillers4.92.2-0.3-71.960442.5313ARMLowMohawk LakeStockbridgeBerkshireHousatonic7.517.355.3-73.371442.6564ARMLowNorth PondGreenfieldFranklinConnecticutMillers6							44.0					•
Long PondGreat BarringtonBerkshireHousatonicNuNuNuHighLovewell PondHubbardstonWorcesterConnecticutChicopee5.9-1.3-71.956942.5107ARMLowLower Highland LakeGoshenHampshireConnecticutConnecticut7.03.06.0-72.798542.45462010LowLower Spectacle PondSandisfieldBerkshireConnecticutFarmington6.54.86.3-73.118642.1667ARMLowMauserts PondClarksburgBerkshireHudsonHoosic6.6-10.6-73.079242.7367ARMLowMcleod PondColrainFranklinConnecticutDeerfield7.413.221.5-72.749242.6514ARMMediumMill PondSheffieldBerkshireHousatonic7.9-88.5-73.371442.103ARMHighMinott Pond SouthWestminsterWorcesterConnecticutMillers4.92.2-0.3-71.960442.5313ARMLowMohawk LakeStockbridgeBerkshireHousatonic7.517.355.3-73.371442.6564ARMLowNorth PondGreenfieldFranklinConnecticutMillers6.1-2.0-72.347342.6564ARMLowNohawk LakeStockbridgeBerkshireConnecticutDeerfield6.8-21.0-72.37342		Mount Washington	Berkshire	Hudson			-	-2.9			ARM	Low
Lowewell PondHubbardstonWorcesterConnecticutChicopee5.9-1.3-71.956942.5107ARMLowLower Highland LakeGoshenHampshireConnecticut7.03.06.0-72.798542.45462010LowLower Spectacle PondSandisfieldBerkshireConnecticutFarmington6.54.86.3-73.118642.1667ARMLowMauserts PondClarksburgBerkshireHudsonHoosic6.6-10.6-73.079242.7367ARMLowMcleod PondColrainFranklinConnecticutDeerfield7.413.221.5-72.749242.6514ARMMediumMill PondSheffieldBerkshireHousatonic7.9-88.5-73.371442.1203ARMHighMinott Pond SouthWestminsterWorcesterConnecticutMillers4.92.2-0.3-71.960442.5313ARMLowMohawk LakeStockbridgeBerkshireHousatonic7.517.355.3-73.356942.2958ARMMediumMoores PondWarwickFranklinConnecticutMillers6.1-2.0-72.347342.6564ARMLowNewell PondGreenfieldFranklinConnecticutDeerfield6.8-21.0-72.574942.6514ARMLowNorth PondGreenfieldFranklinConnecticutDeerfield6.8-<							5.0	10.0	-72.8995	42.2936	2010	Low
Lower Highland LakeGoshenHampshireConnecticutConnecticut7.03.06.0-72.798542.45462010LowLower Spectacle PondSandisfieldBerkshireConnecticutFarmington6.54.86.3-73.118642.1667ARMLowMauserts PondClarksburgBerkshireHudsonHoosic6.6-10.6-73.079242.7367ARMLowMcleod PondColrainFranklinConnecticutDeerfield7.413.221.5-72.749242.6514ARMMediumMill PondSheffieldBerkshireHousatonic7.9-88.5-73.371442.1203ARMHighMinott Pond SouthWestminsterWorcesterConnecticutMillers4.92.2-0.3-71.896442.6514ARMMediumMohawk LakeStockbridgeBerkshireHousatonic7.517.355.3-73.371442.203ARMLowNoores PondWarwickFranklinConnecticutMillers6.1-2.0-72.347342.6564ARMLowNewell PondGreenfieldFranklinConnecticutDeerfield6.8-21.0-72.574942.6564ARMLowNorth PondFloridaBerkshireConnecticutDeerfield6.8-21.0-72.574942.6564ARMLowNewell PondGreenfieldFranklinConnecticutDeerfield <td< td=""><td>Long Pond</td><td>Great Barrington</td><td>Berkshire</td><td>Housatonic</td><td>Housatonic</td><td>7.7</td><td>20.1</td><td>67.6</td><td>-73.3917</td><td>42.2317</td><td>ARM</td><td>High</td></td<>	Long Pond	Great Barrington	Berkshire	Housatonic	Housatonic	7.7	20.1	67.6	-73.3917	42.2317	ARM	High
Lower Spectacle PondSandisfieldBerkshireConnecticutFarmington6.54.86.3-73.118642.1667ARMLowMauserts PondClarksburgBerkshireHudsonHoosic6.6-10.6-73.079242.7367ARMLowMcleod PondColrainFranklinConnecticutDeerfield7.413.221.5-72.749242.6514ARMMediumMill PondSheffieldBerkshireHousatonicHousatonic7.9-88.5-73.371442.1203ARMHighMinott Pond SouthWestminsterWorcesterConnecticutMillers4.92.2-0.3-71.960442.5313ARMLowMohawk LakeStockbridgeBerkshireHousatonic7.517.355.3-73.356942.2958ARMMediumMoores PondWarwickFranklinConnecticutMillers6.1-2.0-72.47342.6564ARMLowNewell PondGreenfieldFranklinConnecticutDeerfield6.8-21.0-72.574942.6564ARMLowNorth PondFloridaBerkshireHousatonic7.720.075.0-73.269542.0514ARMLowNorth PondEloridaBerkshireConnecticutDeerfield6.13.32.3-73.053942.6514ARMLowOnta LakePittsfieldBerkshireConnecticutDeerfield6.1	Lovewell Pond	Hubbardston	Worcester	Connecticut	Chicopee	5.9	-	1.3	-71.9569	42.5107	ARM	Low
Mauser's PondClarksburgBerkshireHudsonHoosic6.6-10.6-73.079242.7367ARMLowMcleod PondColrainFranklinConnecticutDeerfield7.413.221.5-72.749242.6514ARMMediumMill PondSheffieldBerkshireHousatonicHousatonic7.9-88.5-73.371442.1203ARMHighMinott Pond SouthWestminsterWorcesterConnecticutMillers4.92.2-0.3-71.960442.5313ARMLowMohawk LakeStockbridgeBerkshireHousatonic7.517.355.3-73.356942.2958ARMMediumMoores PondWarwickFranklinConnecticutMillers6.1-2.0-72.347342.6564ARMLowNewell PondGreenfieldFranklinConnecticutDeerfield6.8-21.0-72.574942.6356ARMLowNorth PondFloridaBerkshireConnecticutDeerfield6.13.32.3-73.05942.6514ARMLowNorth PondFloridaBerkshireHousatonic7.720.075.0-73.269542.47602009HighOnta LakePittsfieldBerkshireConnecticutFarmington6.86.073.043242.14472009LowPelham LakeRoweFranklinConnecticutDeerfield6.5<	Lower Highland Lake	Goshen	Hampshire	Connecticut	Connecticut	7.0	3.0	6.0	-72.7985	42.4546	2010	Low
Mcleod PondColrainFranklinConnecticutDeerfield7.413.221.5-72.749242.6514ARMMediumMill PondSheffieldBerkshireHousatonic7.9-88.5-73.371442.1203ARMHighMinott Pond SouthWestminsterWorcesterConnecticutMillers4.92.2-0.3-71.960442.5313ARMLowMohawk LakeStockbridgeBerkshireHousatonic7.517.355.3-73.356942.2958ARMMediumMoores PondWarwickFranklinConnecticutMillers6.1-2.0-72.347342.6564ARMLowNewell PondGreenfieldFranklinConnecticutDeerfield6.8-21.0-72.574942.6356ARMLowNorth PondFloridaBerkshireHousatonic7.720.075.0-73.269542.476020.09HighOnta LakePittsfieldBerkshireConnecticutDeerfield6.13.32.3-73.043242.476020.09HighOtis ReservoirOtis/TollandBerkshireConnecticutFarmington6.86.073.043242.144720.09LowPelham LakeRoweFranklinConnecticutDeerfield6.572.891742.702220.10Low	Lower Spectacle Pond	Sandisfield	Berkshire	Connecticut	Farmington	6.5	4.8	6.3	-73.1186	42.1667	ARM	Low
Mill PondSheffieldBerkshireHousatonicHousatonic7.9-88.5-73.371442.1203ARMHighMinott Pond SouthWestminsterWorcesterConnecticutMillers4.92.2-0.3-71.960442.5313ARMLowMohawk LakeStockbridgeBerkshireHousatonic7.517.355.3-73.356942.2958ARMMediumMoores PondWarwickFranklinConnecticutMillers6.1-2.0-72.347342.6564ARMLowNewell PondGreenfieldFranklinConnecticutDeerfield6.8-21.0-72.574942.6356ARMLowNorth PondFloridaBerkshireConnecticutDeerfield6.13.32.3-73.053942.6514ARMLowOnta LakePittsfieldBerkshireConnecticutFarmington6.86.073.043242.14472009LowPelham LakeRoweFranklinConnecticutDeerfield6.572.891742.70222010Low		0				6.6	-	10.6	-73.0792	42.7367	ARM	
Minott Pond SouthWestminsterWorcesterConnecticutMillers4.92.2-0.3-71.960442.5313ARMLowMohawk LakeStockbridgeBerkshireHousatonic7.517.355.3-73.356942.2958ARMMediumMoores PondWarwickFranklinConnecticutMillers6.1-2.0-72.347342.6564ARMLowNewell PondGreenfieldFranklinConnecticutDeerfield6.8-21.0-72.574942.6556ARMLowNorth PondFloridaBerkshireConnecticutDeerfield6.13.32.3-73.053942.6514ARMLowOnota LakePittsfieldBerkshireHousatonic7.720.075.0-73.269542.47602009HighOtis ReservoirOtis/TollandBerkshireConnecticutDeerfield6.86.073.043242.14472009LowPelham LakeRoweFranklinConnecticutDeerfield6.572.891742.70222010Low	Mcleod Pond		Franklin	Connecticut	Deerfield	7.4	13.2	21.5	-72.7492	42.6514	ARM	Medium
Mohawk LakeStockbridgeBerkshireHousatonicHousatonic7.517.355.3-73.356942.2958ARMMediumMoores PondWarwickFranklinConnecticutMillers6.1-2.0-72.347342.6564ARMLowNewell PondGreenfieldFranklinConnecticutDeerfield6.8-21.0-72.574942.6564ARMLowNorth PondFloridaBerkshireConnecticutDeerfield6.8-21.0-72.574942.6514ARMLowOnota LakePittsfieldBerkshireConnecticutFarmington6.86.073.043242.47602009HighOtis ReservoirOtis/TollandBerkshireConnecticutFarmington6.86.072.891742.70222010LowPelham LakeRoweFranklinConnecticutDeerfield6.572.891742.70222010Low	Mill Pond	Sheffield	Berkshire	Housatonic	Housatonic	7.9	-	88.5	-73.3714	42.1203	ARM	High
Mohawk LakeStockbridgeBerkshireHousatonicHousatonic7.517.355.3-73.356942.2958ARMMediumMoores PondWarwickFranklinConnecticutMillers6.1-2.0-72.347342.6564ARMLowNewell PondGreenfieldFranklinConnecticutDeerfield6.8-21.0-72.574942.6564ARMLowNorth PondFloridaBerkshireConnecticutDeerfield6.13.32.3-73.053942.6514ARMLowOnota LakePittsfieldBerkshireHousatonic7.720.075.0-73.269542.47602009HighOtis ReservoirOtis/TollandBerkshireConnecticutFarmington6.86.072.891742.70222010LowPelham LakeRoweFranklinConnecticutDeerfield6.572.891742.70222010Low	Minott Pond South	Westminster	Worcester	Connecticut	Millers	4.9	2.2	-0.3	-71.9604	42.5313	ARM	Low
Moores PondWarwickFranklinConnecticutMillers6.1-2.0-72.347342.6564ARMLowNewell PondGreenfieldFranklinConnecticutDeerfield6.8-21.0-72.574942.6356ARMLowNorth PondFloridaBerkshireConnecticutDeerfield6.13.32.3-73.053942.6514ARMLowOnota LakePittsfieldBerkshireHousatonic7.720.075.0-73.269542.47602009HighOtis ReservoirOtis/TollandBerkshireConnecticutFarmington6.86.073.043242.14472009LowPelham LakeRoweFranklinConnecticutDeerfield6.572.891742.70222010Low		Stockbridge	Berkshire	Housatonic	Housatonic						ARM	Medium
Newell PondGreenfieldFranklinConnecticutDeerfield6.8-21.0-72.574942.6356ARMLowNorth PondFloridaBerkshireConnecticutDeerfield6.13.32.3-73.053942.6514ARMLowOnota LakePittsfieldBerkshireHousatonic7.720.075.0-73.269542.47602009HighOtis ReservoirOtis/TollandBerkshireConnecticutFarmington6.86.073.043242.14472009LowPelham LakeRoweFranklinConnecticutDeerfield6.572.891742.70222010Low	Moores Pond	0										
North PondFloridaBerkshireConnecticutDeerfield6.13.32.3-73.053942.6514ARMLowOnota LakePittsfieldBerkshireHousatonic7.720.075.0-73.269542.47602009HighOtis ReservoirOtis/TollandBerkshireConnecticutFarmington6.86.073.043242.14472009LowPelham LakeRoweFranklinConnecticutDeerfield6.572.891742.70222010Low	Newell Pond	Greenfield										Low
Onota LakePittsfieldBerkshireHousatonicNo<												
Otis ReservoirOtis/TollandBerkshireConnecticutFarmington6.86.073.043242.14472009LowPelham LakeRoweFranklinConnecticutDeerfield6.572.891742.70222010Low												
Pelham Lake Rowe Franklin Connecticut Deerfield 6.5 - - -72.8917 42.7022 2010 Low												•
					0							
	Pequot Pond	Westfield	Hampden	Connecticut	Connecticut	7.7	20.0	39.0	-72.6944	42.1846	2010	High

biodrawversity research report

Appendix 2. (continued)

			Major								
Name	Town	County	Watershed	Watershed	pН	Calcium	Alkalinity	Longitude	Latitude	Source	Risk
Plainfield Pond	Plainfield	Hampshire	Connecticut	Deerfield	6.9	-	-	-72.9582	42.5398	2010	Low
Plantain Pond	Mount Washington	Berkshire	Housatonic	Housatonic	5.3	0.9	0.0	-73.4444	42.0708	ARM	Low
Plunkett Reservoir	Hinsdale	Berkshire	Housatonic	Housatonic	7.8	12.0	32.0	-73.1311	42.4259	2009	Medium
Pontoosuc Lake	Pittsfield	Berkshire	Hudson	Hoosic	7.8	38.0	106.0	-73.2472	42.4851	2009	High
Porter Lake	Springfield	Hampden	Connecticut	Connecticut	8.1	27.0	51.0	-72.5690	42.0743	2010	High
Prospect Lake	Egremont	Berkshire	Housatonic	Housatonic	8.4	21.5	84.0	-73.4521	42.1955	2009	High
Quabbin Reservoir	Belchertown	Worcester	Connecticut	Chicopee	6.6	2.0	2.8	-72.2993	42.4035	ARM	Low
Richmond Pond	Richmond	Berkshire	Housatonic	Housatonic	8.3	37.5	120.0	-73.3315	42.4158	2009	High
Robin Hood Lake	Becket	Berkshire	Connecticut	Westfield	7.0	8.5	20.8	-73.0625	42.2458	ARM	Low
Round Pond	Great Barrington	Berkshire	Housatonic	Housatonic	7.7	15.3	54.0	-73.3917	42.2486	ARM	Medium
Rudd Pond	Becket	Berkshire	Connecticut	Westfield	7.1	5.3	9.6	-73.0811	42.2958	ARM	Low
Sandwash Reservoir	Washington	Berkshire	Housatonic	Housatonic	6.2	3.7	3.6	-73.1667	42.3694	ARM	Low
Scarboro Pond	Belchertown	Hampshire	Connecticut	Connecticut	6.4	-	4.5	-72.4347	42.3511	ARM	Low
Shaw Pond	Otis/Becket	Berkshire	Connecticut	Farmington	7.6	10.5	31.0	-73.1242	42.2518	2009	Low
Sibley Swamp Pond	Wendell	Franklin	Connecticut	Chicopee	5.3	1.4	0.4	-72.3778	42.5072	ARM	Low
Silver Lake	Agawam	Hampden	Connecticut	Connecticut	7.6	17.7	32.7	-72.6361	42.0652	ARM	Medium
Sportsmans Pond	Athol	Worcester	Connecticut	Millers	6.1	2.8	2.3	-72.2305	42.6095	ARM	Low
Stockbridge Bowl	Stockbridge	Berkshire	Housatonic	Housatonic	8.4	33.0	122.0	-73.3240	42.3416	2009	High
Stump Pond	Gardner	Worcester	Connecticut	Millers	5.5	_	1.0	-71.9729	42.5809	ARM	Low
Thompsons Pond	Spencer	Worcester	Connecticut	Chicopee	6.5	_	6.1	-71.9724	42.3027	ARM	Low
Thousand Acre Pond	New Marlborough	Berkshire	Housatonic	Housatonic	7.3	3.0	20.0	-73.2074	42.0693	2009	Low
Threemile Pond	Sheffield	Berkshire	Housatonic	Housatonic	7.3	-	43.0	-73.3097	42.1394	ARM	Medium
Trout Pond 2	Tolland	Hampden	Connecticut	Farmington	5.8	_	7.4	-73.0011	42.1020	ARM	Low
Tully Pond	Orange	Franklin	Connecticut	Millers	6.4	_	4.2	-72.2409	42.6366	ARM	Low
Upper Goose Pd	Lee	Berkshire	Housatonic	Housatonic	7.4	6.1	15.5	-73.1764	42.2867	ARM	Low
Upper Highland Lake	Goshen	Hampshire	Connecticut	Westfield	7.1	3.0	6.0	-72.7972	42.4573	2010	Low
Upper Naukeag Lake	Ashburnham	Worcester	Connecticut	Millers	5.7	1.0	0.0	-71.9275	42.6577	ARM	Low
Upper Reservoir	Lee	Berkshire	Housatonic	Housatonic	5.6	2.1	1.4	-73.2133	42.3297	ARM	Low
Upper Spectacle Pond	Sandisfield	Berkshire	Connecticut	Farmington	6.8	4.3	8.4	-73.1180	42.1816	ARM	Low
Watershops Pond	Springfield	Hampden	Connecticut	Connecticut	8.7	22.0	48.0	-72.5497	42.1010	2010	High
West Lake	Sandisfield	Berkshire	Connecticut	Farmington	7.2	7.1	22.9	-73.1611	42.1322	ARM	Low
West Lake	Sandisfield	Berkshire	Connecticut	Farmington	7.2	7.1	22.9	-73.1621	42.1322	2010	Low
Westfield Reservoir	Montgomery	Hampden	Connecticut	Westfield	7.4	-	-	-72.8106	42.1293	2010	Low
Westfield River	Westfield	Hampden	Connecticut	Westfield	7.1	-	- 16.0	-72.7433	42.1926	2010	Low
		Berkshire				5.0 2.6			42.1283	ARM	
White Lily Pond	Otis		Connecticut	Farmington	6.4		8.0	-73.0406			Low
Windsor Pond	Windsor Hinsdale	Berkshire	Connecticut	Westfield	6.9	7.0	5.0	-72.9844	42.5368	2009	Low Medium
Windsor Reservoir		Berkshire	Housatonic	Housatonic	7.3	12.7	31.6	-73.1069	42.4856	ARM	
Woods Pond	Lenox	Berkshire	Housatonic	Housatonic	8.6	30.5	88.0	-73.2394	42.3542	ARM	High
Wright Pond	Holyoke	Hampden	Connecticut	Westfield	7.9	13.3	33.6	-72.6604	42.1747	ARM	Medium
York Lake	New Marlborough	Berkshire	Connecticut	Farmington	7.0	5.9	13.4	-73.1833	42.0992	ARM	Low

Physical, Chemical, and Biological Evaluation of Waterbodies in the Connecticut River Watershed of Massachusetts

APPENDIX 3 Lake Profiles

Brief profiles are provided for each of the primary and secondary lakes surveyed for this report, as well as for the Connecticut River (Table 1). Profiles include orthophotos showing locations of survey sites (see Appendix 1 for coordinates and methods employed at each), and summaries of habitat and water chemistry.

biodrawversity research report

Aldrich Lake

Granby

- Surveyed: June 1, 2010
- Survey Site: The survey site was located at the boat access point at the Amherst Road Bridge. Methods included a SCUBA survey in deep water, D-net sampling while wading, a single plankton tow, and both laboratory and field measurements of water chemistry parameters.
- Description: Aldrich Lake is a 66-acre lake in Granby formed by damming Bachelor Brook. The approximately 0.8-mile long lake runs in a generally east to west direction, with a deeper western basin and a shallow weedy eastern basin. The eastern basin is moderately eutrophic. Macrophyte abundance was low to moderate within the survey area at the time of the survey. Substrate was mucky silt in the shallows, grading to a combination of sand/gravel/cobble in the old stream channel. Secchi depth was seven feet. Dissolved oxygen was 7.2 mg/L at the surface, and 0.2 mg/L at 11 feet. Shoreline development is low, with a wooded buffer separating all but one of the eleven residential properties near the lake. Recreation is primarily fishing, generally from nonmotorized boats or boats with small motors.
- Potential for Zebra Mussels: Aldrich Lake is considered Low Risk because of suboptimal water chemistry [pH 7.36, calcium 11.0 mg/l, and alkalinity 32 mg/l]. Its suboptimal physical habitat, near lack of thermal stratification, and eutrophic state also reduce its potential to support zebra mussels.

Ashfield Lake

Ashfield

- Surveyed: June 22, 2010
- Survey Sites: Three locations were surveyed, including the public boat ramp. Methods included a SCUBA survey in deep water, D-net sampling while wading, a single plankton tow, and both laboratory and field measurements of water chemistry parameters.
- Description: Ashfield Lake is a 37-acre lake located in the town of Ashfield. Its maximum depth is only 20 feet and probably barely stratifies. The lake is formed by an earthen dam at its southern end. Aquatic macrophyte abundance was moderate, except for one shallow cove where floating species such as *Nymphaea odorata* formed a relatively dense patch. The substrate near shore was generally a combination of sand and gravel, grading to deep muck at greater depths. Approximately 200 meters of shoreline substrate is riprap near the earthen dam. Secchi depth was 13.5 feet. Dissolved oxygen was 9.5 mg/L at the surface, and 0.3 near the bottom. Approximately 40 percent of the shoreline is residential property, with the remainder of the lakeshore wooded.
- Potential for Zebra Mussels: Ashfield Lake is considered Medium Risk because of marginally suitable pH (7.63), calcium (14 mg/l), and alkalinity (34 mg/l). Its small size and limited physical habitat reduce its vulnerability to zebra mussels. Boating activity is relatively light, which may also reduce the risk of zebra mussel introduction.

Aldrich Lake survey site.

Ashfield Lake survey sites.

Southwick

- Surveyed: June 18, 2010
- Survey Sites: Five locations in two basins were surveyed, including boat access points and a former public beach were surveyed. Methods included SCUBA (four locations), snorkeling (five locations) and D-net sampling while wading (five locations), three plankton tows, and both laboratory and field measurements of water chemistry parameters.
- Description: The three basins of the Congamond Lakes comprise 465 acres of surface area in the towns of Southwick, MA and West Suffield, CT. Macrophyte abundance was generally high throughout the lake, with a decline in plant densities in deep water. Substrate in shallow areas was primarily sand and gravel with some areas of cobble, while deeper areas contained mostly organic muck or gyttja. Secchi depth ranged from 4.5 to 6 feet. Average dssolved oxygen was 12.7 mg/L at the surface and 0.4 mg/L at 13 feet. Shoreline development and recreation are very high, with multiple boat ramps and many private docks.
- Potential for Zebra Mussels: The Congamond Lakes are considered Medium Risk, with a pH readings ranging from 7.7 to 8.2, calcium between 14-16 mg/L, and alkalinity of

42-46 mg/l. The size, depth, and substrate make it among the more suitable physical habitats among the 2010 survey lakes. High boating activity increases the risk of zebra mussel introduction.

Cranberry Pond

Sunderland

- Surveyed: June 3, 2010
- Survey Site: One survey site near the dam and boat ramp was surveyed. Methods included snorkeling, D-net sampling while wading, a single plankton tow, and both laboratory and field measurements of water chemistry parameters.
- Description: Cranberry Pond is a 27-acre coldwater pond in the town of Sunderland. Aquatic macrophyte abundance is high throughout the shallow portions of the pond. Most of the pond is shallow, with a maximum depth of 26 feet but an average depth of only four feet. Substrate ranged from sand and gravel near shore to organic muck in deeper water. The shoreline is entirely undeveloped and recreation is primarily fishing from non-motorized boats or boats with small motors.
- Potential for Zebra Mussels: Cranberry Pond is considered Low Risk due to suboptimal physical and chemical conditions including low pH (6.96), low calcium (5 mg/l) and low alkalinity (12 mg/l).

biodrawversit

research repo

Congamond Lake survey sites.

Cranberry Pond survey site.

Five-Mile Pond Springfield

- Surveyed: June 11, 2010
- Survey Site: One general area centered on the public boat ramp was surveyed. Methods included SCUBA diving in deeper areas, D-net sampling while wading, a single plankton tow, and both laboratory and field measurements of water chemistry parameters.
- Description: Five-Mile Pond is a 48-acre pond near urban Springfield with an average depth of 12 feet and a maximum depth of 35 feet. Aquatic macrophyte abundance was high within the survey area, but declined in deeper water. Secchi depth was beyond the deepest point in the survey area (9.5 feet) and generally quite clear. Dissolved oxygen ranged from 8.6 mg/L at the surface to 2.4 at nine feet. Although Five-mile Pond is within a highly developed area, approximately 50 percent of the lakeshore is wooded. The pond is heavily used for fishing, boating and swimming. Asian clams are established in the pond.
- Potential for Zebra Mussels: Five-mile Pond is considered Low Risk because of suboptimal conditions including marginal pH (7.48), low calcium (6.5 mg/l) and low alkalinity (16.6 mg/l). Its calcium and alkalinity are very low compared to other nearby urban waterbodies (Porter Lake, Watershops Pond).

Littleville Lake

Chester/Huntington

- Surveyed: June 15, 2010
- Survey Sites: Three areas were surveyed, including the areas around each of the public boat ramps, and the Westfield River in the deep pool immediately downstream of the dam. Methods included SCUBA diving, snorkeling, D-net sampling while wading, three plankton tows, and both laboratory and field measurements of water chemistry parameters..
- Description: Littleville Lake is a 275-acre, deep (max depth = 86 feet), coldwater lake in the towns of Chester and Huntington. The lake was formed by damming the Middle Branch Westfield River. Aquatic macrophyte abundance was low at all three survey sites. Substrate ranged from exposed ledge, boulder and cobble with areas of sand and gravel, to areas with silt and detritus. Secchi depth was 14 feet. Dissolved oxygen remained relatively constant at depth, 9.5 mg/L at the surface to 9.1 mg/L at 30 feet. Because this is a flood control lake, the shoreline is entirely undeveloped. The excellent fishery supports high recreational use of the lake, although the 10-horsepower limit on motors limits boat traffic.
- Potential for Zebra Mussels: Although its physical habitat would be nearly ideal for zebra mussels, Littleville Lake has unsuitable chemical conditions including low pH (7.3), low calcium (5 mg/l), and low alkalinity (10 mg/l). Zebra mussels could not become established in Littleville Lake.

Five-mile Pond survey site.

Littleville Lake survey sites.

Lower Highland Lake

Goshen

- Surveyed: June 6, 2010
- Survey Site: One site was surveyed, starting at the public boat ramp and extending out to the northern end of the main lake. Methods included SCUBA diving, D-net sampling while wading, a single plankton tow, and both laboratory and field measurements of water chemistry parameters.
- Description: Lower Highland Lake is an 88-acre lake in the town of Goshen. The upper half of the lake lies within the DAR State Forest. This lake is one of two impoundments of the west branch of the Mill River, separated by a quarter mile from Upper Highland Lake. Aquatic macrophyte abundance was low throughout the survey area. Substrate was primarily muck, with some boulders and sand/gravel. Secchi depth was beyond the maximum surveyed depth (7.5'). Dissolved oxygen did not decline with depth. Approximately 60 percent of the shoreline is developed, and recreational use is relatively high during the summer months.
- Potential for Zebra Mussels: Lower Highland Lake not at risk based on suboptimal chemical conditions, including low pH (6.99), low calcium (3 mg/l) and low alkalinity (6 mg/l).

Upper Highland Lake

Goshen

- Surveyed: June 6, 2010
- Survey Site: One site was surveyed in Upper Highland Lake, Methods included SCUBA diving, D-net sampling while wading, a single plankton tow, and both laboratory and field measurements of water chemistry parameters.
- Description: Upper Highland Lake is a 53-acre lake in the town of Goshen, entirely within the DAR state forest. This lake is the northern of two impoundments on the west branch of the Mill River, separated by a quarter mile from Lower Highland Lake. Macrophyte abundance was low within the study area. Substrate was a combination of sand, gravel, cobble and boulder throughout the survey area, with soft muck covering the firmer substrate at greater depths. Secchi depth was ten feet. Dissolved oxygen did not decline with depth. There is no shoreline development, aside from the state forest and Camp Holy Cross.
- Potential for Zebra Mussels: Upper Highland Lake not at risk based on suboptimal chemical conditions, including low pH (7.05), low calcium (3 mg/l) and low alkalinity (6 mg/l).

biodrawversit

research repo

Lower Highland Lake survey site.

Upper Highland Lake survey site.

Pequot Pond Westfield

- Surveyed: June 15, 2010
- Survey Sites: Four locations were surveyed, including the public boat ramp and three other shoreline areas. Methods included SCUBA diving, snorkeling, D-net sampling while wading, four plankton tows, and both laboratory and field measurements of water chemistry parameters.
- Description: The 198-acre Pequot Pond is located in the town of Westfield. Aquatic macrophyte abundance ranged from low to high, with the highest density near the public boat ramp. Substrate was generally sand/gravel with occasional cobble in the shallower waters, grading into organic muck in the deeper sections of the pond. Secchi depth was 12.5 feet. Dissolved oxygen did not decline between the surface and 10 feet but was 0.09 mg/L at 29 feet. Residential development comprises approximately 60 percent of the shoreline. Recreational use of the pond is very high due to residential development, a boat ramp, and a public beach.
- Potential for Zebra Mussels: Pequot Pond is considered High Risk (although its really on the line between Medium and High) based on marginally suitable pH (7.67), high calcium (20 mg/l), and marginally suitable alkalinity (39 mg/l). Its large size, deep water, suitable substrate, and fair water quality contribute to its susceptibility to zebra mussels. In addition, the high amount of boat traffic may increase the chances of zebra mussel introduction, even though source populations of zebra mussels are currently quite far away.

Porter Lake

Springfield

- Surveyed: June 11, 2010
- Survey Site: A single survey site near the Forest Park Nature Center was surveyed. Methods included D-net surveys while wading and kayaking, a single plankton tow, and both laboratory and field measurements of water chemistry.
- Description: Porter Lake is a 21-acre lake located in Forest Park in Springfield. The lake was formed by damming Pescousic Brook. Submerged aquatic macrophytes were moderately abundant and probably limited by high turbidity during the summer. The substrate was primarily organic muck, with some sand close to shore. Secchi depth was only 4.5 feet, and dissolved oxygen dropped sharply from 11.22 mg/L at the surface to 0.28 mg/L near the bottom (11'). Approximately 11 percent of the shoreline is very close to roads or manicured lawns. The remaining shoreline is undeveloped. Recreational use of the pond is very low.
- Potential for Zebra Mussels: Porter Lake is considered Low Risk because of the very low recreational use of the lake and poor habitat conditions. Its water chemistry was among the most suitable for zebra mussels in the entire Connecticut River watershed, with high pH 8.11, high calcium levels (27 mg/l), and high alkalinity of (51 mg/l). Its chemistry is likely strongly influenced by urban runoff, wastewater effluents or leaky septic/sewer systems in urban Springfield.

biodrawversit

research repo

Pequot Pond survey sites.

Porter Lake survey site.

Lake Warner Hadley

- Surveyed: June 1, 2010.
- Survey Site: Areas near the bridge and boat ramp at the southwest end of the lake were surveyed. Methods included SCUBA diving, snorkeling, D-net sampling while wading, one plankton tow, and both laboratory and field measurements of water chemistry.
- Description: Lake Warner is a relatively shallow 68-acre warmwater lake. The 1.2-mile long lake was created by damming the Mill River. Although macrophyte abundance was low at the survey site, Lake Warner has abundant aquatic and emergent vegetation throughout most of the lake during the summer, and is typically covered with a layer of duckweed (*Lemna* and *Wolffia* spp.). Secchi depth was nine feet during the time of the survey. The substrate at the survey site was primarily sand and gravel, with some silt. Dissolved oxygen ranged from 8.8 mg/L at the surface to 1.1 mg/L at a depth of ten feet. Residential development and agriculture occur near the northwest side of the lake, and the southeast side of the lake is less developed with some agriculture. Recreational use of the lake is generally limited to fishing and paddling.
- Potential for Zebra Mussels: Lake Warner is considered Low Risk because of suboptimal chemical conditions, including low pH (7.27), low calcium (10 mg/l), and low alkalinity (22 mg/l). Its poor habitat and highly eutrophic conditions contribute to its low potential to support zebra mussels.

Lake Wyola

Shutesbury

- Surveyed: June 3, 2010
- Survey Sites: Three areas were surveyed including the areas around the public boat ramp at the southern end and the dam and swimming area at the northern end. Methods included SCUBA diving, snorkeling, D-net sampling while wading, two plankton tows, and both laboratory and field measurements of water chemistry parameters.
- Description: Lake Wyola is a 129-acre lake in the town of Shutesbury. This is a raised Great Pond that is periodically lowered to control aquatic plants. Macrophyte abundance was high in the general area of the boat ramp at the southern end of the pond, and moderate near the dam. Substrate was sand and gravel with cobble in shallower areas and mostly gyttja in deeper areas. Secchi depths were beyond the depths of the surveyed areas (8 feet). Although the lake is located in a relatively undeveloped portion of the state, approximately 80 percent of the shoreline is developed with seasonal and year-round homes. Recreational use of the lake is high, especially for boating, swimming, and fishing.
- Potential for Zebra Mussels: Lake Wyola is considered Low Risk due to suboptimal conditions, including low pH (6.17), low calcium (5 mg/l), and low alkalinity (<2 mg/l). Among the waterbodies surveyed in 2010, it was among the least suitable for zebra mussels based on water chemistry.

Lake Warner survey site.

Lake Wyola survey sites.

Connecticut River

Chicopee, Easthampton, Gill, Hatfield, Northampton, Northfield

- Surveyed: June 7-8, 10, 2010
- Survey Sites: Six areas were surveyed, including the areas around the boat ramps in Chicopee, Easthampton, Gill (Bartons Cove), Hatfield, Northampton (the Oxbow Marina), and Northfield. Methods included SCUBA diving, snorkeling, Dnet surveys while wading, plankton tows at each site, and field and laboratory measurements of water chemistry parameters.
- Description: Native mussels were typically common to abundant at most locations, especially the eastern elliptio (Elliptio complanata), and the only non-native bivalve encountered was the Asian clam (Corbicula fluminea). Habitat conditions were variable among the six survey sites. Macrophyte abundance was low at all sites except for Bartons Cove where macrophyte abundance was generally high. Areas near the Easthampton, Gill, and Northfield boat ramps generally had silty-muck and sand substrates. Substrate at the Oxbow was mostly sand and gravel with some cobble. Substrate at the Chicopee boat ramp was primarily fine sand and silt with embedded boulders, and near the Hatfield boat ramp was a combination of sand and ledge. Secchi depth in the Oxbow was only six feet, but was typically much deeper at the other sites, generally reaching the bottom (~7-12'). The surrounding landscapes ranged from rural to suburban, providing a full range of development conditions. Recreational use of the Connecticut River is generally quite high, with much boat traffic (both motor boat and paddling) and fishing.
- Potential for Zebra Mussels: The Connecticut River is considered Low Risk primarily due to low calcium (8-10 mg/L), even though pH (7.36-7.63) and alkalinity (22-29 mg/L) are both in the "Medium" risk range. Habitat conditions are ideal for zebra mussels in many locations throughout the Connecticut River in Massachusetts, as well as in areas to the north and south of Massachusetts. The large number of boats that visit the river each year, potentially from zebra mussel-infested waters of western New England and eastern New York, makes transport of zebra mussels seem likely. However, the likelihood that zebra mussels can survive and reproduce in the Connecticut River.

Watershops Pond Springfield

- Surveyed: May 19, 2010
- · Survey Site: Laboratory and field measurements of water chemistry parameters were taken at a single location.
- · Description: This 186-acre warmwater pond has just under seven miles of heavily developed shoreline. Watercolor is brown with a transparency of only three feet. The bottom is muck, with some limited areas of sand and rock. Maximum depth is 21 feet and aquatic vegetation is heavy. This pond is an impoundment of the Mill River and is also fed by Schneelock Brook and numerous street drains. During the summer months there is severe deoxygenation below a depth of five feet. There is no formal boat launching or parking area, but access is possible off Alden Street for car top boats and canoes only.
- Potential for Zebra Mussels: Although Watershops Pond was the most urban and degraded waterbody surveyed in 2010, its water chemistry was the most suitable for zebra mussels, including a pH of 8.72, calcium of 22.0 mg/L, and akalinity of 48.0 mg/L. Its water chemistry is thought to be strongly influenced by the surrounding urban environment, and it is unlikely that zebra mussels could survive in such a eutrophic and poorly oxygenated pond with such poor physical habitat.

