

VPH by GC/MS May 31, 2017 LSPA Training

VPH by GC/MS Some of the Details

the devil's in the details

Definitions

- Definitions in VPH by GC/MS are similar to the definitions in the VPH by GC/PID/FID method.
- Hydrocarbon range definitions have <u>not</u> changed.

- **3.5** C₅ through C₈ Aliphatic Hydrocarbons are defined as all aliphatic petroleum hydrocarbon compounds that elute from just before n-pentane to just before n-nonane (C₉). C₅ through C₈ aliphatic hydrocarbons are determined using the total ion chromatogram.
- **3.6** C₉ through C₁₂ Aliphatic Hydrocarbons are defined as all aliphatic petroleum hydrocarbon compounds that elute from just before n-nonane to just before naphthalene. C₉ through C₁₂ aliphatic hydrocarbons are determined using the total ion chromatogram.
- **3.7** C₉ through C₁₀ Aromatic Hydrocarbons are defined as all aromatic petroleum hydrocarbon compounds that elute from just after o-xylene to just before naphthalene. Although naphthalene is an aromatic compound with 10 carbon atoms, it is excluded from this range because it is evaluated as a separate Target VPH Analyte. C₉ through C₁₀ aromatic hydrocarbons are determined using the extracted ions 120 and 134.

Definitions

Total Ion

Apparatus and Materials

- Purge & trap system
- NEW: Trap Requirements
 - VOCARB 3000
 - Tekmar #9
- NEW: Must include trap used in CAM deliverable
- NEW: Trap desorption efficiency study if different trap used
- Why do we have these new requirements?

Apparatus and Materials

- Gas Chromatograph
- NEW: Column Requirements
 - VOCOL[™]: 30 m x 0.25 mm ID w/ 1.5 μm film thickness
 - RTX-502.2[™]: 30 m x 0.25 mm ID w/ 1.4 µm film thickness
- NEW: Must include column used in CAM deliverable
- NOT NEW: Column equivalency study if different column used

• Why do we have these new (and not new) requirements?

Carrier

Detector

Calibration Components for Hydrocarbon Ranges

Hydrocarbon Range	GC/PID/FID	GC/MS
C ₅ -C ₈ Aliphatics	n-pentane 2-methylpentane 2,2,4-trimethylpentane	<pre>n-pentane n-hexane cyclohexane 2,3-dimethylpentane n-heptane n-octane</pre>
C ₉ -C ₁₂ Aliphatics	n-decane butylcyclohexane	2,3-dimethylheptane n-nonane n-decane n-undecane n-dodecane butylcyclohexane
C ₉ -C ₁₀ Aromatics	1,2,4-trimethylbenzene	isopropylbenzene 1-methyl-3-ethylbenzene 1,3,5-trimethylbenzene 1,2,4-trimethylbenzene p-isopropyltoluene

Marker compounds for aliphatic ranges

Sample Collection, Preservation and Handling

NO CHANGES HERE FROM PID/FID METHOD except:

Provided better clarification on use of TSP for aqueous samples

Matrix	Container	Preservation	Holding Time
Aqueous Samples (using ambient temperature purge)	40-mL VOC vials w/ Teflon- lined septa screw caps	Add 3 to 4 drops of 1:1 HCl to pH < 2; cool to 0-6°C	14 days
Aqueous Samples (using heated purge) ¹	40-mL VOC vials w/ Teflon- lined septa screw caps	Add 0.40 to 0.44 grams of trisodium phosphate dodecahydrate to pH >11; cool to 0-6°C	14 days
Soil/Sediment Samples ²	VOC vials w/ Teflon-lined septa screw caps. 60-mL vials: add 25 g soil/sediment 40-mL vials: add 15 g soil/sediment	1 mL methanol for every g soil/sediment; add before or at time of sampling; cool to 0-6°C	28 days

¹ Heated purge is considered a significant modification to the method, as per Section 11.3.1.

² Refer to Appendix 3 for details on sample collection or optional collection/storage devices.

Have you ever used trisodium phosphate dodecahydrate for preservation of aqueous VOC samples?

YES NO

Retention Time Windows

Same as VPH by PID/FID

Hydrocarbon Range	Beginning Marker	Ending Marker
C ₅ -C ₈ Aliphatic Hydrocarbons	0.1 min before n-Pentane	0.01 min before n-Nonane
C ₉ -C ₁₂ Aliphatic Hydrocarbons	0.01 min before n-Nonane	0.1 min before Naphthalene ¹
C ₉ -C ₁₀ Aromatic Hydrocarbons	0.1 min after o-Xylene	0.1 min before Naphthalene

¹ The retention time for Dodecane (C_{12}) is approximately 1-2 minutes less than the retention time for naphthalene, using the column and chromatographic conditions recommended for this method. For simplicity, naphthalene is used as the ending marker for the C₉ - C₁₂ Aliphatic Hydrocarbon range.

Additional Rules for Data Adjustments

- If conc. of Target VPH Analyte (e.g., 0.7 J ug/L) is <RL (1 ug/L), do <u>not</u> subtract conc. from appropriate range.
- If conc. of C₉-C₁₀ aromatics (e.g., 50 J ug/L) is <RL (100 ug/L), do <u>not</u> subtract conc. from C₉-C₁₂ aliphatics.
- Non-VPH compounds: subtract from range only if <u>all</u> of the below circumstances exist:
 - 1. Requested by data user
 - 2. It does <u>not</u> co-elute with aliphatic petroleum hydrocarbon
 - 3. Meets requirements for positive GC/MS identification

NOTE: The identification of the non-VPH compound <u>must</u> be disclosed in the lab narrative, if subtracted.

Non-Petroleum Hydrocarbons

Hydrocarbon Range	Potential Non-VPH Compounds
C ₅ -C ₈ Aliphatic Hydrocarbons	Acetone may co-elute/interfere with isopentane. Isopropyl alcohol, methyl ethyl ketone, trichloroethene, tetrachloroethene, tetrahydrofuran, hexanal, 1-butanol, hexamethylsiloxane
C ₉ -C ₁₂ Aliphatic Hydrocarbons	Terpenes (e.g., a-pinene, d-limonene), phenol, benzaldehyde, n-chain aldehydes, 2-ethyl-1-hexanol, siloxanes, dichlorobenzenes
C ₉ -C ₁₀ Aromatic Hydrocarbons	Siloxanes, a-pinene, and d-limonene may slightly interfere (contribute to the area of ions 120/134) if present at high concentrations.

Rules of Engagement

Example: Subtraction of non-VPH Compounds

	Before Subtraction		After Subtraction
Example	Sample #1 (mg/kg)	S-1/GW-1 (mg/kg)	Sample #1 (mg/kg)
$C_5 - C_8$ Aliphatics	350	100	75
$C_9 - C_{12}$ Aliphatics	520	1000	520
$C_9 - C_{10}$ Aromatics	75	100	75

After Subtraction Narrative Text:

Non-petroleum hydrocarbons were not included in the VPH aliphatic hydrocarbon range concentrations. <u>Sample #1 contains acetone and trichloroethene.</u>

Reporting Limits

- Based on concentration of lowest standard
- 1 µg/L: lowest standard
 - RL of Target VPH Analytes: $1 \mu g/L$
 - RL of Hydrocarbon Ranges = 100x lowest standard or 100 $\mu g/L$

	RL-Water	RL-Soil*
BTEX/MTBE/Naphthalene	1.0 μg/L	0.05 mg/kg
C ₅ -C ₈ Aliphatics	100 μg/L	5 mg/kg
C ₉ -C ₁₂ Aliphatics	100 μg/L	5 mg/kg
C ₉ -C ₁₀ Aromatics	100 μg/L	5 mg/kg

*Assumes the following:

- 10 g soil/10 mL MeOH
- 100 μL methanol extract/5 mL water

Significant Modifications (Question E)

- The use of other than a purge-and-trap sample preparation procedure.
- The use of a heated purge.
- The use of alternative detectors other than GC/MS to quantify Target VPH Analytes and/or hydrocarbon range concentrations.
- The use of extracted ions other than m/z 120 and 134 to quantify C_9-C_{10} aromatic hydrocarbons.
- The use of non-linear regression (i.e., quadratic equations) for calibration.
- Failure to provide all of the data and information presented in Appendix 2 as well as the required method deliverables.

The CAM Deliverable: What to Expect

Deliverable Item	VPH by FID/PID	VPH by GC/MS
Presumptive Certainty Form	Х	Х
Lab Narrative	Х	Х
Sample Results	Х	Х
Reporting Limits	Х	Х
Dilution Factors	Х	Х
Date Preserved (if EnCore [®] samplers used)	Х	Х
Date Analyzed	Х	Х
Method Blanks	Х	Х
Lab Control Samples	Х	Х
Surrogates	Х	Х
MS/MSD	X (if requested)	X (if requested)
Matrix Duplicate	X (if requested)	X (if requested)
Internal Standards	NA	
Column Used	X	Х
Trap Used	X	Х
Identification of non-VPH Compounds	NA	X (if requested)
Reanalyses/Dilutions	Х	Х

Reanalyses/Dilutions: Rules for Reporting

- If reanalysis due to internal standard or surrogate issues yields similar non-conformances (i.e., still outside criteria), <u>the</u> <u>laboratory must report results of both analyses</u>.
- If reanalysis due to internal standard or surrogate issues is performed outside of holding time and yields acceptable internal standard or surrogate recoveries, <u>the laboratory must</u> <u>report results of both analyses</u>.
- If sample is not reanalyzed for internal standard or surrogate issues due to obvious interference, <u>the laboratory must</u> <u>provide the chromatogram in the data report</u>.
- If diluted and undiluted analyses are performed, <u>the laboratory</u> <u>must report results for the lowest dilution within the valid</u> <u>calibration range for each analyte</u>. The associated QC (e.g., LMBs, LCS, etc.) for each analysis must be reported. This may result in more than one analysis per sample being reported.

Round Robin: What We Saw

Issue	Overall Effect on Sample Result
Calibration: Incorrect procedure used for integration of total aliphatic area counts	Aliphatic results biased low
Calibration: Forcing of curve through zero when performing linear regression	Results biased low
Calibration: Use of four points for calibration of C ₉ -C ₁₂ aliphatics	Unknown
Calibration: Utilization of extracted ion area counts for aliphatic range calibrations	Aliphatic results biased high
Calibration: C ₉ -C ₁₂ aliphatics calibration did not include undecane due to coelution issues	Unknown
Calibration: C ₉ -C ₁₀ aromatics calibration not performed using all components or proper total concentration	Aromatic results biased low
Calibration: %RSDs not calculated correctly	Results biased low
Calibration: Laboratory-generated response factors were not reproducible and were recalculated during review	$\rm C_9\mathchar`-C_{12}$ aliphatic results biased high and $\rm C_9\mathchar`-C_{10}$ aromatic results biased low
Sample Calculations: incorrect calculation of reporting limits (too high)	Potential false negative results
Sample Calculations: subtraction of extracted ion area counts of internal standards and surrogates from total ion area counts for aliphatic ranges	Aliphatic results biased high
Sample Analysis: use of incorrect GC/MS scanning parameters	Aliphatic results biased high

Round Robin: What We Learned

- GC/MS scanning range important: 35-250 amu
- Choice of trap important:
 - -<u>NOT RECOMMENDED: Tenax/silica gel/charcoal trap</u> used by 1 lab: low bias for C_9 - C_{12} aliphatic hydrocarbons (heavier hydrocarbons)
 - <u>RECOMMENDED: VOCARB 3000 & Tekmar #9 traps</u> desorb temps of 250°C used: all of the compounds have boiling points which were below the desorb temperature.

• <u>Choice of column important</u>: 1 lab did not use one of the recommended columns.

–Allocation of C_5 - C_8 aliphatic and C_9 - C_{12} aliphatics different from other labs (although total VPH #s were generally comparable).

- Linear regression generally needed for C₉-C₁₂ aliphatic hydrocarbons.
- Needed slightly higher %RSD criteria for ranges compared to target analytes.
- 1,2,4-Trimethylbenzene more appropriate to use in lieu of 1,2,3-Trimethylbenzene for calibration of C_9 - C_{10} aromatics.

How to Evaluate VPH Data

QUESTION

- Have you ever asked the lab to provide you a chromatogram to help in your review of the data?
- 1. Yes

2. No

3. I don't know what a chromatogram is.

4. I hope this class is almost over.

QUESTION

If naphthalene recovers at 62% in the LCS (criteria are 70-130%), which of the following is true?

- A. Naphthalene concentrations in the associated samples are biased high.
- B. Naphthalene concentrations in the associated samples are biased low.
- C. C_9 - C_{10} aromatics are biased low in the associated samples.
- D. A and C.
- E. B and C.

QUESTION

Running samples using VPH by PID/FID

If the recovery of the VPH surrogate on the FID is 65% (criteria are 70-130%), which of the following is true?

- A. The results for BTEX, MTBE and naphthalene are potentially biased low.
- B. The results for C_5 - C_8 aliphatics are potentially biased low.
- C. The results for C_9 - C_{10} aromatics are potentially biased low.
- D. The results for C_9-C_{12} aliphatics are potentially biased high.
- E. All of the above.

Running samples using VPH by GC/MS If the recovery of the VPH surrogate is 65% (criteria are 70-130%), which of the following is true?

- A. The results for BTEX, MTBE and naphthalene are potentially biased low.
- B. The results for C_5 - C_8 aliphatics are potentially biased low.
- C. The results for C_9-C_{10} aromatics are potentially biased low.
- D. The results for C_9-C_{12} aliphatics are potentially biased low.
- E. All of the above.

Thank you

Questions?

John J. Fitzgerald, MassDEP

P: (978) 694-3308 | E: john.j.fitzgerald@state.ma.us www.mass.gov/eea/agencies/massdep/

Elizabeth Denly, TRC P: (978) 656-3577 | E: EDenly@trcsolutions.com www.trcsolutions.com