Marijuana’s effects on the brain
Anandamide

THC
The neuron’s “volume control” dials down neuron activity when too strong.
Synaptic pruning

Image retrieved from: http://etec.cltt.ubc.ca/S10wiki/Brain-based_Learning

© Boston Children's Hospital 2016. All Rights Reserved. For permissions contact ASAP project manager at asap@childrens.harvard.edu
Receptor binding in brain tissue

<table>
<thead>
<tr>
<th>Compound</th>
<th>Potency relative to THC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-)-Delta9-THC</td>
<td>1</td>
</tr>
<tr>
<td>Anandamide</td>
<td>.47*</td>
</tr>
</tbody>
</table>

*The affinity of anandamide for cannabinoid receptors ranges from about one-fourth to one-half that of THC. The differences depend on the cells or tissue that are tested and on the experimental conditions, such as the binding assay used.

THC vs. Anandamide

Hippocampus and Memory

Persistent cannabis users show neuropsychological decline from childhood to midlife

Madeline H. Meiera,b,1, Avshalom Caspia,b,c,d,e, Antony Amblere,f, HonaLee Harringtonb,c,d, Renate Houtsb,c,d, Richard S. E. Keeffed, Kay McDonaldf, Aimee Wardf, Richie Poultonf, and Terrie E. Moffitta,b,c,d,e

aDuke Transdisciplinary Prevention Research Center, Center for Child and Family Policy, bDepartment of Psychology and Neuroscience, and eInstitute for Genome Sciences and Policy, Duke University, Durham, NC 27708; dDepartment of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710; fSocial, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom; and 1Dunedin Multidisciplinary Health and Developmental Research Unit, Department of Preventive and Social Medicine, School of Medicine, University of Otago, Dunedin 9054, New Zealand

The Dunedin Study

N = 1,037

Assessment ages

13 yrs (Pre-initiation) 18 yrs 21 yrs 32 yrs 38 yrs

The Dunedin Study

N = 1,037

Assessment ages

13 yrs (Pre-initiation) 18 yrs 21 yrs 32 yrs 38 yrs

Average IQ change

Never used: 99.8 to 100.6

MJ dependent 3+ yrs: **99.7 to 93.9**

Used, never diagnosed

Never used

Healthy non-user

Daily MJ user

A meta-analysis of 6 studies found an increased risk of psychotic outcome among those who used cannabis most frequently compared with non-users (Adjusted Odds Ratio: 2.09, 95% CI: 1.54-2.84).

Association between cannabis use and schizoaffective disorder

<table>
<thead>
<tr>
<th># Exposure</th>
<th># Cases</th>
<th>HR Crude</th>
<th>HR adjusted*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never used cannabis</td>
<td>39,978</td>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>Ever used cannabis</td>
<td>5,109</td>
<td>12</td>
<td>2.1 (1.1-3.8)</td>
</tr>
<tr>
<td>>50 times</td>
<td>855</td>
<td>7</td>
<td>7.5 (3.4-16.7)</td>
</tr>
</tbody>
</table>

*Adjustments for: prior personality disorders at conscription, IQ, disturbed behavior in childhood, social adjustment, risky use of alcohol, smoking, early adulthood socioeconomic position, use of other drugs, brought up in a city. The category “Ever used cannabis” includes all individuals who reported cannabis use, including those who reported “>50 times”.

Sources: Griffith-Lendering, Addiction, 108(4), 733-740. Manrique-Garcia, BMC Psychiatry, 12, 112.
The evidence is consistent with the view that cannabis increases risk of psychotic outcomes independently of confounding and transient intoxication effects.