PRELIMINARY CHARACTERIZATION OF OFFSHORE SAND RESOURCES IN SELECTED STUDY AREAS

FINAL REPORT OF FINDINGS

Project No. 631226219

March 28, 2018 (Final, Revision 2)

PREPARED FOR:

MASSACHUSETTS OFFICE OF COASTAL ZONE MANAGEMENT
51 CAUSEWAY STREET, SUITE 800

Boston, Massachusetts 02114

Prepared by:
Aptim Environmental & Infrastructure, Inc.

101 16TH AVENUE SOUTH, SUITE 6 SAINT PETERSBURG, FLORIDA 33701

AND

CR ENVIRONMENTAL, INC. 639 BOXBERRY HILL ROAD EAST FALMOUTH, MA 02536

1.0 Executive Summary

Aptim Environmental & Infrastructure, Inc. (APTIM) together with CR Environmental, Inc. (CR) were contracted by the Massachusetts Office of Coastal Zone Management on June 13, 2017, to conduct a preliminary characterization of offshore sand resources in five (5) Study Areas located offshore of Massachusetts. The project consisted of an historic data review, collection of 20, up to 4-meter long vibracores, collection of 25 surface grab samples, collection of towed video footage, and sediment analysis.

The first phase of the project consisted of a desktop study, where APTIM performed an extensive search for previous geophysical and geotechnical investigations conducted within the five (5) Study Areas. After reviewing the available data, APTIM, CR, and the Massachusetts Office of Coastal Zone Management conducted a kick off meeting on May 26, 2017 to discuss the proper allocation of vibracore samples, surface grab samples and video collection efforts. It was decided that the field investigation would consist of the collection of five (5) vibracores in Study Area 1 offshore of the Merrimack River, four (4) vibracores in Study Area 2 offshore of Nantasket Beach, three (3) vibracores in Study Area 3 offshore of Duxbury Bay, three (3) vibracores in Study Area 4 offshore of Sandwich, five (5) vibracores in Study Area 5 offshore of Cuttyhunk along with five (5) surface grab samples in each of the Study Areas and enough towed video transects to accurately determine the bottom type and habitat. APTIM and CR submitted a final Data Acquisition Plan on July 14, 2017. APTIM collected the vibracores offshore of Massachusetts between September 15, and October 5, 2017, while CR conducted separate offshore operations to collect the surface grab samples and towed video data between August 2 and November 9, 2017.

Upon the completion of field investigations, vibracores and surface grabs samples were sent to APTIM's geotechnical laboratory in Boca Raton, Florida for description and analysis. Vibracores were processed to determine sedimentary properties by strata in terms of thickness, color, texture (grain size), composition and presence of clay, silt, sand, gravel, or any other identifying features. Samples from individual layers were extracted for grain size distribution analysis. Much like samples taken from the vibracores, surface grab samples were also described and processed for grain size. Results from the vibracore analysis were correlated to the available seismic sub-bottom data (where available) in order to create isopach surfaces of the potential sand resources in each of the Study Areas to determine an estimated sand volume available. Video transects were analyzed in real time for habitat type, sediment composition, observed fauna (epibenthic/nekton), and their relative abundance. Table 1 provides a breakdown of the investigation results per Study Area (also described below). These results include either the range of the average thickness of these isopach, \pm one standard deviation, or the average thickness not shown as a range (for areas without historic seismic sub-bottom data), shown as a discrete value representing the average thickness of that sand

deposit as logged in the newly collected vibracores within that specific Study Area. The volumes shown are the actual calculated estimated volumes in m³ rounded to the nearest 10,000 m³. The rounded m³ volume value was then converted to cubic yards and rounded to the nearest 100 cubic yards.

For Study Area 1, the dominant substrate type was low relief sand waves with some coarse grain sands and pebbles in the troughs. Dominant fauna included juvenile sea scallops, lobster, mysid shrimp, and amphipods. A total of 37 lobsters were observed on 85% of the collected transects. Dominant fish included winter flounder (16) and sculpin (18). APTIM was able to determine an estimated preliminary volume of 99,730,000 m³ (130,442,000 cy) of potential sand resources throughout Study Area 1.

For Study Area 2, the bottom substrates were highly variable, ranging from flat sand, mud to sand waves, pebble-cobble, and partially buried or dispersed boulders. Dominant invertebrates included sea scallops, rock crabs, and sand dollars. The dominant fish observed was cunner with 62 observations. The Massachusetts OMP Study Area 2 was broken down into three (3) Study Areas (2A, 2B and 2C). Interpretation of historic seismic sub-bottom data correlated to the vibracore results from this project indicated preliminary estimates of potential sand resource volumes of 3,600,000 m³ (4,708,600 cy) in the Study Area 2A. Recent backscatter and high resolution bathymetric data within Study Area 2B indicate the presence of surficial gravels as well as high-relief ledges, likely rocky in nature, crossing portions of the Study Area. As a result, little or no potential sand resource volume is expected in Study Area 2B. Based on historical surficial backscatter data indicating limited surficial sands, Study Area 2C was narrowed down to a smaller area with an estimated preliminary volume of 3,600,000 m³ (4,708,600 cy) of potential sand resources.

Offshore of Duxbury Bay, the bottom substrate at Study Area 3 was primarily flat sand, mud with limited observations of pebble-cobble bottom, and occasional shell aggregate bottom. Dominant invertebrates were mysid shrimp and sand dollars. Commercial species observed included 17 observations of rock crabs and nine (9) lobsters. The dominant fish species at Study Area 3 off of Duxbury Bay included red hake (33), winter flounder (15) and sculpin (12). The Massachusetts OMP Study Area 3 was broken down into two (2) Study Areas (3A and 3B). Interpretations of the historic sidescan sonar data in Study Area 3A indicate that the surface is likely mostly sand, therefore, in order to determine the potential volume of sand, an average thickness value was calculated from the isopach and used as a general representation of the entire Study Area 3A, yielding an estimated preliminary volume of 46,940,000 m³ (61,395,200 cy) of potential sand resources. The isopach in Study Area 3B was clipped to the Interpreted Sandy Area polygon in order to avoid areas that appear to have a hard bottom/rock outcrop. The total estimated

preliminary volume of Study Area 3B is 46,000,000 m³ (60,165,700 cy) of potential sand resources.

Offshore of Sandwich, the habitat type at Study Area 4 was primarily flat sand and mud with the exception of sand waves with coarser sand east of the Cape Cod Canal. Occasional biogenically-structured bottom (burrows and mounds) was also observed. A limited amount of pebble-cobble bottom was observed and some rock disposal material was observed in the Cape Cod Canal Offshore Dredged Material Disposal Site. Dominant fauna included sand dollars that were abundant at all of nine (9) sandy bottom transects. The dominant fauna on the silty/sand sediment at the Disposal Site were mysid shrimp. Counts of the commercial species included 40 rock crabs, 20 winter flounder, and 10 lobsters. Study Area 4 was divided into two (2) Study Areas, 4A and 4B. Study Area 4B was considered, but not included for additional geotechnical data collection as it is designated as a USACE/EPA Offshore Dredge Material Disposal Site and can likely be initially characterized via historic dredging records. The estimated preliminary volume in Study Area 4A is estimated to be 51,670,000 m³ (67,581,800 cy) of potential sand resources. Given the fact that no seismic sub-bottom data were available for this area, it is impossible to know the exact nature and full extent of the deposit without additional design-level data.

For Study Area 5, offshore of Cuttyhunk, the bottom substrate was primarily flat sand/mud, with occasional exceptions of observed sand waves and partially buried and dispersed boulders. The dominant invertebrate at eight (8) of the 10 transects were two (2) species of hermit crabs. Fish species observed at Study Area 5 included 21 red hake and one (1) winter flounder. The Massachusetts OMP Study Area 5 was broken down into two (2) Study Areas (5A and 5B). Sand deposits in Study Area 5A are associated with a shoaling feature with an estimated preliminary volume of 54,470,000 m³ (71,244,100 cy) of potential sand resources. Study Area 5B contains a thin (approximately 1.4 m (4.27 ft) thick) sand layer overlaying a paleochannel complex likely filled with clays and silts yielding an estimated preliminary volume of approximately 7,460,000 m³ (9,757,300 cy) of potential sand resources.

In total, APTIM was able to identify potential sand resources totaling a preliminary, reconnaissance-level estimate of approximately 313,470,000 m³ (410,003,400 cy) across all five (5) Study Areas. These are preliminary volumes of potential sand resources based on widely-spaced reconnaissance-level geotechnical data and varying levels of geophysical data coverage. Actual borrow area design would require additional, design-level geotechnical and geophysical data collection in order to accurately and fully characterize these sand deposits, account for environmental and cultural resources, determine compatibility of the potential sand resource with the recipient beach, evaluate dredgeability of the sand resource, and design permit plans and specifications (including dredge cuts) for a final borrow area.

Table 1: Project results summary

Region	Study Area	Vibracores	Surface Grabs	Towed Video Transects	Dominant Bottom Habitat/Substrate Dominant Fauna (Auster, 1998)		Average Grain Size (mm)	Average Silt %	Average Sand Thickness (m)	Area of Isopach (m²)	Estimated Volume of Isopach (m³)	Estimated Volume of Isopach (cy)
Merrimack River	1	5	5	10 at 750 m long 1 at 250 m ¹ long	Low relief sand waves with coarse grains and pebbles in troughs.	Juvenile sea scallops, lobsters, mysid shrimp, amphipods. Lobsters in 85% of transects (37 total), winter flounder and sculpin.	0.30	2.50	1.76 to 3.84	35,665,334	99,730,000	130,442,000
	2A	1	2	2 at 750 m long	Variable. Flat sand and mud, sand		0.11	11.75	2.54 to 4.18	1,070,310	3,600,000	4,708,600
Nantasket Beach	2B	0	0	1 at 750 m long	waves, pebble-cobble, partially	ially Sea scallops, rock crabs, lobsters. Cunner, sculpin red bake and winter flounder	N/A; There were no cores or grabs in this sub-area					
	2C	3	3	7 at 750 m long	buried and dispersed boulders.		0.11	12.28	2.67	1,348,929	3,600,000	4,708,600
Dh Da a ah	3A	1	2	4 at 500 m long	Primarily flat sand and mud; also	Mysid shrimp, sand dollars, rock crabs,	0.17	1.69	0.84 to 5.68	14,398,272	46,940,000	61,395,200
Duxbury Beach	3B	2	3	6 at 500 m long	limited pebble-cobble, shell aggregates.	lobsters. Red hake, winter flounder, sculpin.	0.16	10.59	0.71 to 4.55	17,497,037	46,000,000	60,165,700
Caradadah	4A	3	5	9 at 1000 m long	Primarily flat sand and mud; also	Sand dollars, mysid shrimp, rock crabs,	0.23	2.68	3.38	15,286,265	51,670,000	67,581,800
Sandwich	4B	0	0	1 at 1000 m long	sand waves, biogenic structures (burrows and mounds).	lobster. Winter flounder and skate.		N/A	; There were no co	ores or grabs ir	n this sub-area	
C. H. hl.	5A	3	2	5 at 500 m long	Primarily flat sand and mud; also	Hermit crabs, slipper limpets, bread crumb	0.19	4.66	1.61 to 7.33	12,180,335	54,470,000	71,244,100
Cuttyhunk	5B	2	3	5 at 500 m long	sand waves, partially buried or dispersed boulders.	sponges, lobster, channeled whelk. Red hake, winter flounder	0.17	6.49	0.76 to 2.04	5,338,989	7,460,000	9,757,300

¹ Transect ended at 250 meters because the video sled was at the edge of the shape file (defined boundary of the sand resources area) drifting in the wrong direction. A new transect was started 1000 m to the east and 750 meters completed

Final Report of Findings Aptim Environmental & Infrastructure, Inc.

2.0 Table of Contents

1.0	Exec	ıtive Summary	ii
2.0	Table	of Contents	vi
3.0	Abbre	viations	. viii
4.0	List o	Figures	ix
5.0	List o	Tables	. xiii
6.0	List o	Appendices	. xiv
7.0	Introd	uction	1
8.0	Scop	e of Work	1
9.0	Desk	op Study Results	3
	9.1	Study Area 1: Merrimack River	3
	9.2	Study Area 2: Nantasket Beach	4
	9.3	Study Area 3: Duxbury Beach	5
	9.4	Study Area 4: Sandwich	6
	9.5	Study Area 5: Cuttyhunk	7
10.0	Vibra	core Survey Systems and Equipment	8
	10.1	Vibracore Sampling Vessel	8
	10.2	Navigation and Positioning	8
		10.2.1 Hypack	8
	10.3	Trimble DGPS	8
	10.4	Single Beam Fathometer	9
	10.5	Vibracore System	9
11.0	Vibra	core Operations	9
	11.1	Vibracore Sampling Protocol	9
		11.1.1 Vibracore Sampling Field Operations Timeline	. 10
12.0	Data	Processing and Interpretation Methods	11
	12.1	Vibracore Sample Processing	11
	12.2	Seismic Sub-Bottom Processing	
	12.3	Geotechnical Data Interpretation	. 14

	12.4	Seismic Sub-bottom Interpretation	15
	12.5	Isopach Creation	15
13.0	Vibra	acore Results	17
	13.1	Study Area 1 Merrimack River	19
	13.2	Study Area 2 Nantasket Beach	21
	13.3	Study Area 3 Duxbury Beach	23
	13.4	Study Area 4 Sandwich	24
	13.5	Study Area 5 Cuttyhunk	25
14.0	Surfa	ace Grab and Towed Video Systems and Equipment	26
	14.1	Vessels	26
	14.2	Navigation	27
	14.3	Underwater Video Sled	27
	14.4	Surface Grab Sampler	27
15.0	Surfa	ace Grab and Towed Video Operations	28
	15.1	Towed Video Survey Operations	28
		15.1.1 Underwater Video Sled Viewing Area	29
		15.1.2 GoPro HD Camera Still Photographs and Video Review	29
16.0	Towe	ed Video and Surface Grab Data Interpretation and Results	30
	16.1	Study Area 1: Merrimack River	32
	16.2	Study Area 2: Nantasket Beach	33
	16.3	Study Area 3 Duxbury Beach	33
	16.4	Study Area 4: Sandwich	33
	16.5	Study Area 5: Cuttyhunk	34
	16.6	Fishing Activity at the Potential Sand Resources Sites	34
17.0	Sumi	mary	35
18.0	Figur	es	38
19.0	Refe	rences	77
20.0	Appe	endices	80

3.0 Abbreviations

AGC Automatic Gain Control

APTIM Aptim Environmental & Infrastructure, Inc.
ASTM American Society for Testing and Materials

Avg Average cm centimeters

CMEC Construction Materials Engineering Council, Inc.

Comp Composite

CR CR Environmental, Inc.

cy cubic yards

CZM Massachusetts Office of Coastal Zone Management

DBE Disadvantages Business Enterprise
DGPS Differential Global Positioning System
EPA Environmental Protection Agency

ft feet

GPS Global Positioning System

HD High Definition

in inch
kHz kilohertz
km kilometer
m meter

m² square meters m³ cubic meters mp megapixel

NAVD88 North American Vertical Datum, 1988
ODMDS Offshore Dredge Material Disposal Site

OMP Ocean Management Plan
OTI Outland Technologies'

SBA Small Business Administration

Thk Thickness

USACE United States Army Corps of Engineers

USCG U.S. Coast Guard
USGS U.S. Geological Survey
Vac volts, alternating current
WBE Women Business Enterprise
WOSB Women Owned Small Business

4.0 List of Figures

Figure 1: Study Area 1 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including sidescan sonar (darker imagery representing higher backscatter, indicating harder materials), surface grab samples, and seafloor classification information
Figure 2: Study Area 1 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including bathymetry, surface grab samples, and seafloor classification information
Figure 3 Historic USGS seismic sub-bottom line I12f1 depicting proposed vibracore location (green line) in Study Area 1. Proposed vibracore is targeting unconsolidated sediments away from clear bedrock peaks (dark reflectors)
Figure 4: Historic USGS seismic sub-bottom line I40f1 depicting proposed vibracore location (green line) in Study Area 1. Proposed vibracore is targeting a thick, unconsolidated surficial sediment deposit showing flat-lying stratigraphy41
Figure 5: Historic USGS seismic sub-bottom line I53f1 depicting proposed core location (green line) in Study Area 1. Proposed vibracore is targeting a thick, unconsolidated surficial sediment deposit showing flat-lying stratigraphy away from clear bedrock peaks (dark reflectors)41
Figure 6: Historic USGS seismic sub-bottom line l117f1 depicting proposed vibracore location (green line) in Study Area 1. Proposed vibracore is targeting a thick, unconsolidated surficial sediment wedge showing flat-lying stratigraphy
Figure 7: Historic USGS seismic sub-bottom line l116f1 depicting proposed vibracore location (green line) in Study Area 1. Proposed vibracore is targeting a thick, unconsolidated surficial sediment deposit showing flat-lying stratigraphy away from clear bedrock peaks (dark reflectors)41
Figure 8: Study Area 2 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including sidescan sonar (darker imagery representing lower backscatter, indicating softer materials), surface grab samples, and seafloor classification information
Figure 9: Study Area 2 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including bathymetry, surface grab samples, and seafloor classification information
Figure 10: Study Area 3 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including sidescan sonar (darker imagery representing lower backscatter, indicating softer materials), surface grab samples, and seafloor classification information
Figure 11: Study Area 3 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including bathymetry, surface grab samples, and seafloor classification information.

Figure 12: Historic USGS seismic sub-bottom line I13f2 depicting proposed vibracore location (green line) in Study Area 3. Proposed vibracore is targeting a thick, unconsolidated surficial sediment shoal, while avoiding nearby exposed bedrock and clear bedrock peaks (dark reflectors)
Figure 13: Historic USGS seismic sub-bottom line I74f1 depicting proposed vibracore location (green line) in Study Area 3. Proposed vibracore is targeting a thick, unconsolidated surficial sediment shoal
Figure 14: Historic USGS seismic sub-bottom line I108f1 depicting proposed vibracore location (green line) in Study Area 3. Proposed vibracore is targeting a thick, unconsolidated surficial sediment shoal, while avoiding nearby exposed bedrock and clear bedrock peaks (dark reflectors)
Figure 15: Study Area 4 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including sidescan sonar (darker imagery representing higher backscatter, indicating harder materials), surface grab samples, and seafloor classification information
Figure 16: Study Area 4 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including bathymetry, surface grab samples, and seafloor classification information
Figure 17: Study Area 5 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including sidescan sonar (darker imagery representing lower backscatter, indicating softer materials), surface grab samples, and seafloor classification information
Figure 18: Study Area 5 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including bathymetry, surface grab samples, and seafloor classification information
Figure 19: Historic USGS seismic sub-bottom line I70f1 depicting proposed vibracore location (green line) in Study Area 5. Proposed vibracore is targeting a subsurface, channel-like deposit containing flat-lying stratigraphy. The location is away from nearby clear bedrock peaks and exposed bedrock (dark reflectors)
Figure 20: Historic USGS seismic sub-bottom line I175f1 depicting proposed vibracore location (green line) in Study Area 5. Proposed vibracore is targeting a surficial sand deposit, inside of the sand resource area which is bound by a deep, bathymetric low likely controlled by antecedent bedrock topography (dark reflectors)
Figure 21: Historic USGS seismic sub-bottom line I188f1 depicting proposed vibracore location (green line) in Study Area 5. Proposed vibracore is targeting a surficial sand deposit, inside of the sand resource area which is bound by a deeper, bathymetric low likely controlled by antecedent bedrock topography (dark reflectors)
Figure 22: Historic USGS seismic sub-bottom line I259f2 depicting proposed vibracore location (green line) in Study Area 5. Proposed vibracore is targeting a subsurface, channel-like deposit. The location is away from nearby exposed bedrock (dark reflectors), but does target a darker reflector for characterization 51
Figure 23: Historic USGS seismic sub-bottom line I307f1 depicting proposed vibracore location (green line) in Study Area 5. Proposed vibracore is targeting a subsurface, channel-like deposit. The location is away from nearby clear bedrock peaks and exposed bedrock (dark reflectors)

Figure 24: Study Area 1 showing the Massachusetts OMP sand resource area and as-collected vibracores and surface grab sample locations collected by APTIM and CR
Figure 25: Study Area 2 showing the Massachusetts OMP sand resource area and as-collected vibracores and surface grab sample locations collected by APTIM and CR
Figure 26: Study Area 3 showing the Massachusetts OMP sand resource area and as-collected vibracores and surface grab sample locations collected by APTIM and CR
Figure 27: Study Area 4 showing the Massachusetts OMP sand resource area and as-collected vibracores and surface grab sample locations collected by APTIM and CR
Figure 28: Study Area 5 showing the Massachusetts OMP sand resource area and as-collected vibracores and surface grab sample locations collected by APTIM and CR
Figure 29: Floe chart depicting the steps for vibracore logging, sampling, and sample analysis 57
Figure 30: Study Area 1 showing the Massachusetts OMP sand resource area and historic seismic tracklines from the USGS Open File Report 2007-1373 (gray lines) and the historic seismic data coverage used for the development of the isopach maps (blue lines)
Figure 31: Study Area 2 showing the Massachusetts OMP sand resource area and historic seismic tracklines from the USGS Open File Report 2009-1072 (gray lines) and the historic seismic data coverage used for the development of the isopach maps (blue lines)
Figure 32: Study Area 3 showing the Massachusetts OMP sand resource area and historic seismic tracklines from the USGS Open File Report 2010-1006 (gray lines) and the historic seismic data coverage used for the development of the isopach maps (blue lines)
Figure 33: Study Area 5 showing the Massachusetts OMP sand resource area and historic seismic tracklines from the USGS Open File Report 2012-1002 gray lines) and the historic seismic data coverage used for the development of the isopach maps (blue lines)
Figure 34: Study Area 1 showing Massachusetts OMP area, interpreted sandy seafloor area and as-built vibracores. Isopach surface was created from the interpretations and digitization of the seismic data collected and used by the USGS as part of the Open-File Report 2007-1373
Figure 35: Historic USGS seismic sub-bottom line 2005_005_FA_l53f1_30 (Open-File Report 2007-1373) depicting the location of as-built vibracore MA-CZM-2017-VC05 and MA-CZM-2017-VC09 in Study Area 1. The vibracore is targeting unconsolidated sediments away from clear bedrock peaks (top image). On the lower image the subsurface shaded as green represents the sand portion of the seismic line, while the subsurface geology shaded as red/yellow highlights the sand portion with higher clay content. Areas shaded as brown represent bedrock and outcrop
Figure 36: Study Area 2 showing Massachusetts OMP area, interpreted sandy seafloor area and as-built vibracores. Isopach surface was created from the interpretations and digitization of the seismic data collected and used by the USGS as part of the Open-File Report 2009-1072
Figure 37: Historic USGS seismic sub-bottom line l83f1000 (Open-File Report 2009-1072) depicting the asbuilt vibracore MA-CZM-2017-VC01 location in Study Area 2. The vibracore is targeting the subsurface, channel-like deposit (top image). On the lower image the subsurface shaded as green represents the sand portion of the seismic line, while the subsurface geology shaded as red highlights the clay portion of the vibracore. Areas shaded as brown highlight the bedrock (i.e. hard bottom).

Figure 38: Fence diagram for Study Area 2C showing the correlation between the sand and clay deposits across the collected vibracores in the Study Area. Layers color coded as red indicate portions with high clay content, while layers in yellow indicate sands with less than 10% clay content
Figure 39: Historic USGS seismic sub-bottom line I108f1000 (Open-File Report 2010-1006) depicting the as-built vibracore MA-CZM-2017-VC16 location in Study Area 3. The vibracore is targeting the sand hill (top image). On the lower image the subsurface shaded as green represents the sand portion of the seismic line, while the subsurface geology shaded as yellow/red highlights the potentially non-beach-compatible deposit. Areas shaded as brown highlight the bedrock (i.e. hard bottom)
Figure 40: Study Area 3 showing Massachusetts OMP area, interpreted sandy seafloor area and as-built vibracores. Isopach surface was created from the interpretations and digitization of the seismic data collected and used by the USGS as part of the Open-File Report 2010-1006
Figure 41: Fence diagram for Study Area 4A showing the correlation between the sand and clayey sand deposits across the collected vibracores in the Study Area. Layers color coded as green indicate portions with less than 5% fine grain content, while layers in red indicate sands with more than 10% clay content 69
Figure 42: Historic USGS seismic sub-bottom line I307f1 (Open-File Report 2012-1002) depicting the asbuilt vibracore MA-CZM-2017-VC13 location in Study Area 5B. The vibracore is targeting the subsurface, channel-like deposit (top image). On the lower image the subsurface shaded as green represents the sand portion of the seismic line, while the subsurface geology shaded as red highlights the potentially non-beach-compatible deposit (high clay content). Areas shaded as brown highlight the bedrock (i.e. hard bottom)
Figure 43: Study Area 5 showing Massachusetts OMP area, interpreted sandy seafloor area and as-built vibracores. Isopach surface was created from the interpretations and digitization of the seismic data collected and used by the USGS as part of the Open-File Report 2012-100271
Figure 44: Study Area 1 showing the interpreted sandy seafloor area along with as-run video transects and grab samples collected by CR
Figure 45: Study Area 2 showing the interpreted sandy seafloor area along with as-run video transects and grab samples collected by CR
Figure 46: Study Area 3 showing the Massachusetts OMP Sand Resource Areas along with as-run video and grab samples transects collected by CR
Figure 47: Study Area 4 showing the Massachusetts OMP Sand Resource Areas along with as-run video transects and grab samples collected by CR
Figure 48: Study Area 5 showing Massachusetts OMP Sand Resource Areas along with as-run video transects and grab samples collected by CR

5.0 List of Tables

Table 1: Project results summary	V
Table 2: Granularmetric Analysis Mesh Sizes with associated Wentworth Size Class	13
Table 3: Topo to Raster Grid Information	16
Table 4: Results of vibracore field operations	18
Table 5: Top of vibracore Barnhardt sediment classification	19
Table 6: Vibracore sand thicknesses and composite statistics	20
Table 7: Composite statistics for Study Area 1	21
Table 8: Estimated volumes for Study Area 1	21
Table 9: Composite statistics for Study Area 2	22
Table 10: Estimated volumes for Study Area 2	22
Table 11: Composite statistics for Study Area 3	23
Table 12: Estimated volumes for Study Area 3	24
Table 13: Composite statistics for Study Area 4	24
Table 14: Estimated volumes for Study Area 4	
Table 15: Composite statistics for Study Area 5	26
Table 16: Estimated volumes for Study Area 5	26
Table 17: Dates of CR's survey operations per Study Area	28
Table 18: Surface grab sediment classification	32

6.0 List of Appendices

Appendix A: Vibracore Logs

Appendix B: Vibracore Granularmetric reports (pdf)

Appendix C: Vibracore Granularmetric reports (excel)

Appendix D: Vibracore Granularmetric Curves

Appendix E: Vibracore Photographs

Appendix F: Grab Sample Logs

Appendix G: Grab Sample Granularmetric reports (pdf)

Appendix H: Grab Sample Granularmetric reports (excel)

Appendix I: Grab Sample Granularmetric Curves

Appendix J: Grab Sample Photographs

Appendix K: Video Transect Plates

Appendix L: Video Transect Tables

Appendix M: OTI Video Transect Files

Appendix N: GoPro HD Video Transect Videos and Photos

Appendix O: Select Towed HD Video Transect Screen Captures

Appendix P: Video Transect Navigation Table

Appendix Q: GoPro HD Video Transect Videos with Timestamp

7.0 Introduction

APTIM Environmental & Infrastructure, Inc. (APTIM) was contracted by the Massachusetts Office of Coastal Zone Management (CZM) on June 13, 2017, to conduct a preliminary characterization of offshore sand resources in five (5) study areas located offshore of Massachusetts. The project consisted of conducting an historic data review of the investigation areas, collection of 20 vibracores up to four-meters long, and 25 surface grab samples along with towed video footage of the seafloor. Additionally, APTIM was tasked with conducting detailed logging and analysis of the collected geotechnical samples and estimating volumes of potential sand resources for future coastal restoration efforts.

APTIM teamed with CR Environmental, Inc. (CR), located in Falmouth, Massachusetts to conduct this investigation. CR is a Massachusetts certified Women Business Enterprise (WBE) and certified Disadvantaged Business Enterprise (DBE); and a Small Business Administration (SBA) self-certified Women Owned Small Business (WOSB). APTIM and CR have a relationship extending back to 2006, working jointly to collect and provide the highest quality data in geophysical, geotechnical and oceanographic surveys in support of shore-protection projects.

Together, APTIM and CR coordinated the desktop study, site selection, data collection, processing and reporting. The field collection phase consisted of two separate operations. APTIM conducted the desktop historical data analysis study and, with the assistance of a CR research vessel, the vibracore collection components of the project. CR conducted the surface grab samples and underwater towed video collection from a separate, smaller local vessel owned and operated by CR. The vibracores, along with the surface grab samples collected by CR, were transported to APTIM's accredited geotechnical laboratory in Boca Raton, Florida and analyzed in accordance with American Society for Testing and Materials (ASTM) standard procedure D 2488-09a (Standard Practice for Description and Identification of Soils). APTIM then reviewed the results of the vibracore analysis, and together with the data from the desktop study, identified potential sand resource characteristics and volumes in all five (5) investigation areas.

8.0 Scope of Work

The purpose of this project was to conduct a preliminary characterization of sand resources off the coast of Massachusetts in five (5) areas identified in the Massachusetts Ocean Management Plan (OMP) as having the potential for use in future shore-protection projects. APTIM and CR conducted a project kickoff meeting with CZM in Boston, Massachusetts on May 26, 2017, to

discuss the project schedule, historic data and operational plans. At the meeting, the overall Scope of Work, proposed equipment, schedule, and project planning activities were discussed. In an effort to complete the most amount of work as possible within the available CZM budget, it was decided that a total of 20 vibracores, 25 surface grab samples, and underwater towed video would be collected within the five (5) Study Areas.

APTIM conducted a thorough review of existing geophysical and geotechnical data and information to gain an understanding of the geologic background and existing geologic conditions of the proposed Study Areas, outlined in Section 9.0 Desktop Study. For the desktop study APTIM utilized historic geophysical (sidescan sonar, bathymetric and seismic sub-bottom) data along with historic geotechnical data (surface grab samples and vibracores) and photographs of the seafloor provided by the United States Geological Survey (USGS) and CZM to narrow down areas of potential sand for this investigation. In areas with limited raw geophysical and geotechnical data, APTIM relied on historic reports prepared for The Division of Mineral Resources State of Massachusetts, The Commonwealth of Massachusetts Department of Natural Resources Division of Mineral Resources, the USGS, and other references provided by CZM.

Upon the completion of the desktop study and the review of the chosen geotechnical sample sites and towed video transects, APTIM submitted a final Data Acquisition Plan to CZM on July 14, 2017. APTIM and CR commenced field operations on August 2, 2017. APTIM collected 20, up to 4-meter long vibracores within the proposed Study Areas, consisting of five (5) vibracores in Study Area 1 offshore of the Merrimack River, four (4) vibracores in Study Area 2 offshore of Nantasket Beach, three (3) vibracores in Study Area 3 offshore of Duxbury Bay, three (3) vibracores in Study Area 4 offshore of Sandwich, and five (5) vibracores in Study Area 5 offshore of Cuttyhunk in Buzzards Bay. Vibracore sample locations were determined based on the previous geophysical data review, targeting deposits with a generally higher potential for thicker and/or larger sand resources.

CR conducted the towed video and surface grab sample operations separately from APTIM's vibracore operations. At each of the five (5) Study Areas, 10 up to 1,000-meter primary transects were selected for underwater video sled survey coverage. Additional secondary underwater video coverage was collected at each site if time and weather permitted. At each of the Study Areas, five (5) surface grab samples were collected for sediment grain size. Final locations of the sediment samples were based on the video observations.

Upon completion of field operations, APTIM and CR analyzed all of the collected data to develop interpretations in support of producing a comprehensive summary of the surficial and subsurface geology of the Study Areas. Geotechnical data (vibracores and surface samples) were analyzed for

sedimentary properties in terms of layer thickness, color, texture (grain size), composition and presence of clay, silt, sand, gravel, or any other identifying features, and grain size distribution. Towed video footage was used to determine a qualitative summary of incidental macrofauna and nekton.

9.0 Desktop Study Results

In order to obtain an understanding of the geologic background and existing geologic conditions of the proposed Study Areas, APTIM conducted a thorough review of existing geophysical and geotechnical data and information. APTIM maintains a comprehensive internal database that is an excellent starting point for conducting preliminary evaluations of the potential for offshore sand resources. In addition to APTIM's extensive internal database, APTIM reviewed geologic data and information from the USGS and The Massachusetts Department of Natural Resources Division of Mineral Resources, provided by CZM. Based on the review of historic bathymetry data, acoustic backscatter data, seismic-reflection profiles, sediment samples, and photography from the five (5) proposed Massachusetts OMP Sand Resource Areas, APTIM was able to determine areas of potential sand resources for future shore protection projects in Massachusetts.

9.1 Study Area 1: Merrimack River

Five (5) vibracore samples were proposed within Study Area 1 offshore of the Merrimack River. APTIM used historic backscatter, bathymetry, surface grab samples, and photography to further delineate the sandy bottom within Study Area 1 (Figures 1 and 2).

While this area did not need to be divided into Study Areas, the historic data all confirmed the presence of rock outcrops in several areas throughout the study area. These areas were clipped out of the Study Area and not considered for further data collection. For Study Area 1, the historic backscatter data are presented in a reverse pattern, with the lighter colors representing low backscatter areas indicative of finer/sandy materials (Barnhardt et al., 2009). The dark colors represent high backscatter indicative of areas of rock, gravel, or other coarse materials. In addition to the extensive seismic sub-bottom data, there are extensive historic surface grab samples confirming the sidescan sonar imagery, allowing for easy delineation of the sandy seafloor (Buczkowski and Kelsey, 2006; Barnhardt et al., 2009).

This area has full coverage of historic USGS seismic sub-bottom data, providing APTIM geologists with ample data to review and propose vibracore locations (Barnhardt et al., 2009). Prior to the collection of the vibracores, APTIM utilized the exported imagery of the seismic sub-bottom data for review and site selection together with shapefiles with shot-point information and as-run tracklines.

Historic seismic sub-bottom data indicate the presence of buried rock, sands, and potentially finer materials, likely associated with paleofluvial activities (Figures 3, 4, 5, 6, and 7). APTIM targeted the thickest and potentially sandiest deposits as interpreted from the seismic sub-bottom data, while avoiding areas of rock outcrops or finer materials. In the northwest portion of the Study Area, APTIM attempted to target the thickest portion of the sand feature in an attempt to characterize the maximum sand deposit possible. In the northeast, APTIM collected a vibracore on the lateral extents of the potential sand deposit to assist with the identification of the edges of the deposit, including the potential to sample the material beneath the sandy deposit. The centrally-located proposed vibracore was intended to target the central portion of the deposit, allowing for regional coverage and general characterization of the overall sand feature. The southeast location targeted the edge of the deposit before it drops off to a deeper, rocky seafloor, while the southwest location targeted the thickest deposit on the southern end of the Study Area. All five (5) cores allowed for general coverage and characterization of this potential sand deposit.

All vibracores were collocated along existing seismic sub-bottom lines at or near seismic sub-bottom line crossings, enabling for the easy seismic sub-bottom tie-in of any resulting interpretation from the collected vibracore data.

9.2 Study Area 2: Nantasket Beach

Four (4) vibracores were proposed to be collected within Study Area 2, offshore of Nantasket Beach. Based on APTIM's desktop study, two (2) Study Areas (2A and 2C) were classified as having a higher potential for beach compatible resources within areas of sandy seafloor (Figures 8 and 9). Historic data from the Massachusetts Coastal Mineral Inventory Survey report (Willet, 1972), the United States Army Corps of Engineers (Meisburger, 1976) historic data from the USGS, including Maps and Seismic Profiles Showing Geology of the Inner Continental Shelf, Massachusetts Bay, Massachusetts (Oldale and Bick, 1987), and other historic USGS geophysical and bathymetric data (Ackerman et al., 2006) were used to classify the bottom types within Study Area 2 and to further delineate sandy seafloor in Study Areas 2A, 2B and 2C (Figures 8 and 9) (Barnhardt et al., 2010; Pendleton et al., 2013). APTIM compared historic USGS backscatter and bathymetric data and USGS photographs to confirm seafloor types within the Study Area in an effort to avoid high relief bathymetric data and high (light colored) backscatter data associated with hard bottom/rock outcrops and areas of gravel or cobble seafloor and target areas with the highest potential for beach compatible resources.

Study Area 2A was selected based on historic sidescan sonar data and USGS bottom photographs. A review of these data, along with limited early analog seismic data images, supported the interpretation of a surficial sand deposit within this Massachusetts OMP Sand Resource Area. One vibracore sample was proposed within Study Area 2A on an existing seismic sub-bottom line to further characterize the deposit for beach compatibility.

For Study Area 2B, early analog seismic sub-bottom data images from The Massachusetts Coastal Mineral Inventory Survey report (Willet, 1972) were reviewed to delineate Study Area 2B within a historic sand mineral resource area (BA II). The historic data classifies the area as sand with occasional silt and clay. Unfortunately, more recent backscatter and high resolution bathymetric data indicate the presence of surficial gravels as well as high-relief ledges, likely rocky in nature, crossing portions of Study Area 2B. As a result, and with limited portions of sandy seafloor remaining in Study Area 2B, no vibracore samples were proposed in Study Area 2B.

Study Area 2C was delineated using early analog seismic sub-bottom data images from The Massachusetts Coastal Mineral Inventory Survey report within a historic sand mineral resource area (BA I) (Willet, 1972). The historic data classifies the area as sand with occasional silt and clay. More recent bathymetric and backscatter data, however, indicate some areas of gravel seafloor (high, light-colored, backscatter) and areas of mixed sand/gravel seafloor (central Study Areas 2C). Due to the increased amount of surficial gravel, APTIM proposed only two (2) vibracore samples within Study Area 2C at locations where the Massachusetts OMP Sand Resource Area overlaps low (darker-colored) backscatter sandy areas, while avoiding high relief areas and high (light-colored) backscatter areas interpreted to be gravel, hard bottom, and/or rock outcrops.

Upon reviewing all of the data, APTIM was able to identify an area of low (dark-colored) backscatter, indicating a sandy and/or silty seafloor, just outside of the Massachusetts OMP Sand Resource Area shape that correlated to a potential sand source in the Massachusetts Coastal Mineral Inventory Survey report (Willet, 1972). While the same sand source in the Oldale and Bick, 1987, publication did not occur that far west, it is likely that was due to the lack of data coverage, not necessarily data indicating that the deposit had thinned considerably. As such, and based on the extensive gravel area present within Study Areas 2B and 2C, APTIM proposed one (1) vibracore in this area just west of Study Area 2C.

A total of four (4) vibracore sites were proposed within Study Area 2: one (1) in Study Area 2A, two (2) within Study Area 2C, and one (1) immediately west of Study Area 2C in a low (dark-colored) backscatter area interpreted to have a sand deposit in the Massachusetts Coastal Mineral Inventory Survey report.

9.3 Study Area 3: Duxbury Beach

Three (3) vibracore samples were proposed within Study Area 3, offshore of Duxbury Bay. Study Area 3 was evaluated using historic sidescan sonar data, historic bottom photographs, bathymetry data, and some historic USGS seismic sub-bottom data available for a portion of the Study Area (Figures 10 and 11) (Andrews et al., 2010; Buczkowski and Kelsey, 2006; Normandeau Associates, 2010; Pendleton et al., 2013). Bathymetry data were digitized, and compared to

sidescan sonar data and USGS photographs to classify surficial sand areas for vibracore placement. Areas shown as low (dark-colored) backscatter corresponded to sandy areas, as verified by historic surface grab samples and seafloor photography. Areas of high (lighter-colored) backscatter indicated the presence of gravel, cobble or rocks, and were therefore excluded from the Study Area.

The Study Area was divided into two (2) main Study Areas: 3A being the northern Study Area, and 3B the southern Study Area. A total of three (3) vibracores were proposed within Study Area 3: one (1) in Study Area 3A and two (2) in Study Area 3B. For Study Area 3A, there were no historic seismic sub-bottom data available to confirm the presence of subsurface sand deposits across the entire area. That said, there were high resolution sidescan sonar backscatter, bathymetry, and photographic data indicating the presence of surficial fine-grained sands and some sand with shell material. Based on this information, and the desire to further characterize the subsurface geology of Study Area 3A, APTIM placed one (1) proposed vibracore location within the fine-grained sand area.

For Study Area 3B, there were some seismic sub-bottom data available (Barnhardt et al., 2010; Pendleton et al., 2013). APTIM reviewed and utilized the exported imagery of the seismic sub-bottom data for review and site selection. The seismic sub-bottom data, together with the historic surficial backscatter, grab samples, and photographic data, confirmed the presence of a sand feature. This feature is visible on multiple sub-bottom lines, and can be tied using the sub-bottom lines across Study Area 3B (Figures 12, 13, and 14). APTIM selected two (2) areas within this subsurface sand feature, traceable on multiple seismic sub-bottom lines, for vibracore collection.

9.4 Study Area 4: Sandwich

Three (3) vibracores were collected within Study Area 4, offshore of Sandwich. Based on APTIM's desktop study, one (1) Study Area (4A) is classified as having a higher potential for beach compatible resources. A second Study Area (4B) was considered but avoided as it is designated as a USACE/EPA Offshore Dredge Material Disposal Site and can likely be initially characterized via historic dredging records (Figures 15 and 16). The Coastal Engineering Research Centers Seismic and Coring Investigation of Cape Cod Bay (Samson, 1974), together with historic NOAA bathymetric and backscatter data (U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Survey, 2007) and USGS surface grab samples (Buczkowski and Kelsey, 2006; Doner, 2012), were used to classify the bottom type within Study Area 4 and further delineate the sandy seafloor areas within Study Area 4A. APTIM reviewed the historic data to target the areas with the highest volume of potential resources.

Study Area 4A lies partly within a historic sand mineral resource identified in the early 1970's (Samson, 1974). Historic data were plotted in ArcGIS then used to select the proposed vibracore

samples. For the most part, where historic data exist, the vast majority of Study Area 4A appears to have a sandy seafloor. While recent seismic sub-bottom data do not exist, the Samson, 1974, report indicates the presence of subsurface sands. APTIM proposed vibracore samples within the thickest apparent deposits shown in the Samson, 1974, isopach map in the north, central-north, and southwest portions of the Massachusetts OMP Sand Resource Area.

9.5 Study Area 5: Cuttyhunk

Five (5) vibracores were collected within Study Area 5, offshore of Cuttyhunk. Study Area 5 is divided into two (2) Study Areas: 5A to the south and 5B to the north. APTIM used historic backscatter, bathymetry, surface grab samples, and photography to further delineate the sandy bottom within both Study Areas (Figures 17 and 18) (Ackerman et al., 2012; Ackerman et al., 2015; Buczkowski and Kelsey, 2006; Doner, 2012; Foster et al., 2016). This area had full coverage of historic USGS seismic sub-bottom data, providing APTIM geologists with ample data to review and propose vibracore locations (Foster et al., 2016). APTIM reviewed and utilized the exported imagery of the seismic sub-bottom data for review and site selection.

Based on the acoustic representation of the seismic sub-bottom data, it appears that each Study Area has a discreet, subsurface sand deposit (Figures 19, 20, 21, 22, and 23). For Study Area 5A in the south, APTIM selected three (3) proposed vibracore locations to characterize the southern sand deposit. The northern 5A vibracore was located to target the thinner, lateral extents of the sand deposit, providing regional coverage of the deposit allowing for characterization of the lateral extents of the deposit. The southeast and southwest locations in Study Area 5A were meant to target the sand deposit at its thickest and prior to the end of the deposit when it drops off significantly to a deeper, rocky seafloor.

For Study Area 5B, APTIM selected two (2) vibracore locations to characterize the northern sand deposit. The northwest location targeted the thickest portion of the sand feature, while the northeast location targeted the lateral extent of the feature in an effort to characterize both the sand deposit and some of the material below the sand deposit, allowing for characterization of the bottom of the sand deposit and the underlying stratigraphy.

All vibracores were collocated with existing seismic sub-bottom lines at or near seismic sub-bottom line crossings, enabling for the easy tie-in of any resulting interpretation from the collected vibracore data.

10.0 Vibracore Survey Systems and Equipment

10.1 Vibracore Sampling Vessel

The *R/V Jamie Hanna*, a USCG inspected and certified vessel, based out of Hull, Massachusetts, was used for vibracore operations. The *R/V Jamie Hanna* is a 55 ft. (16.7 m) Wesmac hulled vessel, acquired with the sole purpose of geophysical, geotechnical and biological surveys. It comes equipped with two low emission diesel engines, two Pullmaster H8 5,000 lb. capacity winches, two 1000 lb. capacity oceanographic winches, a 1,000 lb. capacity stainless davit, and a 5,000 lb. capacity 15 ft. hydraulic a-frame. The *R/V Jamie Hanna* is also equipped with a full head and full galley for offshore operations.

A hydraulically operated a-frame, located on the vessel's stern, offered sufficient height to raise, lower, and retrieve the vibracore system. Furthermore, the hydraulic a-frame added a level of safety for crewmembers in the retrieval and deployment stages of the vibracore, preventing any unnecessary overhang. The ample deck space allowed the vibracore to be laid on the back deck, permitting the safe and secure retrieval of vibracore samples for stowing on the vessel during operations.

10.2 Navigation and Positioning

10.2.1 Hypack

Hypack 2017 is a state-of-the-art navigation and hydrographic surveying software system. The navigation system was interfaced with a differential global positioning system (DGPS) and an onboard navigation computer. The location of the DGPS antennae, the over-the-side mounted fathometer, and the A-frame sheave point were entered into the system to account for offsets, and all data were integrated in real time using the Hypack 2017 software. Online screen graphic displays included the pre-plotted vibracore locations, the updated boat track across the Study Area, adjustable left/right indicator, as well as other positioning information such as boat speed and bearing.

10.2.2 Trimble DGPS

The navigation and positioning system deployed for the vibracore survey consisted of a Trimble DGPS interfaced to Hypack, Inc.'s Hypack 2017. A Pro Beacon receiver provided the DGPS with corrections from the nearest USCG navigational beacon. The DGPS initially receives the civilian signal from the GPS NAVSTAR satellites. The locator automatically acquires and simultaneously tracks the NAVSTAR satellites, while receiving precisely measured code phase and Doppler phase shifts, which enables the receiver to compute the position and velocity of the vessel. The receiver then determines the time, latitude, longitude, height, and velocity once per second. GPS accuracy with differential correction provides for a position accuracy of 30 to 122 cm (1 to 4 ft).

10.3 Single Beam Fathometer

APTIM collected single-beam bathymetry data over each vibracore site. The Odom Hydrographic Systems, Inc.'s Hydrotrac, is a single frequency portable hydrographic echo sounder that was used to determine the top of core depth. The Hydrotrac operates at frequencies of 24, 33, 40, 200, 210, or 340 kilohertz (kHz) and is a digital, survey-grade sounder. A 210 kHz transducer was used for the bathymetric survey.

Upon completion of the fieldwork, data were edited and reduced with Hypack 2017. Tidal data from local predictions and regional tide gauges were reviewed and used to correct the raw water depths to vertical elevations. The offshore bathymetry data were finalized and reported as the top of vibracore elevation for each vibracore site on each vibracore log.

10.4 Vibracore System

APTIM utilized the SEAS VC-700 Vibracoring System, configured to collect undisturbed sediment vibracores up to 4 m (13.12 ft) in length. The VC-700 is a single vibracore electric vibracoring system operational to depths of 200 m (656 ft). This electric vibracore system allows for the successful collection of vibracores in relatively deep-water depths, in the case of this project approaching 35 m (114.83 ft).

The self-contained, free-standing electrically operated vibracore unit contains a VC-700 vibrator head (4.4 kilowatt) configured to 415 Vac or 220 Vac 3-phase power, allowing for a user to operate the vibracorer at fluctuating vibration frequencies to penetrate through otherwise unyielding strata. A 210 m long 4-core Hydrofirm sea cable provided power to the drive unit of the vibracore from the surface control system, located on vessel.

The vessel was anchored at all geologic sample locations to further the vessel's stability for vibracore operations.

11.0 Vibracore Operations

11.1 Vibracore Sampling Protocol

APTIM collected 20 vibracores within the Study Areas between September 17, 2017 and October 3, 2017. Vibracore sample locations were determined based on APTIM's desktop study targeting deposits with a generally thicker and higher potential for increased sand resources. Figures 24 to 28 provide as-built locations for the vibracores and surface grab samples collected in each of the Study Areas.

Vibracore operations were based out of Hull, Massachusetts, at the home dock of the *R/V Jamie Hanna*. The dock had facilities for secure equipment and vibracore storage, supporting equipment for vessel mobilization and demobilization, and was centrally located for Study Areas 2 (Nantasket Beach), 3 (Duxbury Bay), and 4 (Sandwich). For Study Area 1 (Merrimack River), APTIM transited to the site from Hull and conducted operations on site, returning at the end of the day. For Study Area 5 (Cuttyhunk), CR and Goodwin Marine Services had prepositioned the *R/V Jamie Hanna* in Sandwich, allowing APTIM to transit to the site from Sandwich, conduct operations on site, and return to Sandwich at the end of the day.

During vibracore operations, the vibracore recovered a minimum of 80% of the expected penetration through the unconsolidated strata through which it penetrated, except for two cores in Study Area 5 where only 59% and 68% recovery was achieved after three attempts at each site. To calculate the percent recovery, the total recovery length was divided by the measured depth of penetration (by use of markings and a slide ring on the vibracore barrel exterior).

The desired depth of penetration was four (4) meters (13.12 ft). However, that maximum penetration was not necessarily achieved at all sample locations. When located over a boring site, APTIM made every reasonable effort to reach the required depth or to reach penetration refusal. Penetration refusal was completed when less than 0.30 m (1 ft) of advance was accomplished after five (5) minutes of vibration (as measured by winch cable payout through the A-frame sheave). When refusal was met at less than 80% of the desired depth of penetration, APTIM removed the sampled portion and a new vibracore pipe was set up for a second attempt. Retries were accomplished until the desired penetration and recovery was accomplished, or until two (2) retries were attempted (for a total of three (3) attempts), whichever occurred first.

11.1.1 Vibracore Sampling Field Operations Timeline

Vibracore operations began on September 15, 2017 when APTIM staff arrived in Hull, Massachusetts and began to mobilize the R/V Jaime Hanna at Goodwin Marine Services. Mobilization was completed on September 16, 2017. Vibracore data collection began on September 17, 2017 at Study Area 2 Nantasket Beach where vibracores MA-CZM-2017-VC01 to MA-CZM-2017-VC04 were collected. Vibracores MA-CZM-2017-VC05 to MA-CZM-2017-VC09 were collected at Study Area 1 Merrimack River on September 18, 2017. Hurricane Jose made its way offshore of the Study Area and survey operations were put on hold waiting for weather conditions to stabilize from September 19, 2017 to September 22, 2017. Survey operations did not begin again until September 25, 2017 when vibracores MA-CZM-2017-VC10 and MA-CZM-2017-VC11 were collected at Study Area 5 Cuttyhunk. Mechanical issues (weldment failure) caused the SEAS VC-700 Vibracoring System to be out of service until repairs could be made, during this time near-future regularly scheduled maintenance on the *R/V Jamie Hanna* was

pushed up to take place during the same time the SEAS VC-700 Vibracoring System was down for repairs. Vibracoring operations were shut down from September 26, 2017 to October 1, 2017 allowing for the SEAS VC-700 Vibracoring System and *R/V Jamie Hanna* maintenance. Vibracores MA-CZM-2017-VC15 to MA-CZM-2017-VC17 were collected at Study Area 3 Duxbury Beach on October 2, 2017. Vibracores MA-CZM-2017-VC18 to MA-CZM-2017-VC20 were collected at Study Area 4 Sandwich on October 2, 2017. Vibracores MA-CZM-2017-VC12 to MA-CZM-2017-VC14 were collected at Study Area 5 Cuttyhunk on October 3, 2017. Demobilization of the *R/V Jamie Hanna* occurred from October 4th to October 5th, at which time all field personnel returned to their respective home offices and the vibracores were transported to APTIM's geotechnical lab in Boca Raton, Florida.

12.0 Data Processing and Interpretation Methods

In order to more accurately estimate potential volumes of sand within the Study Areas, APTIM processed the available historic seismic sub-bottom data and calculated composite geotechnical statistics (where able) and estimated sand resource volumes based by correlating the results of the geotechnical data analysis performed on the vibracores with historic seismic sub-bottom data. The following subsection describes in more detail the methods used by APTIM to process and interpret the geotechnical and historic seismic sub-bottom data.

12.1 Vibracore Sample Processing

Upon collection of the vibracores and removal of the vibracore tube, APTIM geologists sealed, measured, and marked each vibracore to prepare the vibracores for transport. The vibracores, along with the surface grab samples collected by CR, were transported to APTIM's accredited geotechnical laboratory in Boca Raton, Florida. Vibracores were split lengthwise and logged in detail by APTIM geologists, describing sedimentary properties by layer in terms of layer thickness, color, texture (grain size), composition and presence of clay, silt, gravel, or any other identifying features in accordance with ASTM standard procedure D 2488-09a. A flow chart of vibracore logging and sample analysis steps is included as Figure 29.

The vibracores were photographed in 2 ft (0.6 m) intervals using an Olympus Stylus TG-3 16 megapixel camera with a 4.5 mm to 18.0 mm, f2.0 to f4.9 lens (Equivalent to 25 mm to 100 mm on a 35 mm film) that was mounted on a frame directly above the vibracores. The photographs were taken using full spectrum overhead lighting and an 18% gray background, which provided a known reference color and is the standard reference value against which all camera light meters are calibrated.

Sediment samples were extracted from the vibracores at irregular intervals based on distinct stratigraphic layers and sediment quality (strata with apparent high silt/clay content were typically avoided) in the sediment sequence. For stratigraphic layers within each vibracore that occurred at different depths, but that were significantly similar, a sample was not collected or analyzed for the deeper unit(s). Instead, APTIM reported the results of the first sample for the first unit as the virtual results of the similar deeper unit(s). The vibracores were wrapped and boxed for proper storage within APTIM's temporary storage facility.

The vibracores will be stored by APTIM for one (1) year after the completion of the contract, after which time the vibracores will be discarded. If CZM would like to retain the vibracores, the vibracores will be made available to CZM for pickup, or APTIM will transport the vibracores to CZM for additional cost.

Sedimentary properties of the surface grab samples were also described. Each grab sample was split into two (2) representative sub-samples: one (1) sub-sample to conduct the laboratory analysis and the other sub-sample for archiving within APTIM's storage facility with the vibracore samples.

Much like with the vibracore sediment samples, for surface grab samples from the same Study Area that are significantly similar, a sample was not analyzed for all multiple similar samples. Instead, APTIM reported the grain size analysis results of one of the similar samples as a virtual sample for the other similar samples. This was only done in the case of specific samples being significantly similar to others within the same Study Area. If significant similarity is in doubt, the surface grab sample was analyzed in full to determine its own specific geotechnical qualities. This was done for surface grab sample MER7-G3B, which was noted as a virtual sample of surface grab sample MER10-G. It should also be noted that surface grab samples CANAL6-G5 and DUX6-G5 were not analyzed for grain size as they were predominantly clay.

The sediment samples extracted from the vibracores and the surface grab samples were prepared for processing in APTIM's geotechnical laboratory. This laboratory is accredited by the Construction Materials Engineering Council, Inc. (CMEC) for ASTM D422/T88 Sieve Analysis, D1140, D4648, and CPE-HAT-09 and is validated by USACE's Materials Testing Center for ASTM D422/T88, D1140, D3740, D4648, CPE-HAT-09, and E329. Geologic samples were analyzed to determine texture (grain size and sorting) and color. The testing methods are summarized below.

The sediment samples were analyzed to determine color and grain size distribution. During sieve analysis, the wet, dry, and washed Munsell colors were noted. Grain size was determined through sieve analysis in accordance with ASTM Standard Materials Designation D422-63 for particle size analysis of soils. This method covers the quantitative determination of the distribution of sand

particles. Sediment finer than the No. 230 sieve (4.0 phi) was analyzed following ASTM Standard Test Method, Designation D1140-00. Mechanical sieving was accomplished using calibrated sieves with a gradation of half phi intervals. Additional sieves representing key ASTM sediment classification boundaries were included to meet appropriate beach-compatible mineral characterization. Weights retained on each sieve were then recorded cumulatively. The sieve stack, together with its Wentworth equivalence, used for mechanical analysis is provided in Table 2. Grain size results were entered into the gINT® software program, which computes the mean and median grain size, sorting, and silt/clay percentages for each sample using the moment method.

Table 2: Granularmetric Analysis Mesh Sizes with associated Wentworth Size Class

Sieve Number	Size (phi)	Size (mm)	Wentworth Sca	ale	
3/4	-4.25	19.00			
5/8	-4.00	16.00			
7/16	-3.50	11.20			
5/16	-3.00	8.00	Pebble		
3 ½	-2.50	5.60		Gravel	
4	-2.25	4.75			
5	-2.00	4.00			
7	-1.50	2.80	Granule		
10	-1.00	2.00	Granule	l	
14	-0.50	1.40	Very Coarse Sand		
18	0.00	1.00	very coarse Sand		
25	0.50	0.71	Coarse Sand		
35	1.00	0.50	Coarse Sariu		
45	1.50	0.36	Medium Sand		
60	2.00	0.25	Medium Sand	Sand	
80	2.50	0.18	Fine Sand		
120	3.00	0.13	rine Sanu		
170	3.50	0.09			
200	3.75	0.08	Very Fine Sand		
230	4.00	0.06			

Based on the grain size results of the surface grab samples and vibracores, and the results of the initial data review, APTIM conducted an evaluation of potential sand resources. This includes the identification of potential sand resource thickness, aerial extents, and estimated volumes.

12.2 Seismic Sub-Bottom Processing

Processing of the historic USGS seismic sub-bottom data was completed using Chesapeake Technology, Inc.'s SonarWiz 7 software. This software allows the user to apply specific gains and settings in order to produce enhanced seismic sub-bottom imagery that can then be interpreted and digitized for specific stratigraphic facies relevant to project goals. Figures 30 through 33 depict the location of all historic seismic sub-bottom data coverage, as well as the historic seismic sub-bottom data coverage used for the development of the sediment thickness calculations. As can be seen in some instances, not all available historic data were utilized due to the fact that some .segy files were corrupted and APTIM was unable to properly import them into SonarWiz, the data was not available, or the quality of the data did not permit a feature to be digitized.

Raw and/or processed .segy files were imported into SonarWiz 7 and the data bottom tracked and gained. The process of bottom tracking uses the high-amplitude signal associated with the seafloor to map it as the starting point for gains and swell corrections. Automatic gain control (AGC) was applied and manipulated when necessary to produce a better image (contrasts between low and high return signals). In addition Time-Varying Gain (TVG) was used to adjust the imagery below the seafloor to increase the contrast within the stratigraphy, and increase the amplitude of the stratigraphy with depth, accounting for some of the signal attenuation normally associated with sound penetration over time.

12.3 Geotechnical Data Interpretation

For proper integration into the seismic sub-bottom project in SonarWiz 7, individual layers in each vibracore were color-coded based on the amount (percent) of fine material (percent passing the #230 sieve). Samples with a fine-grain content less than or equal to 5% were color coded as green/good potential for sand while samples that were between 5% and 10% were classified as yellow/moderate potential for sand. Layers described as being clay were classified as red/poor potential for sand. Descriptive vibracore logs (Appendix A), granularmetric reports (Appendices B and C), granularmetric curves (Appendix D) and photographs of vibracores (Appendix E) were used to compile sediment characteristics and vibracore composite statistics in all of the Study Areas.

Composite mean grain size and percent silt content were computed for each vibracore within the Study Areas by calculating the weighted average (sample weighted by effective lengths of the sampled layer above the base of sand elevation). The final product of this calculation was a composite vibracore sample with weights for each phi interval. This composite vibracore sample was then input into gINT with any other composite vibracores (if available) where a final mean grain size and silt content was calculated for each study area (where able) based on the weighted average. Generally, the maximum base of sand elevation was determined to be the base of the last

layer classified as potentially beach-compatible (green), however, sometimes discrete yellow or red layers containing increased silt contents were also included in the composite statistics as long as the overall resulting deposit would still be classified as sandy and not silt or clay.

12.4 Seismic Sub-bottom Interpretation

After data processing, subsurface data interpretation was performed using SonarWiz 7 software. Bottom tracked seismic sub-bottom lines were opened to digitally display the recorded subsurface stratigraphy. Using the software's Sonar File Manager, color-coded vibracore descriptions were added directly to the seismic sub-bottom profiles. As described earlier, a project specific color scheme, based on a stoplight (red, yellow, green) color scale, was developed for the CZM vibracores based on the amount of fine grain content and general layer description.

Using the color-coded vibracore descriptions as a guide, the seismic sub-bottom stratigraphy was interpreted and the depth of the top of marginal to poor quality material (also known as the base of beach-compatible "good" sand) was determined. The stratigraphic reflector that best correlated with this layer was digitized by clicking on the reflector within SonarWiz to create a digital color-coded boundary. This boundary appears on the subsequent seismic sub-bottom imagery to allow for an easy, visual reference for the boundary between potentially beach-compatible material and marginal to poor quality material.

At this point, the thickness of each potential sand resource was calculated and exported from SonarWiz to serve as the basis for the initial isopach (sediment thickness) maps for each of the four (4) Study Areas that had historic seismic sub-bottom data (note, Study Area 4 did not have any historic seismic sub-bottom data, and as a result, an isopach could not be created for Study Area 4). This was accomplished by using the "Thickness" tool within SonarWiz, which subtracts the elevation below the towfish of the digitized reflector representing the non-beach-compatible material (i.e., high silt, clay, or bedrock/hard bottom content) boundary (as interpreted from the historic seismic sub-bottom data) from the elevation below the towfish of the digitized seafloor reflector. This then creates a visual, digital feature of the thickness of the deposit (between the seafloor and the boundary of non-compatible material) on each individual seismic sub-bottom line. From here, a file is exported from SonarWiz for all lines containing the thickness file, creating one single X/Y/Thickness ASCII file for the geologic deposit. This X/Y/Thickness ASCII file is then gridded into a surface to develop the isopach map (see section 12.5 below for more information on isopach creation).

12.5 Isopach Creation

The ASCII X/Y/Thickness file from SonarWiz was imported into Golden Software Inc.'s Surfer software program (software version 13), gridded, and reviewed for quality and accuracy (i.e.,

obvious visual inconsistencies, inaccuracies, and/or anomalies in the resulting gridded surface, like isolated holes, valleys, or obvious interpretation mismatches between survey lines). Output cell sizes (X, Y) ranged from 9.75 m to 39.96 m (Table 3) and were auto calculated by the software program depending on the size of the study area, seismic sub-bottom coverage of the study areas, and the resulting interpreted-data density of the available seismic sub-bottom data points in each study area. Upon review, if the resulting gridded thickness surface displayed discrepancies or clear artifacts (such as mismatched interpreted thicknesses at line crossings due to interpreting and digitizing different features on adjacent lines), the historic seismic sub-bottom data was reviewed and adjustments to the interpreted boundary location were made to the seismic sub-bottom digitization to fix these inconsistencies, ensuring that all interpreted and digitized features tied together in each study area. Once adjusted in SonarWiz, the X/Y/Thickness file was re-exported (as detailed in section 12.4) and re-gridded in Surfer to review the resulting isopach surface. This process was repeated until all visual inconsistencies and tie issues in the seismic sub-bottom data were corrected. After this quality assurance/quality control step, a final ASCII X/Y/Thickness file was exported for each area and gridded into a raster isopach surface within ArcGIS.

Table 3: Topo to Raster Grid Information

Field	Value
Feature Layer	Point file
Field	Thickness field
Туре	Point Elevation
Cell Output Size (Auto-populates)	SA1: 34.45 X, 34.47 Y SA2: 9.75 X, 9.75 Y SA3: 32.74 X, 32.74 Y SA5: 39.85 X, 39.96 Y
Output extent	Default
Margin in cells	20 (default)
Smallest Z value to be used in interpolation	Blank
Largest Z value to be used in interpolation	Blank
Drainage enforcement	Enforce
Primary type of input data	Spot
Maximum number of iterations	20 (default)
Roughness penalty	Blank
Profile curvature roughness penalty	Blank
Discretization error factor	1 (default)
Vertical standard error	0 (default)
Tolerance 1	0 (default)
Tolerance 2	200 (default)

To accomplish this, the X/Y/Thickness file was imported into ArcGIS and a topographic surface was created using the Spatial Analyst Topo to Raster tool. APTIM chose to use this tool due to the widely spaced, limited nature of the data coverage, together with the relative straightforwardness and limited input and processing variables of this tool. In addition, as described in ArcGIS, this tool has the ability to follow abrupt changes in terrain likely due to stream channels, ridges, and other geomorphic features, which are likely the most prevalent geomorphologic controls related to

the interpretation of the boundaries/features digitized in these datasets. This Topo to Raster tool uses an iterative finite difference interpolation technique. As described by ArcGIS, this grid development tool is "optimized to have the computational efficiency of local interpolation methods, such as inverse distance weighted (IDW) interpolation, without losing the surface continuity of global interpolation methods, such as Kriging and Spline. It is essentially a discretized thin plate spline technique (Wahba, 1990) for which the roughness penalty has been modified to allow the fitted DEM [Digital Elevation Model] to follow abrupt changes in terrain, such as streams, ridges and cliffs" (ArcGIS, 2012). Surfaces were generated by selecting the parameters outlined in Table 3.

The generated surface provided a visual and digital representation of the thickness (in meters) of the potential sand resource. The isopach surface was then clipped to the digitized Interpreted Sandy Seafloor delineation in order to avoid areas of exposed hard bottom and focus on the sandy seafloor areas evident as part of the historic data review described in Section 9.0. A volume of the resulting clipped isopach surface was then calculated by using the Surface Volume tool in ArcGIS. This tool utilizes the difference between two (2) surfaces to determine a potential volume in cubic meters (m³) of the sand deposit. For this particular project, the volume was determined by comparing the clipped, computed isopach surface to a zero thickness plane, generating a total potential volume of the sandy seafloor area.

It is important to note that the accuracy of the isopach and volume results is a function of the overall data density in each study area. While none of the study areas had data coverage consistent with borrow area design-level densities, all had sufficient coverage to make reconnaissance-level calculations on rough magnitude of potential volumes and locations of sand resources. In some cases, some areas (Study Areas 1 and 5, for instance) had more data coverage and data density than others (Study Area 2), and as a result have a higher accuracy of reconnaissance-level results. That said, all isopach and volume data are based on reconnaissance-level coverage and would require additional, design-level information to confirm and refine specific sand resource statistics.

13.0 Vibracore Results

The following sections describe the vibracore results, geotechnical composite statistics (where able), and resulting Study Area volumetric estimates.

Where historic seismic sub-bottom data existed (Study Areas 1, 2A, 3A, 3B, 5A, and 5B), the newly-collected vibracore data were correlated to the historic seismic sub-bottom data to develop an isopach as described earlier. The results below show the range of the average thickness of these isopach, \pm one standard deviation. The volumes shown are the actual calculated estimated volumes

of the isopach in m³ rounded to the nearest 10,000 m³. The rounded m³ volume value was then converted to cy and rounded to the nearest 100 cy.

Where historic seismic sub-bottom data did not exist (Study Areas 2C and 4A), the average thickness of the sandy deposit (as logged from the newly collected vibracores) was multiplied by the area of the Interpreted Sandy Seafloor area to develop the potential volume of the sand deposit. In this case, the average thickness is not shown as a range, but shown as a discrete value representing the average thickness of that sand deposit as logged in the newly collected vibracores within that specific Study Area. The volumes shown are the actual calculated estimated volumes in m³ rounded to the nearest 10,000 m³. The rounded m³ volume value was then converted to cy and rounded to the nearest 100 cy.

In areas where historic seismic sub-bottom data did not exist, where there was insufficient sandy seafloor to develop a potential borrow area, and/or there was a sediment disposal area with dredge records available to support additional characterization (Study Areas 2B and 4B), no new data was collected for this investigation, and as a result, no Interpreted Sandy Seafloor area or estimated volumes were calculated. The following Table 4 summarizes the as collected information of the vibracore field operations.

Table 4: Results of vibracore field operations

Vibracore	Number of Attempts	Penetration (ft)	Recovery (ft)	Recovery %	Study Area
MA-CZM-2017-VC01	1	12.0	12.0	100	2
MA-CZM-2017-VC02	1	12.0	9.8	82	2
MA-CZM-2017-VC03	1	12.3	12.3	100	2
MA-CZM-2017-VC04	2	12.3	11.8	96	2
MA-CZM-2017-VC05	3	8.7	8.7	100	1
MA-CZM-2017-VC06	3	12.3	12.2	99	1
MA-CZM-2017-VC07	3	11.5	10.8	94	1
MA-CZM-2017-VC08	1	12.3	12.3	100	1
MA-CZM-2017-VC09	1	12.3	12.0	98	1
MA-CZM-2017-VC10	3	11.5	6.8	59	5
MA-CZM-2017-VC11	2	9.9	9.9	100	5
MA-CZM-2017-VC12	3	12.3	8.4	68	5
MA-CZM-2017-VC13	1	12.3	11.5	93	5
MA-CZM-2017-VC14	2	10.5	10.5	100	5
MA-CZM-2017-VC15	3	11.0	10.7	97	3
MA-CZM-2017-VC16	1	12.2	11.2	92	3
MA-CZM-2017-VC17	1	11.0	11.0	100	3
MA-CZM-2017-VC18	1	11.0	10.0	91	4
MA-CZM-2017-VC19	1	12.3	11.5	93	4
MA-CZM-2017-VC20	1	12.3	10.8	88	4

Additionally, the description and geotechnical information for the top layer of each vibracore was analyzed and described according to CZM's modified Barnhardt sediment classification scheme (Table 5).

Table 5: Top of vibracore Barnhardt sediment classification

Vibracore	Study Area	Easting	Northing	CZM Barnhardt sediment classification
MA-CZM-2017-VC01	2A	257169.10	895589.73	Fine with Gravel
MA-CZM-2017-VC02	2C	257831.68	899232.26	Fine
MA-CZM-2017-VC03	2C	259735.01	897546.71	Fine
MA-CZM-2017-VC04	2C	262857.57	897529.60	Fine with Gravel
MA-CZM-2017-VC05	1	262481.69	948256.51	Fine with Rock
MA-CZM-2017-VC06	1	259678.20	948189.85	Fine with Rock
MA-CZM-2017-VC07	1	259788.11	951977.41	Fine with Rock
MA-CZM-2017-VC08	1	261676.60	953809.18	Fine with Rock
MA-CZM-2017-VC09	1	259585.07	955109.78	Fine with Rock
MA-CZM-2017-VC10	5A	239899.46	793490.73	Fine with Rock
MA-CZM-2017-VC11	5A	241178.01	796123.47	Fine with Rock
MA-CZM-2017-VC12	5A	237838.67	798152.26	Fine with Rock
MA-CZM-2017-VC13	5B	234032.12	802507.65	Fine with Rock
MA-CZM-2017-VC14	5B	232757.46	801103.10	Fine with Gravel
MA-CZM-2017-VC15	3A	277516.22	870903.09	Fine with Rock
MA-CZM-2017-VC16	3B	276445.66	866962.22	Fine with Rock
MA-CZM-2017-VC17	3B	275720.97	865047.61	Fine with Rock
MA-CZM-2017-VC18	4A	283241.53	843846.94	Fine with Rock
MA-CZM-2017-VC19	4A	285623.80	840878.07	Fine with Rock
MA-CZM-2017-VC20	4A	284592.15	838399.08	Fine with Rock

Table 6 below provides sand thicknesses and resulting vibracore composite statistics. It should be noted that the identified final composite values are only an estimate based on a few, widely-spaced geologic samples, and that additional vibracores and design-level geophysical data should be collected during an offshore design-level investigation in order to more confidently determine the beach-compatibility, volumes, hazards, protected resources, and dredgeability of potential preliminary borrow areas.

13.1 Study Area 1 Merrimack River

Seismic sub-bottom interpretation of Study Area 1 offshore of Merrimack River yielded one of the largest potential sand volumes (Figure 34). The area was covered by 570 line kilometers (km) of historic seismic sub-bottom data and five (5) vibracores. MA-CZM-2017-VC05 and MA-CZM-2017-VC06 characterized the subsurface as sand, with a silt content not exceeding 3%. MA-CZM-2017-VC07 characterized the topmost 2.3 m (7.5 ft) of the subsurface as sand, with a thin layer of sand with a high silt/clay content (almost 30%) which was excluded from the composite statistics

for the vibracore and the Study Area and represents the base of the sand resource. MA-CZM-2017-VC08 indicated that the topmost 3.2 m (10.5 ft) of the vibracore were sands, with the lower 0.5 m (1.7 ft) of the vibracore as clay with silty sands. This lower layer was excluded from the composite statistics. MA-CZM-2017-VC-09 characterized the upper part of the subsurface stratigraphy as sand, with the lower 1.0 m (3.2 ft) of the vibracore as sand with a silt content of 7.41%. Even though this deeper layer contained slightly increased silt content, it was included in the composite statistics of the vibracore and of the Study Area as the overall composite (including this increased silt layer) still resulted in general geotechnical statistics considered to be beach-compatible. Table 7 below provides a breakdown of the composite statistics for the Merrimack River Study Area.

Table 6: Vibracore sand thicknesses and composite statistics

Vibracore	Study Area	Top of Core (ft)	Bottom of Sand (ft)	Sand Thickness (ft)	Composite Grain Size (mm)	Composite Sorting (mm)	Composite Silt %
MA-CZM-2017-VC01	2A	-76.1	-86.0	9.9	0.1	0.62	11.8
MA-CZM-2017-VC02	2C	-122.0	n/a	n/a	n/a	n/a	n/a
MA-CZM-2017-VC03	2C	-120.4	n/a	n/a	n/a	n/a	n/a
MA-CZM-2017-VC04	2C	-123.7	-132.4	8.7	0.1	0.66	12.3
MA-CZM-2017-VC05	1	-104	-112.7	8.7	0.4	0.41	1.3
MA-CZM-2017-VC06	1	-79.7	-91.9	12.2	0.1	0.55	3.3
MA-CZM-2017-VC07	1	-86	-93.6	7.6	0.3	0.54	1.9
MA-CZM-2017-VC08	1	-107.6	-118.2	10.6	0.5	0.47	1.0
MA-CZM-2017-VC09	1	-92.5	-104.5	12.0	0.3	0.34	4.3
MA-CZM-2017-VC10	5A	-71.9	-78.7	6.8	0.2	0.65	2.1
MA-CZM-2017-VC11	5A	-66.6	-76.5	9.9	0.3	0.50	7.0
MA-CZM-2017-VC12	5A	-58.4	-66.8	8.4	0.1	0.66	3.9
MA-CZM-2017-VC13	5B	-56.8	-62.6	5.8	0.2	0.46	6.8
MA-CZM-2017-VC14	5B	-62.3	-65.6	3.3	0.17	0.53	6.0
MA-CZM-2017-VC15	3A	-80.1	-90.8	10.7	0.2	0.60	1.7
MA-CZM-2017-VC16	3B	-78.4	-89.6	11.2	0.2	0.49	10.6
MA-CZM-2017-VC17	3B	-71.5	-82.5	11.0	0.1	0.46	16.4
MA-CZM-2017-VC18	4A	-43.3	-53.3	10.0	0.3	0.61	1.1
MA-CZM-2017-VC19	4A	-56.8	-67.3	10.5	0.2	0.58	4.6
MA-CZM-2017-VC20	4A	-55.1	-65.9	10.8	0.2	0.46	2.3

The area appears to have a generally thick sand deposit to the north and south of the area, with some rock outcrops and/or thin sand layers in the central and western areas. The hard bottom outcrops can be seen both on the interpreted seismic sub-bottom data (Figure 35 shown in brown) as well as the historic sidescan sonar and seafloor photographs. Due to the drastic change in bottom type in the area, the isopach surface was clipped to the interpreted sandy area shapefile to isolate the portions of the Study Area that have hard bottom/rock outcrops (Figure 34). The final potential

volume of 99,730,000 m³ (130,442,000 cy) is estimated based off the interpreted seismic subbottom data with the plotted vibracores (Table 8).

As can be seen by comparing the Massachusetts OMP Sand Resource Area and the Interpreted Sandy Area derived from the sidescan sonar and seafloor photographs, only approximately 68% of the area could potentially be developed into a future borrow area. Additional geophysical and geotechnical data will be necessary to fully characterize and further delineate the sand resource offshore of the Merrimack River, however, from the available data it does appear to be a significant sand source with likely beach-compatible sand resources in substantial project quantities.

Tab	le 7	:	Com	oosite	stat	tistic	cs fo	or S	tud	y F	\rea	1

Vibracore	Study	Mean Grain	Sorting	Silt	Composite	Composite	Composite
VIDIACOIE	Area	Size (mm)	(mm)	%	Grain Size (mm)	Sorting (mm)	Silt %
MA-CZM-2017-VC05	1	0.36	0.41	1.3			
MA-CZM-2017-VC06	1	0.15	0.55	3.3		0.40	2.5
MA-CZM-2017-VC07	1	0.33	0.54	1.9	0.30		
MA-CZM-2017-VC08	1	0.52	0.47	1.0			
MA-CZM-2017-VC09	1	0.31	0.34	4.3			

Table 8: Estimated volumes for Study Area 1

Study Area	Vibracores	MA OMP Sand Res. Area (m²)	Interp. Sandy Area (m²)	Approximate Sand Thickness Range (m)	Volume (m³)	Volume (cy)
	MA-CZM-2017-VC05					
	MA-CZM-2017-VC06					
1	MA-CZM-2017-VC07	52,282,963	35,665,334	1.76 to 3.84	99,730,000	130,442,000
	MA-CZM-2017-VC08					
	MA-CZM-2017-VC09					

13.2 Study Area 2 Nantasket Beach

Study Area 2 offshore of Nantasket Beach yielded the smallest potential sand volumes. The area was sub-divided into Study Area 2A to the west, Study Area 2C as the largest centralized portion, and Study Area 2B to the south (Figure 36). Only Study Area 2A had any historic seismic sub-bottom data (a total of 61 line km of data). Study Area 2 was sampled by four (4) cores, of which only two (2) characterized the subsurface as having potential sand. Based on vibracore MA-CZM-2017-VC01, the subsurface is best characterized as sand with higher silt content (9%), with an increase in the silt content at an elevation of -86.0 ft below the seafloor. This layer, with almost 20% sand was not included as part of the vibracore composite. Upon review of the available seismic sub-bottom data, this sand layer is associated with a buried channel complex. MA-CZM-2017-VC02 and MA-CZM-2017-VC03 indicate that the subsurface geology is generally clay, with some sand around MA-CZM-VC03. Since the visual inspections of MA-CZM-2017-VC02 and

MA-CZM-2017-VC03 indicate that they are predominantly clay, and therefore not beach-compatible, no sediment samples were analyzed for grain size content, therefore there are no composite statistics for these two (2) cores. MA-CZM-2017-VC04 characterizes the subsurface as mostly sand with up to 14% silt content, with the lower 0.9 m (3.0 ft) of the vibracore consisting of mostly sandy clays. Table 9 below provides the composite information for the collected vibracores.

As previously mentioned, interpretation of the seismic sub-bottom data in Study Area 2A indicated that the estimated 3,600,000 m³ (4,708,600 cy) of potential sand is associated with the infill of a channel (Figure 37). This sand infill is present across the entire 2A area (Figure 37) and could be a potential source of sand for future shore protection projects, however, sediment deposits are normally not well organized within channels, complicating the development of a borrow area. Study Area 2C was narrowed down to a small 1,348,929 m² area around MA-CZM-2007-VC04 (approximately 12% of the central portion of Study Area 2) based off the historical sidescan sonar data. This area could have a potential sand volume of 3,600,000 m³ (4,708,600 cy) based on the sand thickness (Table 6) and the Interpreted Sandy Area (Table 10). Since no seismic sub-bottom data were available to corroborate the information provided by the vibracores, fence diagrams were made correlating vibracores MA-CZM-2017-VC02, MA-CZM-2017-VC03 and MA-CZM-2017-VC04 (Figure 38). The fence diagrams indicate that the majority of Study Area 2C is clay, with some mixed fine sands and clayey sands being introduced toward the southwest within Study Area 2C. While there is some indication of mixed sands in MA-CZM-2017-VC04, these sands contain high percentages of fine material (between 7% and 14% of material passing through the 230 sieve) and would need to be evaluated in the context of a potential recipient beach to fully determine beach compatibility and environmental impacts.

Table 9: Composite statistics for Study Area 2
--

Vibracore	Study Area	Mean Grain Size (mm)	Sorting (mm)	Silt %	Composite Grain Size (mm)	Composite Sorting (mm)	Composite Silt %
MA-CZM-2017-VC01	2A	0.11	0.62	11.75	n/a	n/a	n/a
MA-CZM-2017-VC02	2C	n/a	n/a	n/a	n/a	n/a	n/a
MA-CZM-2017-VC03	2C	n/a	n/a	n/a	n/a	n/a	n/a
MA-CZM-2017-VC04	2C	0.11	0.66	12.28	n/a	n/a	n/a

Table 10: Estimated volumes for Study Area 2

				Approximate		
Study		MA OMP Sand	Interp. Sandy	Sand Thickness	Volume	Volume
Area	Vibracores	Res. Area (m²)	Area (m²)	Range (m)	(m³)	(cy)
2A	MA-CZM-2017-VC01	1,739,373	1,070,310	2.54 to 4.18	3,600,000	4,708,600
2B	n/a	1,039,425	n/a	n/a	n/a	n/a
2C	MA-CZM-2017-VC04	11,056,961	1,348,929	2.67	3,600,000	4,708,600

Additional data are required for the entire Study Area 2, more specifically within Study Area 2C in order to properly determine the nature of the sand deposit around MA-CZM-2017-VC04. Moreover, due to the lack of available vibracores, and a poor indication of potential sand resources, no samples were taken in Study Area 2B, limiting the potential borrow area to a small portion of areas 2C and 2A. While data coverage, and actual sand resources, appear to be limited, there is sufficient likely beach-compatible sand resources present in shore protection project quantities for small to moderate sized shore protection projects within Study Area 2. Additional seismic subbottom and vibracore data coverage, however, could potentially identify larger quantities within the Study Area.

13.3 Study Area 3 Duxbury Beach

Study Area 3 offshore of Duxbury Beach was sampled by three (3) vibracores and approximately 560 line km of historic seismic sub-bottom data covering mostly Study Area 3B and the small southern portion of Study Area 3A. MA-CZM-2017-VC15, located in Study Area 3A, characterizes the subsurface geology as sand, likely associated with a shoal feature with less than 2% of silt content. MA-CZM-2017-VC16 and MA-CZM-2017-VC17 are located in Study Area 3B. MA-CZM-2017-VC16 characterizes the subsurface geology as a 1.3 m (4.3 ft) thick sand layer with little silt content, followed by a 2.1 m (6.1 ft) layer of sand with 15% silt content. This siltier layer was included in the composite statistics for the vibracore and the 3B area. MA-CZM-2017-VC17, much like MA-CZM-2017-VC16, indicates that the subsurface geology consists of a 1 m (3.3 ft) layer of sand followed by a thicker layer of sand with higher silt content, which was also included as part of the composite statistics for the area (Table 11). Including these marginal units allowed for the maximum understanding of the potential sand resource deposit pending additional geophysical and geotechnical data collection and further characterization of the potential resource.

Table 11: Composite statistics for Study Area 3

Vibracore	Study Area	Mean Grain Size (mm)	Sorting (mm)	Silt %	Composite Grain Size (mm)	Composite Sorting (mm)	Composite Silt %
MA-CZM-2017-VC15	3A	0.17	0.60	1.69	n/a	n/a	n/a
MA-CZM-2017-VC16	3B	0.16	0.49	10.59	0.15	0.47	13.46
MA-CZM-2017-VC17	3B	0.14	0.46	16.43	0.13	0.47	13.40

Interpretation of the available historic seismic sub-bottom data indicated that the sand available in both areas 3A and 3B is likely associated with a shoal deposit that crosses the entire Study Area 3 (Figure 39). The isopach in Study Area 3B was clipped to the Interpreted Sandy Area polygon in order to avoid areas that appear to have a hard bottom/rock outcrop (Figure 40). The total volume within Study Area 3B of 46,000,000 m³ (60,165,700 cy) of sand is generally located in the central portion of the Study Area, where the shoal feature appears to be more prominent (Table 12). Interpretations of the historic sidescan sonar data in Study Area 3A indicate that the surface is likely mostly sand, therefore, in order to determine the potential volume of sand, the sand thickness

(Table 6) was used as a general representation of the entire Massachusetts OMP Sand Resource Area 3A, yielding a potential volume of 46,940,000 m³ (61,395,200 cy) of sand. It is important to note however, that this is an estimated volume, assuming the subsurface stratigraphy of Study Area 3A is mostly uniform in nature (i.e. assuming that the three shoal futures visible in Figure 40 are consistent throughout the area to the north where geophysical data is lacking).

From the available historic data and collected vibracores, Study Area 3 appears to be a viable source of likely beach compatible sand, with some silt content, in shore protection project quantities. However, additional geotechnical and geophysical data are necessary to further delineate the potential sand resource and better understand the subsurface geology in both areas, especially in Study Area 3A.

Table 12: Estimated volumes for Study Area 3								
Study Area	WA OMP Vibracores Sand Res. Area (m²)		Interp. Sandy Area (m²)	Approximate Sand Thickness Range (m)	Volume (m³)	Volume (cy)		
3A	MA-CZM-2017-VC15	14,398,272	n/a	0.84 to 5.68	46,940,000	61,395,200		
3B	MA-CZM-2017-VC16 MA-CZM-2017-VC17	25,371,615	17,497,037	0.71 to 4.55	46,000,000	60,165,700		

13.4 Study Area 4 Sandwich

Study Area 4 offshore of Sandwich was divided into 2 sub-areas: Study Area 4A being the larger nearshore area and 4B being the delineation of the Offshore Dredge Material Disposal Site (ODMDS). Study Area 4A was sampled by three (3) vibracores and did not have any historic seismic sub-bottom data. The three (3) collected vibracores (MA-CZM-2017-VC18, MA-CZM-2017-VC19 and MA-CZM-2017-VC20) characterize the subsurface as a thick (up to 3.2 m (10.5 ft)) layer of sand, with MA-CZM-2017-VC19 indicating that the sand layer is overlaying a clayey sand unit. Due to the lack of historic data in Study Area 4, all collected vibracores were used to estimate the potential sand composite (Table 13).

Table 13: Composite statistics for Study Area 4

Vibracore	Study Area	Mean Grain Size (mm)	Sorting (mm)	Silt %	Composite Grain Size (mm)	Composite Sorting (mm)	Composite Silt %
MA-CZM-2017-VC18	4A	0.31	0.61	1.10			
MA-CZM-2017-VC19	4A	0.21	0.58	4.57	0.23	0.52	2.68
MA-CZM-2017-VC20	4A	0.18	0.46	2.31			

Since Study Area 4A was lacking historic seismic sub-bottom data, preventing the development of a detailed isopach map, the volume estimates for Study Area 4A were calculated by determining the average sand thickness of the deposit from the base of sand elevation between the three (3) vibracores and multiplying it by the area of the entire Massachusetts OMP Sand Resource Area for Study Area 4A. The potential volume in Study Area 4A is estimated to be 51,670,000 m³

(67,581,800 cy) of sand (Table 14). Given the fact that no seismic sub-bottom data were available for this area, it is impossible to know the exact nature and full extent of the deposit, and impossible to develop a detailed isopach for this area. As such, there is no isopach figure for Study Area 4 presented in this report. Since no seismic sub-bottom data were available to corroborate the information provided by the vibracores, fence diagrams were made correlating vibracores MA-CZM-2017-VC18, MA-CZM-2017-VC19 and MA-CZM-2017-VC20 (Figure 41). The fence diagram illustrates the general uniform nature of the surficial sand deposit across all of Study Area 4A, with the sand averaging approximately 3.38 m (11.09 ft) thick. In addition, based on MA-CZM-2017-VC19, the diagram shows the potential for clay deposits at deeper elevations immediately beneath the surficial sand deposit.

Table 14: Estimated volumes for Study Area 4

Study Area	Vibracores	MA OMP Sand Res. Area (m²)	Interp. Sandy Area (m²)	Approx. Average Sand Thickness (m)	Volume (m³)	Volume (cy)
4A	MA-CZM-2017-VC18 MA-CZM-2017-VC19 MA-CZM-2017-VC20	15,286,265	n/a	3.38	51,670,000	67,581,800
4B	n/a	2,026,170	n/a	n/a	n/a	n/a

Additional information is needed in Study Area 4 in order to better delineate and understand the nature of the sand deposit, however based on the collected vibracores it is likely that Study Area 4 could be a potential sand source with beach compatible sand in project quantities.

13.5 Study Area 5 Cuttyhunk

Study Area 5, located offshore of Cuttyhunk in Buzzards Bay, was divided into two (2) sub-areas, with area Study Area 5A located further offshore and Study Area 5B located nearshore. There were five (5) vibracores collected in Study Area 5 and approximately 350 line km of historic seismic sub-bottom data. Vibracore MA-CZM-2017-VC10, MA-CZM-2017-VC11 and MA-CZM-2017-VC12 were collected in Study Area 5A (further from shore). MA-CZM-2017-VC10 had a short recovery (6.8 ft), however, it characterizes the top 2 m (6.6 ft) as sand deposits. MA-CZM-2017-VC11 and MA-CZM-2017-VC12 penetrated approximately 3 m (9.8 ft) and also characterizes the subsurface geology as sand. MA-CZM-2017-VC13 and MA-CZM-2017-VC14 located in Study Area 5B (closer to shore) had deeper penetration, however, they indicate that only the topmost layers are thin sand. According to MA-CZM-2017-VC13, the layers below 1.7 m (5.6 ft) are predominantly clay, while MA-CZM-2017-VC14 is mostly clay below 1 m (3.3 ft) from the surface (Table 15). In both areas, the composite statistics only utilized the layers which were describes as being mostly sand, which yielded a thicker sand layer in Study Area 5A and a thin sand deposit in Study Area 5B (Table 16).

Analysis of the available historic seismic sub-bottom data indicate that the sand in Study Area 5 is likely associated with a seven (7) to 10 m thick shoal deposit that thins out closer to shore (Figure 42). The isopach in Study Areas 5A and 5B was clipped to the Interpreted Sandy Area polygon in order to avoid areas that appear to have a hard bottom/rock outcrop. A total of 61,930,000 m³ (81,001,400 cy) of potential sand are located across Study Area 5, with 54,470,000 m³ (71,244,100 cy) in Study Area 5A and 7,460,000 m³ (9,757,300 cy) in Study Area 5B (Table 16, Figure 43).

Table 15: Composite statistics for Study Area 5

Vibracore	Study Area	Mean Grain Size (mm)	Sorting (mm)	Silt %	Composite Grain Size (mm)	Composite Sorting (mm)	Composite Silt %
MA-CZM-2017-VC10		0.15	0.65	2.14			
MA-CZM-2017-VC11	5A	0.29	0.50	7.04	0.19	0.52	4.66
MA-CZM-2017-VC12		0.14	0.66	3.91			
MA-CZM-2017-VC13	5B	0.18	0.46	6.78	0.17	0.49	6.49
MA-CZM-2017-VC14	SB	0.17	0.53	6.00	0.17	0.49	0.49

Table 16: Estimated volumes for Study Area 5

Study Area	Vibracores	MA OMP Sand Res. Area (m²)	Interp. Sandy Area (m²)	Approximate Sand Thickness Range (m)	Volume (m³)	Volume (cy)
5A	MA-CZM-2017-VC10 MA-CZM-2017-VC11 MA-CZM-2017-VC12	18,201,875	12,180,335	1.61 to 7.33	54,470,000	71,244,100
5B	MA-CZM-2017-VC13 MA-CZM-2017-VC14	12,462,666	5,338,989	0.76 to 2.04	7,460,000	9,757,300

From the available historic data and newly collected vibracores, Study Area 5 appears to be a viable source of potential sand, with significant volumes of likely beach-compatible sand, however, additional information is needed in order to better delineate the shoal feature and characterize the sediment.

14.0 Surface Grab and Towed Video Systems and Equipment

14.1 Vessels

Vessel support for the underwater video operations and sediment grab sampling was provided by CR's 26-foot *R/V Lophius*, and the 25-foot *R/V Charlotte Anne* based in Falmouth, MA, and the 40-foot lobster boat, *Cynthia Lee* based in New Bedford. These vessels were all equipped with lifting davits and lobster pot haulers to deploy the underwater video sled and Ted Young modified Van Veen grab sampler. They also have 12 volt and 110 power supplies, benches for sample logging, and precision navigation and depth sounding equipment. For these sediment grab

sampling efforts, CR provided a three man crew: a USCG licensed boat captain, a field biologist, and an oceanographic technician.

14.2 Navigation

Navigation for the survey and sampling events was accomplished using a Hemisphere sub-meter GPS and digital compass system capable of receiving the USCG Beacon corrections and providing vessel heading. A shipboard computer running HYPACK® hydrographic surveying software was used to provide a steering display for the vessel's captain. The use of georeferenced imagery (e.g., orthophotos) as background files ensured that the correct sampling stations and video transects were occupied. The GPS antenna was mounted at the stern of the vessel, and cable out was carefully monitored during survey operations to apply an accurate layback or offset to the video sled position.

14.3 Underwater Video Sled

At the Study Areas, 10 500 to 1,000 meter long video transects were selected for underwater video sled survey coverage.

Underwater video data were collected with CR's portable towed video sled consisting of a lightweight aluminum frame, Outland Technologies' (OTI) high-resolution low light color camera, and two UWL-401 LED lights with variable output control. The video camera was cabled to the surface to an OTI-960 DVR recorder and topside monitor. The video sled is also equipped with a High Definition GoPro Hero 4+ Black video camera in a Nimar deep water housing mounted below the OTI camera and programmed to record HD video at 1080P (resolution), 30 frames per second, and take 12 megapixel still frames every 5-10 seconds. The GoPro camera was time synced to the OTI camera and the navigation computer at regular intervals during battery changes. Prior to launching the video sled, both cameras were set in record mode and the time, date, and video transect ID was recorded from a labelled board. When the video sled came in contact with bottom, the HYPACK navigation file was started.

14.4 Surface Grab Sampler

At each of the Study Areas, five (5) surface grab samples were collected for sediment grain size. The surface grab samples were collected at five (5) of the 10 video transects and located away from the planned APTIM vibracore locations. Sediment grain size samples were collected with a Ted Young modified Van Veen sediment sampler. Samples were inspected through the upper doors of the grab sampler, and samples with good recovery collected in buckets, transferred to one gallon zip lock bags, labeled, and stored on ice. Grain size samples were temporarily stored at CR's Falmouth, MA headquarters and then transported for analysis to APTIM's geotechnical laboratory in Boca Raton, Florida.

15.0 Surface Grab and Towed Video Operations

The video sled surveys and grab sampling operations at the Study Areas along the Massachusetts coast were performed from August-November 2017 (Table 17).

Table 17: Dates of CR's survey operations per Study Area

Study Area	Survey Dates
4	August 2 to 3, 2017
2	August 16 to 17, 2017
1	September 12 to 13, 2017
3	November 3 and 6, 2017
5	November 8 to 9, 2017

At the completion of each survey, navigation and underwater video data were backed up on a portable hard drive. The navigation data were edited for outlying positions and adjusted for the amount of cable out to provide underwater video sled positions at five (5) second intervals.

The 10 video transect tracklines at each of the five (5) Study Areas are shown on Figures 44 to 48. The start of each color-coded trackline is labeled (e.g., S2). In a few cases, the tracklines were broken into two (2) segments if the sled became entangled in lobster gear or if the vessel was near the edge of the shapefile boundary. These second segments were identified with an "A".

The first site to be surveyed was Study Area 4, offshore of Sandwich, in early August. The proposed survey plan was to run ten (10) 1,000 meter transects at each of the Study Areas. After snagging multiple lobster pots, and having to tow the sled at 1.5-2 knots to obtain the required survey coverage, CR made the decision that the video transect lengths would have to be shortened on future surveys to obtain high quality underwater video footage. CR discussed this situation with CZM (Todd Callaghan), and he concurred that the video transects should be shortened to improve the quality, especially in areas of homogeneous bottoms. Therefore, on subsequent surveys, CR performed video drifts at 0.5 -1 knot and data quality was greatly improved. Transect lengths were shortened to 750 meters at Study Areas 1 and 2 and 500 meters at Study Areas 3 and 5. Although video data at Study Area 4 was adequate to identify major substrate types and biota, it was of average quality for screen captures and video analysis. CR is willing to return to Study Area 4 during the fixed gear closure (February-April) to obtain better quality video data in slow drift mode.

15.1 Towed Video Survey Operations

During field operations the video sled was raised and lowered with the ship's pot hauler and the height of the system off the bottom was continually adjusted to achieve the best bottom coverage

and video quality. The video system operated in "drift and tow mode" and the vessel speed varied between 0.5 and 2 knots based on sea conditions and bottom currents. Mounted lasers set at 25 cm (9.8 in) apart on the video sled frame were used for scaling purposes. Occasionally, due to impacts with the side of the vessel or the bottom, the lasers would be knocked out of alignment, but this was corrected when the sled returned to surface. Batteries were changed if lasers went out or were intermittent.

The onboard field biologist performed real-time visual observations of the video at all times. Codes were used when recording substrate type based on CZM's modified Barnhardt et al. (1998) classification (Table 1 in Appendix L), and habitat/substrate classifications following Auster (1998) (Table 2 in Appendix L). The CZM modified Barnhardt et al. (1998) bottom sediment classes were: Fine, Fine with Gravel, Fine with Rock, Gravel with Fine, Gravel, Gravel with Rock, Rock with Fine, Rock with Gravel and Rock. Auster et al. (1998) developed a hierarchical approach for classifying marine bottom habitats in the outer continental shelf of the northwest Atlantic. Sediments were classified along a gradient of grain sizes from mud to boulders. The various forms these take and the associations of the infauna and epifauna with sediments produce a wide diversity of habitat types for fish and associated fauna. Eight general habitat categories increase from simple (Category 1) to highly complex (Category 8) (Table 2 in Appendix L).

Observations of algae and the dominant fauna (epibenthic/nekton) and the relative abundance (rare, occasional, common, or abundant) of the dominant invertebrate or fish species observed were recorded using species codes (Table 3 in Appendix L) approximately every 250 meters on formatted Excel spreadsheets. Data were checked for accuracy during the surface interval between transects. These data provide rough counts or numbers of times assemblages of a species were observed while the survey was underway.

15.1.1 Underwater Video Sled Viewing Area

When the video sled system was operated in a drift mode, the average vessel speed was 0.5 to 1 knot. In drift mode the video sled undulates in the water column and is either suspended a few inches above the bottom or comes to rest flat on the bottom. The viewing area of the video sled when it is off the bottom is approximately one square meter. When the video sled is on the bottom, the viewing area of the camera is approximately 50 cm x 50 cm and the video quality is optimal for substrate and biota identifications and video screen captures. The lasers are set 25 cm (9.8 in) apart and are useful for scaling bottom features and biota.

15.1.2 GoPro HD Camera Still Photographs and Video Review

The GoPro HD camera on the video sled was programmed to automatically record a photograph every 10 seconds at Study Area 4 offshore of the canal. This was changed to 5 second intervals for the remainder of the sites to collect more useable sharp photographs. There were up to 500 still

images taken per transect. The photograph quality is best when the video sled comes to a complete stop when used in a drifting mode. Each of the still photos are time stamped, the GoPro still photographs can be used as a guide to navigate to segments of GoPro HD video. In addition, one can scroll through all the still photos to examine changes in bottom type or biota over the entire transect at a rapid pace.

The GoPro camera provided detailed 1080P HD video footage detecting bottom features and biota that were not observed on the analog real time OTI camera. Thus, the GoPro data should be used to perform future video analyses. CR post-processed the GoPro camera video files using Adobe Media Encoder CC software. The resulting video files have embedded time stamps (local time) and file names on each frame enabling identification of video frame coordinates by comparing time on the video to time in the navigation files using tables or ESRI ArcGIS software. In cases where transects included more than one raw video file, the multiple files were "stitched" together to generate a single high-resolution file for each transect.

An efficient semi-automated method for review of the post-processed GoPro video files and extraction of full-resolution frame captures could include use of free open-license software packages. Playback could be conducted using Media Player Classic, available at https://mpc-hc.org/. Media Player Classic is a simple program that allows the tracks to be replayed in slow motion or you can step through the video frame by frame to select the appropriate video segments for screen captures.

A video de-coding software program, ffdshow, can be configured to automatically extract frame capture images at a specified frame interval (e.g., 1 capture per 30 frames = 1 capture per second) while simultaneously applying user-specified color, contrast or saturation levels during playback with Media Player Classic. This software is available at http://ffdshow-tryout.sourceforge.net/. Finally review of extracted image files (.jpg, .tif or other specified ffdshow output formats) may be expedited using free Irfanview software, available at http://www.irfanview.com/.

16.0 Towed Video and Surface Grab Data Interpretation and Results

A preliminary inspection of the underwater video data was performed to determine data quality and completeness, confirm identifications, and create representative high quality screen captures of substrate types and biota (Plates 1-17 in Appendix K).

At two (2) transects (hull-8 at Study Area 2 off Nantasket Beach, and canal-10 at Study Area 4 off Sandwich), the GoPro camera turned off, possibly due to an impact with the side of the vessel during deployment. There is OTI video data to use for analysis but no GoPro video or still picture data for these two (2) transects.

In a few transects at Study Area 4 off Sandwich, the video light brightness was adjusted too low and the color balance is off, giving the footage a green tint. At these transects, the low light OTI camera footage is well illuminated and can be used instead of the GoPro data.

At the completion of survey operations, the Field Data Spreadsheets for each of the Study Areas, listing both the Auster and CZM codes for habitat-substrate types and the CR biota abbreviations, were edited (Tables 4 to 8 in Appendix L). The information on the Field Data Spreadsheets is ordered by time. Information on the dominant species and substrate type for each study area's transects is summarized in Tables 9 to 13 in Appendix L. Species observed at each study area are provided in Table 14 in Appendix L. A total of 37 invertebrates, 11 fish, one (1) tunicate, and four (4) algal species were observed over the course of the study.

In terms of overall habitat complexity, Study Area 2 off Nantasket Beach, with areas of pebble-cobble bottom and partially buried and dispersed boulders, was the most complex in structure followed by Study Area 5 of Cuttyhunk which also had areas of pebble-cobble and boulders. Study Area 1 of the Merrimack was characterized by sand waves. Study Area 3 off of Duxbury Bay and Study Area 4 off the canal at Sandwich were the least complex, with primarily flat sand/mud bottom substrates.

Geotechincal sediment analysis of the surface grab samples in each of the Study Areas characterize the seafloor as generally sand and some areas with some clay. Table 18 below shows the CZM Modified Barnhardt classification of each of the collected surface samples.

More detail can be teased from the notes on species presence and habitat-substrate on the field data spreadsheets (Tables 4 to 8 in Appendix L) for individual transects within each Study Area. The observed species numbers provide a relative idea of the abundance of a species within a study area during the month the work was conducted. Numbers have not been normalized for length of transect or time. Rock crabs and Jonah crabs could not be differentiated in the field and are reported as rock crabs. Likewise the flat claw hermit crab and long-wrist hermit crabs were recorded as hermit crabs and were not differentiated in the field observations but can be identified in the video footage.

Deliverables for the video survey effort are contained in a portable hard drive accompanying this report. The hard drive includes:

- The OTI camera video files (Appendix M, digital only),
- GoPro HD video files and still photographs (Appendix N, digital only),
- 150 to 200 selected HD towed video screen captures from each of the five main study areas (Appendix O, digital only) and
- A navigation table with times and corrected positions of the video sled every five seconds (Appendix P digital only).

• Post-processed GoPro HD video with time stamps, enabling identification of frame coordinates by comparing the navigation file time with the video time using the navigation tables or ESRI ArcGIS software (Appendix Q, digital only).

Table 18: Surface grab sediment classification

		·		
Surface Grab Sample ID	Study Area	Easing	Northing	CZM Barnhardt Sediment Classification
BUZ10-G5	5A	240287.74	792641.10	Sand with Rock
BUZ1-G1	5B	232760.94	802636.98	Sand with Rock
BUZ2-G2	5B	233048.41	801884.71	Sand with Gravel
BUZ6-G3	5A	237499.26	798970.14	Sand with Gravel
BUZ9-G4	5A	240206.44	795415.04	Sand with Rock
CANAL2-G3	4A	283003.85	844583.68	Sand with Rock
CANAL4-G4A	4A	283105.07	842254.59	Sand with Rock
CANAL6-G5	4A	283539.40	839631.30	Fine
CANAL7-G2	4A	285205.95	840521.27	Sand with Rock
CANAL9-G1	4A	285715.54	837977.32	Sand with Rock
DUX3-G1	3A	278991.95	871887.63	Sand with Rock
DUX4-G2	3A	276756.33	871867.76	Sand with Rock
DUX6-G5	3B	277206.28	863108.03	Fine
DUX7-G3A	3B	274737.64	867514.37	Sand with Rock
DUX9-G4	3B	276696.64	865531.22	Sand with Gravel
HULL1-G5A	2A	257134.88	895877.88	Fine
HULL2-G4	2A	257862.30	896014.30	Sand with Rock
HULL4-G1	2C	263323.98	897006.43	Sand with Gravel
HULL5-G2	2C	262608.54	898060.89	Sand with Gravel
HULL7-G3A	2C	261231.15	898099.88	Sand with Rock
MER10-G1	1	261287.16	946846.97	Sand with Rock
MER2-G5	1	261020.50	955438.23	Sand with Rock
MER4-G4	1	260341.34	953193.41	Sand with Rock
MER7-G3B	1	261486.81	949990.06	Sand with Rock
MER8-G2	1	260292.42	948669.34	Sand with Rock

16.1 Study Area 1: Merrimack River

Study Area 1 results are presented in Tables 4, 9, and 14 in Appendix L and Plates 1 to 3 in Appendix K. The Study Area was sampled by a total of 10, 750 m long video transects.

- The dominant substrate type was low relief sand waves with some coarse grain sands and pebbles in the troughs.
- A total of 14 invertebrates and eight (8) fish species were observed.
- Dominant fauna included juvenile sea scallops, lobster, mysid shrimp, and amphipods.
- Lobsters were observed on 85% of the collected transects.

- A total of 200 scallops, mostly juvenile, 37 lobsters, and 29 rock crabs were observed during the video survey.
- Dominant fish included winter flounder (16) and sculpin (18).

16.2 Study Area 2: Nantasket Beach

Study Area 2 results are presented in Tables 5, 10, and 14 in Appendix L and Plates 4 to 7 in Appendix K. The Study Area was sampled by a total of 10, 750 m long video transects.

- Bottom substrates at Study Area 2 were highly variable, ranging from flat sand and mud, mud to sand waves, pebble-cobble, and partially buried or dispersed boulders.
- A total of 21 invertebrates, eight (8) fish, and four (4) algal species were observed.
- Dominant invertebrates included sea scallops, rock crabs, and sand dollars.
- A total of 407 sea scallops were observed, 186 rock crabs, and only nine (9) lobsters
- The dominant fish observed was cunner with 62 observations. Cunner were always associated with pebble-cobble and partially buried or dispersed boulder habitat. A total of 41 sculpin, 31 red hake, and 18 winter flounder were also observed in Massachusetts Bay offshore of Nantasket Beach, Hull.

16.3 Study Area 3 Duxbury Beach

Study Area 3 results are presented in Tables 6, 11, and 14 in Appendix L and Plates 8 to 10 in Appendix K. The Study Area was sampled by a total of 10, 500 m long video transects.

- The bottom substrate at Study Area 3 was primarily flat sand and mud with limited observations of pebble-cobble bottom at Transects dux-5A, 6, and 10 and shell aggregate bottom at Transect dux 8.
- A total of 11 invertebrates, eight (8) fish, and one (1) algal species were observed at Study Area 3.
- Dominant invertebrates were mysid shrimp and sand dollars.
- Commercial invertebrate species observed included 17 rock crabs and nine (9) lobsters. No sea scallops were observed.
- The dominant fish species at Study Area 3 of Duxbury Bay included red hake (33), winter flounder (15), and sculpin (12).

16.4 Study Area 4: Sandwich

Study Area 4 results are presented in Tables 7, 12, and 14 in Appendix L and Plates 11 to 13 in Appendix K. The Study Area was sampled by a total of 10, 1,000 m long video transects.

• The habitat type at Study Area 4 was primarily flat sand and mud with the exception of sand waves with coarser sand at Transect canal-9 east of the Cape Cod Canal and some biogenic structure bottom with burrows and mounds at Transects canal-1, 5, 6, and 10. A

- limited amount of pebble-cobble bottom was observed at transect canal-2 and some rock disposal material was observed at transect canal-1 in the Canal Disposal Site.
- A total of 13 invertebrate, six (6) fish, and two (2) algal species were observed at Study Area 4.
- Dominant fauna included sand dollars that were abundant at all of nine (9) sandy bottom transects. Dominant fauna at the silty/sand sediment at the Disposal Site was mysid shrimp.
- Counts of the commercial species included 40 rock crabs, 20 winter flounder, and 10 lobsters. A total of 13 skates were also observed.

16.5 Study Area 5: Cuttyhunk

Study Area 5 results are presented in Tables 8, 13, and 14 in Appendix L and Plates 14 to 17 in Appendix K. The Study Area was sampled by a total of 10, 500 m long video transects.

- Bottom substrate at Study Area 5 was primarily flat sand and mud. The exceptions were observations of sand waves at Transects buz-4 and buz-7 and partially buried or dispersed boulder bottom at Transects buz-5 and 7.
- A total of 22 invertebrate and four (4) fish species were observed.
- The dominant invertebrate at eight (8) of the 10 transects were the two species of hermit crabs. Slipper limpet was the dominant species on one 250 meter segment of Transect buz-5 and bread crumb sponge was the dominant species in areas of partially buried or dispersed boulders at Transect buz-7
- No rock crabs, or sea scallops were observed at Study Area 5, the commercial invertebrate species observed were one (1) lobster and nine (9) channeled whelks.
- Fish species observed at Study Area 5 included 21 red hake and one (1) winter flounder.

16.6 Fishing Activity at the Potential Sand Resources Sites

During survey operations, lobster pots were numerous at all Study Areas excluding Study Area 5 in Buzzards Bay off of Cuttyhunk. The vessel track was often altered to avoid pots, and there were multiple entanglements with lobster gear. In all of the Study Areas in Cape Cod Bay and Massachusetts Bay, lobsters were observed living in the sand bottom during the summer and fall months of the underwater video survey. In Buzzards Bay, the lobsters appeared to target the rocky and muddy bottom substrate.

CR identified local lobstermen that fish in the Massachusetts OMP Sand Resource Areas. They have information concerning the fixed and mobile gear fisheries in their locale and can provide information regarding bottom habitat and biota upon request.

17.0 Summary

APTIM and CR were contracted by CZM on June 13, 2017, to conduct a preliminary characterization of potential offshore sand resources in five (5) study areas located offshore of Massachusetts. The project consisted of conducting an historic data review of the investigation areas, collection of 20, up to four-meter long vibracores, and 25 surface grab samples along with towed video footage of the seafloor. Additionally, APTIM was tasked with conducting detailed logging and analysis of the collected geotechnical samples and estimating volumes of potential sand resources for future coastal restoration efforts.

APTIM and CR held a kickoff meeting for the project with CZM at CZM's offices in Boston on May 26, 2017, and submitted a final Data Acquisition Plan on July 14, 2017. APTIM collected the vibracores offshore of Massachusetts between September 15 and October 5, 2017, while CR conducted separate offshore operations to collect the surface grab samples and towed video data between August 2 and November 9, 2017.

For Study Area 1, offshore of the Merrimack River, APTIM and CR collected five (5) vibracores, five (5) surface grab samples, and 10 towed video transects across the entire potential sand resource area. The dominant substrate type of Study Area 1 was low relief sand waves with some coarse grain sands and pebbles in the troughs. Dominant fauna included juvenile sea scallops, lobster, mysid shrimp, and amphipods. Lobsters were observed on 85% of the collected transects. Dominant fish included winter flounder (16) and sculpin (18).

After adjusting the potential sand resource area by removing areas of rock or other incompatible seafloor, and processing and interpreting the available USGS seismic sub-bottom data, APTIM was able to determine an estimated preliminary volume of 99,730,000 m³ (130,442,000 cy) of potential sand resources throughout Study Area 1. This is a preliminary volume of potential sand resources based on widely-spaced reconnaissance level geotechnical data and some geophysical data coverage.

For Study Area 2, offshore of Nantasket Beach, APTIM and CR collected four (4) vibracores, five (5) surface grab samples, and 10 towed video transects across the entire potential sand resource area. The bottom substrates at Study Area 2 were highly variable, ranging from flat sand, mud to sand waves, pebble-cobble, and partially buried or dispersed boulders. A total of 21 invertebrates, eight (8) fish, and four (4) algal species were observed. Dominant invertebrates included sea scallops, rock crabs, and sand dollars. The dominant fish observed was cunner with 62 observations. Cunner were always associated with pebble-cobble and partially buried or dispersed

boulder habitat. A total of 41 sculpin, 31 red hake, and 18 winter flounder were also observed in Massachusetts Bay offshore of Nantasket Beach in Hull.

Study Area 2 was divided into three (3) Study Areas when evaluating for sand resources: 2A, 2B and 2C. Interpretation of Study Area 2A historic seismic sub-bottom data based on the vibracore results from this project, indicated preliminary estimates of potential sand resource volumes of 3,600,000 m³ (4,708,600 cy). That said, the sand is predominantly associated with the infill of a paleochannel, and deposits are not normally well organized within channels, complicating the development of a potential borrow area. Additional, design-level data would be required to fully characterize the nature and full extents of this sand deposit.

Recent backscatter and high resolution bathymetric data within Study Area 2B indicate the presence of surficial gravels as well as high-relief ledges, likely rocky in nature, crossing portions of the Study Area. As a result, little no potential sand resource volume is expected in Study Area 2B, so no vibracore samples were collected in Study Area 2B.

Based on historical surficial backscatter data indicating limited surficial sands, Study Area 2C was narrowed down to a small 1,348,929 m² area around MA-CZM-2007-VC04 (approximately 12% of the central portion of Study Area 2). When this smaller area is evaluated with the vibracore results, this Study Area has an estimated preliminary volume of 3,600,000 m³ (4,708,600 cy) of potential sand resources.

Offshore of Duxbury Bay, APTIM and CR collected three (3) vibracores, five (5) surface grab samples, and 10 towed video transects across the entire potential sand resource area designated Study Area 3. The bottom substrate at Study Area 3 was primarily flat sand, mud with limited observations of pebble-cobble bottom and occasional shell aggregate bottom. A total of 11 invertebrates, eight (8) fish, and one (1) algal species were observed at Study Area 3. Dominant invertebrates were mysid shrimp and sand dollars. Commercial species observed included 17 observations of rock crabs and nine (9) lobsters. No sea scallops were observed. The dominant fish species at Study Area 3 of Duxbury Bay included red hake (33), winter flounder (15) and sculpin (12).

In terms of potential sand resources, Study Area 3 was subdivided into two (2) Study Areas: 3A and 3B. Interpretations of the historic sidescan sonar data in Study Area 3A indicate that the surface is likely mostly sand, therefore, in order to determine the potential volume of sand, an average thickness value was calculated from the isopach and used as a general representation of the entire Study Area 3A, yielding an estimated preliminary volume of 46,940,000 m³ (61,395,200 cy) of potential sand resources. It is important to note however, that this is an estimated volume,

assuming the subsurface stratigraphy of Study Area 3A is mostly uniform in nature (i.e. assuming that the three shoal futures visible in the southern portion of Study Area 3A are consistent throughout the Study Area to the north where geophysical data is lacking).

The isopach in Study Area 3B was clipped to the Interpreted Sandy Area polygon in order to avoid areas that appear to have a hard bottom/rock outcrop. The total estimated preliminary volume of Study Area 3B is 46,000,000 m³ (60,165,700 cy) of potential sand resources in a shoal complex generally located in the central portion of the study area, where the shoal feature appears to be more prominent.

Offshore of Sandwich, APTIM and CR collected three (3) vibracores, five (5) surface grab samples, and 10 towed video transects across the entire potential sand resource area designated Study Area 4. The habitat type at Study Area 4 was primarily flat sand, mud with the exception of sand waves with coarser sand east of the Cape Cod Canal and occasional biogenic structure bottom with burrows and mounds. A limited amount of pebble-cobble bottom was observed and some rock disposal material was observed in the Cape Cod Canal Offshore Dredged Material Disposal Site. A total of 13 invertebrate, six (6) fish, and two (2) algal species were observed at Study Area 4. Dominant fauna included sand dollars that were abundant at all of nine (9) sandy bottom transects. Dominant fauna at the silty/sand sediment at the Disposal Site was mysid shrimp. Counts of the commercial species included 40 rock crabs, 20 winter flounder, and 10 lobsters.

Study Area 4 was divided into two (2) Study Areas, 4A and 4B. Study Area 4B was considered, but not included for additional geotechnical data collection as it is designated as a USACE/EPA Offshore Dredge Material Disposal Site and can likely be initially characterized via historic dredging records.

Volume estimates for Study Area 4A were calculated by determining the average base of sand elevation between the three (3) vibracores and utilizing the area of the entire Massachusetts OMP Sand Resource Area for Study Area 4A. The estimated preliminary volume in Study Area 4A is estimated to be 51,670,000 m³ (67,581,800 cy) of potential sand resources. Given the fact that no seismic sub-bottom data were available for this area, it is impossible to know the exact nature and full extent of the deposit without additional design-level data.

For Study Area 5, offshore of Cuttyhunk, APTIM and CR collected five (5) vibracores, five (5) surface grab samples, and 10 towed video transects across the entire potential sand resource area. The bottom substrate at Study Area 5 was primarily flat sand/mud, with occasional exceptions of observed sand waves and partially buried and dispersed boulders. A total of 22 invertebrate and four (4) fish species were observed. The dominant invertebrate at eight (8) of the 10 transects were

the two species of hermit crabs. No rock crabs, or sea scallops were observed at Study Area 5 and the only commercial invertebrate species observed was one (1) lobster and nine (9) channeled whelks. Fish species observed at Study Area 5 included 21 red hake and one (1) winter flounder.

In terms of sand resources, Study Area 5 was divided into two (2) Study Areas: 5A and 5B. Sand deposits in Study Area 5A are associated with a shoaling feature which is predominant in the southern portion of the study area, where a majority of the estimated preliminary 54,470,000 m³ (71,244,100 cy) of potential sand resources within 5A are located.

Study Area 5B contains a thin (approximately 1.4 m (4.27 ft) thick) sand layer overlaying a paleochannel complex likely filled with clays and silts. This thin sand deposit in Study Area 5B yielded an estimated preliminary volume of approximately 7,460,000 m³ (9,757,300 cy) of potential sand resources. These are preliminary volumes of potential sand resources based on widely-spaced reconnaissance level geotechnical data and some geophysical data coverage.

In total, APTIM was able to identify potential sand resources totaling a preliminary, reconnaissance-level estimate of approximately 313,470,000 m³ (410,003,400 cy) across all Massachusetts OMP Sand Resource Areas. These are preliminary volumes of potential sand resources based on widely-spaced reconnaissance-level geotechnical data and varying levels of geophysical data coverage. Actual borrow area design would require additional, design-level geotechnical and geophysical data collection in order to accurately and fully characterize these sand deposits, account for environmental and cultural resources, determine compatibility of the potential sand resource with the recipient beach, evaluate dredgeability of the sand resource, and design permit plans and specifications (including dredge cuts) for a final borrow area.

18.0 Figures

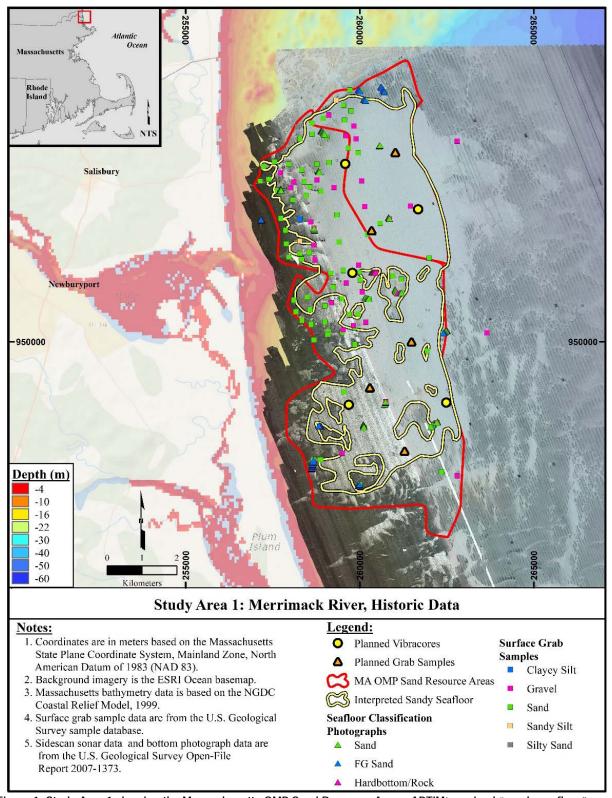


Figure 1: Study Area 1 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including sidescan sonar (darker imagery representing higher backscatter, indicating harder materials), surface grab samples, and seafloor classification information

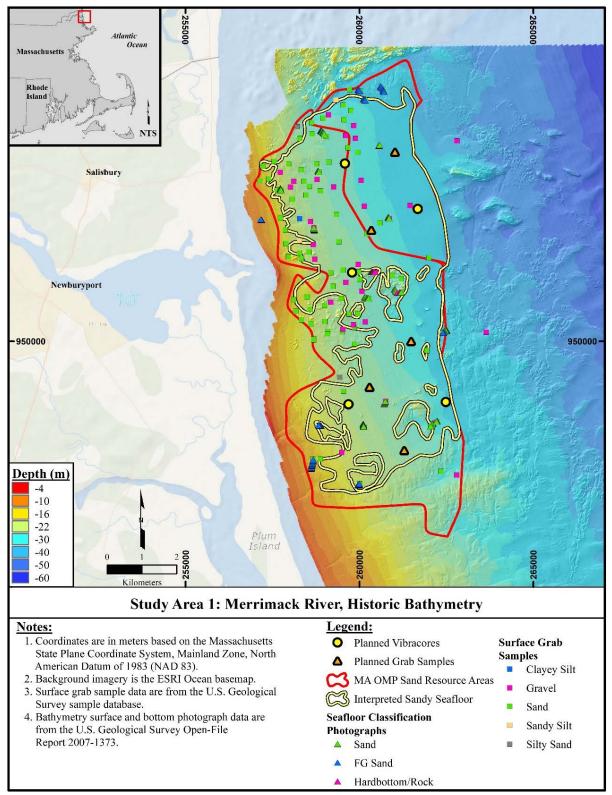


Figure 2: Study Area 1 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including bathymetry, surface grab samples, and seafloor classification information

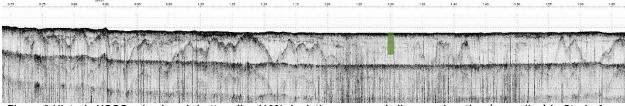


Figure 3 Historic USGS seismic sub-bottom line l12f1 depicting proposed vibracore location (green line) in Study Area 1. Proposed vibracore is targeting unconsolidated sediments away from clear bedrock peaks (dark reflectors)

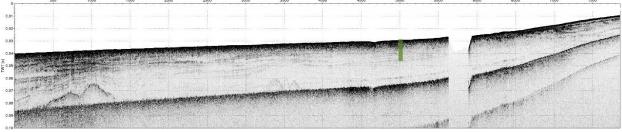


Figure 4: Historic USGS seismic sub-bottom line I40f1 depicting proposed vibracore location (green line) in Study Area 1. Proposed vibracore is targeting a thick, unconsolidated surficial sediment deposit showing flat-lying stratigraphy

Figure 5: Historic USGS seismic sub-bottom line I53f1 depicting proposed core location (green line) in Study Area 1. Proposed vibracore is targeting a thick, unconsolidated surficial sediment deposit showing flat-lying stratigraphy away from clear bedrock peaks (dark reflectors)

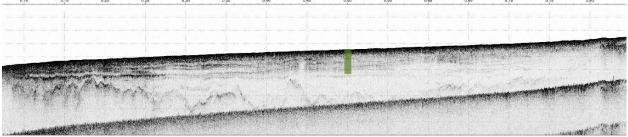


Figure 6: Historic USGS seismic sub-bottom line l117f1 depicting proposed vibracore location (green line) in Study Area 1. Proposed vibracore is targeting a thick, unconsolidated surficial sediment wedge showing flat-lying stratigraphy

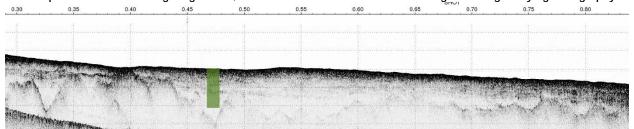


Figure 7: Historic USGS seismic sub-bottom line l116f1 depicting proposed vibracore location (green line) in Study Area 1. Proposed vibracore is targeting a thick, unconsolidated surficial sediment deposit showing flat-lying stratigraphy away from clear bedrock peaks (dark reflectors)

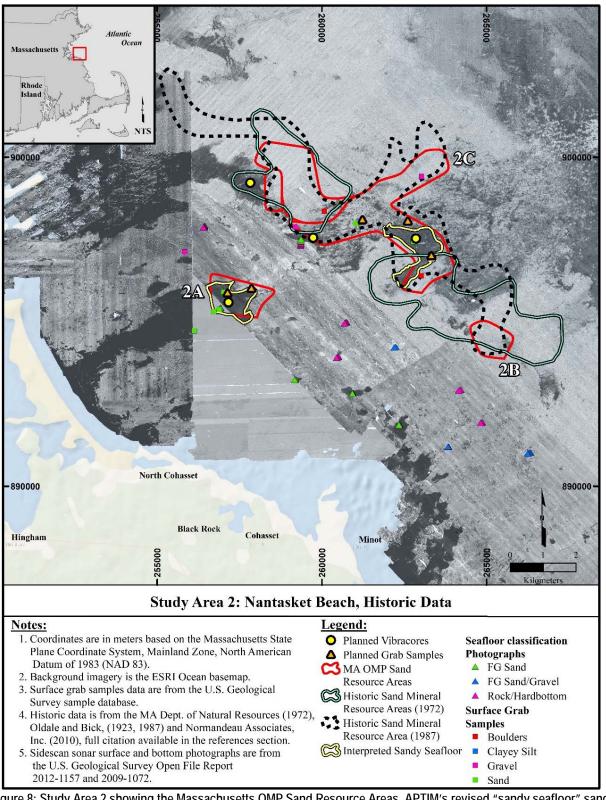


Figure 8: Study Area 2 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including sidescan sonar (darker imagery representing lower backscatter, indicating softer materials), surface grab samples, and seafloor classification information

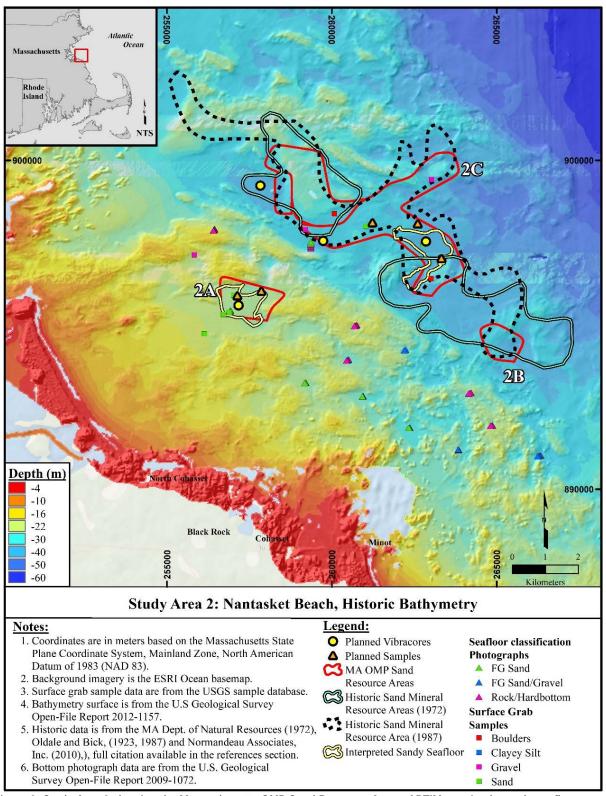


Figure 9: Study Area 2 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including bathymetry, surface grab samples, and seafloor classification information

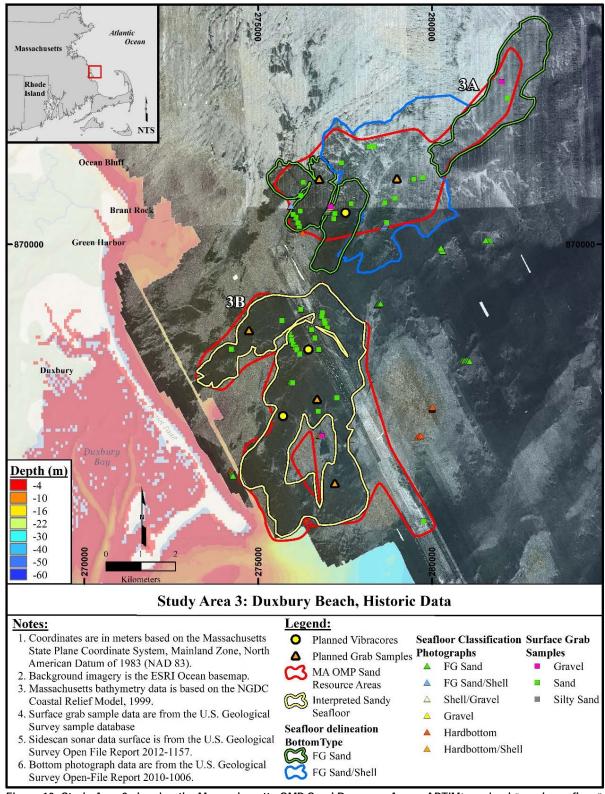


Figure 10: Study Area 3 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including sidescan sonar (darker imagery representing lower backscatter, indicating softer materials), surface grab samples, and seafloor classification information

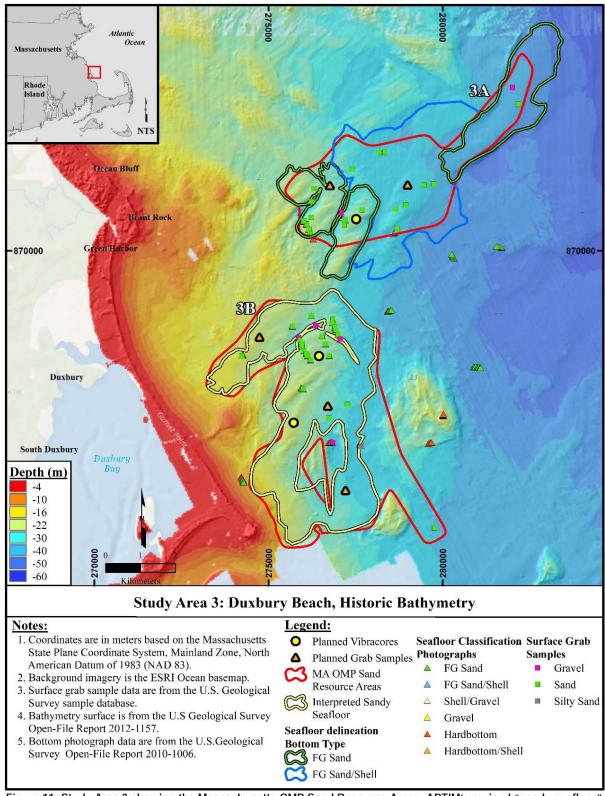


Figure 11: Study Area 3 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including bathymetry, surface grab samples, and seafloor classification information

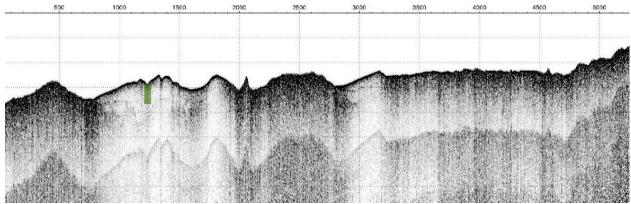


Figure 12: Historic USGS seismic sub-bottom line l13f2 depicting proposed vibracore location (green line) in Study Area 3. Proposed vibracore is targeting a thick, unconsolidated surficial sediment shoal, while avoiding nearby exposed bedrock and clear bedrock peaks (dark reflectors)

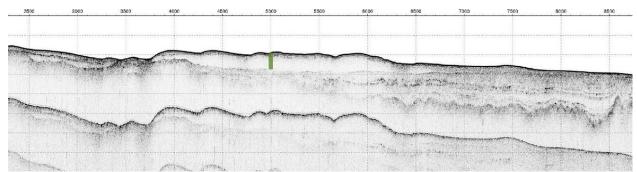


Figure 13: Historic USGS seismic sub-bottom line I74f1 depicting proposed vibracore location (green line) in Study Area 3. Proposed vibracore is targeting a thick, unconsolidated surficial sediment shoal

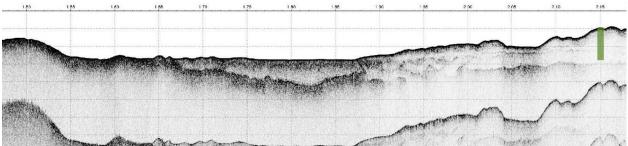


Figure 14: Historic USGS seismic sub-bottom line I108f1 depicting proposed vibracore location (green line) in Study Area 3. Proposed vibracore is targeting a thick, unconsolidated surficial sediment shoal, while avoiding nearby exposed bedrock and clear bedrock peaks (dark reflectors)

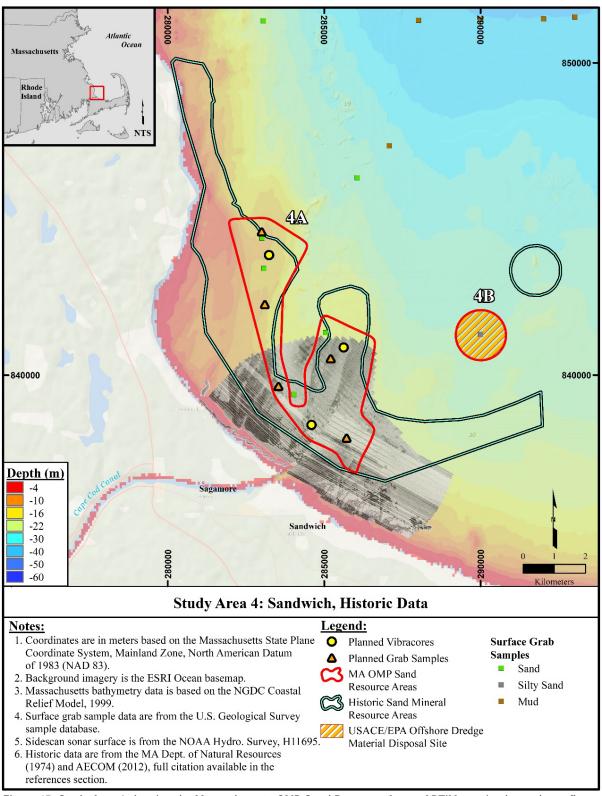


Figure 15: Study Area 4 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including sidescan sonar (darker imagery representing higher backscatter, indicating harder materials), surface grab samples, and seafloor classification information

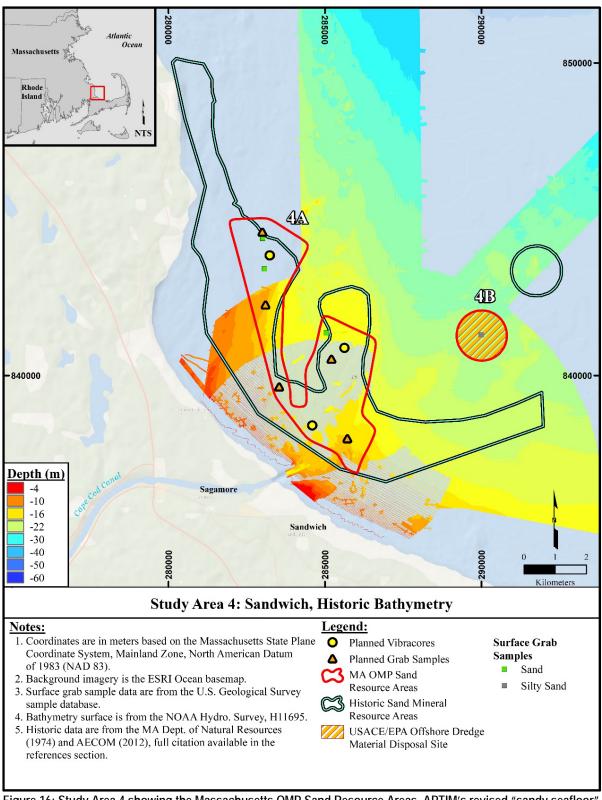


Figure 16: Study Area 4 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including bathymetry, surface grab samples, and seafloor classification information

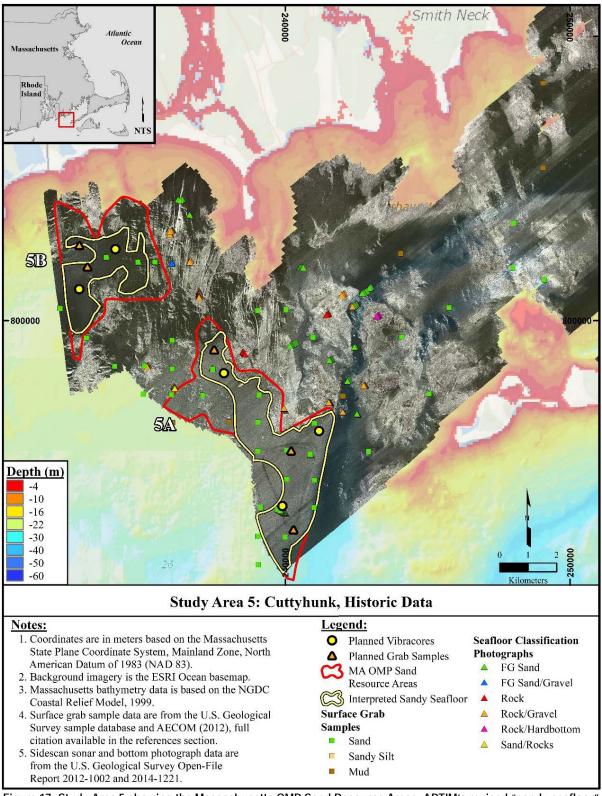


Figure 17: Study Area 5 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including sidescan sonar (darker imagery representing lower backscatter, indicating softer materials), surface grab samples, and seafloor classification information

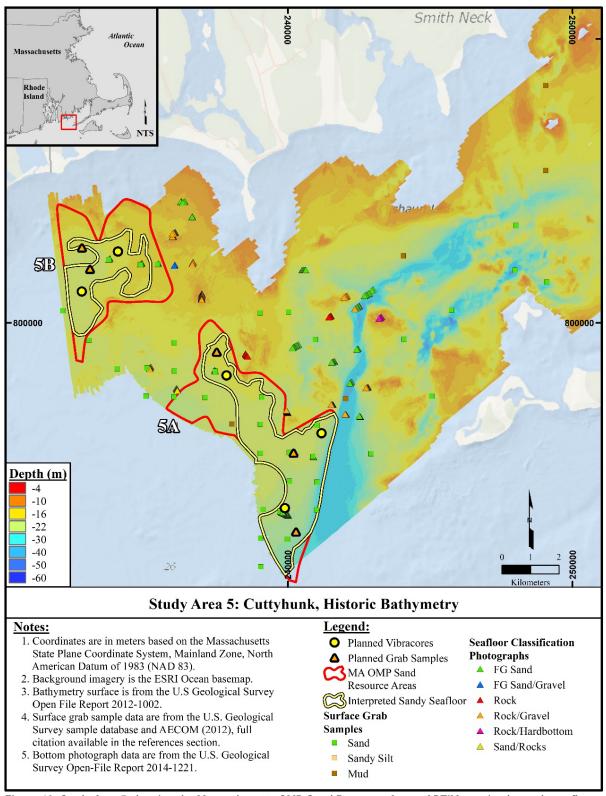


Figure 18: Study Area 5 showing the Massachusetts OMP Sand Resource Areas, APTIM's revised "sandy seafloor" sand resource areas, and APTIM's planned vibracore locations. Figure also depicts historic data including bathymetry, surface grab samples, and seafloor classification information

Figure 23: Historic USGS seismic sub-bottom line I307f1 depicting proposed vibracore location (green line) in Study Area 5. Proposed vibracore is targeting a subsurface, channel-like deposit. The location is away from nearby clear bedrock peaks and exposed bedrock (dark reflectors)

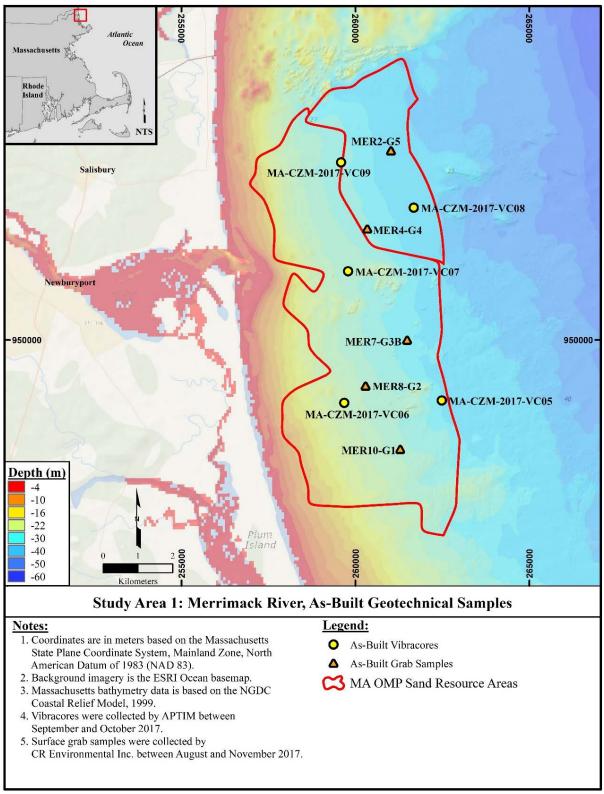


Figure 24: Study Area 1 showing the Massachusetts OMP sand resource area and as-collected vibracores and surface grab sample locations collected by APTIM and CR

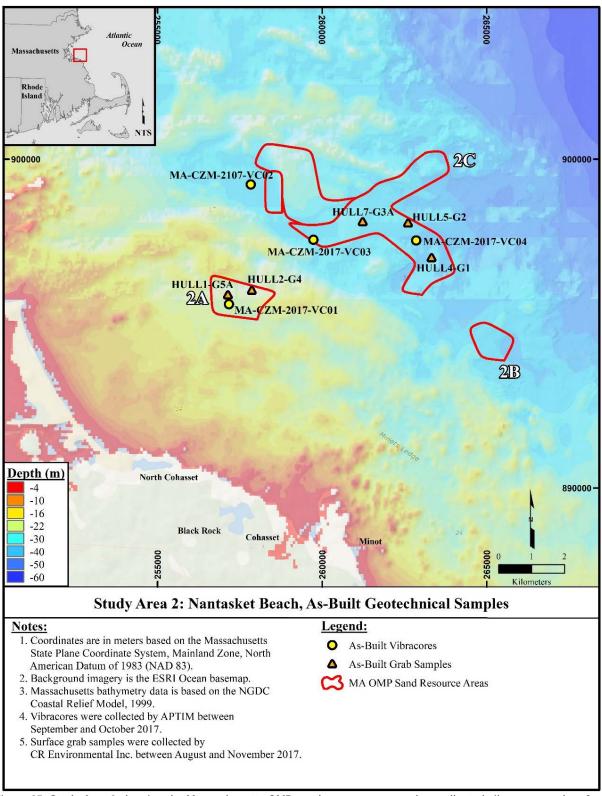


Figure 25: Study Area 2 showing the Massachusetts OMP sand resource area and as-collected vibracores and surface grab sample locations collected by APTIM and CR

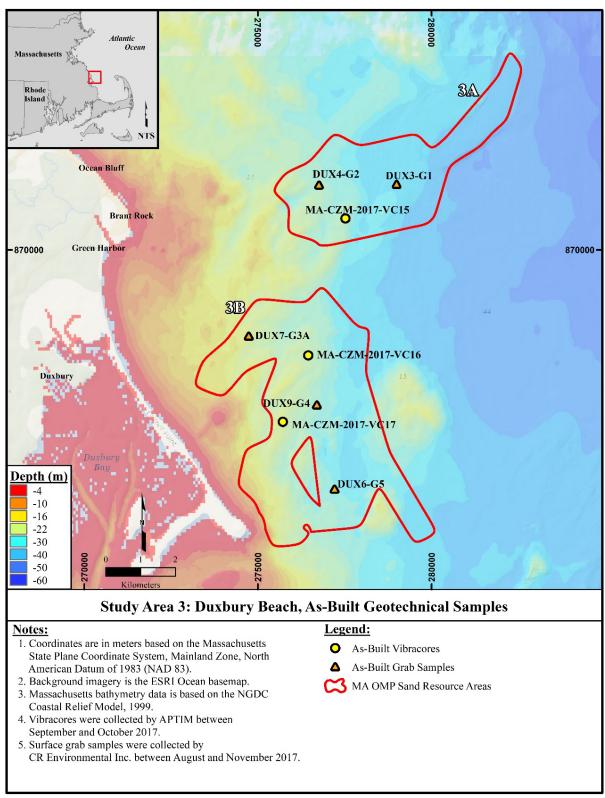


Figure 26: Study Area 3 showing the Massachusetts OMP sand resource area and as-collected vibracores and surface grab sample locations collected by APTIM and CR

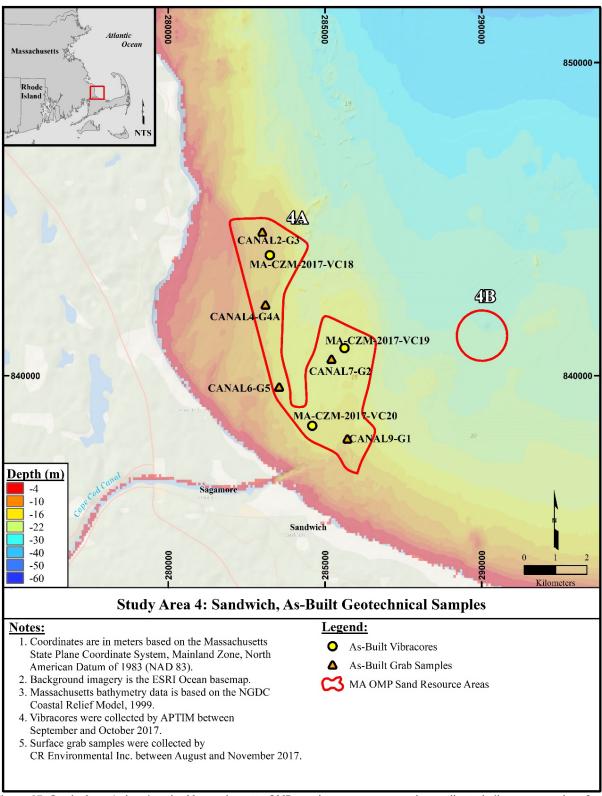


Figure 27: Study Area 4 showing the Massachusetts OMP sand resource area and as-collected vibracores and surface grab sample locations collected by APTIM and CR

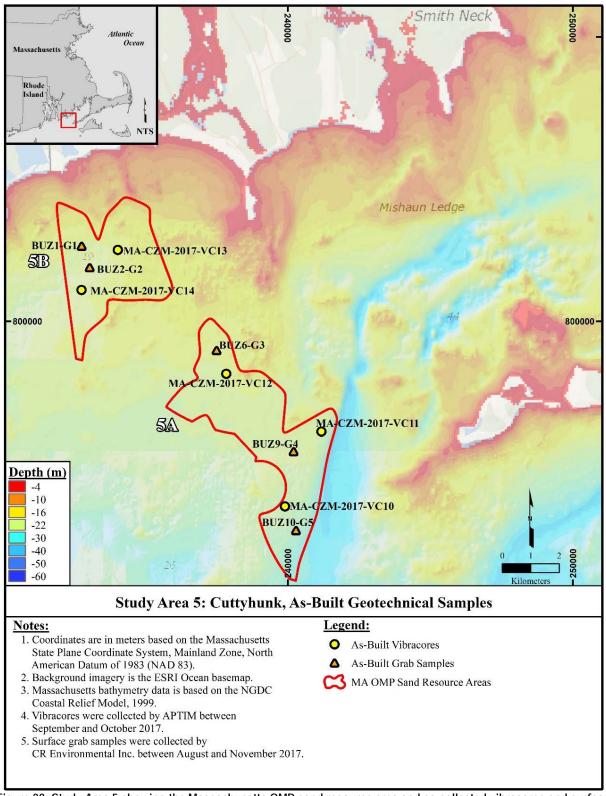


Figure 28: Study Area 5 showing the Massachusetts OMP sand resource area and as-collected vibracores and surface grab sample locations collected by APTIM and CR

CORE LOGGING / SAMPLE PROCESSING Receive core tubes (typical cut into 5' sections) Check Chain of Custody / Field logs to insure all cores/sections are present Collect samples from core END If layer is Clay, DO NOT sample For all other layers besides Clay, sample each layer by collecting ~400g of material from the center of the layer (i.e. layer of sand is from 2.3'-4.3', collect sample @ 3.3'), and note on log sheet where the sample(s) was (were) collected from. From each collected sample, measure out between 110g-120g into a ceramic bowl If "Wet Color" was identified during core If "Wet Color" was not recorded on the log sheet, logging, use that value identify now using "Munsell Soil Color Charts". Place in oven to completely dry. Put sample back into a bowl, and then place in the oven again to dry Remove sample, allow to cool, then record the "Washed Weight" and "Washed Color" of the sample Record weight of sample retained in each sieve pan using cumulative weight method rather than individually weighing sample from each sieve. Retain sieved sample and place in a labeled ziplock bag Enter core log data, wet/dry/washed weights, soil colors, and sieve weights into gINT. Use gINT to generate finalized core logs, sieve data tables and curves

Figure 29: Flow chart depicting the steps for vibracore logging, sampling, and sample analysis.

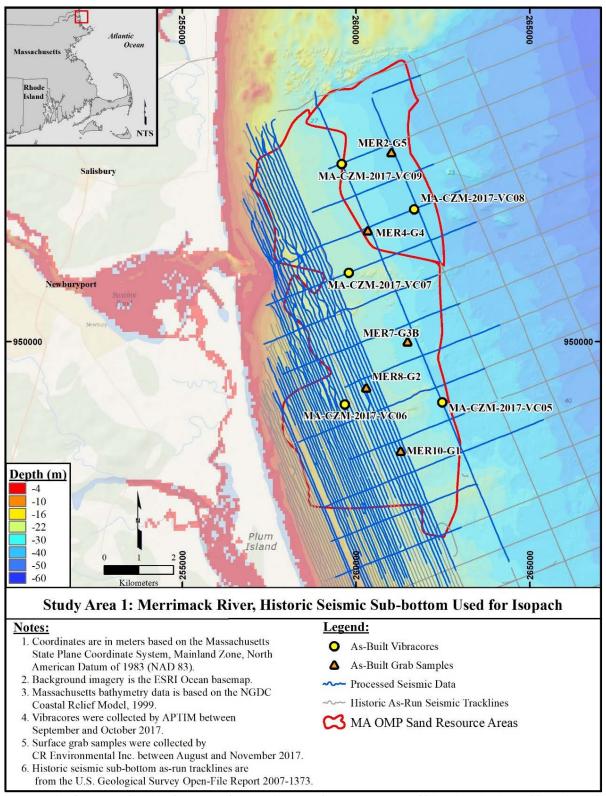


Figure 30: Study Area 1 showing the Massachusetts OMP sand resource area and historic seismic tracklines from the USGS Open File Report 2007-1373 (gray lines) and the historic seismic data coverage used for the development of the isopach maps (blue lines)

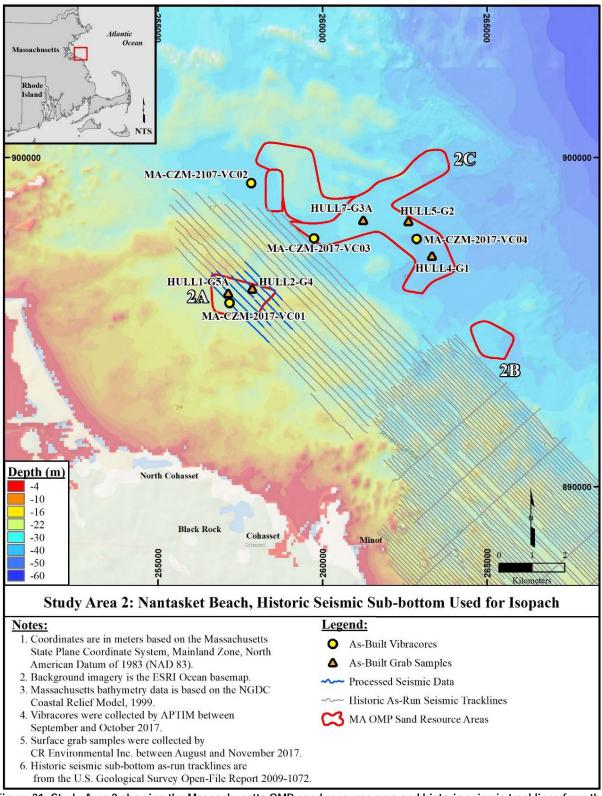


Figure 31: Study Area 2 showing the Massachusetts OMP sand resource area and historic seismic tracklines from the USGS Open File Report 2009-1072 (gray lines) and the historic seismic data coverage used for the development of the isopach maps (blue lines)

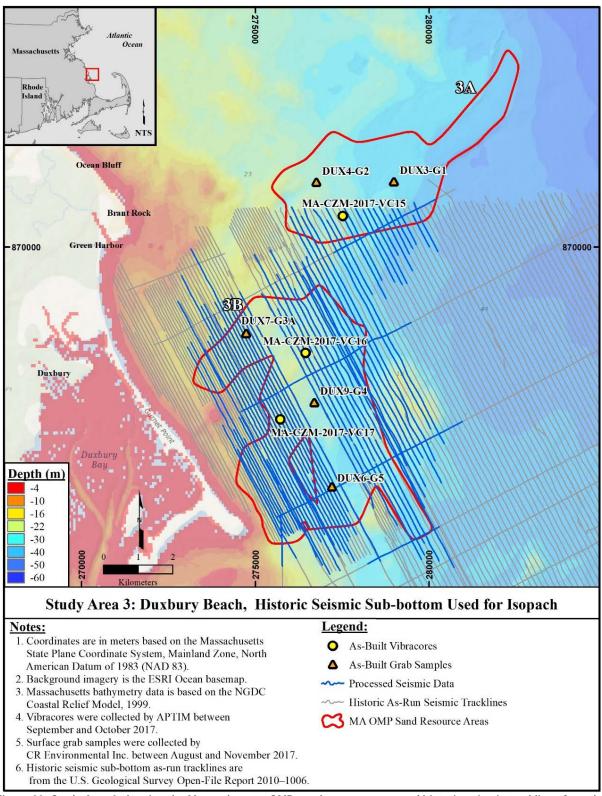


Figure 32: Study Area 3 showing the Massachusetts OMP sand resource area and historic seismic tracklines from the USGS Open File Report 2010-1006 (gray lines) and the historic seismic data coverage used for the development of the isopach maps (blue lines)

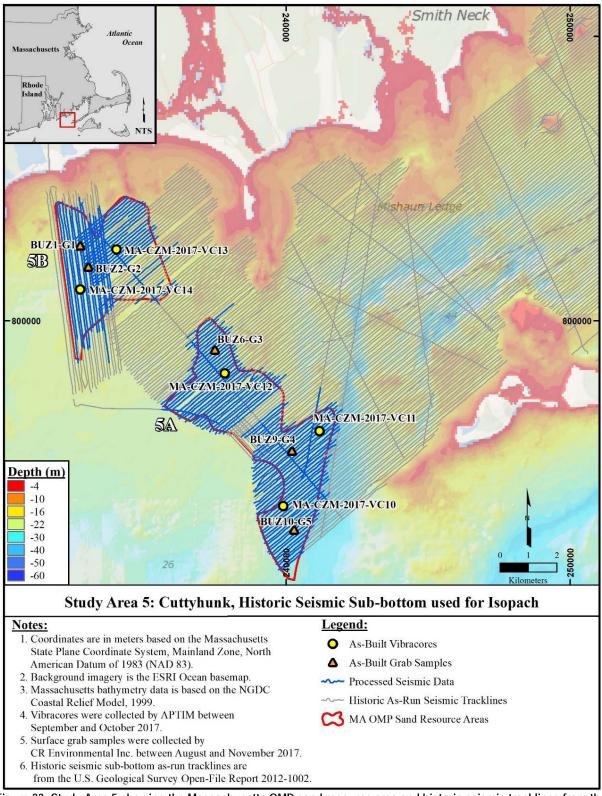


Figure 33: Study Area 5 showing the Massachusetts OMP sand resource area and historic seismic tracklines from the USGS Open File Report 2012-1002 gray lines) and the historic seismic data coverage used for the development of the isopach maps (blue lines)

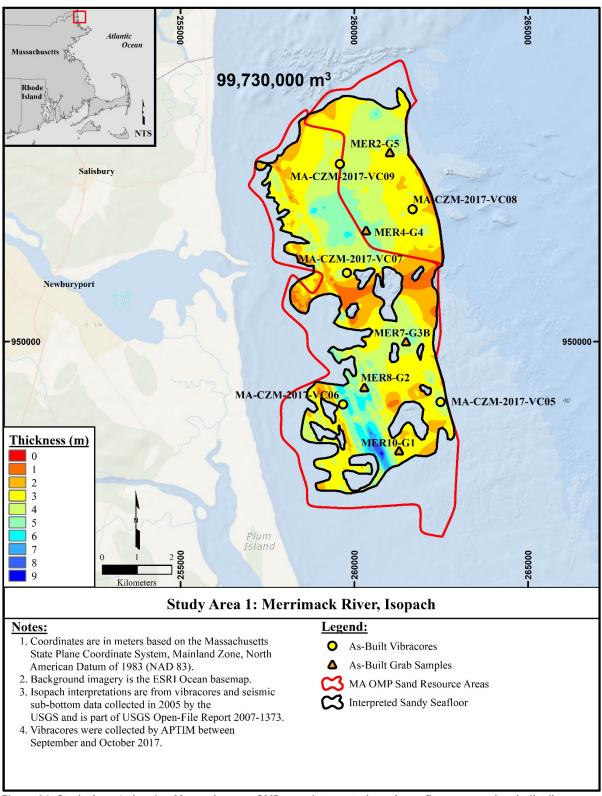
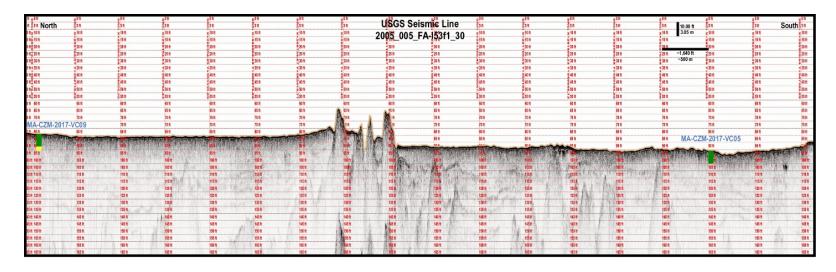



Figure 34: Study Area 1 showing Massachusetts OMP area, interpreted sandy seafloor area and as-built vibracores. Isopach surface was created from the interpretations and digitization of the seismic data collected and used by the USGS as part of the Open-File Report 2007-1373



Figure 35: Historic USGS seismic sub-bottom line 2005_005_FA_I53f1_30 (Open-File Report 2007-1373) depicting the location of as-built vibracore MA-CZM-2017-VC05 and MA-CZM-2017-VC09 in Study Area 1. The vibracore is targeting unconsolidated sediments away from clear bedrock peaks (top image). On the lower image the subsurface shaded as green represents the sand portion of the seismic line, while the subsurface geology shaded as red/yellow highlights the sand portion with higher clay content. Areas shaded as brown represent bedrock and outcrop

Aptim Environmental & Infrastructure, Inc. Final Report of Findings

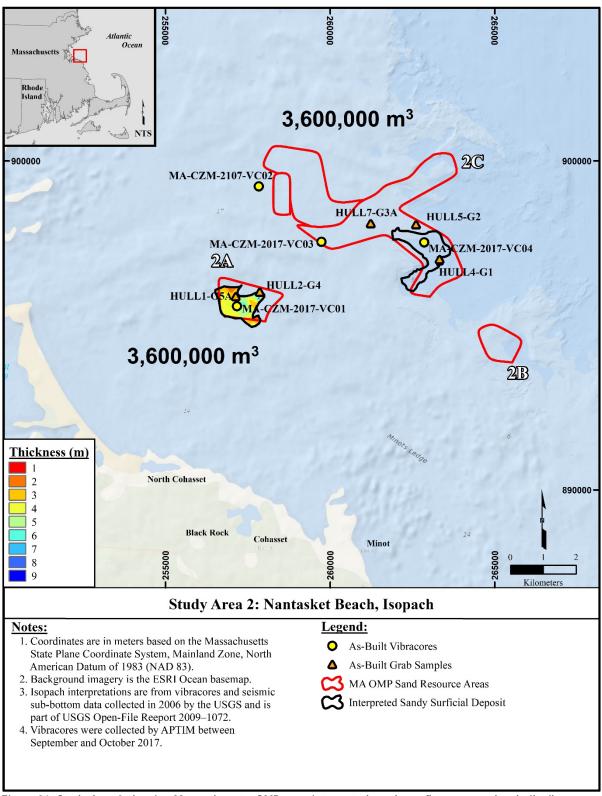
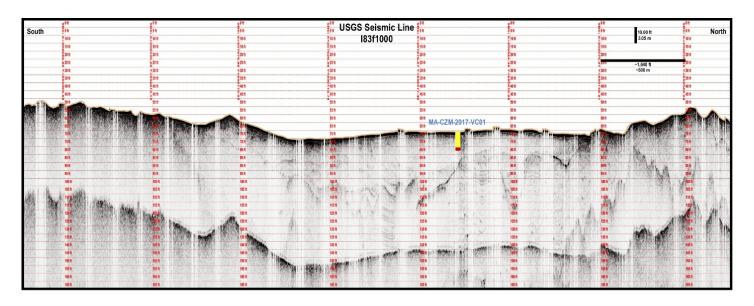



Figure 36: Study Area 2 showing Massachusetts OMP area, interpreted sandy seafloor area and as-built vibracores. Isopach surface was created from the interpretations and digitization of the seismic data collected and used by the USGS as part of the Open-File Report 2009-1072

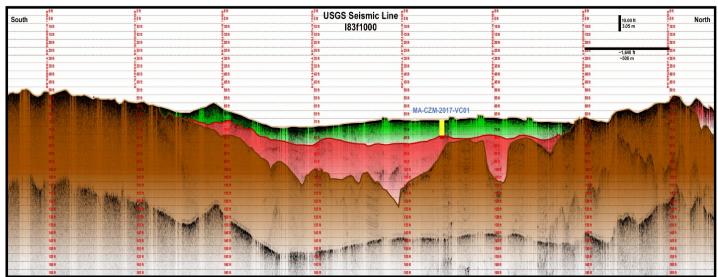


Figure 37: Historic USGS seismic sub-bottom line l83f1000 (Open-File Report 2009-1072) depicting the as-built vibracore MA-CZM-2017-VC01 location in Study Area 2. The vibracore is targeting the subsurface, channel-like deposit (top image). On the lower image the subsurface shaded as green represents the sand portion of the seismic line, while the subsurface geology shaded as red highlights the clay portion of the vibracore. Areas shaded as brown highlight the bedrock (i.e. hard bottom)

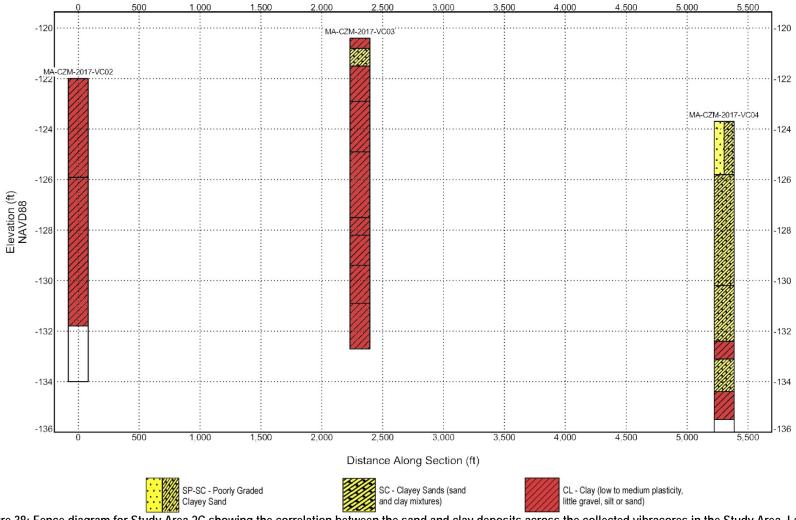
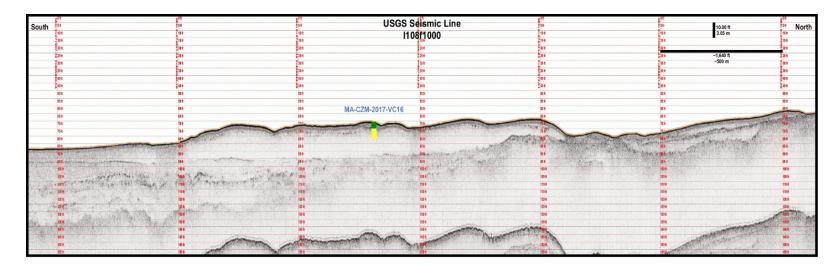



Figure 38: Fence diagram for Study Area 2C showing the correlation between the sand and clay deposits across the collected vibracores in the Study Area. Layers color coded as red indicate portions with high clay content, while layers in yellow indicate sands with less than 10% clay content

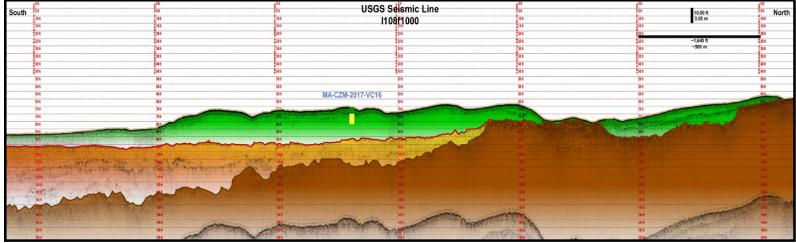


Figure 39: Historic USGS seismic sub-bottom line l108f1000 (Open-File Report 2010-1006) depicting the as-built vibracore MA-CZM-2017-VC16 location in Study Area 3. The vibracore is targeting the sand hill (top image). On the lower image the subsurface shaded as green represents the sand portion of the seismic line, while the subsurface geology shaded as yellow/red highlights the potentially non-beach-compatible deposit. Areas shaded as brown highlight the bedrock (i.e. hard bottom)

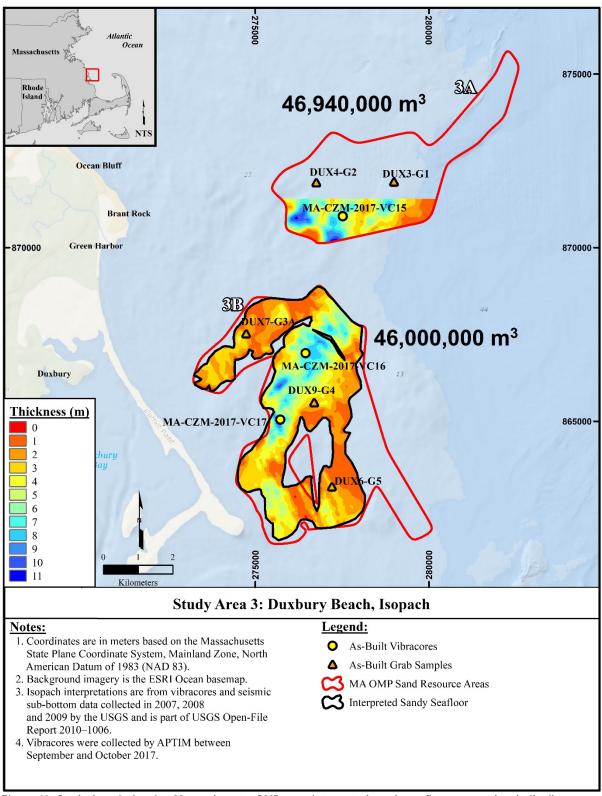


Figure 40: Study Area 3 showing Massachusetts OMP area, interpreted sandy seafloor area and as-built vibracores. Isopach surface was created from the interpretations and digitization of the seismic data collected and used by the USGS as part of the Open-File Report 2010-1006

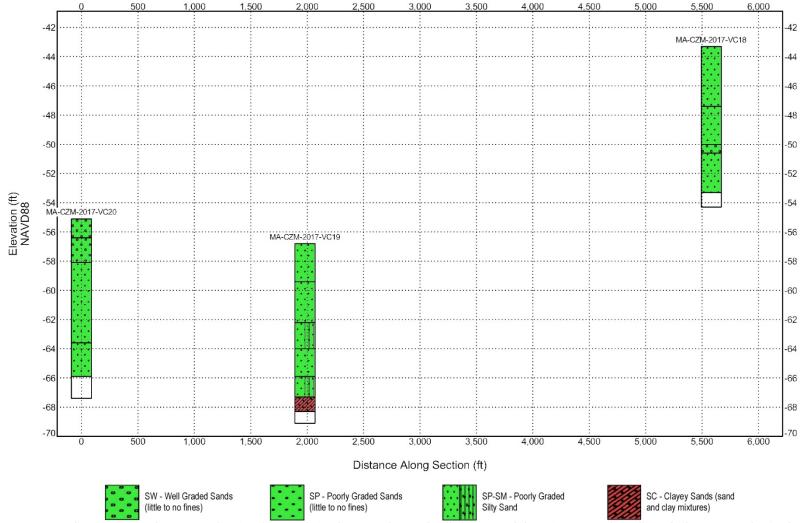
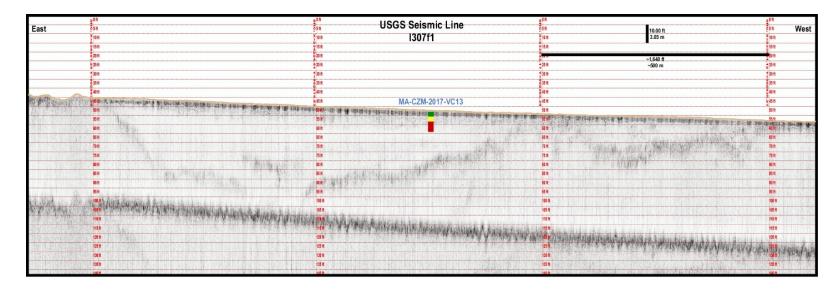



Figure 41: Fence diagram for Study Area 4A showing the correlation between the sand and clayey sand deposits across the collected vibracores in the Study Area.

Layers color coded as green indicate portions with less than 5% fine grain content, while layers in red indicate sands with more than 10% clay content

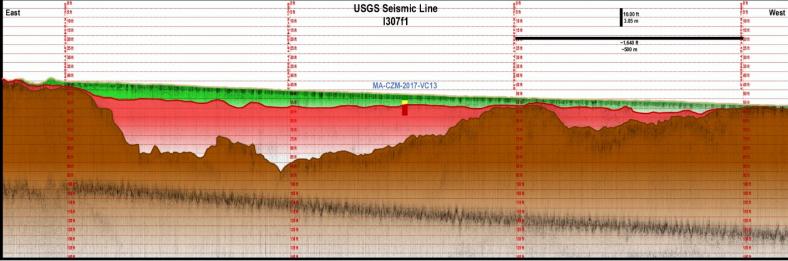


Figure 42: Historic USGS seismic sub-bottom line I307f1 (Open-File Report 2012-1002) depicting the as-built vibracore MA-CZM-2017-VC13 location in Study Area 5B. The vibracore is targeting the subsurface, channel-like deposit (top image). On the lower image the subsurface shaded as green represents the sand portion of the seismic line, while the subsurface geology shaded as red highlights the potentially non-beach-compatible deposit (high clay content). Areas shaded as brown highlight the bedrock (i.e. hard bottom)

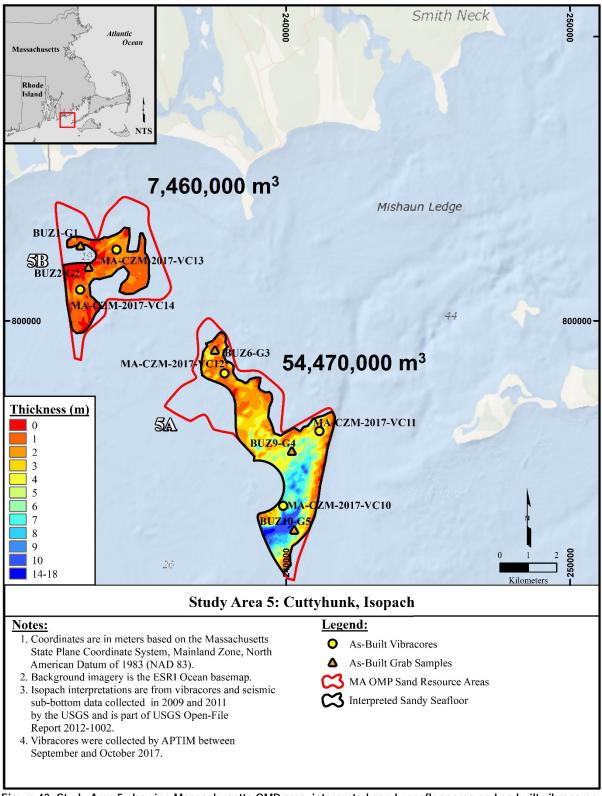


Figure 43: Study Area 5 showing Massachusetts OMP area, interpreted sandy seafloor area and as-built vibracores. Isopach surface was created from the interpretations and digitization of the seismic data collected and used by the USGS as part of the Open-File Report 2012-1002

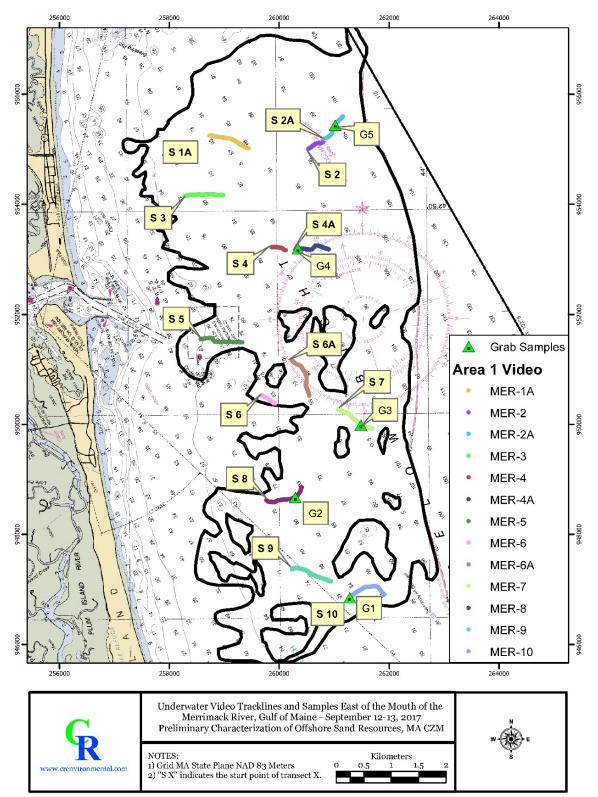


Figure 44: Study Area 1 showing the interpreted sandy seafloor area along with as-run video transects and grab samples collected by CR

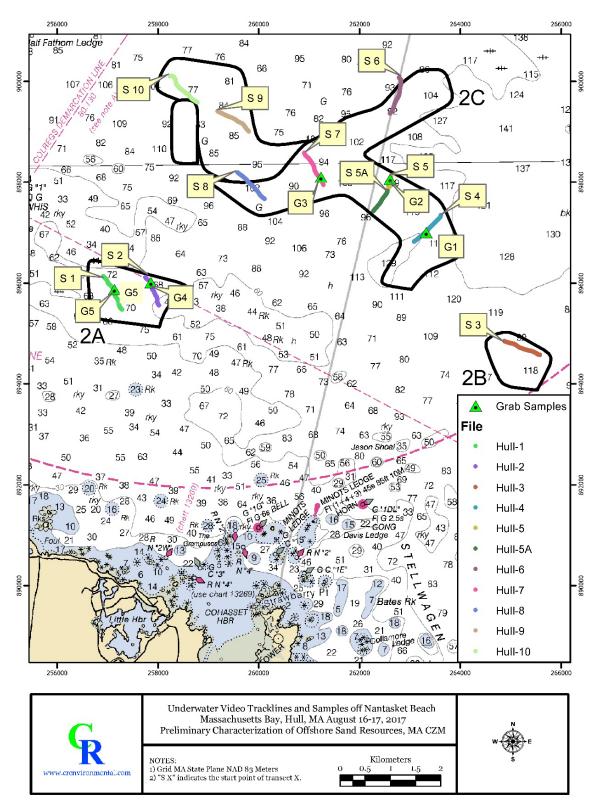


Figure 45: Study Area 2 showing the interpreted sandy seafloor area along with as-run video transects and grab samples collected by CR

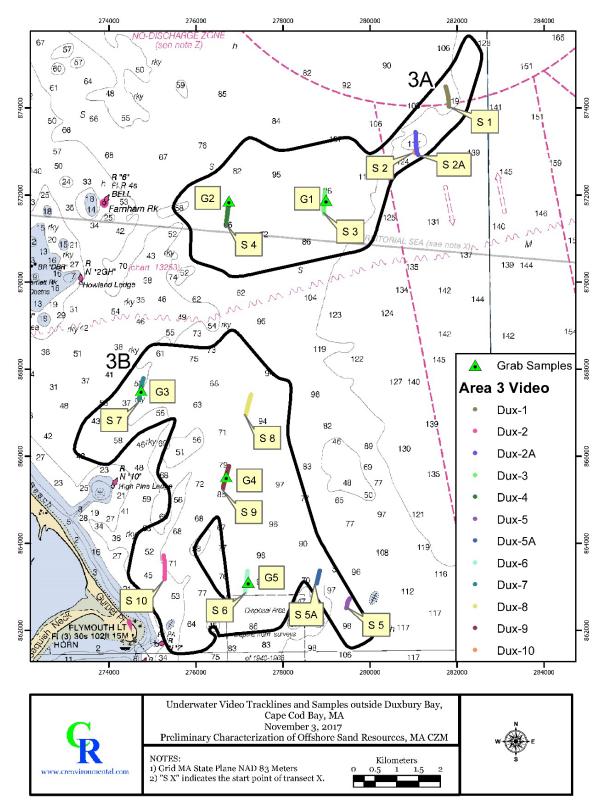


Figure 46: Study Area 3 showing the Massachusetts OMP Sand Resource Areas along with as-run video and grab samples transects collected by CR

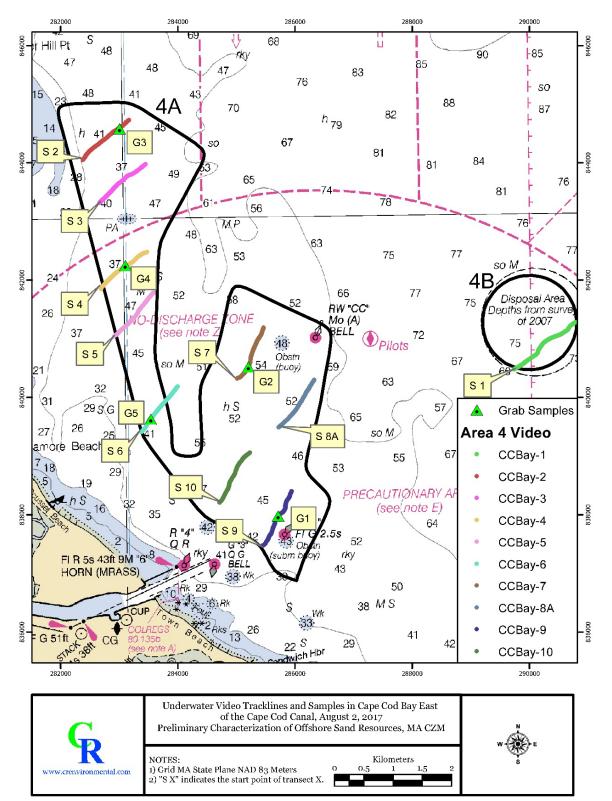


Figure 47: Study Area 4 showing the Massachusetts OMP Sand Resource Areas along with as-run video transects and grab samples collected by CR

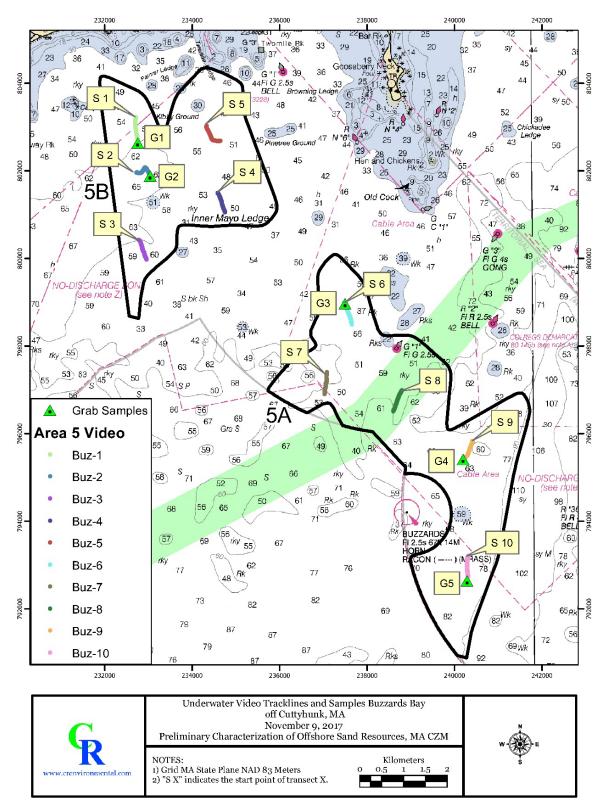


Figure 48: Study Area 5 showing Massachusetts OMP Sand Resource Areas along with as-run video transects and grab samples collected by CR

Ackerman, S.D., Andrews, B.D., Foster, D.S., Baldwin, W.E., and Schwab W.C. 2012, High-resolution geophysical data from the inner continental shelf—Buzzards Bay, Massachusetts: U.S. Geological Survey Open-File Report 2012-1002, http://pubs.usgs.gov/of/2012/1002/

Ackerman, S.D., Butman, B., Barnhardt, W.A., Danforth, W.W. and Crocker, J.M., 2006, High-resolution geologic mapping of the inner continental shelf; Boston Harbor and approaches, Massachusetts: U.S. Geological Survey Open-File Report 2006-1008, http://pubs.usgs.gov/of/2006/1008/

Ackerman, S.D., Pappal, A.L., Huntley, E.C., Blackwood, D.S., and Schwab, W.C., 2015, Geological Sampling Data and Benthic Biota Classification—Buzzards Bay and Vineyard Sound, Massachusetts: U.S. Geological Survey Open-File Report 2014–1221, 30 p., http://dx.doi.org/10.3133/ofr20141221.

Andrews, B.D., Ackerman, S.D., Baldwin, W.E., and Barnhardt, W.A., 2010, Geophysical and sampling data from the inner continental shelf: Northern Cape Cod Bay, Massachusetts: U.S. Geological Survey Open-File Report 2010-1006, http://pubs.usgs.gov/of/2010/1006/

ArcGIS, 2012, ArcGIS Desktop 9.3 Help Using the Topo to Raster Tool, viewed February, 2018, http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Using%20the%20Topo%20to%20Raster%20tool

Auster, P.J. 1998. A conceptual model of the impacts of fishing gear on the integrity of fish habitats. Conservation Biology: Volume 12 No. 6: 1198-1203 pp.

Barnhardt, W.A., Ackerman, S.D., Andrews, B.D., and Baldwin, W.E., 2010, Summary of The Massachusetts Coastal Mineral Inventory Survey, Publication #8027-41-50-4-474-CR

Barnhardt, W.A., Ackerman, S.D., Andrews, B.D., and Baldwin, W.E., 2010, Geophysical and sampling data from the inner continental shelf; Duxbury to Hull, Massachusetts: U.S. Geological Survey Open-File Report 2009-1072, http://pubs.usgs.gov/of/2009/1072/

Barnhardt, W.A., Andrews, B.D., Ackerman, S.D., Baldwin, W.E., and Hein, C.J., 2009, High-resolution geologic mapping of the inner continental shelf; Cape Ann to Salisbury Beach, Massachusetts: U.S. Geological Survey Open-File Report 2007-1373, http://pubs.usgs.gov/of/2007/1373/

Barnhardt, W.A., J. T. Kelley, S.M. Dickson, and D.F. Belknap. 1998. Mapping the Gulf of Maine with Side-Scan Sonar: A New Bottom-Type Classification for Complex Seafloors. Journal of Coastal Research 14(2): 646-659.

Bigelow, H. R. and W. C. Schroeder. 1953. Fishes of the Gulf of Maine. U. S. Fish Wildl. Serv., Fish. Bull. Vol. 53. 577 pp.

Buczkowski, B. J., Kelsey, S. A., 2006, Sed_Archive: Database for the U.S. Geological Survey Woods Hole Science Center's marine sediment samples, including locations, sample data and collection information: U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center, Woods Hole, MA, Open-File Report, 2006-1187, http://pubs.usgs.gov/of/2006/1187/

Doner, S. (AECOM), May 4, 2012, ENV12 CZM 01 Benthic Infaunal Analysis Report, Final. Massachusetts Office of Coastal Zone Management.

Esri, ArcGIS Pro, 2017, *How Topo to Raster Works*, http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm

Foster, D.S., Baldwin, W.E., Barnhardt, W.A., Schwab, W.C., Ackerman, S.D., Andrews, B.D., Pendleton, E.A., 2016, Shallow geology, sea-floor texture, and physiographic zones of Buzzards Bay, Massachusetts (ver. 1.1, June 2016): U.S. Geological Survey Open-File Report 2014–1220, https://pubs.usgs.gov/of/2014/1220/

Gutierrez, B. T., Butman, B., Blackwood, D.S., July, 1999, Photographs of the Sea Floor in Western Massachusetts Bay, Offshore of Boston, Massachusetts: U.S. Geological Survey Open-File Report 00-427, https://pubs.usgs.gov/of/2000/of00-427/mbaygis/mb_pages/mb_intro.htm

Martinez, A. J. 1994. Marine Life of the North Atlantic Canada to New England. ISBN: 0-9640131-0-X. 272 pp.

Meisburger, E. P., April 1976, Geomorphology and Sediments of western Massachusetts Bay, U.S Army Corps of Engineers, Coastal Engineering Research Center.

National Geophysical Data Center, 1999. U.S. Coastal Relief Model - Southeast Atlantic. National Geophysical Data Center, NOAA. doi:10.7289/V53R0QR5 [July 12, 2017].

Normandeau Associates, Inc., December 2010, Sediment Grain Size and Benthic Infaunal Analysis in Support of CZM's Survey on the OSV Bold: "Validation of Seafloor Sediment Maps in Massachusetts Bay and Cape Cod Bay", Massachusetts Office of Coastal Zone Management, R-22040.000

O'Hara, C. J., Oldale, R. N., 1980, Maps Showing Geology and Shallow Structure of Eastern Rhode Island Sound and Vineyard Sound, Massachusetts: U.S. Geological Survey Miscellaneous Field Studies Map MF-1186.

Oldale, R. Bick, J., 1987, Maps and Seismic Profiles Showing geology of the inner Continental Shelf, Massachusetts Bay, Massachusetts, Department of the Interior, U.S geological Survey, Map MF- 1923

Oldale, R.N., and O'Hara, Charles J., 1990, Maps showing the geology of the inner continental shelf, Cape Cod Bay, Massachusetts: U.S. Geological Survey Miscellaneous Field Studies Map MF-2118, 4 sheets, URL: http://pubs.er.usgs.gov/publication/mf2118.

Oldale, R. N. and Wommack, L. E., 1987, Maps and Seismic Profiles Showing Geology of the Inner Continental Shelf, Cape Ann, Massachusetts to New Hampshire: Department of the Interior, U.S. Geological Survey Miscellaneous Field Studies Map MF1892 URL: https://pubs.er.usgs.gov/publication/mf1892.

Pendleton, E.A., Baldwin, W.E., Barnhardt, W.A., Ackerman, S.D., Foster, D.S., Andrews, B.D., and Schwab, W.C. 2013, Shallow geology, seafloor texture, and physiographic zones of the Inner Continental Shelf from Nahant to northern Cape Cod Bay, Massachusetts: U.S. Geological Survey Open-File Report 2012-1157, http://pubs.usgs.gov/of/2012/1157/.

Samson, M. R., November 4, 1974, The Coastal Engineering Research Center's Seismic and Coring Investigation of Cape Cod Bay: A Review. Massachusetts Department of Natural Resources, Division of Mineral Resources, Technical Report 74-2 Publication No. 8146-31-50-11-74-CR

U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Survey, 2007, Descriptive Report, NE Approaches to Cape Cod Canal, Registry number H11695. https://www.ngdc.noaa.gov/nos/H10001-H12000/H11695.html

Wahba, G. 1990. Spline models for Observational data. Paper presented at CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia: Soc. Ind. Appl. Maths

Willett, C. F., Oceanographic and Environmental Services, July 31, 1972, Final Report of Massachusetts Coastal Mineral Inventory Survey, Division of Mineral Resources, Department of Natural Resources.

Weiss, H. 1995. Marine Animals of Southern New England and New York. State Geological and Natural History Society of Connecticut Department of Environmental Protection. Bulletin 115. ISBN 0-942081-06-4.

20.0 Appendices

Appendix A

Vibracore Logs

1. PRO		aracteriz	zation of C	Offshore Sand	^	<u> </u>		E AND TYPE	OF BIT 3.5 In.	AL VERTICAL
	ources in S				APTIM	'0.			lane Mainland NAD 19	!
	ING DESIGI		!	LOCATION COORE	• •	11.			RER'S DESIGNATION OF DRILL	AUTO HAMMER
	1A-CZM-20		01 :	X = 257,169		\bot	F	APTIM SEA	S VC-700 Vibracore	MANUAL HAMM
	. LING AGEN .PTIM	ICY		CONTI	RACTOR FILE NO.	12.	то	TAL SAMPL	.ES DISTURBED	UNDISTURBED (
	E OF DRILL	.ER		 		13.	то	TAL NUMBI	ER CORE BOXES	:
F	rancis Star	nkiewicz	<u>z</u>			\vdash			ROUND WATER	
	CTION OF I	BORING	ì	DEG. FROM VERTICAL	BEARING			EVALION O	STARTED	COMPLETED
	INCLINED					15.	. DA	TE BORING	09-17-17 10:3	!
6. THIC	KNESS OF	OVERB	URDEN	N/A		16.	EL	EVATION T	OP OF BORING -76.1 Ft.	•
7. DFP	TH DRILLED	INTO F	SUCK	N/A		17.	то	TAL RECOV	/ERY FOR BORING 12 Ft.	
						18.	SIC	SNATURE A	ND TITLE OF INSPECTOR	
8. TOT	AL DEPTH (OF BORI	NG 1	2.0 Ft.		<u>Т</u>	ŀ	ΚM		
ELEV.	DEDTU	EN D		CLASSIFICATION OF	F MATERIAI S		9/	BOX OR SAMPLE		
(ft)	DEPTH (ft)			nd elevations based		ıes	REC.	NAME OF THE PROPERTY OF THE PR	REMARI	(S
-76.1	0.0	<u>-</u>						ш,		
	=	 ::								
		::								
		-:		fine grained, quart						
	-			ments, trace shell ts up to 0.5", (1.5":					Sample #1, Depth = 2.5'	
		::	and she	Il fragment @ 4.6',	1.0" shell fragmer	nt		1	Mean (mm): 0.14, Phi Sortin	
	-	-:	@ 0.4',	3.0" whole shell @ gment @ 0.7', very	0 0.5', (2.5" x 2.0")				Fines (230): 9.16% (SP-SM)
			snen na	gment @ 0.7°, very (SP-SM)),				
				` ,						
	-	·.								
		 ∷ ‡∦								
-81.2	_ 5.1	∤∴								
		[:· <u>†</u> ∦								
	_	- <u>:</u>								
		:- <u> </u>								
			SAND	fine grained, quart	z trace clay trace					
	-	 -:	organi	cs, trace rock, trace	e shell fragments,				Sample #2, Depth = 7.4'	
		:-		ell hash, trace silt,		ıd		2	Mean (mm): 0.16, Phi Sortin	g: 0.83
	-	-:	rocks	up to (0.75" x 0.5" (5Y-3/1), (SP), very dark gray ?-SM).				Fines (230): 8.84% (SP-SM)
				(3.1.2.1), (31	,					
		::								
		-:								
-86.0	9.9	<u> </u>								
			04::=	fine and the	- 1941 - 1					
				, fine grained, quar ace shell hash, tra					Sample #3, Depth = 11.0'	
	-		1.5", (1.5	5" x 1.0") shell fragi	ment @ 9.9', (1.0'	х		3	Mean (mm): 0.19, Phi Sortin	g: 1.62
			0.5") she	ll fragment @ 10.1 5', greenish black (', (2.0" x 1.25") ro (10Y-2 5/1) (SC)	ck			Fines (230): 19.71% (SC)	
-88.1	12.0									
				End of De-	ina					
				End of Bor	ing					
	-									
	_									
								1		
SAJ FOF	RM 1836					_				

	minary Cha			Offshore Sand	1	-		ORDINATE S	YSTEM/DATUM	HORIZONT	AL VERTICAI
	ources in S		Study Are	eas	APTIM			MA State Pla		NAD 198	B3 NAVD
	ING DESIGN		,,	LOCATION COORI	• •	11.			R'S DESIGNATI		MANUAL HA
	MA-CZM-20) <u> </u>	X = 257,832	Y = 899,232 RACTOR FILE NO.	+		APTIM SEAS	VC-700 Vibra	TURBED	UNDISTURB
	PTIM					12.	то	TAL SAMPLE	s)	
	E OF DRILL	ER		•			то	TAL NUMBER	CORE BOXES		•
F	rancis Star	kiewicz	<u>.</u>			\vdash			OUND WATER		
	CTION OF I	BORING		DEG. FROM VERTICAL	BEARING	<u> </u>				ARTED	COMPLETED
	INCLINED					15.	DA	TE BORING)9-17-17 12:2	
6. THIC	KNESS OF	OVERBU	JRDEN	N/A		16.	EL	EVATION TO	OF BORING	-122.0 Ft.	•
7 DED:		INTO	OCK.	NI/A		17.	то	TAL RECOVE	RY FOR BORING	9.8 Ft.	
/. DEP	TH DRILLED	INIOR	OCK	N/A		\vdash			D TITLE OF INS		
8. ТОТ	AL DEPTH C	F BORI	NG 1	2.0 Ft.		<u> </u>	ŀ	KM			
ELEV.	DEPTH	END	c	CLASSIFICATION O	F MATERIALS		%	BOX OR SAMPLE			
(ft)	DEPTH (ft)	LEG		nd elevations base		es	REC.	N N N N N N N N N N N N N N N N N N N		REMARK	15
-122.0	0.0	-									
			Sandy C	CLAY, very soft, tra	ice shell fragments	,					
			trace sh	ell hash, shell frag	ments up to (0.5";	(
	-		o.25), (0.5" x 0.25") rock gment @ 2.0', (2.0	@ 0.9 , (2.0 X 1.0)" x 1.5") and (3.0") x					
			2.0") she	Il fragments @ 2.2	dark greenis	sh					
				gray (10Y-3/1), (CL).						
ļ	-										
-125.9	3.9										
-120.9	- 5.5										
	_										
	-	<i>V//</i>									
		<i>V//</i>	CLAY	soft, some sand, s	sand distributed in						
			sandy po	ckets up to (3.0" x (10Y-5/1), (2.0"), greenish gra	ay					
	_	<i>V//</i>		(10Y-5/1), ((CL).						
		<i>V//</i>									
	-	<i>V//</i>									
		<i>V//</i>									
		<i>V//</i>									
-131.8	9.8	//4									
	_										
				No Recove	ery.						
					•						
-134.0	12.0										
				End of Bo	ring						
	_										
	-										
	RM 1836	шЬ						<u> </u>			
SA.I FOL	CIVI TASA										

1. PRO	LLING			. 				OF 1 SH
		aractor	ization of Offshore Sand	2 –		E AND TYPE		
				TIM 10			SYSTEM/DATUM HORIZON	!
	ING DESIG		- 711				lane Mainland NAD 19	083 NAVD8
	//A-CZM-20		,				AS VC-700 Vibracore	MANUAL HA
	LING AGEN		CONTRACTOR FILE	NO.			DISTURBED	UNDISTURBE
A	APTIM			12	2. TO	OTAL SAMPL	LES 0	į
	E OF DRILL			1:	3. Т	OTAL NUMB	ER CORE BOXES	
	rancis Star			1,	4. EI	EVATION G	ROUND WATER	
	ECTION OF VERTICAL	BORIN	DEG. FROM BEARING VERTICAL				STARTED	COMPLETED
	INCLINED			1	5. D/	ATE BORING	09-17-17 13:	49 09-17-17
6. THIC	CKNESS OF	OVERE	BURDEN N/A	10	6. EI	EVATION T	OP OF BORING -120.4 Ft.	
7. DEP	TH DRILLE	INTO	ROCK N/A	17	7. T	OTAL RECOV	VERY FOR BORING 12.3 Ft	t.
				11	B. SI	GNATURE A	AND TITLE OF INSPECTOR	
8. ТОТ	AL DEPTH (OF BOR	12.2 Ft.			KM		
		Q	CLASSIFICATION OF MATERIALS	•		BOX OR		
ELEV. (ft)	DEPTH (ft)	LEGEND	Depths and elevations based on measure		REC	. XE	REMAR	KS
-120.4	0.0		Canaly CLAV years and transport		_	<u>αν</u>		
-120.8	0.4		Sandy CLAY, very soft, trace organics shell fragments, shell fragments up to		-			
-121.5	1.1		(1.0" x 0.5") and (2.0" x 1.0") rocks @					
-121.5	- -		greenish black (10Y-2.5/1), (CL) Clayey SAND, fine grained, quartz, trad	e shell	1			
			fragments, trace shell hash, shell fragm	ents up				
	-	<i>V//</i>	to (1.0" x 0.5"), (1.5" x 1.0") shell fragm 0.6', (2.0" x 1.5") shell fragment @					
-122.9	2.5	V //	greenish black (10Y-2.5/1), (SC))	-			
		<i>V//</i>	Sandy CLAY, very soft, trace organics rock, trace shell hash, rocks up to (2.5"	, trace				
			partially lithified from 1.6' to 2.1', very	dark				
			greenish gray (10Y-3/1), (CL).	iah aray				
1010	-	1///	CLAY, very soft, some sand, dark green (10Y-4/1), (CL).	ish gray				
-124.9	4.5	1//			-			
	_							
			Sandy CLAY, very soft to soft, material	missina				
		<i>V//</i>	from 4.9' to 5.4', partially lithified from	6.1' to				
		<i>V//</i>	6.5', very dark greenish gray (10Y-3/1)	, (CL).				
-127.5	- 7.1	1//	CLAY firms against and against like if a		-			
-128.2	7.8	1///	CLAY, firm, some sand, partially lithified dark greenish gray (10Y-3/1), (CL					
120.2	- '.0	1//	Sandy CLAY, very soft, partially lithifie		1			
			8.4' to 8.6', very dark greenish gray (10					
-129.4	9.0		(ČL).					
			CLAV firm to hard some send and the	otribute d				
		V //	CLAY, firm to hard, some sand, sand dis in pockets up to 2.0", dark greenish					
400.0	L 40 -	1///	(10Y-4/1), (CL).	-				
-130.9	10.5	{/// }			-			
	-		CLAY, hard, trace sand, sand distribu					
		V ///	pockets up to 0.5", partially lithified, Exp within core = 0.1', dark greenish gray (1	ansion 0Y-4/1)				
<u>-132.7</u>	L	Y //	(CL).	,,				
-132.7	12.3	<u> </u>			-			
			End of Boring					
	-		-					
	-							
		1						

	iminary Cha			Offshore Sand	1	10		ORDINATE		ORIZONTAL	VERTICAL
	ources in S				APTIM	_			lane Mainland	NAD 1983	NAVD8
	RING DESIGI MA-CZM-20			X = 262,858	` '	11			RER'S DESIGNATION O AS VC-700 Vibracore	F DRILL _	AUTO HAMM MANUAL HAI
	LLING AGEN			`	RACTOR FILE NO.	1			DISTUR	BED	UNDISTURBE
	APTIM						. 10	TAL SAMPL	. ES 3		i !
	IE OF DRILL Francis Star		-			13	. то	TAL NUMBI	ER CORE BOXES		
	ECTION OF			DEG. FROM VERTICAL	BEARING	14	. EL	EVATION G	ROUND WATER		
	VERTICAL INCLINED			VERTICAL		15	. DA	TE BORING	STARTE		COMPLETED 09-17-17
	CKNESS OF	OVERR	URDEN	: N/A	- !	16	FI	EVATION TO	•	7-17 15:41 23.7 Ft.	1 09-17-17
						+			/ERY FOR BORING	11.8 Ft.	
7. DEP	TH DRILLED	I OTNI	ROCK	N/A		-			ND TITLE OF INSPECT		
8. ТОТ	AL DEPTH (OF BORI	NG 1	2.3 Ft.			ŀ	ΚM			
ELEV.	DEDTU	S S		CLASSIFICATION O	F MATERIAI S		0/	S.E.			
(ft)	DEPTH (ft)	LEGEND		nd elevations base		ues	REC.	BOX OR SAMPLE		REMARKS	
-123.7	0.0	. 7/3	SAND.	fine grained, quar	z. trace clav. trac	e					
			organi	cs, trace shell frag	ments, trace shel						
	-		pockets	shell fragments up @ 0.0' and 1.9', (0	to 1.0 , 1.5 claye).5" x 0.25") rock (у @		1 1	Sample #1, Depth = Mean (mm): 0.17, I		0 68
		:	0.5', 2.	5" shell fragment pell fragment to	ockets @ 1.4' and	ď		·	Fines (230): 7.62%		
-125.8	2.1		are mo	ottled (10Y-3/1) an	d, black (N-2.5/0)	,					
				(SP-SC).						
	<u> </u>										
				fine grained, quar		•					
	-			I fragments, trace ants up to 0.5", 2 (1.		ts			Sample #2, Depth =		
			and (1	.0" x 0.5") rock @	2.2', (2.0" x 0.75"))		2	Mean (mm): 0.15, I Fines (230): 11.50).61
	-			ell and (1.25" x 0.7 rk greenish gray (1		ery				(,	
					, , ,						
	L										
-130.2	6.5										
			SAND	, fine grained, quar	tz, little clay, trace	,			Sample #3, Depth =	= 7.6'	
			shell has	h, 0.5" shell fragm	ent @ 8.1', very d	ark		3	Mean (mm): 0.16, I	Phi Sorting: (0.61
	†		!	greenish gray (10Y	-Ji 1), (JU).				Fines (230): 13.639	/u (SC)	
-132.4	8.7										
-133.1	9.4			CLAY, very soft, tra rk greenish gray (1		ry					
	Ţ			, fine grained, quar	, , ,	,					
	F			sh, very dark greer				3			
-134.4	10.7			(SC).							
	-		Sandy C	LAY, very soft, ver	v dark greenish g	av					
105.5	110		January O	(10Y-3/1), ((CL).	~1					
<u>-135.5</u>	L	 		No Recove	erv.						
-136.0	12.3	+ +		. 10 1 10001	_J .						
	_			End of Bo	ring						
-136.0											
	†										
l											

	ILLING	, LO(7			OF 1 SHI
1. PRO			A	9. :	SIZE AND TYP	E OF BIT 3.5 ln.
			ization of Offshore Sand d Study Areas APTIM	10.		SYSTEM/DATUM HORIZONTAL VERTICAL Plane Mainland NAD 1983 NAVD88
	ING DESI			11.		RER'S DESIGNATION OF DRILL AUTO HAMMI
	//A-CZM-: LING AGI		CO5 X = 262,482 Y = 948,257 CONTRACTOR FILE NO.		APTIM SE	AS VC-700 Vibracore MANUAL HAN DISTURBED UNDISTURBED
	APTIM	ENCT	CONTRACTOR FILE NO.	12.	TOTAL SAMP	LES 4
	E OF DRI	LLER	·	13.	TOTAL NUME	BER CORE BOXES
	rancis St			14.	ELEVATION (GROUND WATER
	ECTION OF		G DEG. FROM BEARING VERTICAL			STARTED COMPLETED
	INCLINED)		15.	DATE BORIN	09-18-17 12:22 09-18-17 1
6. THI	CKNESS O	F OVER	BURDEN N/A	16.	ELEVATION	FOP OF BORING -104.0 Ft.
7. DEP	TH DRILL	ED INTO	ROCK N/A	17.	TOTAL RECO	VERY FOR BORING 8.7 Ft.
8. тот	AL DEPTH	OF BOF	ing 8.6 Ft.	18.	SIGNATURE .	AND TITLE OF INSPECTOR
				Т		
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION OF MATERIALS Depths and elevations based on measured value	s R	SAMPLE	REMARKS
-104.0	0.0		CAND fire arrived and the second	_	NA NA	Correcte #4 Poptle - 0.41
		000	SAND, fine grained, quartz, trace coarse grains trace shell hash, trace silt, Disturbed sample	,	1	Sample #1, Depth = 0.4' Mean (mm): 0.38, Phi Sorting: 0.95
-104.8	0.8	}	from 0.0' to 0.2', dark grayish brown (2.5Y-4/2) (SW).	, _/ -		Fines (230): 1.35% (SW)
		0 0	SAND, fine to medium grained, quartz, trace	′	2	Sample #2, Depth = 1.5' Mean (mm): 0.50, Phi Sorting: 1.32
-106.1	2.1	ه ده د	coarse grains, trace rock, trace shell hash, trace silt, rocks up to (0.75" x 0.5"), 3.0" rocky coarse			Fines (230): 1.17% (SW)
-100.1	- 2.1	8 8	grained pocket @ 0.9'- rocks up to (1.25" x	Гl		-
		000	0.75"), 2 (0.75" x 0.5") and (2.5" x 2.0") shell fragments @ 1.9', 2.0" medium to coarse	Ш		
	-	000	grained pocket @ 2.0', very dark gray (2.5Y-3/1), (SW).	Ш		
		000	SAND, fine to medium grained, quartz, trace	٠		
	-	000	coarse grains, trace rock, trace shell fragments trace shell hash, trace silt, shell fragments up to		3	Sample #3, Depth = 4.1' Mean (mm): 0.44, Phi Sorting: 1.09
		000	(0.75" x 0.5"), rocks up to 0.25", (1.25" x 1.0")			Fines (230): 1.25% (SW)
	L		shell fragments @ 2.6', 2.7', 5.0' (3) and 5.5', very dark gray (2.5Y-3/1), (SW).			
		000				
-110.2	6.2	, ",","				
110.2	0.2					1
		0 0 0	SAND, fine to medium grained, quartz, trace coarse grains, trace rock, trace shell fragments			
		000	trace shell hash, trace silt, shell fragments up to		4	Sample #4, Depth = 7.3' Mean (mm): 0.70, Phi Sorting: 1.48
		000	(2.0" x 1.25"), rocks up to 0.75", (3.0" x 2.0") shell fragment @ 8.2', Expansion within core =			Fines (230): 0.77% (SW)
		000	0.1', very dark gray (2.5Y-3/1), (SW).			
-112.7	8.7	7 000		\dashv		-
	<u> </u>		End of Boring			
İ						
	_					
	-					
İ						
	-					
İ						
	<u> </u>					
	L					
	I					

	Preliminary Characterization of Offshore Sand Resources in Selected Study Areas APTIN								SYSTEM/DATUM	HORIZONTAL	
	RING DESIG			LOCATION COORD		111			lane Mainland RER'S DESIGNATION	NAD 1983	NAVD88
	MA-CZM-20			X = 259,678	` '	'			AS VC-700 Vibraco		MANUAL HAN
3. DRI	LLING AGEN	ICY			RACTOR FILE NO.	142	Τ0	TAL SAMPL	DIST	URBED	UNDISTURBED
	APTIM					12	. 10	TAL SAMPL	3		!
	ME OF DRILL					13	. то	TAL NUMBE	ER CORE BOXES		
	Alexandra V		i	DEG. FROM VERTICAL	BEARING	14	. EL	EVATION G	ROUND WATER		
	VERTICAL INCLINED			VERTICAL		15.	. DA	TE BORING	STAI		COMPLETED
		OVEDD	UDDEN	N/A	!	16		EVATION T	•)-18-17 14:31 -70 7 Ft	09-18-17 1
<u>. ты</u>	CKNESS OF	UVERB	UKDEN	N/A		+			OP OF BORING	-79.7 Ft.	
7. DEP	TH DRILLE	INTO F	ROCK	N/A		\vdash			VERY FOR BORING	12.2 Ft.	
8. тот	AL DEPTH OF BORING 12.3 Ft.							SMATURE A	IND TITLE OF INSPI	ECTOR	
		END		CLASSIFICATION OF	MATERIAL S		٥,	OR ILE			
ELEV. (ft)	DEPTH (ft)			nd elevations based		ies	ĸEC.	BOX OR SAMPLE		REMARKS	
-79.7	0.0	-						⊞ Ø			
				ne grained, quartz,							
		٥٥٥		ock, trace shell frag ice silt, shell fragme					Sample #1, Dep	th = 1 3'	
		000	(0.75")	x 0.5"), (2.5" x 2.0")	and (1.0" x 0.75")		1	Mean (mm): 0.2	7, Phi Sorting:	1.37
		000	shell fr	ragments @ 2.5', (1 ned pocket @ 2.6', I	1.5" x 1.0") coarse				Fines (230): 2.3	6% (SW)	
	-	0 0 0	gran	(2.5Y-5/3), (
-82.3	2.6	, °°°°									
	-	[:::]	SAND fi	no grained guartz	trace silt 0.25" cl	,,			Sample #2, Dep	th = 2 1'	
			pocke	ne grained, quartz, ets @ 2.7' and 2.9',	light olive brown	ay		2	Mean (mm): 0.2		0.78
	L	<u> :::: </u>		(2.5Y-5/3), ((SP).				Fines (230): 1.5		
-84.0	4.3										
		 ∷:									
	-										
	ŀ										
		-:::									
		::::	SAND fi	ne grained, quartz,	trace coarse grain	ıs İ			Sample #3, Dep	th = 7 2'	
	Γ	-::-	trace	silt, 1.0" clayey poo	cket @ 8.0', light	,		3	Mean (mm): 0.1	6, Phi Sorting:	0.46
			ye	ellowish brown (2.5	Y-6/3), (SP).				Fines (230): 2.4	5% (SP)	
	-										
		:::									
	-	$ \cdots $									
-89.8	10.1	$ \cdots $									
55.0	10.1	†∷†									
		:::									
	†		SAND, f	ine grained, quartz, brown (2.5Y-5/3		⁄e		2			
		-:::		DIOWII (2.31-3/3), (Oi).						
-91.9		<u> ::::</u>									
-92 O	12.3/	一下		No Recove	ery.						
	-			End of Bor	ina						
				LIIU UI BUI	"'Y						
	[
A.LEO	<u>l</u> RM 1836	<u> </u>						I			

1. PRO	IECT			\vdash			
		aractori	zation of Offshore Sand	Ľ.		E AND TYPE	
			I Study Areas APTIM	10			SYSTEM/DATUM HORIZONTAL VERTICAL ane Mainland NAD 1983 NAVD88
	ING DESIGN		!	11			RER'S DESIGNATION OF DRILL AUTO HAMMI
	MA-CZM-20		07 X = 259,788 Y = 951,977 CONTRACTOR FILE NO.	┝	/	APTIM SEA	S VC-700 Vibracore MANUAL HAI DISTURBED UNDISTURBE
	APTIM			12	. то	TAL SAMPL	ES 6
4. NAM	E OF DRILL	ER		13	. то	TAL NUMBI	ER CORE BOXES
	lexandra V		·	14	. EL	EVATION G	ROUND WATER
\boxtimes	ECTION OF I VERTICAL	BORING	DEG. FROM BEARING VERTICAL	45		TE BORING	STARTED COMPLETED
	INCLINED			"	. DA	TIE BURING	09-18-17 17:23 09-18-17
6. THIC	CKNESS OF	OVERE	SURDEN N/A	16	. EL	EVATION TO	OP OF BORING -86.0 Ft.
7. DEP	TH DRILLED	INTO	ROCK N/A	17	. то	TAL RECOV	ZERY FOR BORING 10.8 Ft.
8. ТОТ	AL DEPTH C	F BOR	ing 11.5 Ft.	18		gnature a KM	ND TITLE OF INSPECTOR
		9		_			
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION OF MATERIALS Depths and elevations based on measured value	s	% REC.	BOX OR	REMARKS
-86.0	0.0	5	CAND modium to seeres grained guarte tree	\Box			Sample #1, Depth = 0.2'
-86.4	0.4	000	SAND, medium to coarse grained, quartz, trace silt, 1.5" shell fragment @ 0.1', dark brown	* -		1	Mean (mm): 0.77, Phi Sorting: 0.97
	_		\(10YR-3/3), (SW). SAND, fine to medium grained, quartz, trace	┚┃		2	Fines (230): 0.96% (SW) Sample #2, Depth = 1.0'
-87.5	1.5		coarse grains, trace silt, colors are mottled				Mean (mm): 0.52, Phi Sorting: 0.76
		000	(2.5Y-4/3) and, very dark gray (2.5Y-3/1), (SP)	١./			Fines (230): 2.15% (SP)
	_		SAND, fine to medium grained, quartz, trace				October 140 December 0.71
		000	coarse grains, trace rock, trace silt, rocks up to			3	Sample #3, Depth = 2.7' Mean (mm): 0.57, Phi Sorting: 0.97
	-		0.25", (1.25" x 0.5") clayey pocket @ 2.2', very dark gray (2.5Y-3/1), (SW).	'			Fines (230): 1.98% (SW)
		000					
-90.0	4.0			-			
		:::					
	_	:::					
		$ \cdots $	SAND, fine to medium grained, quartz, trace				Sample #4, Depth = 5.8'
	-		coarse grains, trace shell hash, trace silt, 1.5" silty pocket @ 6.8', dark gray (2.5Y-4/1), (SP)			4	Mean (mm): 0.38, Phi Sorting: 0.75 Fines (230): 1.57% (SP)
			Sitty poortet @ 0.0 ; dark gray (2.01 4/1); (01)	:			1 11165 (200). 1.07 / (01)
	-						
-93.6	7.6						
			SAND, fine grained, quartz, some silt, trace			5	Sample #5, Depth = 8.0' Mean (mm): 0.19, Phi Sorting: 1.09
-94.3	8.3	╂┸┸┸╂	organics, dark gray (5Y-4/1), (SM).	_			Fines (230): 29.45% (SM)
		$ \cdot \cdot $	SAND, fine to medium grained, quartz, trace				
			coarse grains, trace shell hash, trace silt, 1.0" silty pocket @ 9.2', dark gray (2.5Y-4/1), (SP)			4	
-95.8	9.8			_			
	_	000	SAND, medium grained, quartz, trace coarse grains, trace rock, trace silt, rocks up to 0.5",			6	Sample #6, Depth = 10.3' Mean (mm): 0.84, Phi Sorting: 1.19
-96.8	10.8	°°°,	gray (2.5Y-5/1), (SW).				Fines (230): 0.93% (SW)
-97.5	- 11.5		No Recovery.				
			End of Boring				
	<u> </u>		End of Boring				
	-						
	_						
	1						

	iminary Cha			Offshore Sand	1	. —		ZE AND TYPE	SYSTEM/DATUM HORIZONT	AL VERTICAL
Res	ources in S	elected	Study Are	as	APTI	М		MA State Pl	lane Mainland NAD 198	83 NAVD88
	ING DESIGN			LOCATION COOR	` '	11	1. M		RER'S DESIGNATION OF DRILL	AUTO HAMMI
	MA-CZM-20		8 <u>i</u>	X = 261,677	Y = 953,809 RACTOR FILE NO	-		APTIM SEA	AS VC-700 Vibracore	UNDISTURBE
	APTIM			CONT	RACTOR FILE IN	ŭ. 12	2. T	OTAL SAMPL	.ES 3	ONDISTORBE
	IE OF DRILL	ER				13	3. Т	OTAL NUMBI	ER CORE BOXES	•
	Alexandra V					14	4. E	LEVATION G	ROUND WATER	
	ECTION OF I VERTICAL	BORING		DEG. FROM VERTICAL	BEARING	1.		475 DODING	STARTED	COMPLETED
	INCLINED			<u> </u>	<u> </u>		J. D	ATE BORING	09-18-17 18:1	6 09-18-17
6. THI	CKNESS OF	OVERBU	IRDEN	N/A		16	6. E	LEVATION T	OP OF BORING -107.6 Ft.	
7. DEP	TH DRILLED	INTO R	оск	N/A					/ERY FOR BORING 12.3 Ft.	
8. тот	AL DEPTH (F BORII	NG 12	2.3 Ft.		18	8. S	IGNATURE A KM	ND TITLE OF INSPECTOR	
ELEV.	DERTH	END		LASSIFICATION O	E MATERIAI S		0,	SR PLE		
(ft)	DEPTH (ft)	LEGE		nd elevations base		values	REC	BOX OR	REMARK	(S
-107.6	0.0	 -					╁			
		:::		fine to medium gra rains, trace rock, t					Sample #1, Depth = 0.8'	0.00
	-	-:	0.5", 1.5"	rock pocket @ 0.1	1'- rocks up to (1.5" x		1	Mean (mm): 0.54, Phi Sortin Fines (230): 1.24% (SP)	g: 0.82
-109.1	1.5		0.	.75"), brown (10Yl	к-4/3), (SP).		_			
	L	0 0 0								
		000								
		°, °, °								
	<u> </u>									
		000								
	}	0 0 0								
		000								
	L	000	SAND, mo	edium grained, qu grains, trace silt, i	iartz, little rock, rocks up to (1.0	trace		2	Sample #2, Depth = 5.0' Mean (mm): 0.84, Phi Sortin	a· 1 09
		000		75"), brown (10YF		, ,			Fines (230): 0.82% (SW)	g. 1.00
	L									
		000								
		°°°								
		000								
	<u> </u>	0 0 0								
-116.2	8.6		CAND	fine to madi	oined suc-t- t-	2000	-			
	-	000	coarse gr	fine to medium gra rains, trace rock, t	race silt, rocks ι	up to		3	Sample #3, Depth = 9.2' Mean (mm): 0.46, Phi Sortin	a: 0.02
-117.4	9.8	000	0.25"	', (1.0" x 0.25") roo (10YR-5/3),	ck @ 9.0', brown	n		3	Fines (230): 1.49% (SW)	y. v.az
<u>-111.4</u>	9.0	000	SAND, m	edium grained, qu	artz, little rock,	trace	1	_		
-118.2	10.6	° ° °	coarse gra	rains, trace silt, roc (10YR-4/3),	ks up to 0.5", b (SW).	rown]	2		
			CLAY, sof	ft, trace sand, 3.0' Bit Sample from 1	' silty sand pock	ket @				
				greenish gray (10)		11				
-119.9	12.3	<u> </u>					-			
				End of Bo	ring					
	<u> </u>				•					
	-									
	RM 1836									

			ation of Offshore Sand Study Areas	APTIM	_	СО		SYSTEM/DATUM HORIZONTAI ane Mainland NAD 1983	!
2. BOR	ING DESIGN	ATION	LOCATION COOR		11.			RER'S DESIGNATION OF DRILL	AUTO HAMM
	/IA-CZM-20				丄	Α	APTIM SEA	S VC-700 Vibracore	MANUAL HAI
	. LING AGEN \PTIM	CY	CONT	RACTOR FILE NO.	12.	то	TAL SAMPL	ES DISTURBED	UNDISTURBE
	E OF DRILL	ER	!		1			<u> </u>	!
	Nexandra V				\vdash			ER CORE BOXES	
	CTION OF I	BORING	DEG. FROM VERTICAL	BEARING	14.	ELI	EVATION G	ROUND WATER	i court etter
	VERTICAL INCLINED		VERTIOAL		15.	DA	TE BORING	STARTED 09-18-17 20:48	09-18-17
6. THI	CKNESS OF	OVERBU	JRDEN N/A	•	16.	ELI	EVATION TO	OP OF BORING -92.5 Ft.	00 10 11
					17	TO	TAL RECOV	VERY FOR BORING 12 Ft.	
7. DEP	TH DRILLED	INTO R	OCK N/A		_			ND TITLE OF INSPECTOR	
8. ТОТ	AL DEPTH C	F BORI	NG 12.3 Ft.				KM		
		Q					OR LE		
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION OF Depths and elevations base		es	« REC.	BOX OR SAMPLE	REMARKS	
-92.5	0.0	• •					BΩ		
		000							
		000							
			SAND, medium to coarse of	grained, quartz, little				Cample #1 Donth = 2.1	
	_	000	rock, trace silt, rocks up to	0.75", some rocks			1	Sample #1, Depth = 2.1' Mean (mm): 0.81, Phi Sorting:	1.53
		000	from 3.1' to 3.6', 1.5" rock brown (2.5Y-4/2		n			Fines (230): 0.33% (SW)	
			biowii (2.51-4/2	-), (OVV).					
	_	000							
		000							
-96.7	- 4.2								
		000	SAND, fine to medium gra					Sample #2, Depth = 4.7'	
-97.6	_ 5.1	000	organics, trace rock, trace s x 0.25"), (3.0" x 1.0") silty				2	Mean (mm): 0.54, Phi Sorting: Fines (230): 0.74% (SW)	1.38
01.0	0.1		4.9', (2.0" x 1.0") wood frag	gment @ 5.0', blacl	<i>\</i>			1 1100 (200): 0.1 170 (011)	
		。。。\	(5Y-2.5/1), (SW).	-/				
	-								
		000	SAND, fine to medium gra	ained quartz trace				Sample #3, Depth = 7.0'	
	_	0 0 0	coarse grains, trace organi	cs, trace rock, trace			3	Mean (mm): 0.37, Phi Sorting:	1.45
		000	silt, rocks up to 0.25", gra	ay (5Y-5/1), (SW).				Fines (230): 3.03% (SW)	
		°°°							
	-								
-101.3	8.8	000							
	-								
		<u> </u> :.							
	L	[<u>:</u>][
		·:	SAND, fine grained, quar trace silt, (1.0" x 0.25") wo	tz, trace organics,			4	Sample #4, Depth = 10.4' Mean (mm): 0.18, Phi Sorting:	0.80
		<u> </u> :.	dark gray (5Y-4/1)		,		"	Fines (230): 7.41% (SP-SM)	0.00
	-	.: <u> </u>	_ , , ,	,				, , , , ,	
		:.							
-104.5	12.0 12.3	ľ·III	No Doces	on.					
-104.8	12.3	+	No Recove	∄ y.					
			End of Bo	ina					
	_		5. 501	3					
	-								
		ı I			1		1		

	LLING					OF 1 SH
1. PRO		oroot	ration of Offshore Sand		ZE AND TYPE	
Reso	ources in S	Selected	zation of Offshore Sand Study Areas APTIM		MA State P	SYSTEM/DATUM HORIZONTAL VERTICAL ane Mainland NAD 1983 NAVD8
	I NG DESIG I MA-CZM-20		!	11. N		RER'S DESIGNATION OF DRILL AUTO HAMMING VC-700 Vibracore MANUAL HAM
	LING AGEN		CONTRACTOR FILE NO.			DISTURBED UNDISTURBE
	PTIM		<u> </u>	12. T	OTAL SAMPL	. ES 2
	E OF DRILL			13. T	OTAL NUMB	ER CORE BOXES
	lexandra V		DEG. FROM BEARING VERTICAL	14. E	LEVATION G	ROUND WATER
	VERTICAL INCLINED		VERTICAL	15. D	ATE BORING	STARTED COMPLETED
	KNESS OF	OVERR	URDEN N/A	16 F	I EVATION T	09-25-17 09:36 09-25-17 (OP OF BORING -71.9 Ft.
						VERY FOR BORING 6.8 Ft.
7. DEP	TH DRILLEI	O INTO	ROCK N/A			ND TITLE OF INSPECTOR
8. ТОТ	AL DEPTH (OF BOR	NG 11.5 Ft.		KM	
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS	s REG	BOX OR SAMPLE	REMARKS
(ft) -71.9	(ft) 0.0	E	Depths and elevations based on measured value	s KE	SAN SAN	
		·:::				
	-					
	_		SAND, fine grained, quartz, trace shell hash, trace silt, (0.5" x 0.25") whole shells @ 0.3' and	.		Sample #1, Depth = 2.6'
			2.1' and shell fragment @ 0.4', colors are	'	1	Mean (mm): 0.20, Phi Sorting: 0.53
	-		mottled with (5Y-4/2) from 0.0' to 0.7', gray (5Y-5/1), (SP).			Fines (230): 2.07% (SP)
		-:::-	(= - // (= /			
	-	:::				
		$ \cdots $				
-77.1	- 5.2					
			CAND fine engined events trace about			Carralla #0. Danth - C.O.
	-		SAND, fine grained, quartz, trace shell fragments, trace shell hash, trace silt, shell		2	Sample #2, Depth = 6.0' Mean (mm): 0.28, Phi Sorting: 0.78
-78.7	6.8		fragments up to 0.5", olive gray (5Y-5/2), (SP).			Fines (230): 1.06% (SP)
-/0./	- 0.6	 		_		
	-					
	_		N. D.			
			No Recovery.			
	_					
	_					
-83.4	11.5					
			End of Boring			
			2.10 5. 25.11/9			
	-					
L.						
	L	1 1				
	_					

1. PRO		aracteriz	ation of Offshore Sand	4			AND TYPE		
			Study Areas	APTIM	10.			<u> </u>	RTICAL NAVD88
2. BOR	ING DESIGI	NATION	LOCATION COOR	DINATES (m)	11.			·	HAMMI
N	1A-CZM-20	17-VC1	1 X = 241,178	Y = 796,123		А	PTIM SEA	S VC-700 Vibracore MANU	JAL HAN
	LING AGEN	ICY	CONT	RACTOR FILE NO.	12.	TO.	TAL SAMPL	FS	TURBE
	PTIM E OF DRILL	FR	!		1.0			5	
	Jexandra V				\vdash			ER CORE BOXES	
	CTION OF	BORING	DEG. FROM VERTICAL	BEARING	14.	ELE	EVATION GI	ROUND WATER	
	VERTICAL INCLINED		VERTICAL		15.	DA	TE BORING	STARTED COMPL 09-25-17 11:42 09-2	25-17
6. THIC	KNESS OF	OVERBL	IRDEN N/A	•	16.	ELE	EVATION TO	OP OF BORING -66.6 Ft.	
					17.	то	TAL RECOV	ERY FOR BORING 9.9 Ft.	
7. DEP	TH DRILLED	INTOR	OCK N/A		_			ND TITLE OF INSPECTOR	
8. ТОТ	OTAL DEPTH OF BORING 9.9 Ft.						M		
ELEV.	DEPTH	END	CLASSIFICATION O	F MATERIAI S		۰,	BOX OR SAMPLE		
(ft)	(ft)	LEGE	Depths and elevations base		ies	REC.	S AM	REMARKS	
-66.6	0.0	~ ~	SAND, fine grained, guar	tz trace clav trace				Sample #1, Depth = 0.3'	
-67.2	0.6	000	coarse grains, trace shell	hash, (3.0" x 1.0")			1	Mean (mm): 0.33, Phi Sorting: 1.33	
-67.6	1.0		rocky coarse grained pocke 0.5", very dark grayish brow				2	Fines (230): 2.80% (SW) Sample #2, Depth = 0.8'	
			SAND, fine to coarse grain	ed, quartz, little roc	k,			Mean (mm): 1.04, Phi Sorting: 2.07	
		 ∷∷	trace shell fragments, trac silt, shell fragments and ro					Fines (230): 0.63% (SW)	
	_	.::: \	whole shell and rock @ 0.7	', 2.0" rock @ 0.8',	2				
		<u> </u> ∷:: \	(0.75") whole shells @ 1 (2.5Y-5/2), (.0', grayish brown	Ш				
	-	· · · ·	(2.51-5/2), (SVV).	-				
		-::-	SAND, fine to medium gra	ained, quartz, trace	,				
			coarse grains, trace rock, to					Sample #3, Depth = 4.1'	
	_		trace shell hash, trace silt, rocks up to (0.5" x 0.25"),				3	Mean (mm): 0.36, Phi Sorting: 0.72	
			4.7', (1.5" x 1.0") whole	shell @ 4.9', light				Fines (230): 1.11% (SP)	
	_		brownish gray (2.5)	Y-6/2), (SP).					
	_								
		-::-							
-73.9	7.3								
		···	SAND, fine to medium gra					Sample #4, Depth = 7.9'	
	_	[.∵.]	coarse grains, trace silt, 1. shell fragments @ 7.9	', grayish brown	'		4	Mean (mm): 0.36, Phi Sorting: 0.62	
-75.2	8.6		(2.5Y-5/2),	(SP).				Fines (230): 0.94% (SP)	
	_	000	SAND, medium grained, o	quartz, trace coarse	,			Sample #5, Depth = 9.2'	
		000	grains, trace rock, trace s	It, rocks up to 0.5"	,		5	Mean (mm): 0.63, Phi Sorting: 1.31	
-76.5	9.9	°°°	grayish brown (2.5)	1-3/2), (SVV).				Fines (230): 0.57% (SW)	
	_		End of Bo	rina					
			Lind of Bo	···· 3					
	_								
	_								
	_								
	_								

	LLING LO	"			OF 1 SH
1. PRO			9. SIZ	ZE AND TYPE	OF BIT 3.5 ln.
	minary Charact ources in Select	rization of Offshore Sand d Study Areas APTIM			SYSTEM/DATUM HORIZONTAL VERTICAL ane Mainland NAD 1983 NAVD88
	ING DESIGNATION				ER'S DESIGNATION OF DRILL AUTO HAMMI
	A-CZM-2017-\ LING AGENCY	C12 X = 237,839 Y = 798,152 CONTRACTOR FILE NO.		APTIM SEA	S VC-700 Vibracore MANUAL HAN DISTURBED UNDISTURBEI
	PTIM		12. T	OTAL SAMPL	ES 3
4. NAM	E OF DRILLER	<u> </u>	13. T	OTAL NUMBI	ER CORE BOXES
	lexandra Valent		14. EI	LEVATION G	ROUND WATER
	CTION OF BORI	G DEG. FROM BEARING VERTICAL			STARTED COMPLETED
	NCLINED		15. D	ATE BORING	10-03-17 11:34 10-03-17
6. THIC	KNESS OF OVE	BURDEN N/A	16. EI	LEVATION T	OP OF BORING -58.4 Ft.
7. DEP	TH DRILLED INT	ROCK N/A	17. T	OTAL RECOV	ERY FOR BORING 8.4 Ft.
			18. SI	IGNATURE A	ND TITLE OF INSPECTOR
8. IUI	AL DEPTH OF BO	RING 12.3 Ft.		KM	
ELEV.	DEPTH (ft)	CLASSIFICATION OF MATERIALS	s REC	BOX OR	REMARKS
(ft) -58.4	(ft) 0.0	Depths and elevations based on measured value	s REC	SAR	KEMAKKO
	0.0	SAND, fine to medium grained, quartz, trace		1	Sample #1, Depth = 0.2
-58.9	0.5	clay, trace coarse grains, trace shell hash, (2.0 x 1.0") and 1.0" shell fragments @ 0.4', very	` <i>r</i>		Mean (mm): 0.36, Phi Sorting: 0.76 Fines (230): 1.44% (SP)
-59.6	- 1.2	dark grayish brown (2.5Y-3/2), (SP).] [2	Sample #2, Depth = 0.8
		SAND, fine to medium grained, quartz, trace clay, trace shell fragments, trace shell hash,	<u> </u>		Mean (mm): 0.31, Phi Sorting: 0.76 Fines (230): 1.73% (SP)
	_	shell fragments up to (0.5" x 0.25"), dark gray	H		1 mes (200). 1.70% (Ci)
		(5Y-4/1), (SP).	J		
	- ∷:				
	·				
	- :::	SAND, fine grained, quartz, trace clay, trace			
	· · ·	shell hash, clay distributed within layer and			Sample #3, Depth = 4.8'
	_ ∷	clayey pockets up to 0.5", 0.5" shell fragment @ 6.0', (2.0" x 0.5") clayey pocket @ 7.7', Bit	1	3	Mean (mm): 0.18, Phi Sorting: 0.49 Fines (230): 3.79% (SP)
		Sample from 8.2' to 8.4', dark greenish gray (10Y-4/1), (SP).			Filles (230). 3.79% (SP)
		(101-4/1), (3P).			
	- ,				
	::				
-66.8	8.4		_		
	_				
	_	No Recovery.			
	-				
-70.7	12.3				
		E 1 (D)			
	-	End of Boring			
	_				
	-				
			- 1	1	

Prelii	1. PROJECT Preliminary Characterization of Offshore Sand						9. SIZE AND TYPE OF BIT 3.5 In. 10. COORDINATE SYSTEM/DATUM HORIZONTAL VERTICAL					
Resources in Selected Study Areas APT								MA State Pl	!	NAVD88		
	NG DESIGNAT		LOCATION COORDINATES (m)						RER'S DESIGNATIO		=	намм
MA-CZM-2017-VC13						_	APTIM SEAS VC-700 Vibracore MANUAI DISTURBED UNDISTU					
	LING AGENCY PTIM			CONTR	ACTOR FILE NO.		. тс	OTAL SAMPL			UNDIS	TURBE
	E OF DRILLER			:		13	. то	OTAL NUMBI	ER CORE BOXES	<u>'</u>	<u> </u>	
Α	lexandra Vale	nte				-			ROUND WATER			
	CTION OF BOI ERTICAL	RING	DEG	. FROM TICAL	BEARING	''		LVAIION		ARTED	COMPI	LETED
	NCLINED		<u> </u>		<u> </u>	15	. D/	ATE BORING	i !	0-03-17 10:3		03-17
6. THIC	KNESS OF OV	ERBURDE	N/A			16	. El	EVATION TO	OP OF BORING	-56.8 Ft.		
7. DEPT	'H DRILLED IN	TO ROCK	N/A			17	. тс	OTAL RECOV	ERY FOR BORING	11.5 Ft.		
						18	. SI	GNATURE A	ND TITLE OF INSE	PECTOR		
8. TOT <i>i</i>	AL DEPTH OF I	BORING	12.3 Ft.					KM				
ELEV.	DEPTH		CI ASSII	FICATION OF	MATERIALS		0/	BOX OR				
(ft)	(ft)	Dep			on measured va	lues	REC	NA MIN		REMARK	S	
-56.8	0.0		ND fine an	ained quartz	z, trace clay, trac	e.		VC11 S#1				
-57.2	0.4 °.			dark grayisl	n brown (2.5Y-3/			VC11 5#1				
		∴ \—		(SW).		/						
	·`.	∵∣ s≀	ND, fine gr	ained, quartz	z, trace clay, trac	æ			Sample #1, De			
	:-	∵ fr			hell hash, shell 0" little shell hasl	n		1	Mean (mm): 0.		g: 0.78	
ľ	· :`				(5Y-4/1), (SP).				Fines (230): 3.	05% (SP)		
-59.7	2.9	::]										
-59.7	2.9											
	°	S/			z, little shell hasl agments, shell	٦,						
			fragments u	up to 1.0", (1	.5" x 1.0") shell			2	Sample #2, De Mean (mm): 0.:		v 1 20	
	а.				25") organic pock with depth, dark	ket			Fines (230): 7.			
					1), (SW-SC).				, ,			
-61.9	_ 5.1 °	SA SA	ND fine gra	ained quartz	, some shell has	:h			Sample #3, De	pth = 5.4'		
-62.6	5.8		trace clay,	trace shell fr	agments, shell			3	Mean (mm): 0.	27, Phi Sorting		
- 02.0	- <i>(i)</i>	∫ fra	gments up t 11)	o 1.0", very o 0Y-3/1), (SW	dark greenish gra V-SC)	ay /			Fines (230): 8.	19% (500-50)		
			yey SAND,	fine grained,	quartz, trace sh							
-63.6	6.8				shell @ 6.2', 0.5 ark greenish gra							
		/ 1\		(10Y-3/1), (S	SC).	· / I						
-64.7	7.9	∑ Sa	ndy CLAY, s areenis	soft, trace sh h gray (10Y-	ell hash, very da	ırk _						
Ī	. /	//	groomo	in gray (101	<i>Gi</i> 1); (<i>G</i> 2):	-						
ŀ	· <i>V.</i>											
		CLA	Y. soft trac	e sand verv	dark greenish g	_{irav}						
ļ	_		, ,	(10Y-3/1), (0	CL).	, - ,						
-68.3	11.5											
55.5	11.5	1		N- 5								
-69.1	12.3			No Recove	ry.							
				End of D								
				End of Bori	ng							
ŀ												
SAJ FOR	M 1832											

	LLING I	_UG					OF 1 SHE							
1. PRO				A	9. SI	ZE AND TYPI	E OF BIT 3.5 ln.							
	iminary Char ources in Se		ration of Offshore Sand Study Areas	APTIM	10. 0	10. COORDINATE SYSTEM/DATUM HORIZONTAL VERTICAL MA State Plane Mainland NAD 1983 NAVD88								
	ING DESIGNA		LOCATION COOR	• •	11. N		<u> </u>	O HAMM						
	MA-CZM-201			RACTOR FILE NO.		APTIIVI SEA		ISTURBE						
	APTIM				12. 1	OTAL SAMPI	LES 2							
	E OF DRILLE				13. T	OTAL NUMB	ER CORE BOXES							
	lexandra Va		DEC FROM	BEARING	14. E	LEVATION G	ROUND WATER							
\boxtimes	VERTICAL	JRING	DEG. FROM VERTICAL	BEARING	15. [ATE BORING	•	PLETED						
	INCLINED		<u> </u>	<u> </u>		ATE BORNE	10-03-17 09:46 10)-03-17 (
6. THIC	CKNESS OF C	VERBU	JRDEN N/A		16. E	LEVATION T	OP OF BORING -62.3 Ft.							
7. DEP	TH DRILLED	NTO R	OCK N/A				VERY FOR BORING 10.5 Ft.							
8. TOT	AL DEPTH OI	BORIN	NG 10.5 Ft.		18. 5	SIGNATURE A KM	AND TITLE OF INSPECTOR							
		۵			'									
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION O Depths and elevations base		s RE	BOX OR SAMPLE	REMARKS							
-62.3	0.0	Ů				BOS								
	c		SAND, fine grained, quart organics, trace shell frag				Sample #1, Depth = 0.6'							
	c c	· [hash, shell fragments up to	0.75", (1.5" x 1.0"))	1	Mean (mm): 0.24, Phi Sorting: 0.86							
-63.6	1.3		shell fragment @ 1.1', o (10Y-3/1) and, black (N-				Fines (230): 5.25% (SW-SC)							
	c	· []	SAND, fine grained, quar		~									
	-		shell fragments, trace fragments up to 0.75", 1.25	shell hash, shell	,	2	Sample #2, Depth = 2.3' Mean (mm): 0.23, Phi Sorting: 0.95							
	c		(1.25" x 1.0") shell fragr	ment @ 2.3', dark	,		Fines (230): 5.82% (SW-SC)							
-65.6	- 3.3		greenish gray (5GY-4	l/1), (SW-SC).										
00.0	0.0				_									
	-													
	_		Clavey SAND fine grainer	d guartz traca aball										
			Clayey SAND, fine grained fragments, trace shell has	h, trace whole shell,										
			shell fragments up to 0.75' (1.25" x 1.0"), (2.0" x 1.0	", whole shells up to ") and (2.0" x 1.5")	'									
			shell fragments @ 8.0', o	dark greenish gray										
			(5GY-4/1),	(50).										
	-													
-70.5	- 8.2				_									
			SAND, fine grained, quart	z some olav traca										
	-		shell fragments, trace	shell hash, shell										
			fragments up to (0.5" x 0 fragment @ 8.9', (1.0" x 0.00)).25"), 0.75" shell 5") rock @ 9 0' ven	,									
	-		dark greenish gray (1											
-72.8	10.5				_									
	-		End of Bo	ring										
	_													
	-													
1														

	LLING	LOG	DIVISION			LATION		SHEET 1 OF 1 SH
1. PRO				9.	SIZE	E AND TYPE	OF BIT 3.5 ln.	
			zation of Offshore Sand Study Areas	PTIM 10			SYSTEM/DATUM HORIZONTAL lane Mainland NAD 1983	VERTICAL NAVD88
	ING DESIGN		· .	<i>'</i>				ито наммі
	MA-CZM-2017-VC15					APTIM SEA		MANUAL HAN
						TAL SAMPL	LES 2	
	E OF DRILL		•	1:	3. то	TAL NUMBI	ER CORE BOXES	
	lexandra Va		DEG. FROM BEARING	14	1. EL	EVATION G	ROUND WATER	
\boxtimes	VERTICAL INCLINED	BORING	DEG. FROM BEARING		5. DA	TE BORING	! !	10-02-17
6. THI	KNESS OF	OVERB	URDEN N/A	16	3. EL	EVATION T	OP OF BORING -80.1 Ft.	
7. DEP	TH DRILLED	INTO F	ROCK N/A				/ERY FOR BORING 10.7 Ft.	
8. ТОТ	AL DEPTH C	F BORI	NG 11.0 Ft.	18		SNATURE A	AND TITLE OF INSPECTOR	
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION OF MATERIA Depths and elevations based on measu		«REC.	BOX OR SAMPLE	REMARKS	
-80.1	0.0		SAND, fine to medium grained, quar	tz. trace		Eω		
		ا دُوْدُ ا	coarse grains, trace shell fragments, t	race shell		1	Sample #1, Depth = 0.6' Mean (mm): 0.50, Phi Sorting: 0.99	9
-81.3	1.2	ە ° ° °	hash, trace silt, shell fragments up to shell fragment @ 0.4', (2.0" x 1.5") (2	2.5Y-5/1)		'	Fines (230): 0.81% (SW)	-
		$[\cdots]$	pocket @ 0.7', grayish brown (2.5Y-5/	2), (SW).				
	_							
		-::-						
	-	.::.						
	-							
	_		SAND, fine grained, quartz, trace sh	ell hash,				
			trace silt, 1.5" shell fragment pocket shell fragments up to 1.0", 2.0" shell				Sample #2, Depth = 6.0'	
	-	·	pocket @ 8.3'- shell fragments up to	(1.5" x		2	Mean (mm): 0.22, Phi Sorting: 0.57	7
			1.0"), 1.5" shell fragment pocket @ 10 fragments up to 1.5", 2.5" fine to m).5'- shell ledium			Fines (230): 1.63% (SP)	
	_		grained pocket @ 9.4', gray (5Y-5/1), (SP).				
		:::						
	=							
		:::						
	-							
	=							
-90.8	10.7							
-91.1	11.0		No Recovery.					
			End of Boring					
	_		End of Boning					
	-							
	-							
1					1			
1								

1. PROJ	LLING		<u> </u>			OF 1 SH						
		aractor	rization of Offshore Sand		SIZE AND TYP							
			d Study Areas APTIM	10.	MA State Plane Mainland NAD 1983							
	NG DESIGN		!	11.		RER'S DESIGNATION OF DRILL AUTO HAMMI						
	A-CZM-20 ING AGEN		C16 X = 276,446 Y = 866,962 CONTRACTOR FILE NO.		APTIM SE	AS VC-700 Vibracore MANUAL HAN						
	PTIM			12.	TOTAL SAMP	LES 4						
4. NAME	OF DRILL	ER	·	13.	TOTAL NUME	ER CORE BOXES						
	exandra V			14.	ELEVATION (GROUND WATER						
	CTION OF I	BORIN	G DEG. FROM BEARING VERTICAL			STARTED COMPLETED						
IN	NCLINED			15.	DATE BORING	10-02-17 14:03 10-02-17						
6. THICE	KNESS OF	OVER	BURDEN N/A	16.	ELEVATION 1	OP OF BORING -78.4 Ft.						
7. DEPT	H DRILLED	INTO	ROCK N/A	17.	TOTAL RECO	VERY FOR BORING 11.2 Ft.						
8 TOTA	L DEPTH C	DE BOE	RING 12.2 Ft.	18.		AND TITLE OF INSPECTOR						
U. 1012			12.21 t.	щ	KM	1						
ELEV.	DĘŖŢH	LEGEND	CLASSIFICATION OF MATERIALS		BOX OR SAMPLE	REMARKS						
(ft) -78.4	(ft) 0.0		Depths and elevations based on measured value	s R	EC. SAN							
-70.4	0.0		SAND, fine grained, guartz, trace shell	十								
		$ \cdots $	fragments, trace shell hash, trace silt, shell		1	Sample #1, Depth = 0.7' Mean (mm): 0.30, Phi Sorting: 0.76						
		$ \cdots $	fragments up to (0.5" x 0.25"), (1.5" x 1.0") she fragment @ 1.2', dark gray (5Y-4/1), (SP).		'	Fines (230): 1.23% (SP)						
-79.8	1.4	 		-		-						
L		-::-	SAND, fine grained, quartz, trace shell hash,			Sample #2, Depth = 2.2'						
			trace silt, (3.0" x 0.5") silty pocket @ 2.9', dark gray (5Y-4/1), (SP).		2	Mean (mm): 0.24, Phi Sorting: 0.61 Fines (230): 1.72% (SP)						
-81.4	3.0	$ \cdots $	gray (31-4/1), (31).			1 ines (250). 1.7270 (Si)						
		000	SAND, fine to medium grained, quartz, little			Sample #3, Depth = 3.6'						
		000	shell fragments, little shell hash, trace coarse grains, trace silt, shell fragments up to (1.0" x		3	Mean (mm): 0.59, Phi Sorting: 1.57						
-82.7	4.3	000	0.75"), 1.0" whole shell @ 3.7', 1.5" shell fragment @ 3.6', 1.0" clayey pocket @ 4.2',			Fines (230): 1.22% (SW)						
			dark gray (5Y-4/1), (SW).	$\int \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		1						
F	-											
		 										
-												
		 										
L			SAND, fine grained, quartz, little silt, trace clay,									
		 	trace shell hash, (1.0" x 0.5") shell fragments @			Sample #4, Depth = 7.8'						
		ĬĬ ┼Ĭ┼ Ĭ	4.4' and 5.1', (0.75" x 0.5") shell fragments @ 6.3' and 8.6', 1.5" shell fragment pocket @ 8.9'		4	Mean (mm): 0.16, Phi Sorting: 0.63						
Ī			shell fragments up to 1.25", dark gray (5Y-4/1)	.		Fines (230): 14.68% (SM)						
		 	(SM).									
}		$\parallel \parallel $										
		 										
	-	 										
-89.6	11.2											
55.0	11.4_	 		\neg		1						
	40.0		No Recovery.									
-90.6	12.2	+		-								
			End of Boring									
<u> </u>												
}												
		1 1			- 1							
SAJ FOR					_	<u> </u>						

DRI	LLING	LOG	DIVISION	"	JIAL	LATION	OF 1 SHEE	TS
PROJ			A	9.	SIZI	AND TYPE	•	
			zation of Offshore Sand	10	. со	ORDINATE	SYSTEM/DATUM HORIZONTAL VERTICAL	
			Study Areas APTIM	1			ane Mainland NAD 1983 NAVD88	
	NG DESIGN			11			RER'S DESIGNATION OF DRILL AUTO HAMMER AS VC-700 Vibracore MANUAL HAMM	
	A-CZM-20		17 X = 275,721 Y = 865,048 CONTRACTOR FILE NO.	╀		APTIM SEA	S VC-700 Vibracore MANUAL HAMM DISTURBED UNDISTURBED (
	PTIM			12	. то	TAL SAMPL	ES 3	,
NAM	E OF DRILL	ER	<u> </u>	13	. то	TAL NUMBE	ER CORE BOXES	
	lexandra V			14	. EL	EVATION G	ROUND WATER	
	CTION OF I /ERTICAL	BORING	DEG. FROM BEARING VERTICAL	 			STARTED COMPLETED	
<u></u>	NCLINED			15	. DA	TE BORING	10-02-17 14:57 10-02-17 15:	:00
THIC	KNESS OF	OVERB	URDEN N/A	16	. EL	EVATION TO	OP OF BORING -71.5 Ft.	
DEPT	H DRILLED	INTO F	ROCK N/A	17	. то	TAL RECOV	ZERY FOR BORING 11 Ft.	
				18	. SIG	NATURE A	ND TITLE OF INSPECTOR	
TOTA	AL DEPTH C		NG 11.0 Ft.	<u> Ц</u>	ŀ	(M		
LEV. (ft) -71.5	DEPTH (ft)	LEGEND	CLASSIFICATION OF MATERIALS Depths and elevations based on measured valu	es	% REC.	BOX OR SAMPLE	REMARKS	
			SAND, fine grained, quartz, trace shell hash,					
		<u> </u> ∷:	trace silt, (1.0" x 0.25") shell fragment @ 0.0' (3.0" x 0.75") silty pocket @ 1.2', dark gray	,		VC16 S#2		
-72.8	1.3	.::	(5Y-4/1), (SP).					
		000	SAND, fine to medium grained, quartz, trace coarse grains, trace shell hash, trace silt, (3.0'				Sample #1, Depth = 2.0'	
-	-		2.0") medium to coarse grained shell fragmer	nt		1	Mean (mm): 0.37, Phi Sorting: 0.90	
-74.2	2.7	000	pocket @ 1.4'- shell fragments up to (1.5" x 1.0"), 0.75" shell fragment @ 2.4', dark gray				Fines (230): 0.79% (SW)	
		· • • • • • • • • • • • • • • • • • • •	(5Y-4/1), (SW).	_/		2	Sample #2, Depth = 2.9' Mean (mm): 1.45, Phi Sorting: 1.67	
-74.7	3.2	7///	SAND, medium to coarse grained, quartz, little rock, little shell hash, trace shell fragments,	e		_	Fines (230): 0.67% (SW)	
			trace silt, shell fragments and rocks up to 0.5	",				
ŀ	-		(1.25" x 0.75") shell fragment @ 2.8', very dar					
			gray (N-3/0), (SW).	-				
-	-							
L			0.4415 5					
			SAND, fine grained, quartz, little clay, trace rock, trace silt, rocks up to (0.75" x 0.5"), 2.5	.				
			shell fragment pocket @ 4.4'- shell fragments				Sample #3, Depth = 7.1'	
ı			up to (2.0" x 1.25"), 1.25" shell fragment pockets @ 5.1' and 9.8'- shell fragments up to	0		3	Mean (mm): 0.13, Phi Sorting: 0.56	
			0.75", (2.0" x 1.0") shell fragment pockets @	!			Fines (230): 17.25% (SC)	
-	-		6.7' and 9.3'- shell fragments up to 1.25", ver dark greenish gray (10Y-3/1), (SC).	у				
			g g. s., (. 5 · 6/· //, (5 · 6/·					
Ī	_							
92.	11.0							
-82.5	11.0	1/////						
			End of Boring					
-								
	_							
ſ	-							
		i I			1	i l		

	DRIL							<u> </u>							OF 1 SHEETS
	PROJE				VK-1 C	1	4	9.	SIZE	AND TYPE	OF BIT	3.5 ln.			
				zation of C Study Are	Offshore Sa eas	nd	APTIM	10.			SYSTEM/DA lane Mainla	! -	I ZONTA AD 198		VERTICAL NAVD88
2.	BORIN	IG DESIGN	IATION	į	LOCATION	COORD	INATES (m)	11.	MAI	NUFACTUR	RER'S DESIG	NATION OF D	RILL	A	UTO HAMMER
		A-CZM-20		18 !	X = 283,		Y = 843,847	_	A	PTIM SEA	S VC-700 '				IANUAL HAMMER
•		TIM	CT			CONTR	ACTOR FILE NO.	12.	тот	AL SAMPL	.ES	DISTURBED 4	,	01	NDISTURBED (UD
	NAME	OF DRILL	ER					13.	тот	AL NUMBI	ER CORE BO	XES		•	
	_	exandra Va			PEC EDG	18.5	BEARING	14.	ELE	VATION G	ROUND WA	ΓER			
٠.	⊠ VE	ERTICAL ICLINED	SORING		DEG. FRO	L	BEARING	15.	DAT	E BORING	i	STARTED 10-02-17	7 16:34		OMPLETED 10-02-17 16:40
i.	тніск	NESS OF	OVERB	URDEN	N/A			16.	ELE	VATION T	OP OF BORI	NG -43.3	Ft.	•	
<u>.</u>	DEPTH	1 DRILLED	INTO F	ROCK	N/A			17.	тот	AL RECOV	ERY FOR B	ORING 1	O Ft.		
	TOTAL	L DEPTH C	F RORI	NG 1	1.0 Ft.			18.			ND TITLE O	F INSPECTOR			
_	1017.				1.01 t.			Н	T	M ~ш					
(f	EV. ft)	DEPTH (ft) 0.0	LEGEND				MATERIALS on measured value	es F	% REC.	BOX OR SAMPLE		R	EMARK	S	
-5		4.1 6.7 7.3		coarse gr hash, tr 1.0"), (1.5 shell frag shell frag (2.5Y-4/; fragmen an SAND, shell frag fragmen @ 5.3 SAND, shell hash fragmen 6.9', (1.	rains, trace race silt, she race silt, she race silt, she race silt, she race silt, she race silt, she race silt and self-silt a	shell fragnell fragnell fragnell fragnell fragnell fragnell fragnez', colors ar gray (5 steep fragnell fragnell fragnell fragmell fragmell fragmell fragmell fragmell fragnell fragmell fragmell fragnell	artz, trace shell sh, trace silt, shell 5" shell fragment ıell fragments up to	·/·)		2 3	Sample # Mean (m Fines (23 Sample # Mean (m Fines (23 Sample # Mean (m Fines (23 Sample # Mean (m	£1, Depth = 2. m): 0.50, Phi 30): 0.91% (S £2, Depth = 5. m): 0.44, Phi 30): 0.97% (S £3, Depth = 7. m): 0.45, Phi 30): 1.59% (S £4, Depth = 8. m): 0.34, Phi 30): 1.13% (S	Sorting P) 4' Sorting P) 0' Sorting W) 7' Sorting	ı; 0.7§	5
<u>-5</u>	3.3	10.0			No	Recove	ry.		-						
-5	4.3	11.0	$\vdash \vdash$					_							
	-				End	of Bori	ing								
<u> </u>	FORM	VI 1836													

1. PRO	LLING			_	NITE	5 OF DIT 0.5 In
		aracter	ization of Offshore Sand		SIZE AND TYP	
			d Study Areas APTIM	10.		E SYSTEM/DATUM HORIZONTAL VERTICAL Plane Mainland NAD 1983 NAVD8
2. BOR	ING DESIGN	MATION	,	11.		RER'S DESIGNATION OF DRILL AUTO HAMM
	1A-CZM-20		1			AS VC-700 Vibracore MANUAL HAI
3. DRIL	LING AGEN	ICY	CONTRACTOR FILE NO.	40	TOTAL CAMP	DISTURBED UNDISTURBE
	PTIM		<u> </u>	12.	TOTAL SAMP	4
	E OF DRILL			13.	TOTAL NUME	BER CORE BOXES
	lexandra V			14.	ELEVATION (GROUND WATER
	CTION OF I	BORIN	G DEG. FROM BEARING VERTICAL			STARTED COMPLETED
	NCLINED			15.	DATE BORING	10-02-17 17:33 10-02-17
6. THIC	KNESS OF	OVERE	BURDEN N/A	16.	ELEVATION 1	FOP OF BORING -56.8 Ft.
7. DEP	TH DRILLED	INTO	ROCK N/A	17.	TOTAL RECO	VERY FOR BORING 11.5 Ft.
				18.	SIGNATURE	AND TITLE OF INSPECTOR
8. ТОТ	AL DEPTH C	OF BOR	12.3 Ft.		KM	
		Q	CLASSIFICATION OF MATERIALS		BOX OR SAMPLE	
ELEV. (ft)	DEPTH (ft)	LEGEND	Depths and elevations based on measured value	s R	EC. OF	REMARKS
-56.8	0.0			\dashv		
		$ \cdots $				
		$ \cdots $	SAND, fine grained, quartz, trace shell hash,			
	_	$ \cdot \cdot $	trace silt, (1.5" x 1.0") shell fragment @ 0.1', 2.0" shell fragment @ 0.9', 2 (1.25") shell		1	Sample #1, Depth = 1.3' Mean (mm): 0.26, Phi Sorting: 0.76
		<u>[∷:]</u>	fragments @ 1.3', 1.25" little shell hash pocket		'	Fines (230): 3.79% (SP)
	_	$ \cdot\cdot\cdot $	@ 2.4', very dark greenish gray (10Y-3/1), (SP)	-		
-59.4	2.6	$ \cdots $				
		-:	CAND fine to medium grained quarte trace			1
	_		SAND, fine to medium grained, quartz, trace shell fragments, trace shell hash, trace silt,			
		 ∷∴ 	trace whole shell, shell fragments up to (0.75")	۱ ،		Sample #2, Depth = 4.0'
	-	$ \cdot \cdot $	0.5"), whole shells up to (0.5" x 0.25"), 3.0" shelly pocket @ 3.3'- shell components are		2	Mean (mm): 0.42, Phi Sorting: 0.78
		: : :	shell hash, shell fragments up to 0.5" and whole			Fines (230): 1.27% (SP)
	_	$[\cdots]$	shells up to 0.25", dark greenish gray (10Y-4/1)	,		
-62.2	5.4	<u> -:::- </u>	(SP).]
		·.	SAND, fine grained, quartz, trace shell fragments, trace shell hash, trace silt, shell			
	-	:-	fragments up to 0.5", 1.25" shell fragment			Sample #3, Depth = 6.3'
		 .:	pocket @ 6.4'- shell fragments up to (1.0" x		3	Mean (mm): 0.25, Phi Sorting: 0.74 Fines (230): 5.49% (SP-SM)
-64.0	7.2	$\ \cdot\ \ $	0.75"), (1.0" x 0.75") shell fragment @ 6.7', (3.0" x 1.0") clayey pocket @ 7.1', dark greenisl	۱ ۱		1 1100 (200): 0. 10 /0 (01 0111)
-∪-∓.∪	1.2	 :::: 	gray (10Y-4/1), (SP-SM).	\mathcal{I}		1
		$ \cdots $	SAND, fine grained, quartz, trace shell hash,			
	_	:::	trace silt, 1.25" shell fragment pockets @ 8.4' and 8.9'- shell fragments up to (0.75" x 0.5"),		VC18 S#4	4
		::::	dark gray (5Y-4/1), (SP).			
-65.9	- 9.1	<u> </u>		_		1
		<u> </u> [:	SAND, fine grained, quartz, trace clay, trace silt	.,		Sample #4, Depth = 9.8'
	_	[:]	1.0" shell fragment pocket @ 9.1'- shell fragments up to 0.5", dark greenish gray		4	Mean (mm): 0.25, Phi Sorting: 0.67
-67.3	 10.5	 -: 	(10Y-4/1), (SP-SM).			Fines (230): 5.82% (SP-SM)
	. 3.0		Clayey SAND, fine grained, quartz, trace shell	\neg		1
	-		hash, very dark greenish gray (10Y-3/1), (SC).			
-68.3	11.5	7////		-		
60.4	- 400		No Recovery.			
-69.1	12.3	+ +		\dashv		
			End of Boring			
	-					
	_					

	LLING	LUG	<u>' </u>			OF 1 SH
1. PRO				9. 9	SIZE AND TYP	E OF BIT 3.5 ln.
			ization of Offshore Sand d Study Areas APTIM	10.		E SYSTEM/DATUM HORIZONTAL VERTICAL Plane Mainland NAD 1983 NAVD8
	ING DESIGN		! ''' '	11.		RER'S DESIGNATION OF DRILL AUTO HAMM
	MA-CZM-20		20 X = 284,592 Y = 838,399 CONTRACTOR FILE NO.		APTIM SE	AS VC-700 Vibracore MANUAL HAI DISTURBED UNDISTURBE
	PTIM			12.	TOTAL SAMP	LES 4
	E OF DRILL	ER	•	13.	TOTAL NUME	BER CORE BOXES
	lexandra V			14.	ELEVATION O	GROUND WATER
	CTION OF I	BORING	G DEG. FROM BEARING VERTICAL			STARTED COMPLETED
	NCLINED			15.	DATE BORING	10-02-17 18:21 10-02-17
6. THIC	KNESS OF	OVERE	BURDEN N/A	16.	ELEVATION 1	FOP OF BORING -55.1 Ft.
7. DEP	TH DRILLED	INTO	ROCK N/A	17.	TOTAL RECO	VERY FOR BORING 10.8 Ft.
• TOT	AL DEPTH C	E POP	INC 12.2 Ft	18.		AND TITLE OF INSPECTOR
J. 1012	AL DEFIN C		ING 12.3 Ft.	_	KM	1
ELEV.	DĘŖŢH	LEGEND	CLASSIFICATION OF MATERIALS		BOX OR SAMPLE	REMARKS
(ft) -55.1	(ft) 0.0	FE	Depths and elevations based on measured value	s R	SEC. SAN	Nama di Cara
55.1	0.0	。°°° ه	SAND, fine to medium grained, quartz, little	+		Sample #4 Porth - 0.0
		000	rock, trace coarse grains, trace silt, rocks up to 0.75", (3.0" x 2.0") gravel pocket @ 1.1'- gravel		1	Sample #1, Depth = 0.6' Mean (mm): 0.52, Phi Sorting: 1.19
-56.4	1.3		components are shell fragments up to 1.5" and			Fines (230): 1.69% (SW)
	1.0	000	rocks up to (2.0" x 1.5"), very dark gray (2.5Y-3/1), (SW).	/		1
	_	0 0 0	SAND, fine grained, quartz, trace coarse grains,			Sample #2, Depth = 2.1'
			trace rock, trace shell hash, trace silt, rocks up to 0.5", 3 (1.0" x 0.5") shell fragments @ 1.3',		2	Mean (mm): 0.40, Phi Sorting: 1.98 Fines (230): 2.83% (SW)
-58.1	3.0	000	1.5" shell fragment pocket @ 1.6'- shell			
			fragments up to (1.5" x 1.0"), (1.0" x 0.75") rock @ 1.7', (2.0" x 1.5") medium to coarse grained	Γ		1
		::::	pocket and (2.0" x 1.0") shell fragment @ 2.9',	H		
ŀ	_		dark gray (5Y-4/1), (SW).	<i>'</i>		
	_		SAND, fine grained, quartz, trace coarse grains, trace shell hash, trace silt, 1.5" rocky pocket @	.		
		::::	3.7'- rocks up to (1.0" x 0.75"), 0.75" rocks @			Sample #3, Depth = 5.8'
	_		3.2' and 7.3', (0.5" x 0.25") rock @ 4.5', (3.0" x 1.0") medium to coarse grained rocky pocket @		3	Mean (mm): 0.22, Phi Sorting: 0.45 Fines (230): 1.38% (SP)
			7.4'- rocks up to 0.5", organic lamina @ 8.5',			1 mes (200). 1.00 % (GI)
			dark gray (5Y-4/1), (SP).			
	_					
		.:.:				
-63.6	- 8.5	<u> ::: </u>				
-03.0	0.0	 		-		1
-	_	$ \cdots $	SAND, fine grained, quartz, trace shell hash,			
		:::	trace silt, 2 (0.5") shell fragments @ 9.6', (3.0" >		4	Sample #4, Depth = 9.6' Mean (mm): 0.19, Phi Sorting: 0.40
	_	···	0.75") clayey pocket @ 10.6' and organic pocket @ 10.7', dark gray (5Y-4/1), (SP).	τ	'	Fines (230): 3.54% (SP)
-65.9	10.0	$ \cdots $				
-00.9	10.8 -	† † †		\neg		1
			No Recovery.			
	_		ino inccovery.			
-67.4	12.3	\vdash		_		
			End of Boring			
	_					
	_					
l		1 I		- 1	1	
	RM 1836	1 1				<u> </u>

Appendix B

Vibracore Granularmetric Reports

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC01 #1

Analysis Date: 11-03-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

257,169 895,590 MA State Plane Mainland -78.6 NAVD88

257,10		095,590	J	IVIA SU	ale Flane Maini	anu	-70.0	O INF	4VD00	
USCS:	Munse		/et - 5Y-3/1 /ry - 5Y-5/1	Commen	ts:					
SP-SM		Wash	ed - 5Y-6/1							
Dry Weight (g):	Wash Weight		Pan Retained (,	Sieve Loss (%):	#200 - 11.74	Organics (%):	(%): Carbonates (Shell Hash (%):
89.30	82.0		0.89		0.00	#230 - 9.16				
Sieve Number	er Sieve Size Sieve Size (Millimeter			Grams Retained	% Weight Retained		Grams ained	C.	% Weight Retained	
3/4"	3/4" -4.25		19.03		0.00	0.00	0.0			0.00
5/8"	-4.0	0	16.0	0	0.00	0.00	0	.00		0.00
7/16"	-3.5	0	11.31		0.00	0.00	0	.00		0.00
5/16"	-3.0	0	8.00)	0.00	0.00	0	.00		0.00
3.5	-2.5	0	5.66	3	0.34	0.38	0	.34		0.38
4	-2.2	5	4.76	3	0.00	0.00	0	.34		0.38
5	-2.0	0	4.00)	0.00	0.00	0	.34		0.38
7	-1.5	0	2.83	3	0.10	0.11	0	.44		0.49
10	-1.0	0	2.00		0.12	0.13	0	.56		0.62
14	-0.5	0	1.41	1	0.08	0.09	0).64).72		0.71
18	0.00)	1.00)	0.08	0.09	0			0.80
25	0.50)	0.7	1	0.14	0.16	0	.86		0.96
35	1.00)	0.50)	0.19	0.21	1	.05		1.17
45	1.50)	0.35	5	0.36	0.40	1	.41		1.57
60	2.00)	0.25	5	1.34	1.50	2	.75		3.07
80	2.50)	0.18	3	8.59	9.62	11	.34		12.69
120	3.00)	0.13	3	38.68	43.31	50	0.02		56.00
170	3.50)	0.09	9	26.25	29.40	76	5.27		85.40
200	3.75	5	0.07	7	2.55	2.86	78	3.82		88.26
230	4.00)	0.06	3	2.30	2.58	81	.12		90.84
			1		1	1		l		

으ㄴ									
J 12/8/1	Phi 5	Phi 16	Phi 25	Phi 50	Phi 7	75	Phi 84	Phi 95	
VC.GPJ		3.48	3.32	2.93	2.64	4	2.54	2.10	
A_2017	Moment	Mean Phi	Mean m	m Sc	orting	S	kewness	Kurtosis	
MA_CZM	Statistics	2.85	0.14	0	.63		-4.24	34.59	

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC01 #2

Analysis Date: 11-03-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

257,169 MA State Plane Mainland 895,590 -83.5 NAVD88

USCS: Munsell: Wet - 5Y-3/1 Comments: Dry - 5Y-5/1 SP-SM Washed - 5Y-5/1 Dry Weight (g): Organics (%): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 11.76 #230 - 8.84 93.27 86.47 1.42 0.04 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained Retained (Phi) (Millimeters) 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 0.00 7/16" 0.00 0.00 -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.49 0.53 0.49 0.53 3.5 0.53 4 -2.254.76 0.00 0.00 0.49 5 0.10 0.11 0.59 -2.004.00 0.64 7 0.06 -1.502.83 0.06 0.65 0.70 10 -1.00 2.00 0.04 0.04 0.69 0.74 0.23 14 -0.501.41 0.21 0.90 0.97 18 0.00 1.00 0.29 0.31 1.19 1.28 25 0.50 0.71 0.65 0.70 1.84 1.98 35 1.00 0.50 1.78 1.91 3.62 3.89 45 2.28 2.44 5.90 6.33 1.50 0.35 60 2.00 0.25 5.50 5.90 11.40 12.23 80 2.50 0.18 15.89 17.04 27.29 29.27 120 3.00 0.13 32.92 35.30 60.21 64.57 170 3.50 0.09 19.38 20.78 79.59 85.35 200 3.75 0.07 2.70 2.89 82.29 88.24 230 4.00 0.06 2.72 2.92 85.01 91.16

_CZM_2017_VC.GPJ 12/8/17

Phi 5

Phi 16

Phi 25

	3.47	3.25	2.79		2.37		2.11	1.23
Moment	Mean Phi	Mean m	m	Sorting		Skewness		Kurtosis
Statistics	2.61	0.16		0.8	33		-2.55	14.73

Phi 50

Phi 75

Phi 84

Phi 95

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC01 #3

Analysis Date: 11-03-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 257,169 895,590 -87.1 NAVD88

USCS: Munsell: Wet - 10Y-2.5/1 Comments: Dry - 5Y-5/1 Washed - 5Y-5/1 SC Dn/Weight (g): Fines (%): Pan Petained (a):

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 23.06 Organ	nics (%): Carbonates	(%): Shell Hash (%):
91.00	74.29	1.16	0.07	#230 - 19.71		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	4.31	4.74	4.31	4.74
3.5	-2.50	5.66	0.67	0.74	4.98	5.48
4	-2.25	4.76	0.00	0.00	4.98	5.48
5	-2.00	4.00	0.00	0.00	4.98	5.48
7	-1.50	2.83	0.14	0.15	5.12	5.63
10	-1.00	2.00	0.11	0.12	5.23	5.75
14	-0.50	1.41	0.14	0.15	5.37	5.90
18	0.00	1.00	0.09	0.10	5.46	6.00
25	0.50	0.71	0.24	0.26	5.70	6.26
35	1.00	0.50	0.45	0.49	6.15	6.75
45	1.50	0.35	0.75	0.82	6.90	7.57
60	2.00	0.25	2.73	3.00	9.63	10.57
80	2.50	0.18	13.01	14.30	22.64	24.87
120	3.00	0.13	26.69	29.33	49.33	54.20
170	3.50	0.09	18.41	20.23	67.74	74.43
200	3.75	0.07	2.28	2.51	70.02	76.94
230	4.00	0.06	3.05	3.35	73.07	80.29

^										
J 12/8/1	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 75		Phi 84	Phi 95	
VC.GP.			3.56	2	2.93	2.50		2.19	-2.65	
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	Skewness		Kurtosis	
MA_CZM	Statistics	2.36	0.19		1.62			-2.71	9.54	

Granularmetric Report

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC04 #1

Analysis Date: 11-03-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft): MA State Plane Mainland 262,858 897,530 -124.7 NAVD88 USCS: Munsell: Wet - N-2.5/0 Comments: Dry - 5Y-5/1 SP-SC Washed - 5Y-6/1 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 8.38 #230 - 7.62 86.35 80.13 0.17 0.21 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7/16" -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.00 0.00 0.00 0.00 3.5 4 -2.254.76 0.00 0.00 0.00 0.00 5 0.07 -2.004.00 0.08 0.07 80.0 0.25 7 -1.502.83 0.22 0.29 0.33 10 -1.00 2.00 0.38 0.44 0.67 0.77 14 -0.501.41 0.30 0.35 0.97 1.12 18 0.00 1.00 0.20 0.23 1.17 1.35 25 0.50 0.71 0.24 0.28 1.41 1.63 35 1.00 0.50 0.52 0.60 1.93 2.23 45 1.48 1.71 3.41 3.94 1.50 0.35 60 2.00 0.25 4.79 5.55 8.20 9.49 80 2.50 0.18 18.44 21.35 26.64 30.84 44.25 120 3.00 0.13 38.21 64.85 75.09 170 3.50 0.09 12.90 14.94 77.75 90.03 91.62 200 3.75 0.07 1.37 1.59 79.12 230 4.00 0.06 0.66 0.76 79.78 92.38 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 3.30 3.00 2.72 2.36 2.15 1.60 Moment Mean Phi Mean mm Sorting Skewness **Kurtosis** Statistics 2.57 0.17 0.68 -2.7215.91

VC.GPJ CZM_2017_

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC04 #2

Analysis Date: 11-03-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 262,858 897,530 -128.0 NAVD88

202,03	0	091,550	IVIA Sta	IVIA State Flatte Ivialitiatio - 12		.U INAVDOO
USCS:		Wet - 10Y-3/1 Commer Dry - 5Y-6/1 shed - 5Y-6/1	nts:			
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 12.67 Organ	nics (%): Carbonates	(%): Shell Hash (%):
89.67	79.79	0.42	0.01	#230 - 11.50		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.06	0.07	0.06	0.07
7	-1.50	2.83	0.14	0.16	0.20	0.23
10	-1.00	2.00	0.14	0.16	0.34	0.39
14	-0.50	1.41	0.12	0.13	0.46	0.52
18	0.00	1.00	0.11	0.12	0.57	0.64
25	0.50	0.71	0.19	0.21	0.76	0.85
35	1.00	0.50	0.34	0.38	1.10	1.23
45	1.50	0.35	1.17	1.30	2.27	2.53
60	2.00	0.25	3.73	4.16	6.00	6.69
80	2.50	0.18	11.99	13.37	17.99	20.06

_									
J 12/8/17	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	' 5	Phi 84	Phi 95
VC.GPJ		3.49	3.30	2	2.87	2.56	3	2.35	1.80
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis
MA_CZM	Statistics	2.74	0.15		0.0	61		-2.5	16.43

36.21

21.61

2.50

1.05

40.38

24.10

2.79

1.17

54.20

75.81

78.31

79.36

60.44

84.54

87.33

88.50

120

170

200

230

3.00

3.50

3.75

4.00

0.13

0.09

0.07

0.06

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC04 #3

Analysis Date: 11-03-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 262,858 897,530 -131.3 NAVD88

Wet - 10Y-3/1 Dry - 5Y-5/1 Washed - 5Y-6/1 USCS: Munsell: Comments: SC

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 15.23 Organ	nics (%): Carbonates	(%): Shell Hash (%):
89.21	77.94	0.78	0.12	#230 - 13.63		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.03	0.03	0.03	0.03
7	-1.50	2.83	0.11	0.12	0.14	0.15
10	-1.00	2.00	0.11	0.12	0.25	0.27
14	-0.50	1.41	0.10	0.11	0.35	0.38
18	0.00	1.00	0.14	0.16	0.49	0.54
25	0.50	0.71	0.24	0.27	0.73	0.81
35	1.00	0.50	0.67	0.75	1.40	1.56
45	1.50	0.35	1.45	1.63	2.85	3.19
60	2.00	0.25	4.26	4.78	7.11	7.97
80	2.50	0.18	13.23	14.83	20.34	22.80
120	3.00	0.13	38.20	42.82	58.54	65.62
170	3.50	0.09	14.77	16.56	73.31	82.18
200	3.75	0.07	2.31	2.59	75.62	84.77
230	4.00	0.06	1.43	1.60	77.05	86.37

1									
J 12/8/17	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GP.		3.68	3.28	2	2.82	2.53	3	2.27	1.69
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	2.67	0.16		0.	61		-2.05	12.95

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC05 #1

Analysis Date: 11-03-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 262,482 948,257 -104.4 NAVD88

Wet - 2.5Y-3/1 Dry - 2.5Y-6/2 Washed - 2.5Y-7/2 USCS: Munsell: Comments: SW

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.52 Orga	nics (%): Carbonates	(%): Shell Hash (%):
98.60	97.34	0.03	0.04	#230 - 1.35		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.00	0.00	0.00	0.00
7	-1.50	2.83	0.19	0.19	0.19	0.19
10	-1.00	2.00	1.17	1.19	1.36	1.38
14	-0.50	1.41	3.50	3.55	4.86	4.93
18	0.00	1.00	3.84	3.89	8.70	8.82
25	0.50	0.71	6.69	6.78	15.39	15.60
35	1.00	0.50	13.86	14.06	29.25	29.66
45	1.50	0.35	20.85	21.15	50.10	50.81
60	2.00	0.25	21.00	21.30	71.10	72.11
80	2.50	0.18	16.43	16.66	87.53	88.77
120	3.00	0.13	7.55	7.66	95.08	96.43
170	3.50	0.09	1.82	1.85	96.90	98.28
200	3.75	0.07	0.20	0.20	97.10	98.48
230	4.00	0.06	0.17	0.17	97.27	98.65

J 12/8/1	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GPJ	2.91	2.36	2.09		1.48	0.83	3	0.51	-0.49
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	1.38	0.38		0.	95		-0.52	3.21

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC05 #2

Analysis Date: 11-03-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland -105.5 NAVD88 262,482 948,257

USCS:	Munsell:	Wet - 2.5Y-3/1	Comments:
		Dry - 2.5Y-6/2	
SW	Wa	ashed - 2.5Y-6/2	

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.32 Organ	nics (%): Carbonates	(%): Shell Hash (%):
90.41	89.41	0.02	0.02	#230 - 1.17		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.87	0.96	0.87	0.96
3.5	-2.50	5.66	0.00	0.00	0.87	0.96
4	-2.25	4.76	0.40	0.44	1.27	1.40
5	-2.00	4.00	0.48	0.53	1.75	1.93
7	-1.50	2.83	2.67	2.95	4.42	4.88
10	-1.00	2.00	4.27	4.72	8.69	9.60
14	-0.50	1.41	6.24	6.90	14.93	16.50
18	0.00	1.00	4.74	5.24	19.67	21.74
25	0.50	0.71	5.74	6.35	25.41	28.09
35	1.00	0.50	11.03	12.20	36.44	40.29
45	1.50	0.35	16.39	18.13	52.83	58.42
60	2.00	0.25	15.74	17.41	68.57	75.83
80	2.50	0.18	13.09	14.48	81.66	90.31
120	3.00	0.13	5.89	6.51	87.55	96.82
170	3.50	0.09	1.53	1.69	89.08	98.51
200	3.75	0.07	0.15	0.17	89.23	98.68
230	4.00	0.06	0.14	0.15	89.37	98.83

드									
J 12/8/1	Phi 5	Phi 16	Phi 25	P	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GP.	2.86	2.28	1.98		1.27	0.26	3	-0.54	-1.49
M_2017_	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	0.99	0.50		1.3	32		-0.76	3.18

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC05 #3

Analysis Date: 11-03-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 262,482 948,257 -108.1 NAVD88

USCS: Munsell: Wet - 2.5Y-3/1 Comments: Dry - 2.5Y-6/2 Washed - 2.5Y-6/2 SW

SW	Washed	d - 2.5Y-6/2				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.42 Organ	nics (%): Carbonates	(%): Shell Hash (%):
89.86	88.77	0.01	0.02	#230 - 1.25		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.15	0.17	0.15	0.17
7	-1.50	2.83	1.29	1.44	1.44	1.61
10	-1.00	2.00	2.10	2.34	3.54	3.95
14	-0.50	1.41	4.74	5.27	8.28	9.22
18	0.00	1.00	5.22	5.81	13.50	15.03
25	0.50	0.71	7.38	8.21	20.88	23.24
35	1.00	0.50	13.24	14.73	34.12	37.97
45	1.50	0.35	18.12	20.16	52.24	58.13
60	2.00	0.25	16.11	17.93	68.35	76.06
80	2.50	0.18	12.63	14.06	80.98	90.12
120	3.00	0.13	5.89	6.55	86.87	96.67
170	3.50	0.09	1.55	1.72	88.42	98.39
200	3.75	0.07	0.17	0.19	88.59	98.58
230	4.00	0.06	0.15	0.17	88.74	98.75
	1	1	1	1		

-									
J 12/8/1	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	' 5	Phi 84	Phi 95
VC.GPJ	2.87	2.28	1.97		1.30	0.56	3	0.06	-0.90
A_2017_	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	1.17	0.44		1.	09		-0.52	2.98

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC05 #4

Analysis Date: 11-06-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 262,482 948,257 -111.3 NAVD88

Wet - 2.5Y-3/1 Dry - 2.5Y-6/2 Washed - 2.5Y-6/2 USCS: Munsell: Comments: SW

0						
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 0.84 Orga	nics (%): Carbonates	(%): Shell Hash (%):
93.42	92.74	0.01	0.02	#230 - 0.77		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.54	0.58	0.54	0.58
4	-2.25	4.76	0.94	1.01	1.48	1.59
5	-2.00	4.00	3.04	3.25	4.52	4.84
7	-1.50	2.83	6.60	7.06	11.12	11.90
10	-1.00	2.00	7.93	8.49	19.05	20.39
14	-0.50	1.41	8.42	9.01	27.47	29.40
18	0.00	1.00	6.76	7.24	34.23	36.64
25	0.50	0.71	6.89	7.38	41.12	44.02
35	1.00	0.50	9.86	10.55	50.98	54.57
45	1.50	0.35	13.32	14.26	64.30	68.83
60	2.00	0.25	11.89	12.73	76.19	81.56
80	2.50	0.18	10.42	11.15	86.61	92.71
120	3.00	0.13	4.47	4.78	91.08	97.49
170	3.50	0.09	1.36	1.46	92.44	98.95
200	3.75	0.07	0.20	0.21	92.64	99.16
230	4.00	0.06	0.07	0.07	92.71	99.23

12/8/1	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GPJ	2.74	2.11	1.74	().78	-0.7	4	-1.26	-1.99
M_2017_	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	0.52	0.70		1.	48		-0.24	1.99

Granularmetric Report

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC06 #1

Analysis Date: 11-06-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

259,678 948,190 MA State Plane Mainland -81.0 NAVD88

USCS: Munsell: Wet - 2.5Y-5/3 Comments: Dry - 2.5Y-7/3 SW Washed - 2.5Y-7/3 Dry Weight (g): Pan Retained (g): Wash Weight (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 3.60 #230 - 2.36 91.00 89.16 0.30 0.01 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00 7/16" -3.5011.31 0.00 0.00 5/16" -3.008.00 0.86 0.95 0.86 0.95 5.66 1.25 1.37 2.11 2.32 3.5 -2.504 -2.254.76 0.53 0.58 2.64 2.90 5 0.39 -2.004.00 0.43 3.03 3.33 1.23 7 -1.502.83 1.35 4.26 4.68 10 -1.00 2.00 1.25 1.37 5.51 6.05 1.70 14 -0.501.41 1.87 7.21 7.92 9.19 18 0.00 1.00 1.98 2.18 10.10 25 0.50 0.71 2.02 2.22 11.21 12.32 35 1.00 0.50 2.87 3.15 14.08 15.47 45 3.51 3.86 17.59 1.50 0.35 19.33 60 2.00 0.25 10.68 11.74 28.27 31.07 80 2.50 0.18 33.09 36.36 61.36 67.43 120 3.00 0.13 16.94 18.62 78.30 86.05 170 3.50 0.09 8.30 9.12 86.60 95.17 200 3.75 0.07 1.12 1.23 87.72 96.40 230 4.00 0.06 1.13 1.24 88.85 97.64 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95

2.26

1.74

Sorting

1.37

1.07

Skewness

-1.88

-1.38

Kurtosis

6.5

AA_CZM_2017_VC.GPJ 12/8/17

3.49

Moment

Statistics

2.94

Mean Phi

1.9

2.70

Mean mm

0.27

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC06 #2

Analysis Date: 11-06-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 259,678 948,190 -83.1 NAVD88

USCS: Munsell: Wet - 2.5Y-5/3 Comments: Dry - 2.5Y-7/3 Washed - 2.5Y-7/3 SP

Oi	VVGOTICE	1-2.51-1/5				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	#200 - 2.19 °	anics (%): Carbonates	(%): Shell Hash (%)
91.08	89.84	0.10	0.03	#230 - 1.51		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weigh Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.00	0.00	0.00	0.00
7	-1.50	2.83	0.21	0.23	0.21	0.23
10	-1.00	2.00	0.25	0.27	0.46	0.50
14	-0.50	1.41	0.54	0.59	1.00	1.09
18	0.00	1.00	1.00	1.10	2.00	2.19
25	0.50	0.71	2.19	2.40	4.19	4.59
35	1.00	0.50	3.70	4.06	7.89	8.65
45	1.50	0.35	5.50	6.04	13.39	14.69
60	2.00	0.25	18.73	20.56	32.12	35.25
80	2.50	0.18	34.18	37.53	66.30	72.78
120	3.00	0.13	17.44	19.15	83.74	91.93
170	3.50	0.09	4.67	5.13	88.41	97.06
200	3.75	0.07	0.68	0.75	89.09	97.81
230	4.00	0.06	0.62	0.68	89.71	98.49

J 12/8/17	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GP.	3.30	2.79	2.56	2	2.20	1.75	5	1.53	0.55
J 2017	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	2.08	0.24		0.	78		-1.26	6.17

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC06 #3

Analysis Date: 11-06-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

259,678 MA State Plane Mainland -86.9 NAVD88 948,190

ı	USCS:	Munsell: Wet - 2.5Y	-6/3 Comments:
		Dry - 2.5Y	-7/3
ı	SP	Washed - 2.5V	_8/3

•						
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 3.91 Organ	nics (%): Carbonates	(%): Shell Hash (%):
88.43	86.86	0.55	0.05	#230 - 2.45		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.00	0.00	0.00	0.00
7	-1.50	2.83	0.00	0.00	0.00	0.00
10	-1.00	2.00	0.03	0.03	0.03	0.03
14	-0.50	1.41	0.04	0.05	0.07	0.08
18	0.00	1.00	0.02	0.02	0.09	0.10
25	0.50	0.71	0.06	0.07	0.15	0.17
35	1.00	0.50	0.07	0.08	0.22	0.25
45	1.50	0.35	0.29	0.33	0.51	0.58
60	2.00	0.25	3.21	3.63	3.72	4.21
80	2.50	0.18	26.70	30.19	30.42	34.40
120	3.00	0.13	37.76	42.70	68.18	77.10
170	3.50	0.09	15.01	16.97	83.19	94.07
200	3.75	0.07	1.79	2.02	84.98	96.09
230	4.00	0.06	1.29	1.46	86.27	97.55

12/8/	Phi 5	Phi 16	Phi 25	Phi	50	Phi 7	'5	Phi 84	Phi 95
VC.GPJ	3.62	3.20	2.98	2.6	68	2.34	1	2.20	2.01
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	2.67	0.16		0.4	46		-0.43	6.85

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC07 #1

Analysis Date: 11-06-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 259,788 951,977 -86.2 NAVD88

Munsell: Wet - 10YR-3/3 | Comments: Dry - 10YR-6/3 | Washed - 10YR-7/3 | USCS: SW

344	vvasiicu	- 101K-1/3				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.07	nics (%): Carbonates	(%): Shell Hash (%)
93.57	92.70	0.01	0.02	#230 - 0.96		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weigh Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.82	0.88	0.82	0.88
4	-2.25	4.76	0.61	0.65	1.43	1.53
5	-2.00	4.00	0.62	0.66	2.05	2.19
7	-1.50	2.83	1.29	1.38	3.34	3.57
10	-1.00	2.00	3.16	3.38	6.50	6.95
14	-0.50	1.41	8.41	8.99	14.91	15.94
18	0.00	1.00	14.73	15.74	29.64	31.68
25	0.50	0.71	19.55	20.89	49.19	52.57
35	1.00	0.50	21.26	22.72	70.45	75.29
45	1.50	0.35	13.13	14.03	83.58	89.32
60	2.00	0.25	6.04	6.46	89.62	95.78
80	2.50	0.18	2.01	2.15	91.63	97.93
120	3.00	0.13	0.59	0.63	92.22	98.56
170	3.50	0.09	0.29	0.31	92.51	98.87
200	3.75	0.07	0.06	0.06	92.57	98.93
230	4.00	0.06	0.10	0.11	92.67	99.04

-									
J 12/8/1	Phi 5	Phi 16	Phi 25	Phi 50	Phi 7	75	Phi 84	Phi 95	
VC.GPJ	1.94	1.31	0.99	0.44	-0.2	1	-0.50	-1.29	
M_2017	Moment	Mean Phi	Mean m	m Sc	rting	S	kewness	Kurtosis	
MA_CZM	Statistics	0.37	0.77	0	.97		-0.33	3.91	

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC07 #2

Analysis Date: 11-06-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

259,788 MA State Plane Mainland -87.0 NAVD88 951,977

USCS:	Munsell:	Wet - 2.5Y-3/1	Comments:
		Dry - 2.5Y-6/2	
SP	W	ashed - 2.5Y-6/1	

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 2.40 Organ	nics (%): Carbonates	(%): Shell Hash (%):
88.33	86.53	0.03	0.07	#230 - 2.15		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.00	0.00	0.00	0.00
7	-1.50	2.83	0.20	0.23	0.20	0.23
10	-1.00	2.00	0.40	0.45	0.60	0.68
14	-0.50	1.41	1.83	2.07	2.43	2.75
18	0.00	1.00	5.48	6.20	7.91	8.95
25	0.50	0.71	14.36	16.26	22.27	25.21
35	1.00	0.50	25.34	28.69	47.61	53.90
45	1.50	0.35	23.42	26.51	71.03	80.41
60	2.00	0.25	10.40	11.77	81.43	92.18
80	2.50	0.18	2.35	2.66	83.78	94.84
120	3.00	0.13	1.22	1.38	85.00	96.22
170	3.50	0.09	1.01	1.14	86.01	97.36
200	3.75	0.07	0.21	0.24	86.22	97.60
230	4.00	0.06	0.22	0.25	86.44	97.85

J 12/8/	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GP	2.56	1.65	1.40	(0.93	0.49)	0.22	-0.32
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis
MA_CZM	Statistics	0.93	0.52		0.	76		0.31	4.5

CZM_2017_VC.GPJ 12/8/17 Ā

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC07 #3

Analysis Date: 11-06-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 259,788 951,977 -88.7 NAVD88

Wet - 2.5Y-3/1 Dry - 2.5Y-5/2 Washed - 2.5Y-6/1 USCS: Munsell: Comments: SW

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 2.08 Organ	nics (%): Carbonates	(%): Shell Hash (%)
93.83	92.14	0.06	0.10	#230 - 1.98		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weigh Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.06	0.06	0.06	0.06
7	-1.50	2.83	1.35	1.44	1.41	1.50
10	-1.00	2.00	2.98	3.18	4.39	4.68
14	-0.50	1.41	5.85	6.23	10.24	10.91
18	0.00	1.00	8.25	8.79	18.49	19.70
25	0.50	0.71	12.37	13.18	30.86	32.88
35	1.00	0.50	18.29	19.49	49.15	52.37
45	1.50	0.35	21.21	22.60	70.36	74.97
60	2.00	0.25	14.56	15.52	84.92	90.49
80	2.50	0.18	5.07	5.40	89.99	95.89
120	3.00	0.13	1.50	1.60	91.49	97.49
170	3.50	0.09	0.35	0.37	91.84	97.86
200	3.75	0.07	0.06	0.06	91.90	97.92
230	4.00	0.06	0.09	0.10	91.99	98.02

MA_CZM_2017_VC.GPJ 12/8/17

Phi 5	Phi 16	Phi 25	P	hi 50	Phi 7	7 5	Phi 84	Phi 95	
2.42	1.79	1.50		0.94	0.20)	-0.21	-0.97	
Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis	
Statistics	0.8	0.57		0.9	97		-0.39	2.99	

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Northing (m):

Sample Name: MA-CZM-2017-VC07 #4

Easting (m):

Analysis Date: 11-06-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Elevation (ft):

259,788 MA State Plane Mainland 951,977 -91.8 NAVD88 USCS: Munsell: Wet - 2.5Y-4/1 Comments: Dry - 2.5Y-6/2 SP Washed - 2.5Y-7/1 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 1.74 #230 - 1.57 91.52 90.20 0.02 0.11 Sieve Size C. % Weight Sieve Size % Weight Cum. Grams Grams Sieve Number Retained Retained (Millimeters) Retained Retained (Phi) 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 7/16" 0.00 0.00 0.00 -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.00 0.00 0.00 0.00 3.5 0.00 4 -2.254.76 0.00 0.00 0.00 5 0.00 0.00 0.00 -2.004.00 0.00 7 -1.502.83 0.17 0.19 0.17 0.19 10 -1.00 2.00 0.33 0.36 0.50 0.55 14 -0.501.41 1.04 1.14 1.54 1.69 18 0.00 1.00 2.77 3.03 4.31 4.72 25 0.50 0.71 6.31 6.89 10.62 11.61 35 1.00 0.50 10.47 11.44 21.09 23.05 45 1.50 22.51 24.60 43.60 47.65 0.35 60 2.00 0.25 32.10 35.07 75.70 82.72 80 2.50 0.18 10.87 11.88 86.57 94.60

Coordinate System:

-									
J 12/8/1	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GPJ	2.59	2.05	1.89	1	1.53	1.04	1	0.69	0.02
A_2017_	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	1.41	0.38		0.	75		-0.58	4.39

1.95

1.17

0.23

0.16

2.13

1.28

0.25

0.17

88.52

89.69

89.92

90.08

96.73

98.01

98.26

98.43

0.13

0.09

0.07

0.06

120

170

200

230

3.00

3.50

3.75

4.00

Granularmetric Report

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC07 #5

Analysis Date: 11-06-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

259,788 951,977 MA State Plane Mainland -94.0 NAVD88

USCS: Munsell: Wet - 5Y-4/1 Comments: Dry - 5Y-7/1 SM Washed - 5Y-7/1 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 34.02 #230 - 29.45 86.41 61.95 88.0 0.13 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 0.00 7/16" 0.00 0.00 -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.00 0.00 0.00 0.00 3.5 4 -2.254.76 0.00 0.00 0.00 0.00 5 0.00 0.00 -2.004.00 0.00 0.00 7 -1.502.83 0.14 0.16 0.14 0.16 10 -1.00 2.00 0.34 0.39 0.48 0.55 14 -0.501.41 0.58 0.67 1.06 1.22 18 0.00 1.00 1.09 1.26 2.15 2.48 25 0.50 0.71 1.94 2.25 4.09 4.73 35 1.00 0.50 3.15 3.65 7.24 8.38 45 3.96 4.58 11.20 12.96 1.50 0.35 60 2.00 0.25 5.65 6.54 16.85 19.50 80 2.50 0.18 11.48 13.29 28.33 32.79 120 3.00 0.13 11.82 13.68 40.15 46.47 170 3.50 0.09 11.31 13.09 59.56 51.46 200 3.75 0.07 5.55 6.42 57.01 65.98 230 4.00 0.06 3.95 4.57 60.96 70.55

AA_CZM_2017_VC.GPJ 12/8/17

Phi 5

Phi 16

Phi 25

			(3.13	2.21	1	1.73	0.54	
Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis	
Statistics	2.41	0.19		1.	09		-0.98	3.79	

Phi 50

Phi 75

Phi 84

Phi 95

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC07 #6

Analysis Date: 11-06-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 259,788 951,977 -96.3 NAVD88

USCS: Munsell: Wet - 2.5Y-5/1 Comments: Dry - 2.5Y-6/2 Washed - 2.5Y-7/2 SW

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.00 Organ	nics (%): Carbonates	(%): Shell Hash (%):
91.72	90.87	0.01	0.01	#230 - 0.93		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	1.60	1.74	1.60	1.74
4	-2.25	4.76	0.91	0.99	2.51	2.73
5	-2.00	4.00	1.52	1.66	4.03	4.39
7	-1.50	2.83	4.31	4.70	8.34	9.09
10	-1.00	2.00	5.92	6.45	14.26	15.54
14	-0.50	1.41	8.26	9.01	22.52	24.55
18	0.00	1.00	10.91	11.89	33.43	36.44
25	0.50	0.71	14.80	16.14	48.23	52.58
35	1.00	0.50	18.12	19.76	66.35	72.34
45	1.50	0.35	14.13	15.41	80.48	87.75
60	2.00	0.25	5.93	6.47	86.41	94.22
80	2.50	0.18	2.18	2.38	88.59	96.60
120	3.00	0.13	1.40	1.53	89.99	98.13
170	3.50	0.09	0.69	0.75	90.68	98.88
200	3.75	0.07	0.11	0.12	90.79	99.00
230	4.00	0.06	0.06	0.07	90.85	99.07

MA_CZM_2017_VC.GPJ 12/8/17

Phi 5

Phi 16

Phi 25

l	2.16	1.38	1.09	().42	-0.48	8	-0.97	-1.94	
	Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis	
	Statistics	0.26	0.84	0.84		19		-0.3	3	

Phi 50

Phi 75

Phi 84

Phi 95

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Munsell: Wet - 10YR-4/3

Dry - 10YR-6/4

Sample Name: MA-CZM-2017-VC08 #1

USCS:

Analysis Date: 11-06-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

Comments:

261,677 MA State Plane Mainland 953,809 -108.4 NAVD88

SP Washed - 10YR-7/4 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 1.34 #230 - 1.24 92.14 91.06 0.01 0.07 C. % Weight Sieve Size Sieve Size % Weight Cum. Grams Grams Sieve Number Retained Retained (Millimeters) Retained Retained (Phi) 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 7/16" 0.00 0.00 0.00 -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.00 0.00 0.00 0.00 3.5 0.00 4 -2.254.76 0.00 0.00 0.00 5 0.00 0.00 0.00 -2.004.00 0.00 7 0.25 0.27 -1.502.83 0.25 0.27 10 -1.00 2.00 1.14 1.24 1.39 1.51 14 -0.501.41 3.82 4.15 5.21 5.66 18 0.00 1.00 7.89 8.56 13.10 14.22 25 0.50 0.71 12.17 13.21 25.27 27.43 35 1.00 0.50 20.23 21.96 45.50 49.39 45 1.50 27.02 29.32 72.52 78.71 0.35 60 2.00 0.25 13.81 14.99 86.33 93.70

_									
J 12/8/1	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GPJ	2.27	1.68	1.44	,	1.01	0.41	1	0.07	-0.58
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis
MA_CZM	Statistics	0.9	0.54		0.8	82		-0.2	3.55

2.26

1.60

0.59

0.12

0.09

2.45

1.74

0.64

0.13

0.10

88.59

90.19

90.78

90.90

90.99

96.15

97.89

98.53

98.66

98.76

80

120

170

200

230

2.50

3.00

3.50

3.75

4.00

0.18

0.13

0.09

0.07

0.06

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC08 #2

Analysis Date: 11-09-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 261,677 953,809 -112.6 NAVD88

Munsell: Wet - 10YR-4/3 Dry - 10YR-6/3 Washed - 10YR-6/3 USCS: Comments: SW

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 0.85	anics (%): Carbonates	(%): Shell Hash (%)
91.60	90.88	0.01	0.02	#230 - 0.82		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weigh Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	2.35	2.57	2.35	2.57
3.5	-2.50	5.66	0.00	0.00	2.35	2.57
4	-2.25	4.76	0.36	0.39	2.71	2.96
5	-2.00	4.00	0.45	0.49	3.16	3.45
7	-1.50	2.83	2.19	2.39	5.35	5.84
10	-1.00	2.00	4.31	4.71	9.66	10.55
14	-0.50	1.41	8.25	9.01	17.91	19.56
18	0.00	1.00	13.94	15.22	31.85	34.78
25	0.50	0.71	18.97	20.71	50.82	55.49
35	1.00	0.50	18.99	20.73	69.81	76.22
45	1.50	0.35	11.70	12.77	81.51	88.99
60	2.00	0.25	6.89	7.52	88.40	96.51
80	2.50	0.18	1.96	2.14	90.36	98.65
120	3.00	0.13	0.30	0.33	90.66	98.98
170	3.50	0.09	0.15	0.16	90.81	99.14
200	3.75	0.07	0.01	0.01	90.82	99.15
230	4.00	0.06	0.03	0.03	90.85	99.18

12/8/17	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GPJ	1.90	1.30	0.97	(0.37	-0.3	2	-0.70	-1.68
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	0.26	0.84		1.	09		-0.8	4.41

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC08 #3

Analysis Date: 11-09-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

261,677 MA State Plane Mainland -116.8 NAVD88 953,809

USCS:	Munsell: Wet - 10YR-5/3	Comments:
	Dry - 2.5Y-6/3	
SW	Washed - 2.5Y-7/3	

J 500	VVasiled	1-2.51-7/5				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.62 Organ	nics (%): Carbonates	(%): Shell Hash (%):
92.15	90.84	0.03	0.02	#230 - 1.49		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.44	0.48	0.44	0.48
5	-2.00	4.00	0.18	0.20	0.62	0.68
7	-1.50	2.83	0.27	0.29	0.89	0.97
10	-1.00	2.00	1.02	1.11	1.91	2.08
14	-0.50	1.41	3.30	3.58	5.21	5.66
18	0.00	1.00	5.52	5.99	10.73	11.65
25	0.50	0.71	7.55	8.19	18.28	19.84
35	1.00	0.50	15.01	16.29	33.29	36.13
45	1.50	0.35	26.47	28.72	59.76	64.85
60	2.00	0.25	18.80	20.40	78.56	85.25
80	2.50	0.18	7.67	8.32	86.23	93.57
120	3.00	0.13	3.58	3.88	89.81	97.45
170	3.50	0.09	0.74	0.80	90.55	98.25
200	3.75	0.07	0.12	0.13	90.67	98.38
230	4.00	0.06	0.12	0.13	90.79	98.51
230	4.00	0.06	0.12	0.13	90.79	98.51

J 12/8/1	Phi 5	Phi 16	Phi 25	Phi 50	Phi 7	' 5	Phi 84	Phi 95	
VC.GPJ	2.68	1.97	1.75	1.24	0.66	6	0.27	-0.59	
A_2017	Moment	Mean Phi	Mean m	m So	rting	S	kewness	Kurtosis	
MA_CZM	Statistics	1.13	0.46	0	.92		-0.64	4.12	_

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC09 #1

Analysis Date: 11-09-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

259,585 MA State Plane Mainland 955,110 -94.6 NAVD88

Wet - 2.5Y-4/2 Comments: Dry - 2.5Y-6/2 Washed - 2.5Y-7/1 USCS: Munsell: SW

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 0.40 Orga	nics (%): Carbonates	(%): Shell Hash (%):
99.78	99.46	0.01	0.00	#230 - 0.33		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	1.07	1.07	1.07	1.07
3.5	-2.50	5.66	4.08	4.09	5.15	5.16
4	-2.25	4.76	1.87	1.87	7.02	7.03
5	-2.00	4.00	1.98	1.98	9.00	9.01
7	-1.50	2.83	6.85	6.87	15.85	15.88
10	-1.00	2.00	6.08	6.09	21.93	21.97
14	-0.50	1.41	7.58	7.60	29.51	29.57
18	0.00	1.00	8.95	8.97	38.46	38.54
25	0.50	0.71	11.48	11.51	49.94	50.05
35	1.00	0.50	13.13	13.16	63.07	63.21
45	1.50	0.35	12.26	12.29	75.33	75.50
60	2.00	0.25	11.01	11.03	86.34	86.53
80	2.50	0.18	7.46	7.48	93.80	94.01
120	3.00	0.13	4.45	4.46	98.25	98.47
170	3.50	0.09	0.99	0.99	99.24	99.46
200	3.75	0.07	0.14	0.14	99.38	99.60
230	4.00	0.06	0.07	0.07	99.45	99.67

J 12/8/1	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GPJ	2.61	1.89	1.48	(0.50	-0.8	0	-1.49	-2.52
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	0.3	0.81		1.	53		-0.33	2.33

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC09 #2

Analysis Date: 11-09-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland -97.2 NAVD88 259,585 955,110

USCS:		Munsell: \		5Y-2.5/1 - 5Y-5/1	Comment	s:
SW		Wa	,	- 5Y-6/1		
Dry Weight (g):	Wash	Weight (a)	Р	an Retained (a).	Sieve I

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 0.83 Organ	nics (%): Carbonates	(%): Shell Hash (%):
90.58	90.00	0.00	0.07	#230 - 0.74		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	1.66	1.83	1.66	1.83
5/16"	-3.00	8.00	1.58	1.74	3.24	3.57
3.5	-2.50	5.66	0.39	0.43	3.63	4.00
4	-2.25	4.76	0.91	1.00	4.54	5.00
5	-2.00	4.00	0.18	0.20	4.72	5.20
7	-1.50	2.83	0.46	0.51	5.18	5.71
10	-1.00	2.00	1.58	1.74	6.76	7.45
14	-0.50	1.41	2.92	3.22	9.68	10.67
18	0.00	1.00	4.90	5.41	14.58	16.08
25	0.50	0.71	11.28	12.45	25.86	28.53
35	1.00	0.50	20.16	22.26	46.02	50.79
45	1.50	0.35	16.19	17.87	62.21	68.66
60	2.00	0.25	8.20	9.05	70.41	77.71
80	2.50	0.18	10.32	11.39	80.73	89.10
120	3.00	0.13	7.70	8.50	88.43	97.60
170	3.50	0.09	1.29	1.42	89.72	99.02
200	3.75	0.07	0.14	0.15	89.86	99.17
230	4.00	0.06	0.08	0.09	89.94	99.26

J 12/8/	Phi 5 Phi 16		Phi 25	Ph	ni 50	Phi 7	5	Phi 84		Phi 95
VC.GP	2.85	2.28	1.85	0.98		0.36		-0.01		-2.25
M_2017	Moment	oment Mean Phi Mean n		m Sorting			Skewness			Kurtosis
MA_CZM	Statistics	0.9	0.54		1.3	38		-1.18		5.19

Granularmetric Report

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Northing (m):

Sample Name: MA-CZM-2017-VC09 #3

Easting (m):

Analysis Date: 11-13-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Coordinate System:

Elevation (ft):

259,585 MA State Plane Mainland 955,110 -99.5 NAVD88

USCS: Munsell: Wet - 5Y-5/1 Comments: Dry - 5Y-6/2 SW Washed - 5Y-7/1 Dry Weight (g): Fines (%): #200 - 3.85 Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): #230 - 3.03 91.14 88.56 0.18 0.02 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained (Millimeters) Retained Retained (Phi) 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 7/16" 0.00 0.00 0.00 -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.00 0.00 0.00 0.00 3.5 4 -2.254.76 0.17 0.19 0.17 0.19 5 0.98 1.08 -2.004.00 1.15 1.27 7 2.58 -1.502.83 2.35 3.50 3.85 10 -1.00 2.00 3.03 3.32 6.53 7.17 14 -0.501.41 5.42 5.95 11.95 13.12 18 0.00 1.00 6.82 7.48 18.77 20.60 25 0.50 0.71 5.32 5.84 24.09 26.44 35 1.00 0.50 5.80 6.36 29.89 32.80 45 7.08 7.77 36.97 40.57 1.50 0.35 60 2.00 0.25 7.26 7.97 44.23 48.54 80 2.50 0.18 21.76 23.88 65.99 72.42 120 3.00 0.13 15.07 16.54 81.06 88.96 170 3.50 0.09 5.32 5.84 94.80 86.38 0.07 200 3.75 1.23 1.35 87.61 96.15 230 4.00 0.06 0.75 0.82 88.36 96.97

MA_CZM_2017_VC.GPJ_12/8/17

Phi 5	Phi 16	Phi 25	F	Phi 50	Phi 7	' 5	Phi 84	Phi 95
3.54	2.85	2.58		2.03	0.38	3	-0.31	-1.33
Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
Statistics	1.43	0.37		1.	45		-0.68	2.43

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC09 #4

Analysis Date: 11-06-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

259,585 MA State Plane Mainland 955,110 -102.9 NAVD88

Wet - 5Y-4/1 Dry - 5Y-7/1 Washed - 5Y-7/1 USCS: Munsell: Comments: SP-SM

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): Orga	nics (%): Carbonate	s (%): Shell Hash (%):
90.79	85.55	1.46	0.04	Fines (%): #200 - 10.96 #230 - 7.41	cc (,0).	5 (70).
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.00	0.00	0.00	0.00
7	-1.50	2.83	0.12	0.13	0.12	0.13
10	-1.00	2.00	0.17	0.19	0.29	0.32
14	-0.50	1.41	0.45	0.50	0.74	0.82
18	0.00	1.00	0.88	0.97	1.62	1.79
25	0.50	0.71	1.38	1.52	3.00	3.31
35	1.00	0.50	1.65	1.82	4.65	5.13
45	1.50	0.35	2.88	3.17	7.53	8.30
60	2.00	0.25	4.66	5.13	12.19	13.43
80	2.50	0.18	28.59	31.49	40.78	44.92
120	3.00	0.13	26.62	29.32	67.40	74.24
170	3.50	0.09	10.31	11.36	77.71	85.60
200	3.75	0.07	3.12	3.44	80.83	89.04
230	4.00	0.06	3.22	3.55	84.05	92.59

12/8/17	Phi 5	Phi 16	Phi 16 Phi 25		Phi 50		Phi 75		Phi 95
VC.GPJ		3.43	3.03	2	2.59	2.18	3	2.04	0.96
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	2.47	0.18		0	.8		-1.4	6.94

Granularmetric Report

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC10 #1

Analysis Date: 11-13-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Coordinate System: Elevation (ft):

239,899 793,491 MA State Plane Mainland -74.5 NAVD88

USCS: Munsell: Wet - 5Y-5/1 Comments: Dry - 5Y-7/1 SP Washed - 5Y-7/1 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 2.43 #230 - 2.07 88.29 86.52 0.05 0.00 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained (Millimeters) Retained Retained (Phi) 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 7/16" 0.00 0.00 0.00 -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.00 0.00 0.00 0.00 3.5 0.00 4 -2.254.76 0.00 0.00 0.00 5 0.00 0.00 0.00 0.00 -2.004.00 7 0.00 0.00 0.00 -1.502.83 0.00 10 -1.00 2.00 0.02 0.02 0.02 0.02 0.07 14 -0.501.41 0.04 0.05 0.06 18 0.00 1.00 0.03 0.03 0.09 0.10 25 0.50 0.71 0.23 0.26 0.32 0.36 35 1.00 0.50 1.18 1.34 1.50 1.70 6.85 45 1.50 0.35 4.55 5.15 6.05 60 2.00 0.25 10.74 12.16 16.79 19.01 80 2.50 0.18 36.25 41.06 53.04 60.07 120 3.00 0.13 27.59 31.25 80.63 91.32 170 3.50 0.09 5.11 5.79 85.74 97.11 0.07 0.46 200 3.75 0.41 86.15 97.57 230 4.00 0.06 0.32 0.36 86.47 97.93

MA_CZM_2017_VC.GPJ 12/8/17

2	Phi 5	Phi 16	Phi 25	2.38		2.07		Phi 84	Phi 95	
7. P. D. D. D. D. D. D. D. D. D. D. D. D. D.	3.32	2.88	2.74					1.88	1.32	
,	Moment	Mean Phi	Mean m	m	Sorting		Skewness		Kurtosis	
7 2 1	Statistics	2.34	0.20	0.20		0.53		-0.74	5.02	

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC10 #2

Analysis Date: 11-13-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft): 239,899 MA State Plane Mainland 793,491 -77.9 NAVD88

USCS: Munsell: Wet - 5Y-5/1 Comments: Dry - 5Y-7/1 SP Washed - 5Y-7/1 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 1.16 #230 - 1.06 91.13 90.21 0.00 0.04 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained (Millimeters) Retained Retained (Phi) 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 7/16" 0.00 0.00 0.00 -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.00 0.00 0.00 0.00 3.5 4 -2.254.76 0.02 0.02 0.02 0.02 5 0.03 0.03 -2.004.00 0.05 0.05 7 0.28 0.31 -1.502.83 0.33 0.36 10 -1.00 2.00 0.20 0.22 0.53 0.58 14 -0.501.41 0.45 0.49 0.98 1.07 18 0.00 1.00 0.89 0.98 1.87 2.05 25 0.50 0.71 2.66 2.92 4.53 4.97 35 1.00 0.50 7.33 8.04 11.86 13.01 45 14.51 15.92 26.37 28.93 1.50 0.35 60 2.00 0.25 23.76 26.07 50.13 55.00 80 2.50 0.18 23.74 26.05 73.87 81.05 120 3.00 0.13 14.04 15.41 87.91 96.46 170 3.50 0.09 2.06 2.26 89.97 98.72 200 3.75 0.07 0.11 0.12 90.08 98.84 230 4.00 0.06 0.09 0.10 90.17 98.94

_CZM_2017_VC.GPJ 12/8/17

Phi 5

Phi 16

Phi 25

2.95	2.60	2.38	1.90	1.90 1.38		8 1.09		0.50
Moment	Mean Phi	Mean m	m	Sorting		Skewness		Kurtosis
Statistics	1.82	0.28		0.78		-0.91		4.96

Phi 50

Phi 75

Phi 84

Phi 95

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC11 #1

Analysis Date: 11-13-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland -66.9 NAVD88 241,178 796,123

USCS:	Munsell:	Wet - 2.5Y-3/2	Comments:
		Dry - 2.5Y-6/3	
SW	Wa	ashed - 2 5Y-7/3	

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 3.11 Orga	nics (%): Carbonates	(%): Shell Hash (%):
87.61	85.25	0.07	0.03	#230 - 2.80		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	2.44	2.79	2.44	2.79
4	-2.25	4.76	1.36	1.55	3.80	4.34
5	-2.00	4.00	0.57	0.65	4.37	4.99
7	-1.50	2.83	1.18	1.35	5.55	6.34
10	-1.00	2.00	0.92	1.05	6.47	7.39
14	-0.50	1.41	1.09	1.24	7.56	8.63
18	0.00	1.00	0.87	0.99	8.43	9.62
25	0.50	0.71	0.96	1.10	9.39	10.72
35	1.00	0.50	4.34	4.95	13.73	15.67
45	1.50	0.35	14.52	16.57	28.25	32.24
60	2.00	0.25	14.33	16.36	42.58	48.60
80	2.50	0.18	26.85	30.65	69.43	79.25
120	3.00	0.13	12.78	14.59	82.21	93.84
170	3.50	0.09	2.38	2.72	84.59	96.56
200	3.75	0.07	0.29	0.33	84.88	96.89
230	4.00	0.06	0.27	0.31	85.15	97.20

- 1									
J 12/8/1	Phi 5	Phi 16	Phi 25	Phi 50)	Phi 7	'5	Phi 84	Phi 95
VC.GP.	3.21	2.66	2.43	2.02		1.28	3	1.01	-2.00
M_2017_	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	1.61	0.33		1.3	33		-1.85	6.27

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC11 #2

Easting (m):

Analysis Date: 11-14-17; Analyzed By: DA

APTIM APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Northing (m): Coordinate System:

Elevation (ft):

241,178 796,123 MA State Plane Mainland -67.4 NAVD88

USCS: Munsell: Wet - 2.5Y-5/2 Comments: Dry - 2.5Y-7/2 SW Washed - 2.5Y-7/2 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 0.65 #230 - 0.63 91.75 91.20 0.01 0.03 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained (Millimeters) Retained Retained (Phi) 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 6.14 7/16" 5.63 -3.5011.31 5.63 6.14 5/16" -3.008.00 3.06 3.34 8.69 9.48 -2.505.66 9.90 10.79 18.59 20.27 3.5 4 -2.254.76 5.10 5.56 23.69 25.83 5 4.31 4.70 30.53 -2.004.00 28.00 7 3.76 34.63 -1.502.83 4.10 31.76 10 -1.00 2.00 1.97 2.15 33.73 36.78 1.25 14 -0.501.41 1.15 34.88 38.03 18 0.00 1.00 0.66 0.72 35.54 38.75 25 0.50 0.71 0.73 0.80 36.27 39.55 35 1.00 0.50 5.25 5.72 41.52 45.27 45 1.50 0.35 22.55 24.58 64.07 69.85 60 2.00 0.25 20.04 21.84 84.11 91.69 80 2.50 0.18 5.42 5.91 89.53 97.60 120 3.00 0.13 1.34 1.46 90.87 99.06 170 3.50 0.09 0.25 0.27 99.33 91.12 0.07 0.02 200 3.75 0.02 91.14 99.35 230 4.00 0.06 0.02 0.02 91.16 99.37

MA_CZM_2017_VC.GPJ 12/8/17

12/	Phi 5	Phi 16	Phi 25	Ph	ni 50	Phi 7	' 5	Phi 84	Phi 95
VC.GP.	2.28	1.82	1.62	1	.10	-2.2	9	-2.70	-3.64
4_2017	Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis
MA_CZI	Statistics	-0.06	1.04		2.0	07		-0.52	1.62

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC11 #3

Analysis Date: 11-14-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland -70.7 NAVD88 241,178 796,123

USCS:	Munsell:	Wet - 2.5Y-6/2	Comments:
		Dry - 2.5Y-7/3	
SP	Wa	shed - 2.5Y-7/2	

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.17 Organ	nics (%): Carbonates	(%): Shell Hash (%):
89.90	88.92	0.00	0.02	#230 - 1.11		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.25	0.28	0.25	0.28
7	-1.50	2.83	0.66	0.73	0.91	1.01
10	-1.00	2.00	1.14	1.27	2.05	2.28
14	-0.50	1.41	1.04	1.16	3.09	3.44
18	0.00	1.00	0.89	0.99	3.98	4.43
25	0.50	0.71	1.15	1.28	5.13	5.71
35	1.00	0.50	5.38	5.98	10.51	11.69
45	1.50	0.35	30.26	33.66	40.77	45.35
60	2.00	0.25	34.54	38.42	75.31	83.77
80	2.50	0.18	11.48	12.77	86.79	96.54
120	3.00	0.13	1.71	1.90	88.50	98.44
170	3.50	0.09	0.30	0.33	88.80	98.77
200	3.75	0.07	0.05	0.06	88.85	98.83
230	4.00	0.06	0.05	0.06	88.90	98.89

J 12/8/1	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GPJ	2.44	2.01	1.89		1.56	1.20)	1.06	0.22
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	1.47	0.36		0.	72		-1.91	9.42

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC11 #4

Analysis Date: 11-14-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

241,178 796,123 MA State Plane Mainland -74.5 NAVD88

USCS: Munsell: Wet - 2.5Y-5/2 Comments: Dry - 2.5Y-7/2 SP Washed - 2.5Y-7/2 Dry Weight (g): Pan Retained (g): Wash Weight (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 0.95 #230 - 0.94 84.73 83.93 0.00 0.01 Sieve Size C. % Weight % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 0.00 0.00 0.00 0.00 16.00 0.00 7/16" 0.00 0.00 -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.45 0.53 0.45 0.53 3.5 4 -2.254.76 0.09 0.11 0.54 0.64 5 0.00 0.00 -2.004.00 0.54 0.64 7 -1.502.83 0.15 0.18 0.69 0.82 10 -1.00 2.00 0.38 0.45 1.07 1.27 14 -0.501.41 0.28 0.33 1.35 1.60 18 0.00 1.00 0.29 0.34 1.64 1.94 25 0.50 0.71 0.78 0.92 2.42 2.86 35 1.00 0.50 6.93 8.18 9.35 11.04 45 33.34 39.35 1.50 0.35 42.69 50.39 60 2.00 0.25 30.80 36.35 73.49 86.74 80 2.50 0.18 9.15 10.80 82.64 97.54 1.29 120 3.00 0.13 1.09 83.73 98.83 170 3.50 0.09 0.15 0.18 99.01 83.88 200 3.75 0.07 0.03 0.04 83.91 99.05 230 4.00 0.06 0.01 0.01 83.92 99.06 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95

AA_CZM_2017_VC.GPJ 12/8/17

ا د اد	2.38	1.96	1.84		1.50	1.18	3	1.06	0.63	
/107 M	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis	
AN -	Statistics	1.46	0.36		0.	62		-2.5	17.19	

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC11 #5

Analysis Date: 11-14-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland -75.8 NAVD88 241,178 796,123

USCS: Munsell: Wet - 2.5Y-5/2 Comments: Dry - 2.5Y-7/2 Washed - 2.5Y-7/2 SW

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 0.57 Orga	nics (%): Carbonates	(%): Shell Hash (%)
95.78	95.25	0.00	0.02	#230 - 0.57		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	1.24	1.29	1.24	1.29
3.5	-2.50	5.66	3.18	3.32	4.42	4.61
4	-2.25	4.76	1.80	1.88	6.22	6.49
5	-2.00	4.00	1.20	1.25	7.42	7.74
7	-1.50	2.83	3.32	3.47	10.74	11.21
10	-1.00	2.00	2.37	2.47	13.11	13.68
14	-0.50	1.41	3.40	3.55	16.51	17.23
18	0.00	1.00	3.53	3.69	20.04	20.92
25	0.50	0.71	3.32	3.47	23.36	24.39
35	1.00	0.50	14.42	15.06	37.78	39.45
45	1.50	0.35	38.32	40.01	76.10	79.46
60	2.00	0.25	15.30	15.97	91.40	95.43
80	2.50	0.18	3.37	3.52	94.77	98.95
120	3.00	0.13	0.40	0.42	95.17	99.37
170	3.50	0.09	0.06	0.06	95.23	99.43
200	3.75	0.07	0.00	0.00	95.23	99.43
230	4.00	0.06	0.00	0.00	95.23	99.43

Σ	
ωõ	
Ñ	
_	
7	
ūΞ	
Ö	
Ö	
>	
1	
017	
2017	
M 2017	
ZM 2017	
CZM 2017	
A CZM 2017	

4	Phi 5	Phi 16	Phi 25	Phi 50)	Phi 7	' 5	Phi 84	Phi 95	
5.5	1.99	1.64	1.44	1.13		0.52	2	-0.67	-2.45	
102 1	Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis	
2	Statistics	0.67	0.63		1.	31		-1.46	4.23	

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC12 #1

Analysis Date: 11-14-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 237,839 798,152

-58.6 NAVD88 USCS: Munsell: Wet - 2.5Y-3/2 Comments: Dry - 2.5Y-6/2 SP Washed - 2.5Y-6/2 Dry Weight (g): Pan Retained (g): Wash Weight (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 1.49 #230 - 1.44 93.93 92.65 0.02 0.04 C. % Weight % Weight Cum. Grams Sieve Size Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 0.00 7/16" -3.5011.31 0.00 0.00 0.00 5/16" -3.008.00 0.16 0.17 0.16 0.17 5.66 0.14 0.29 0.31 3.5 -2.500.13 4 -2.254.76 0.14 0.15 0.43 0.46 5 -2.004.00 0.03 0.03 0.46 0.49 0.40 7 -1.502.83 0.38 0.84 0.89 10 -1.00 2.00 0.36 0.38 1.20 1.27 14 -0.501.41 0.45 0.48 1.65 1.75 18 0.00 1.00 0.71 0.76 2.36 2.51 25 0.50 0.71 2.46 2.62 4.82 5.13 35 1.00 0.50 11.87 12.64 16.69 17.77 45 29.84 31.77 46.53 49.54 1.50 0.35 60 2.00 0.25 26.84 28.57 73.37 78.11 80 2.50 0.18 12.76 13.58 86.13 91.69 120 3.00 0.13 5.23 5.57 91.36 97.26 170 3.50 0.09 1.11 1.18 98.44 92.47 200 3.75 0.07 0.07 0.07 92.54 98.51 230 4.00 0.06 0.05 0.05 92.59 98.56 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 2.80 2.22 1.95 1.51 1.11 0.93 0.48 Moment Mean Phi Mean mm Sorting Skewness **Kurtosis**

VC.GPJ 12/8/17 CZM_2017_

Statistics

1.49

0.36

0.76

-1.29

9.22

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC12 #2

Analysis Date: 11-14-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 237,839 798,152 -59.2 NAVD88

USCS: Munsell: Wet - 5Y-4/1 Comments: Dry - 5Y-6/1 SP Washed - 5Y-7/1 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 1.80 #230 - 1.73 88.44 86.94 0.02 0.02 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained (Millimeters) Retained Retained (Phi) 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 7/16" 0.00 0.00 0.00 -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.00 0.00 0.00 0.00 3.5 4 -2.254.76 0.26 0.29 0.26 0.29 5 0.04 0.05 -2.004.00 0.30 0.34 7 0.31 -1.502.83 0.27 0.57 0.65 10 -1.00 2.00 0.16 0.18 0.73 0.83 0.27 14 -0.501.41 0.24 0.97 1.10 18 0.00 1.00 0.63 0.71 1.60 1.81 25 0.50 0.71 2.04 2.31 3.64 4.12 35 1.00 0.50 7.85 8.88 11.49 13.00 45 1.50 22.54 25.49 34.03 38.49 0.35 60 2.00 0.25 25.12 28.40 59.15 66.89 80 2.50 0.18 15.89 17.97 75.04 84.86 120 3.00 0.13 10.13 11.45 85.17 96.31 170 3.50 0.09 1.58 1.79 98.10 86.75 200 0.07 0.09 3.75 0.10 86.84 98.20 230 4.00 0.06 0.06 0.07 86.90 98.27

- 1									
12/8/1	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	75	Phi 84	Phi 95
VC.GP.	2.94	2.48	2.23		1.70	1.24	1	1.06	0.55
4_2017_	Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis
MA_CZ	Statistics	1.68	0.31		0.	76		-0.9	6.6

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC12 #3

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Analysis Date: 11-14-17; Analyzed By: DA Easting (m): Northing (m): Coordinate System: Elevation (ft): MA State Plane Mainland 237,839 798,152 -63.2 NAVD88 USCS: Munsell: Wet - 10Y-4/1 Comments: Dry - 5Y-6/1 SP Washed - 5Y-6/1 Dry Weight (g): Wash Weight (g): Pan Retained (q): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 4.27 #230 - 3.79 88.32 85.10 0.09 0.03 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7/16" -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 5.66 0.00 0.00 0.00 0.00 3.5 -2.504 -2.254.76 0.00 0.00 0.00 0.00 5 0.00 0.00 -2.004.00 0.00 0.00 7 -1.502.83 0.01 0.01 0.01 0.01 10 -1.00 2.00 0.02 0.02 0.03 0.03 14 -0.501.41 0.02 0.02 0.05 0.05 18 0.00 1.00 0.03 0.03 80.0 80.0 25 0.50 0.71 0.09 0.10 0.17 0.18 35 1.00 0.50 0.37 0.42 0.54 0.60 45 2.05 2.32 2.59 2.92 1.50 0.35 60 2.00 0.25 8.74 9.90 11.33 12.82 80 2.50 0.18 26.01 29.45 37.34 42.27 120 3.00 0.13 38.60 43.70 75.94 85.97 170 3.50 0.09 7.99 9.05 95.02 83.93 200 3.75 0.07 0.63 0.71 84.56 95.73 230 4.00 0.06 0.42 0.48 84.98 96.21 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 3.50 2.98 2.87 2.59 2.21 2.05 1.61 Moment Mean Phi Mean mm Sorting Skewness **Kurtosis**

1A_CZM_2017_VC.GPJ 12/8/17

Statistics

2.5

0.18

0.49

-0.82

5.95

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC13 #1 Analysis Date: 11-14-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 234,032 802,508 -58.4 NAVD88

234,03		002,000	IVIA State Flatie Ivialitianu -30.4 IVAV D00				
USCS:	Munsell:	Wet - 5Y-4/1 Commen Dry - 5Y-6/1	uts:				
SP		shed - 5Y-6/1	1				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	#200 - 4.40 °	nics (%): Carbonates	(%): Shell Hash (%):	
85.13	82.17	0.13		0.04 #230 - 3.65			
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained	
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00	
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00	
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00	
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00	
3.5	-2.50	5.66	0.29	0.34	0.29	0.34	
4	-2.25	4.76	0.03	0.04	0.32	0.38	
5	-2.00	4.00	0.04	0.05	0.36	0.43	
7	-1.50	2.83	0.14	0.16	0.50	0.59	
10	-1.00	2.00	0.16	0.19	0.66	0.78	
14	-0.50	1.41	0.24	0.28	0.90	1.06	
18	0.00	1.00	0.30	0.35	1.20	1.41	
25	0.50	0.71	0.55	0.65	1.75	2.06	
35	1.00	0.50	2.56	3.01	4.31	5.07	
45	1.50	0.35	10.14	11.91	14.45	16.98	
60	2.00	0.25	23.59	27.71	38.04	44.69	
80	2.50	0.18	22.89	26.89	60.93	71.58	
120	3.00	0.13	13.49	15.85	74.42	87.43	
170	3.50	0.09	6.17	7.25	80.59	94.68	
200	3.75	0.07	0.78	0.92	81.37	95.60	
230	4.00	0.06	0.64	0.75	82.01	96.35	
				•			

J 12/8/1	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GP	3.59	2.89	2.61		2.10	1.64	1	1.46	0.99
M_2017_	Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis
MA_CZM	Statistics	2.05	0.24		0.	78		-1.33	9.52

_CZM_2017_VC.GPJ 12/8/17 Ā

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC13 #2

Analysis Date: 11-14-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft): MA State Plane Mainland 234,032 802,508 -60.8 NAVD88 USCS: Munsell: Wet - 10Y-4/1 Comments: Dry - 5Y-6/1 SW-SC Washed - 5Y-6/1 Dry Weight (g): Wash Weight (g): Pan Retained (q): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 9.28 #230 - 7.80 87.42 80.94 0.29 0.05 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 0.00 0.00 0.00 0.00 16.00 0.00 0.00 7/16" -3.5011.31 0.00 0.00 5/16" -3.008.00 2.18 2.49 2.18 2.49 5.66 0.08 0.09 2.26 2.58 3.5 -2.504 -2.254.76 0.05 0.06 2.31 2.64 5 0.49 -2.004.00 0.43 2.74 3.13 7 -1.502.83 0.58 0.66 3.32 3.79 10 -1.00 2.00 0.64 0.73 3.96 4.52 14 -0.501.41 0.99 1.13 4.95 5.65 18 0.00 1.00 0.97 1.11 5.92 6.76 25 0.50 0.71 1.28 1.46 7.20 8.22 35 1.00 0.50 2.46 2.81 9.66 11.03 45 3.89 4.45 15.48 1.50 0.35 13.55 60 2.00 0.25 6.85 7.84 20.40 23.32 80 2.50 0.18 16.24 18.58 36.64 41.90 120 3.00 0.13 26.70 30.54 63.34 72.44 170 3.50 0.09 14.37 16.44 77.71 88.88 200 3.75 0.07 1.61 1.84 79.32 90.72 230 4.00 0.06 1.29 1.48 80.61 92.20 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 3.35 3.08 2.63 2.05 1.53 -0.79Moment Mean Phi Mean mm Sorting Skewness **Kurtosis**

AA_CZM_2017_VC.GPJ 12/

Statistics

2.18

0.22

1.38

-2.29

8.68

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC13 #3

Analysis Date: 11-15-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 234,032 802,508 -62.2 NAVD88 Munsell:

USCS:		Munsell: We	t - 10Y-3/1	Commen	ts:			
SW-SC			ry - 5Y-5/1 ed - 5Y-6/1					
300-30		vvasni	eu - 51-6/1					
Dry Weight (g):	Wash W	Veight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 9.49	Organics (%):	Carbonates

344-30	vvasii	eu - 31-0/1				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 9.49 Organ	nics (%): Carbonates	(%): Shell Hash (%):
90.92	83.79	0.27	0.04	#230 - 8.19		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.39	0.43	0.39	0.43
4	-2.25	4.76	0.23	0.25	0.62	0.68
5	-2.00	4.00	0.15	0.16	0.77	0.84
7	-1.50	2.83	0.92	1.01	1.69	1.85
10	-1.00	2.00	0.73	0.80	2.42	2.65
14	-0.50	1.41	1.39	1.53	3.81	4.18
18	0.00	1.00	2.08	2.29	5.89	6.47
25	0.50	0.71	3.77	4.15	9.66	10.62
35	1.00	0.50	10.29	11.32	19.95	21.94
45	1.50	0.35	13.83	15.21	33.78	37.15
60	2.00	0.25	7.05	7.75	40.83	44.90
80	2.50	0.18	6.82	7.50	47.65	52.40
120	3.00	0.13	17.93	19.72	65.58	72.12
170	3.50	0.09	15.13	16.64	80.71	88.76
200	3.75	0.07	1.59	1.75	82.30	90.51
230	4.00	0.06	1.18	1.30	83.48	91.81

J 12/8/17	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GP.		3.36	3.09	2	2.34	1.10)	0.74	-0.32
M_2017_	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	1.87	0.27		1.3	27		-0.83	3.56

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC14 #1 Analysis Date: 11-15-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 232,757 801,103 -62.9 NAVD88

USCS:	Munsell:	Wet - N-2.5/0	Comments:
		Dry - 2.5Y-5/2	
SW-SC	Wa	ashed - 2.5Y-6/2	

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	#200 - 5.57	nics (%): Carbonates	(%): Shell Hash (%)
91.17	86.46	0.03	0.04	#230 - 5.25		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weigh Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.25	0.27	0.25	0.27
4	-2.25	4.76	0.20	0.22	0.45	0.49
5	-2.00	4.00	0.13	0.14	0.58	0.63
7	-1.50	2.83	0.35	0.38	0.93	1.01
10	-1.00	2.00	0.35	0.38	1.28	1.39
14	-0.50	1.41	0.48	0.53	1.76	1.92
18	0.00	1.00	0.70	0.77	2.46	2.69
25	0.50	0.71	1.90	2.08	4.36	4.77
35	1.00	0.50	2.47	2.71	6.83	7.48
45	1.50	0.35	6.35	6.97	13.18	14.45
60	2.00	0.25	18.01	19.75	31.19	34.20
80	2.50	0.18	31.36	34.40	62.55	68.60
120	3.00	0.13	18.09	19.84	80.64	88.44
170	3.50	0.09	4.75	5.21	85.39	93.65
200	3.75	0.07	0.71	0.78	86.10	94.43
230	4.00	0.06	0.29	0.32	86.39	94.75

1									
J 12/8/17	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GP.		2.89	2.66	2	2.23	1.77	7	1.54	0.54
A_2017	Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis
MA_CZM	Statistics	2.06	0.24		0.8	86		-1.98	9.92

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC14 #2

Analysis Date: 11-15-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

232,757 801,103 MA State Plane Mainland -64.6 NAVD88

USCS:		et - 5GY-4/1 Commen Dry - 5Y-6/1	ts:			
SW-SC	Wash	ned - 5Y-6/1				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Sieve Loss (%):		(%): Shell Hash (%):
85.11	80.27	0.05	0.06 #230 - 5.82			
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.30	0.35	0.30	0.35
5/16"	-3.00	8.00	0.25	0.29	0.55	0.64
3.5	-2.50	5.66	0.00	0.00	0.55	0.64
4	-2.25	4.76	0.25	0.29	0.80	0.93
5	-2.00	4.00	0.23	0.27	1.03	1.20
7	-1.50	2.83	0.40	0.47	1.43	1.67
10	-1.00	2.00	0.62	0.73	2.05	2.40
14	-0.50	1.41	0.54	0.63	2.59	3.03
18	0.00	1.00	0.41	0.48	3.00	3.51
25	0.50	0.71	0.38	0.45	3.38	3.96
35	1.00	0.50	0.89	1.05	4.27	5.01
45	1.50	0.35	4.41	5.18	8.68	10.19
60	2.00	0.25	16.18	19.01	24.86	29.20
80	2.50	0.18	31.00	36.42	55.86	65.62
120	3.00	0.13	18.62	21.88	74.48	87.50
170	3.50	0.09	4.55	5.35	79.03	92.85
200	3.75	0.07	0.77	0.90	79.80	93.75
230	4.00	0.06	0.37	0.43	80.17	94.18

$rac{1}{2}$									
J 12/8/1	Phi 5	Phi 16	Phi 25	P	hi 50	Phi 7	75	Phi 84	Phi 95
VC.GP.		2.92	2.71	2	2.29	1.89)	1.65	1.00
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	2.11	0.23		0.9	95		-2.9	15.36

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC15 #1

Analysis Date: 11-15-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 277,516 870,903 -80.7 NAVD88

USCS: Munsell: Wet - 2.5Y-5/2 Comments: Dry - 2.5Y-7/2 Washed - 2.5Y-7/2 SW

300	VVGOTICE	1-2.51-1/2				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	#200 - 0.82	anics (%): Carbonates	(%): Shell Hash (%)
96.21	95.46	0.01	0.01	#230 - 0.81		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weigh Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.27	0.28	0.27	0.28
5	-2.00	4.00	0.46	0.48	0.73	0.76
7	-1.50	2.83	1.33	1.38	2.06	2.14
10	-1.00	2.00	1.68	1.75	3.74	3.89
14	-0.50	1.41	3.36	3.49	7.10	7.38
18	0.00	1.00	6.66	6.92	13.76	14.30
25	0.50	0.71	11.95	12.42	25.71	26.72
35	1.00	0.50	17.93	18.64	43.64	45.36
45	1.50	0.35	20.11	20.90	63.75	66.26
60	2.00	0.25	16.86	17.52	80.61	83.78
80	2.50	0.18	11.58	12.04	92.19	95.82
120	3.00	0.13	2.90	3.01	95.09	98.83
170	3.50	0.09	0.31	0.32	95.40	99.15
200	3.75	0.07	0.03	0.03	95.43	99.18
230	4.00	0.06	0.01	0.01	95.44	99.19

-									
J 12/8/1	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	' 5	Phi 84	Phi 95
VC.GPJ	2.47	2.01	1.75		1.11	0.43	3	0.07	-0.84
A_2017_	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	1.01	0.50		0.	99		-0.63	3.46

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC15 #2

Analysis Date: 11-15-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

277,516 870,903 MA State Plane Mainland -86.1 NAVD88

USCS: Munsell: Wet - 5Y-5/1 Comments: Dry - 5Y-6/1 SP Washed - 5Y-6/1 Dry Weight (g): Fines (%): #200 - 1.79 Wash Weight (g): Pan Retained (q): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): #230 - 1.63 89.81 88.38 0.01 0.03 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained Retained (Phi) (Millimeters) 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 7/16" 0.00 0.00 0.00 -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.14 0.16 0.14 0.16 3.5 4 -2.254.76 0.00 0.00 0.14 0.16 5 0.29 -2.004.00 0.15 0.17 0.33 7 0.06 -1.502.83 0.05 0.34 0.39 10 -1.00 2.00 0.04 0.04 0.38 0.43 14 -0.501.41 0.05 0.06 0.43 0.49 18 0.00 1.00 0.13 0.14 0.56 0.63 25 0.50 0.71 0.21 0.23 0.77 0.86 35 1.00 0.50 0.91 1.01 1.68 1.87 45 4.67 5.20 6.35 7.07 1.50 0.35 60 2.00 0.25 17.64 19.64 23.99 26.71 80 2.50 0.18 41.01 45.66 65.00 72.37 120 3.00 0.13 20.43 22.75 85.43 95.12 170 3.50 0.09 2.61 2.91 88.04 98.03 200 3.75 0.07 0.16 0.18 88.20 98.21 230 4.00 0.06 0.14 0.16 88.34 98.37

MA_CZM_2017_VC.GPJ 12/8/17

Phi 5

Phi 16

Phi 25

VC.GPJ	3.00	2.76	2.56	:	2.26		3	1.73	1.30	
M_2017	Moment	Mean Phi	Mean m	Mean mm		Sorting		kewness	Kurtosis	
MA_CZI	Statistics	2.2	0.22		0.57			-2.38	18.97	

Phi 50

Phi 75

Phi 84

Phi 95

Project Name: Preliminary Characterization of Offshore Sand

Munsell:

2.00

2.50

3.00

3.50

3.75

4.00

0.25

0.18

0.13

0.09

0.07

0.06

Wet - 5Y-4/1

Dry - 5Y-6/1

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC16 #1

Analysis Date: 11-15-17; Analyzed By: DA

USCS:

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

Comments:

276,446 MA State Plane Mainland 866,962 -79.1 NAVD88

SP Washed - 5Y-7/1 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 1.34 #230 - 1.23 90.75 89.68 0.00 0.03 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained (Millimeters) Retained Retained (Phi) 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 7/16" 0.00 0.00 0.00 -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.14 0.15 0.14 0.15 3.5 4 -2.254.76 0.00 0.00 0.14 0.15 5 0.33 0.36 -2.004.00 0.47 0.51 7 0.34 0.37 -1.502.83 0.81 0.88 10 -1.00 2.00 0.33 0.36 1.14 1.24 0.23 14 -0.501.41 0.21 1.35 1.47 18 0.00 1.00 0.29 0.32 1.64 1.79 25 0.50 0.71 2.92 3.22 4.56 5.01 35 1.00 0.50 3.49 3.85 8.05 8.86 45 1.50 22.36 24.64 30.41 33.50 0.35

28.79

19.10

9.03

2.10

0.12

0.10

31.72

21.05

9.95

2.31

0.13

0.11

59.20

78.30

87.33

89.43

89.55

89.65

65.22

86.27

96.22

98.53

98.66

98.77

17									
12/8/	Phi 5	Phi 16	Phi 25	Pl	hi 50	Phi 7	'5	Phi 84	Phi 95
VC.GPJ	2.94	2.45	2.23	1	.76	1.33	3	1.14	0.50
M_2017	Moment	Mean Phi	Mean m	ım S		rting		kewness	Kurtosis
MA_CZM	Statistics	1.73	0.30		0.	76		-1.33	8.53

60

80

120

170

200

230

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC16 #2

Analysis Date: 11-15-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

276,446 866,962 MA State Plane Mainland -80.6 NAVD88

USCS:	Munsell:	Wet - 5Y-4/1	Comments:
		Dry - 5Y-6/1	
SP	W	ashed - 5Y-6/1	

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.93 Organ	nics (%): Carbonates	(%): Shell Hash (%):
86.13	84.75	0.07	0.03	#230 - 1.72		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.00	0.00	0.00	0.00
7	-1.50	2.83	0.05	0.06	0.05	0.06
10	-1.00	2.00	0.03	0.03	0.08	0.09
14	-0.50	1.41	0.11	0.13	0.19	0.22
18	0.00	1.00	0.15	0.17	0.34	0.39
25	0.50	0.71	0.53	0.62	0.87	1.01
35	1.00	0.50	2.51	2.91	3.38	3.92
45	1.50	0.35	10.93	12.69	14.31	16.61
60	2.00	0.25	21.05	24.44	35.36	41.05
80	2.50	0.18	30.15	35.01	65.51	76.06
120	3.00	0.13	15.64	18.16	81.15	94.22
170	3.50	0.09	3.11	3.61	84.26	97.83
200	3.75	0.07	0.21	0.24	84.47	98.07
230	4.00	0.06	0.18	0.21	84.65	98.28

J 12/8/1	Phi 5	Phi 16	Phi 25	Phi 25 Phi 5		hi 50 Phi 75		Phi 84	Phi 95
VC.GPJ	3.11	2.72	2.48	2	2.13	1.67	7	1.48	1.04
M_2017_	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	2.06	0.24		0.	61		-0.57	4.66

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC16 #3

Analysis Date: 11-16-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 276,446 866,962 -82.0 NAVD88

USCS: Munsell: Wet - 5Y-4/1 Comments: Dry - 5Y-6/1 Washed - 5Y-6/1 SW

344	VVasii	eu - 51-0/1				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.25 Orga	nics (%): Carbonates	(%): Shell Hash (%)
94.63	93.57	0.01	0.08	#230 - 1.22		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weigh Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	4.77	5.04	4.77	5.04
5/16"	-3.00	8.00	1.77	1.87	6.54	6.91
3.5	-2.50	5.66	0.16	0.17	6.70	7.08
4	-2.25	4.76	0.17	0.18	6.87	7.26
5	-2.00	4.00	0.64	0.68	7.51	7.94
7	-1.50	2.83	1.88	1.99	9.39	9.93
10	-1.00	2.00	1.78	1.88	11.17	11.81
14	-0.50	1.41	2.09	2.21	13.26	14.02
18	0.00	1.00	3.51	3.71	16.77	17.73
25	0.50	0.71	9.16	9.68	25.93	27.41
35	1.00	0.50	17.56	18.56	43.49	45.97
45	1.50	0.35	18.36	19.40	61.85	65.37
60	2.00	0.25	15.93	16.83	77.78	82.20
80	2.50	0.18	10.06	10.63	87.84	92.83
120	3.00	0.13	4.78	5.05	92.62	97.88
170	3.50	0.09	0.75	0.79	93.37	98.67
200	3.75	0.07	0.08	0.08	93.45	98.75
230	4.00	0.06	0.03	0.03	93.48	98.78

12										
J 12/8/	Phi 5	Phi 16	Phi 25	Phi 50	Phi 50 Phi 75		75 Phi 84		Phi 95	
VC.GP.	2.71	2.08	1.79	1.10		0.38	3	-0.23	-3.51	
M_2017_	Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis	
MA_CZM	Statistics	0.76	0.59		1.	57		-1.47	4.93	

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC16 #4

Analysis Date: 11-15-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m):

Coordinate System:

Elevation (ft):

 276,446
 866,962
 MA State Plane Mainland
 -86.2 NAVD88

USCS: Munsell: Wet - 5Y-4/1 Comments: Dry - 5Y-6/1 SM Washed - 5Y-6/1 Dry Weight (g): Wash Weight (g): Pan Retained (q): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 16.20 #230 - 14.68 85.04 72.75 0.19 0.01 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 0.00 0.00 0.00 0.00 16.00 0.00 0.00 7/16" -3.5011.31 0.00 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 5.66 0.00 0.00 0.00 0.00 3.5 -2.504 -2.254.76 0.00 0.00 0.00 0.00 5 0.00 0.00 -2.004.00 0.00 0.00 7 -1.502.83 0.13 0.15 0.13 0.15 10 -1.00 2.00 0.24 0.28 0.37 0.43 14 -0.501.41 0.09 0.11 0.46 0.54 18 0.00 1.00 80.0 0.09 0.54 0.63 25 0.50 0.71 0.27 0.32 0.81 0.95 35 1.00 0.50 0.66 0.78 1.47 1.73 45 1.28 1.51 1.50 0.35 2.75 3.24 60 2.00 0.25 2.23 2.62 4.98 5.86 80 2.50 0.18 14.96 17.59 19.94 23.45 120 3.00 0.13 35.08 41.25 55.02 64.70 170 0.09 13.28 15.62 80.32 3.50 68.30 200 3.75 0.07 2.96 3.48 71.26 83.80 230 4.00 0.06 1.29 1.52 72.55 85.32

AA_CZM_2017_VC.GPJ 12/8/

Phi 5

Phi 16

Phi 25

3.78 3.33 2.82 2.52 2.29 1.84 Moment Mean Phi Mean mm Sorting Skewness **Kurtosis** Statistics 2.68 0.16 0.63 -2.2414.29

Phi 50

Phi 75

Phi 84

Phi 95

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Munsell:

Sample Name: MA-CZM-2017-VC17 #1

USCS:

Analysis Date: 11-16-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

Wet - 5Y-4/1 Comments:

275,721 MA State Plane Mainland -73.5 NAVD88 865,048

SW			ory - 5Y-5/1 ed - 5Y-6/1						
Dry Weight (g):	Wash \	Weight (g):	Pan Retained ((g):	Sieve Loss (%):	Fines (%): #200 - 0.85	Organics (%):	Carbonates (%):	Shell Hash (%

300		vvasno	ea - 5 Y - 6/1							
Dry Weight (g):	Wash W	/eight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 0.85	Organics	s (%):	Carbonates (%):	Shell Hash (%):
93.54	!	92.83	0.01	0.01	#230 - 0.79					
Sieve Number		eve Size (Phi)	Sieve Size (Millimeter	Grams Retained	% Weigh Retained			Grams ained		. % Weight Retained
3/4"		-4.25	19.03	0.00	0.00		0.	.00		0.00
5/8"		-4.00	16.00	0.00	0.00		0.	.00		0.00
7/16"		-3.50	11.31	0.00	0.00		0.	.00		0.00
5/16"		-3.00	8.00	0.00	0.00		0.	.00		0.00
3.5		-2.50	5.66	0.00	0.00		0.	.00		0.00
4		-2.25	4.76	0.00	0.00		0.	.00		0.00
5		-2.00	4.00	0.14	0.15		0.	.14		0.15
7		-1.50	2.83	0.59	0.63		0.	.73		0.78
10		-1.00	2.00	0.29	0.31		1.	.02		1.09
14		-0.50	1.41	0.78	0.83		1.	.80		1.92
18		0.00	1.00	2.02	2.16		3.	.82		4.08
25		0.50	0.71	7.49	8.01		11	.31		12.09
35		1.00	0.50	19.97	21.35		31	.28		33.44
45		1.50	0.35	18.89	20.19		50).17		53.63
60		2.00	0.25	13.73	14.68		63	3.90		68.31
80		2.50	0.18	17.63	18.85		81	.53		87.16
120		3.00	0.13	10.06	10.75		91	.59		97.91
170		3.50	0.09	1.08	1.15		92	2.67		99.06
200		3.75	0.07	0.08	0.09		92	2.75		99.15
230		4.00	0.06	0.06	0.06		92	2.81		99.21

J 12/8/17	Phi 5	Phi 16	Phi 25	Phi 25 Ph		Phi 75		Phi 84	Phi 95
VC.GPJ	2.86	2.42	2.18	,	1.41	0.80)	0.59	0.06
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	1.43	0.37		0	.9		-0.4	3.42

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Northing (m):

Sample Name: MA-CZM-2017-VC17 #2

Easting (m):

Analysis Date: 11-16-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Elevation (ft):

MA State Plane Mainland 275,721 865,048 -74.4 NAVD88 USCS: Munsell: Wet - N-3/0 Comments: Dry - 5Y-6/1 SW Washed - 5Y-6/1 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 0.72 #230 - 0.67 104.58 103.90 0.01 0.05 C. % Weight % Weight Cum. Grams Sieve Size Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 1.37 1.37 7/16" -3.5011.31 1.43 1.43 5/16" -3.008.00 1.69 1.62 3.12 2.99 5.66 6.93 6.63 10.05 9.62 3.5 -2.504 -2.254.76 4.19 4.01 14.24 13.63 5 7.12 -2.004.00 6.81 21.36 20.44 7 -1.502.83 15.25 14.58 36.61 35.02 10 -1.00 2.00 11.74 11.23 48.35 46.25 14 -0.501.41 10.76 10.29 59.11 56.54 18 0.00 1.00 8.50 8.13 67.61 64.67 25 0.50 0.71 8.39 8.02 76.00 72.69 35 1.00 0.50 8.33 7.97 84.33 80.66 45 4.65 4.45 1.50 0.35 88.98 85.11 60 2.00 0.25 2.74 2.62 91.72 87.73 80 2.50 0.18 5.25 5.02 96.97 92.75 5.54 120 3.00 0.13 5.79 102.76 98.29 170 3.50 0.09 0.96 0.92 99.21 103.72 200 3.75 0.07 0.07 0.07 103.79 99.28 230 4.00 0.06 0.05 0.05 103.84 99.33

Phi 50

-0.82

Phi 75

-1.84

Sorting

1.67

Phi 84

-2.16

Skewness

0.46

Phi 95

-2.85

Kurtosis

2.37

Coordinate System:

MA_CZM_2017_VC.GPJ 12/8/17

Phi 5

2.70

Moment

Statistics

Phi 16

1.38

Mean Phi

-0.54

Phi 25

0.64

Mean mm

1.45

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC17 #3

Analysis Date: 11-16-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

275,721 MA State Plane Mainland -78.6 NAVD88 865,048

Wet - 10Y-3/1 Dry - 5Y-6/2 Washed - 5Y-6/1 USCS: Munsell: Comments: SC

30		vvasn	ea - 5 Y - 6/1									
Dry Weight (g): 88.48	Wash Weig	ght (g):	Pan Retained (g		Sieve Loss (%): 0.06		Fines (%): #200 - 22.64 #230 - 17.25		nics (%):	Carbonates (%):	Shell Hash (%):
Sieve Number	Siev	e Size Phi)	Sieve S (Millimet	ize	Grams Retaine	6	% Weigh Retained	t		Grams ained		⊥ . % Weight Retained
3/4"	-4	.25	19.03	3	0.00		0.00		0.	00		0.00
5/8"	-4	.00	16.00)	0.00		0.00		0.	00		0.00
7/16"	-3	5.50	11.3	I	0.00		0.00		0.	00		0.00
5/16"	-3	3.00	8.00		0.00		0.00		0.	00		0.00
3.5	-2	2.50	5.66		0.00		0.00		0.	00		0.00
4	-2	2.25	4.76		0.00		0.00		0.	00		0.00
5	-2	2.00	4.00		0.00		0.00		0.	00		0.00
7	-1	.50	2.83		0.09		0.10		0.	09		0.10
10	-1	.00	2.00		0.07		0.08		0.	16		0.18
14	-0	.50	1.41		0.12		0.14		0.	28		0.32
18	0	.00	1.00		0.09		0.10		0.	37		0.42
25	0	.50	0.71		0.22		0.25		0.	59		0.67
35	1	.00	0.50		0.31		0.35		0.	90		1.02
45	1	.50	0.35		0.42		0.47		1.	32		1.49
60	2	.00	0.25		0.57		0.64		1.	89		2.13
80	2	.50	0.18		3.51		3.97		5.	40		6.10
120	3	.00	0.13		36.50		41.25		41	.90		47.35
170	3	.50	0.09		20.94		23.67		62	.84		71.02
200	3	.75	0.07		5.61		6.34		68	.45		77.36
230	4	.00	0.06		4.77		5.39		73	.22		82.75

J 12/8/1	Phi 5	Phi 16	Phi 25	Phi 50	Phi	75	Phi 84	Phi 95
VC.GPJ			3.66	3.06	2.7	3	2.62	2.36
A_2017	Moment	Mean Phi	Mean m	m S	orting	S	kewness	Kurtosis
MA_CZM	Statistics	2.96	0.13		0.56		-2.4	18.31

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Northing (m):

Sample Name: MA-CZM-2017-VC18 #1

Analysis Date: 11-16-17; Analyzed By: DA

Easting (m):

Coordinate System:

Elevation (ft):

APTIM 2481 NW Boca Raton Blvd.

Boca Raton, FL 33431 ph (561) 391-8102

MA State Plane Mainland 283,242 843,847 -45.3 NAVD88 USCS: Munsell: Wet - 5Y-3/1 Comments: Dry - 5Y-6/2 SP Washed - 5Y-6/1 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 0.93 #230 - 0.91 90.40 89.60 0.00 0.02 Sieve Size % Weight Cum. Grams C. % Weight Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 0.00 0.00 0.00 0.00 16.00 0.00 0.00 7/16" -3.5011.31 0.00 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 5.66 0.00 0.00 0.00 0.00 3.5 -2.504 -2.254.76 80.0 0.09 0.08 0.09 5 0.29 -2.004.00 0.32 0.37 0.41 7 -1.502.83 0.49 0.54 0.86 0.95 10 -1.00 2.00 0.43 0.48 1.29 1.43 1.22 14 -0.501.41 1.10 2.39 2.65 18 0.00 1.00 2.73 3.02 5.12 5.67 25 0.50 0.71 9.62 10.64 14.74 16.31 35 1.00 0.50 25.51 28.22 40.25 44.53 45 35.07 38.79 75.32 1.50 0.35 83.32 60 2.00 0.25 11.04 12.21 86.36 95.53 80 2.50 0.18 2.71 3.00 89.07 98.53 89.42 120 3.00 0.13 0.35 0.39 98.92 170 0.09 0.12 99.04 3.50 0.11 89.53 200 3.75 0.07 0.03 0.03 89.56 99.07 230 4.00 0.06 0.02 0.02 89.58 99.09 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 1.98 1.53 1.39 1.07 0.65 0.49 -0.11Moment Mean Phi Mean mm Sorting Skewness **Kurtosis**

MA_CZM_2017_VC.GPJ 12/8/17

Statistics

0.99

0.50

0.66

-1.04

6.82

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC18 #2

Analysis Date: 11-16-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 283,242 843,847 -48.7 NAVD88

Wet - 5Y-4/1 Dry - 5Y-6/2 Washed - 5Y-6/1 USCS: Munsell: Comments: SP

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.01 Organ	nics (%): Carbonates	(%): Shell Hash (%):
89.92	89.08	0.00	0.03	#230 - 0.97		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.30	0.33	0.30	0.33
5/16"	-3.00	8.00	0.00	0.00	0.30	0.33
3.5	-2.50	5.66	0.00	0.00	0.30	0.33
4	-2.25	4.76	0.12	0.13	0.42	0.46
5	-2.00	4.00	0.08	0.09	0.50	0.55
7	-1.50	2.83	0.86	0.96	1.36	1.51
10	-1.00	2.00	0.65	0.72	2.01	2.23
14	-0.50	1.41	0.63	0.70	2.64	2.93
18	0.00	1.00	1.73	1.92	4.37	4.85
25	0.50	0.71	6.25	6.95	10.62	11.80
35	1.00	0.50	18.05	20.07	28.67	31.87
45	1.50	0.35	32.08	35.68	60.75	67.55
60	2.00	0.25	19.05	21.19	79.80	88.74
80	2.50	0.18	7.74	8.61	87.54	97.35
120	3.00	0.13	1.05	1.17	88.59	98.52
170	3.50	0.09	0.32	0.36	88.91	98.88
200	3.75	0.07	0.10	0.11	89.01	98.99
230	4.00	0.06	0.04	0.04	89.05	99.03

MA_CZM_2017_VC.GPJ 12/8/17

Phi 5

Phi 16

Phi 25

2.36	1.89	1.68	1.68		1.25 0.83		3 0.60		0.01
Moment	Mean Phi	Mean m	Mean mm		Sorting		Skewness		Kurtosis
Statistics	1.19	0.44	0.44		0.79		-1.59		9.94

Phi 50

Phi 75

Phi 84

Phi 95

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC18 #3

Analysis Date: 11-17-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

283,242 MA State Plane Mainland -50.3 NAVD88 843,847

USCS:	Munsell:	Wet - 5Y-4/1	Comments:
		Dry - 5Y-6/1	
SW	١٨	Jachad EV 6/1	

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.90 Organ	nics (%): Carbonates	(%): Shell Hash (%):
90.39	89.02	0.03	0.06	#230 - 1.59		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	1.02	1.13	1.02	1.13
4	-2.25	4.76	0.54	0.60	1.56	1.73
5	-2.00	4.00	0.99	1.10	2.55	2.83
7	-1.50	2.83	2.73	3.02	5.28	5.85
10	-1.00	2.00	1.10	1.22	6.38	7.07
14	-0.50	1.41	0.70	0.77	7.08	7.84
18	0.00	1.00	0.91	1.01	7.99	8.85
25	0.50	0.71	3.47	3.84	11.46	12.69
35	1.00	0.50	13.35	14.77	24.81	27.46
45	1.50	0.35	28.90	31.97	53.71	59.43
60	2.00	0.25	25.73	28.47	79.44	87.90
80	2.50	0.18	7.97	8.82	87.41	96.72
120	3.00	0.13	0.70	0.77	88.11	97.49
170	3.50	0.09	0.28	0.31	88.39	97.80
200	3.75	0.07	0.27	0.30	88.66	98.10
230	4.00	0.06	0.28	0.31	88.94	98.41

J 12/8/1	Phi 5	Phi 16	Phi 25	Phi	50	Phi 7	5	Phi 84	Phi 95
VC.GP.	2.40	1.93	1.77	1.:	35	0.92	2	0.61	-1.64
M_2017_	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	1.14	0.45		1.0	05		-1.75	6.8

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC18 #4

Analysis Date: 11-17-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Coordinate System: Elevation (ft):

283,242 843,847 MA State Plane Mainland -52.0 NAVD88

USCS: Munsell: Wet - 5Y-4/1 Comments: Dry - 5Y-7/1 SP Washed - 5Y-7/1 Dry Weight (g): Fines (%): #200 - 1.24 Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): #230 - 1.13 93.71 92.70 0.02 0.03 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained (Millimeters) Retained Retained (Phi) 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 7/16" 0.00 0.00 0.00 -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.00 0.00 0.00 0.00 3.5 4 -2.254.76 0.00 0.00 0.00 0.00 5 0.00 0.00 0.00 0.00 -2.004.00 7 -1.502.83 0.14 0.15 0.14 0.15 10 -1.00 2.00 0.05 0.05 0.19 0.20 0.23 14 -0.501.41 0.03 0.03 0.22 18 0.00 1.00 0.11 0.12 0.33 0.35 25 0.50 0.71 1.08 1.15 1.41 1.50 35 1.00 0.50 7.70 8.22 9.11 9.72 45 1.50 0.35 28.64 30.56 37.75 40.28 60 2.00 0.25 43.03 45.92 80.78 86.20 80 2.50 0.18 10.89 11.62 91.67 97.82 0.74 120 3.00 0.13 0.69 92.36 98.56 170 3.50 0.09 0.15 0.16 92.51 98.72 0.07 0.04 200 3.75 0.04 92.55 98.76 230 4.00 0.06 0.10 0.11 92.65 98.87

MA_CZM_2017_VC.GPJ 12/8/17

Phi 5	Phi 16	Phi 25	Phi 50		Phi 75		Phi 84	Phi 95
2.38	1.98	1.88		1.61	1.25		1.10	0.71
Moment	Mean Phi	Mean m	m Sort		ting	SI	kewness	Kurtosis
Statistics	1.56	0.34		0.4	0.48		-0.7	7.88

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Munsell:

2.00

2.50

3.00

3.50

3.75

4.00

0.25

0.18

0.13

0.09

0.07

0.06

Sample Name: MA-CZM-2017-VC19 #1

Analysis Date: 11-17-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

49.56

81.40

92.88

95.31

95.74

96.21

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 285,624 840,878 -58.1 NAVD88 USCS: Wet - 10Y-3/1 Comments:

			ory - 5Y-5/2 ed - 5Y-6/1								
Dry Weight (g):	Wash	Weight (g):	Pan Retained (#200 - 4.26		ics (%):	Carbonates ((%):	Shell Hash (%):
87.00		83.79	0.07	<u></u>	0.02	0.02 #230 - 3.79			L		
Sieve Number	Si	ieve Size (Phi)	Sieve S (Millime		Grams Retained	% Weigh Retained			Grams ained		% Weight Retained
3/4"		-4.25	19.0	3	0.00	0.00		0.	00		0.00
5/8"		-4.00	16.0	0	0.00	0.00		0.	00		0.00
7/16"		-3.50	11.3	1	0.00	0.00		0.	00		0.00
5/16"		-3.00	8.00)	0.55	0.63		0.	55		0.63
3.5		-2.50	5.66	6	0.00	0.00		0.	0.55		0.63
4		-2.25	4.76	6	0.00	0.00		0.	55		0.63
5		-2.00	4.00)	0.10	0.11		0.	65		0.74
7		-1.50	2.83	3	0.20	0.23		0.	85		0.97
10		-1.00	2.00)	0.11	0.13		0.	96		1.10
14		-0.50	1.41		0.08	0.09		1.	04		1.19
18		0.00	1.00)	0.08	0.09		1.	12		1.28
25		0.50	0.71		0.38	0.44		1.	50		1.72
35		1.00 0.50 2.80		3.22		4.	30		4.94		
45	45 1.50 0.35 10.46		12.02		14	.76		16.96			

28.36

27.70

9.99

2.11

0.37

0.41

32.60

31.84

11.48

2.43

0.43

0.47

43.12

70.82

80.81

82.92

83.29

83.70

_										
J 12/8/17	Phi 5	Phi 16	Phi 25	Phi 50		Phi 7	'5	Phi 84	Phi 95	
VC.GPJ	3.44	2.61	2.40	2.01		1.62	2	1.46	1.00	
J 2017	Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis	
MA_CZM	Statistics	1.93	0.26		0.	76		-2.59	18.7	
				<u> </u>						

60

80

120

170

200

230

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC19 #2

Analysis Date: 11-17-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft): 285,624 MA State Plane Mainland 840,878 -60.8 NAVD88

USCS: Munsell: Wet - 10Y-4/1 Comments: Dry - 5Y-6/1 Washed - 5Y-6/1 SP

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.37 Organ	nics (%): Carbonates	(%): Shell Hash (%):
96.85	95.65	0.00	0.03	#230 - 1.27		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.16	0.17	0.16	0.17
3.5	-2.50	5.66	0.42	0.43	0.58	0.60
4	-2.25	4.76	0.13	0.13	0.71	0.73
5	-2.00	4.00	0.26	0.27	0.97	1.00
7	-1.50	2.83	0.50	0.52	1.47	1.52
10	-1.00	2.00	0.26	0.27	1.73	1.79
14	-0.50	1.41	0.26	0.27	1.99	2.06
18	0.00	1.00	0.49	0.51	2.48	2.57
25	0.50	0.71	3.16	3.26	5.64	5.83
35	1.00	0.50	25.03	25.84	30.67	31.67
45	1.50	0.35	35.76	36.92	66.43	68.59
60	2.00	0.25	17.13	17.69	83.56	86.28
80	2.50	0.18	7.16	7.39	90.72	93.67
120	3.00	0.13	3.55	3.67	94.27	97.34
170	3.50	0.09	1.14	1.18	95.41	98.52
200	3.75	0.07	0.11	0.11	95.52	98.63
230	4.00	0.06	0.10	0.10	95.62	98.73
		•				

$rac{1}{2}$									
J 12/8/1	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	75	Phi 84	Phi 95
VC.GP.	2.68	1.94	1.68		1.25	0.87	7	0.70	0.37
J 2017	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	1.26	0.42		0.	78	-1.19		9.98

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC19 #3

Analysis Date: 11-20-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft): 285,624 MA State Plane Mainland 840,878 -63.1 NAVD88 USCS: Munsell: Wet - 10Y-4/1 Comments: Dry - 5Y-6/1 SP-SM Washed - 5Y-6/1 Dry Weight (g): Wash Weight (g): Pan Retained (q): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 6.40 #230 - 5.49 90.87 86.42 0.53 0.01 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 0.00 0.00 0.00 0.00 16.00 0.00 0.00 7/16" -3.5011.31 0.00 0.00 5/16" -3.008.00 0.28 0.31 0.28 0.31 5.66 0.08 0.09 0.36 0.40 3.5 -2.504 -2.254.76 0.00 0.00 0.36 0.40 5 0.00 0.00 -2.004.00 0.36 0.40 7 -1.502.83 0.13 0.14 0.49 0.54 10 -1.00 2.00 0.22 0.24 0.71 0.78 14 -0.501.41 0.12 0.13 0.83 0.91 18 0.00 1.00 0.11 0.12 0.94 1.03 25 0.50 0.71 0.14 0.15 1.08 1.18 35 1.00 0.50 2.11 2.32 3.19 3.50 45 14.98 16.49 19.99 1.50 0.35 18.17 60 2.00 0.25 25.66 28.24 43.83 48.23 80 2.50 0.18 25.05 27.57 68.88 75.80 120 3.00 0.13 12.30 13.54 81.18 89.34 170 3.50 0.09 3.21 3.53 84.39 92.87 200 3.75 0.07 0.66 0.73 85.05 93.60 230 4.00 0.06 0.83 0.91 85.88 94.51 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 2.80 2.49 2.03 1.59 1.38 1.05 Moment Mean Phi Mean mm Sorting Skewness **Kurtosis**

1A_CZM_2017_VC.GPJ 12

Statistics

1.98

0.25

0.74

-1.59

13.45

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC19 #4

Analysis Date: 11-17-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

285,624	840,87	' 8	MA State Plane Mainland	-66.6 NAVD88

USCS:		t - 10Y-4/1 Comme	ents:			
SP-SM		ory - 5Y-6/1 ed - 5Y-6/1				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 6.53 Organ	nics (%): Carbonates	(%): Shell Hash (%):
89.87	84.85	0.17	0.04	#230 - 5.82		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.12	0.13	0.12	0.13
4	-2.25	4.76	0.00	0.00	0.12	0.13
5	-2.00	4.00	0.00	0.00	0.12	0.13
7	-1.50	2.83	0.10	0.11	0.22	0.24
10	-1.00	2.00	0.08	0.09	0.30	0.33
14	-0.50	1.41	0.20	0.22	0.50	0.55
18	0.00	1.00	0.07	0.08	0.57	0.63
25	0.50	0.71	0.11	0.12	0.68	0.75
35	1.00	0.50	1.87	2.08	2.55	2.83
45	1.50	0.35	13.62	15.16	16.17	17.99
60	2.00	0.25	25.34	28.20	41.51	46.19
80	2.50	0.18	26.52	29.51	68.03	75.70
120	3.00	0.13	11.52	12.82	79.55	88.52
170	3.50	0.09	3.55	3.95	83.10	92.47
200	3.75	0.07	0.90	1.00	84.00	93.47
230	4.00	0.06	0.64	0.71	84.64	94.18
Phi 5	Phi 16	Phi 25	Phi 50	Phi 75	Phi 84	Phi 95

MA_CZM_2017_VC.GPJ 12/8/17

	2.82	2.49	2.	.06	1.62	2	1.43		1.07
Moment	Mean Phi	Mean m	m	Sort	ting		Skewness		Kurtosis
Statistics	2.02	0.25		0.67			-0.71		8.42

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC20 #1

Easting (m):

Analysis Date: 11-20-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 284,592 838,399 -55.7 NAVD88

USCS: Munsell: Comments: Wet - 2.5Y-3/1 Dry - 2.5Y-6/2 Washed - 2.5Y-7/2 SW

300	v v asi icc	1-2.51-1/2				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.99 Organ	nics (%): Carbonates	(%): Shell Hash (%):
95.85	94.30	0.05	0.01	#230 - 1.69		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	2.32	2.42	2.32	2.42
3.5	-2.50	5.66	0.00	0.00	2.32	2.42
4	-2.25	4.76	0.31	0.32	2.63	2.74
5	-2.00	4.00	0.10	0.10	2.73	2.84
7	-1.50	2.83	0.94	0.98	3.67	3.82
10	-1.00	2.00	1.38	1.44	5.05	5.26
14	-0.50	1.41	2.82	2.94	7.87	8.20
18	0.00	1.00	4.75	4.96	12.62	13.16
25	0.50	0.71	11.36	11.85	23.98	25.01
35	1.00	0.50	22.96	23.95	46.94	48.96
45	1.50	0.35	22.39	23.36	69.33	72.32
60	2.00	0.25	10.34	10.79	79.67	83.11
80	2.50	0.18	6.33	6.60	86.00	89.71
120	3.00	0.13	5.23	5.46	91.23	95.17
170	3.50	0.09	2.34	2.44	93.57	97.61
200	3.75	0.07	0.38	0.40	93.95	98.01
230	4.00	0.06	0.29	0.30	94.24	98.31

MA_CZM_2017_VC.GPJ 12/8/17

Phi 5

Phi 16

Phi 25

5.5.	2.98	2.07	1.62	1.62 1.0		.02 0.50		0.12		-1.09	_
-	Moment	Mean Phi	Mean m	Mean mm		Sorting		Skewness		Kurtosis	
2	Statistics	0.95	0.52	0.52		1.19		-0.96		5.61	

Phi 50

Phi 75

Phi 84

Phi 95

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC20 #2

Analysis Date: 11-20-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland -57.2 NAVD88 284,592 838,399

Wet - 5Y-4/1 Dry - 5Y-6/2 Washed - 5Y-7/2 USCS: Munsell: Comments: SW

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 3.12 Orga	nics (%): Carbonates	(%): Shell Hash (%)
102.27	99.48	0.04	0.05	#230 - 2.83		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weigh Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	6.33	6.19	6.33	6.19
5/16"	-3.00	8.00	2.99	2.92	9.32	9.11
3.5	-2.50	5.66	2.53	2.47	11.85	11.58
4	-2.25	4.76	0.64	0.63	12.49	12.21
5	-2.00	4.00	0.00	0.00	12.49	12.21
7	-1.50	2.83	0.71	0.69	13.20	12.90
10	-1.00	2.00	0.96	0.94	14.16	13.84
14	-0.50	1.41	1.33	1.30	15.49	15.14
18	0.00	1.00	1.33	1.30	16.82	16.44
25	0.50	0.71	2.34	2.29	19.16	18.73
35	1.00	0.50	4.25	4.16	23.41	22.89
45	1.50	0.35	5.27	5.15	28.68	28.04
60	2.00	0.25	13.30	13.00	41.98	41.04
80	2.50	0.18	41.76	40.83	83.74	81.87
120	3.00	0.13	6.67	6.52	90.41	88.39
170	3.50	0.09	8.30	8.12	98.71	96.51
200	3.75	0.07	0.38	0.37	99.09	96.88
230	4.00	0.06	0.30	0.29	99.39	97.17

12									
J 12/8/	Phi 5	Phi 16	Phi 25	Phi 50		Phi 75		Phi 84	Phi 95
MA_CZM_2017_VC.GP.	3.41	2.66	2.42	2.1	11	1.20)	-0.17	-3.64
	Moment	Mean Phi	Mean m	m	Sorting		Skewness		Kurtosis
	Statistics	1.31	0.40		1.98		-1.6		4.31

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC20 #3

Analysis Date: 11-20-17; Analyzed By: DA

Northing (m): Coordinate System: Boca Raton, FL 33431 ph (561) 391-8102 Elevation (ft):

APTIM 2481 NW Boca Raton Blvd.

Easting (m): MA State Plane Mainland 284,592 838,399 -60.9 NAVD88 USCS: Munsell: Wet - 5Y-4/1 Comments: Dry - 5Y-6/1 SP Washed - 5Y-7/1 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 1.45 #230 - 1.38 90.27 89.05 0.02 0.00 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7/16" -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 -2.505.66 0.00 0.00 0.00 0.00 3.5 4 -2.254.76 0.00 0.00 0.00 0.00 5 0.00 0.00 -2.004.00 0.00 0.00 0.00 7 -1.502.83 0.00 0.00 0.00 10 -1.00 2.00 0.00 0.00 0.00 0.00 14 -0.501.41 0.01 0.01 0.01 0.01 18 0.00 1.00 0.04 0.04 0.05 0.05 25 0.50 0.71 0.12 0.13 0.17 0.18 35 1.00 0.50 0.84 0.93 1.01 1.11 45 2.41 2.67 3.42 1.50 0.35 3.78 60 2.00 0.25 18.64 20.65 22.06 24.43 80 2.50 0.18 53.74 59.53 75.80 83.96 7.50 120 3.00 0.13 6.77 82.57 91.46 170 3.50 0.09 6.33 7.01 98.47 88.90 200 3.75 0.07 0.07 0.08 88.97 98.55 230 4.00 0.06 0.06 0.07 89.03 98.62 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 3.25 2.50 2.42 2.21 2.00 1.80 1.53 Moment Mean Phi Mean mm Sorting Skewness **Kurtosis** Statistics 2.21 0.22 0.45 0.03 5.36

VC.GPJ 12/8/17 CZM_2017_

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MA-CZM-2017-VC20 #4

Analysis Date: 11-20-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft):

MA State Plane Mainland 284,592 -64.7 NAVD88

838,399 Wet - 5Y-4/1 USCS: Munsell: Comments: Dry - 5Y-7/1 SP Washed - 5Y-7/1 Dry Weight (g): Pan Retained (g): Wash Weight (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 3.93 #230 - 3.54 91.82 88.64 0.06 0.01 Sieve Size % Weight Cum. Grams C. % Weight Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7/16" -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 5.66 0.00 0.00 0.00 0.00 3.5 -2.504 -2.254.76 0.00 0.00 0.00 0.00 5 0.00 0.00 -2.004.00 0.00 0.00 0.00 7 -1.502.83 0.00 0.00 0.00 10 -1.00 2.00 0.00 0.00 0.00 0.00 14 -0.501.41 0.04 0.04 0.04 0.04 18 0.00 1.00 0.04 0.04 80.0 80.0 25 0.50 0.71 0.10 0.11 0.18 0.19 35 1.00 0.50 0.28 0.30 0.46 0.49 45 0.61 0.66 1.07 1.50 0.35 1.15 60 2.00 0.25 5.23 5.70 6.30 6.85 80 2.50 0.18 52.95 57.67 59.25 64.52 120 3.00 0.13 23.33 25.41 82.58 89.93 170 3.50 0.09 4.89 5.33 95.26 87.47 200 3.75 0.07 0.74 0.81 88.21 96.07 230 4.00 0.06 0.36 0.39 88.57 96.46 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 3.48 2.88 2.71 2.37 2.16 2.08 1.84 Moment Mean Phi Mean mm Sorting Skewness **Kurtosis**

VC.GPJ 12/8/17 CZM_2017_

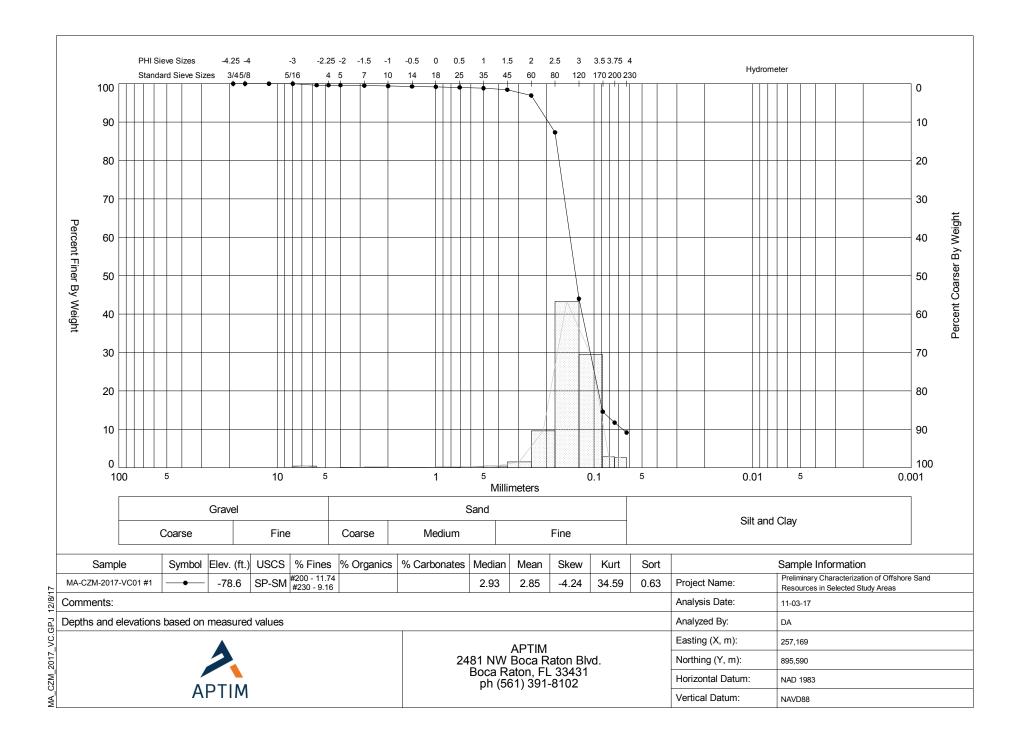
Statistics

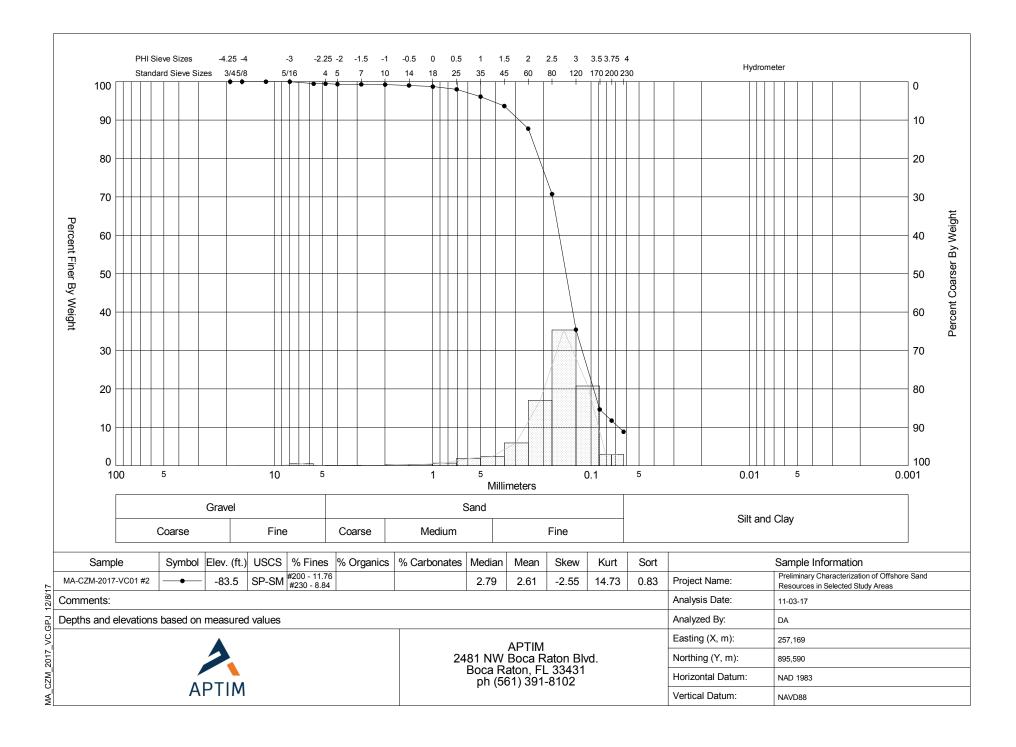
2.41

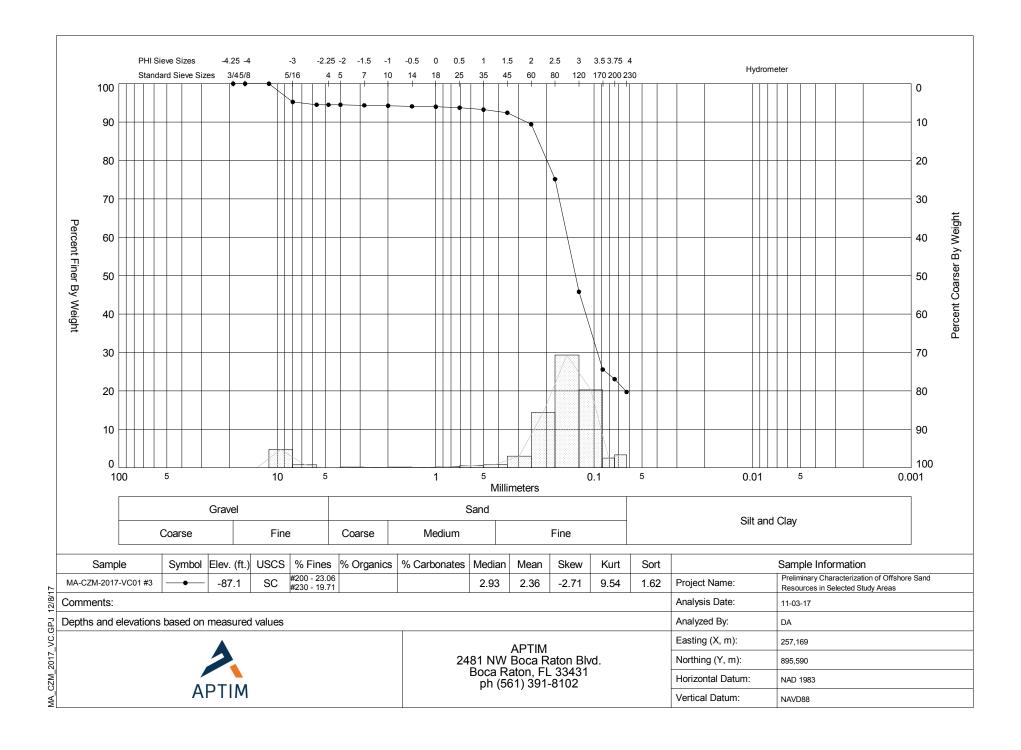
0.19

0.4

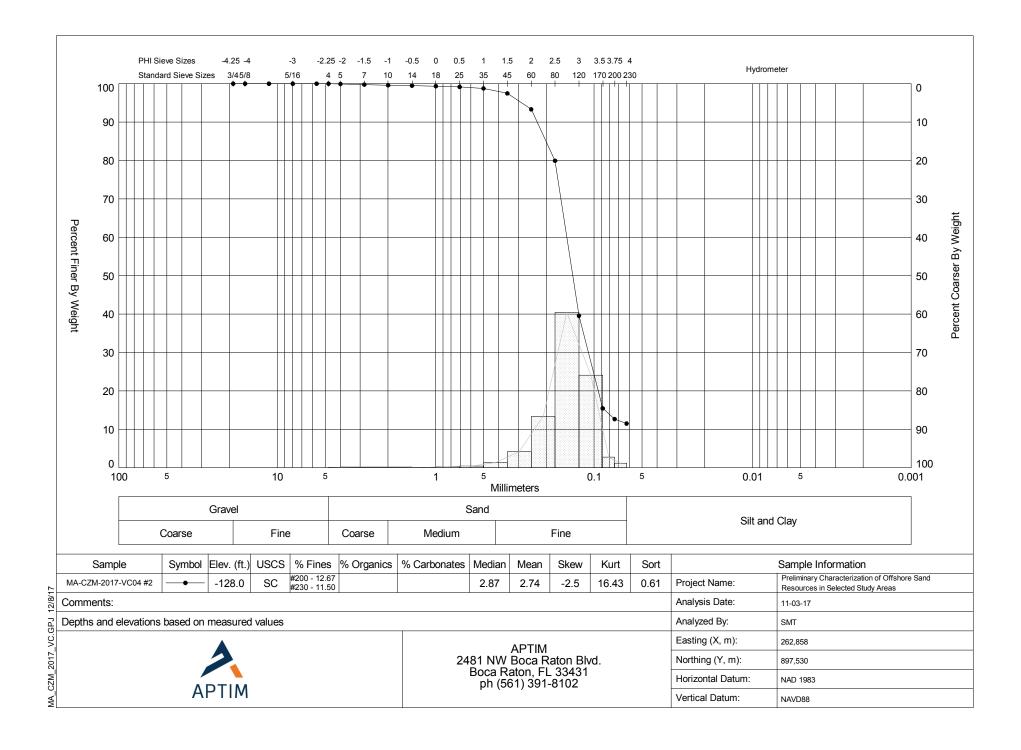
-0.11

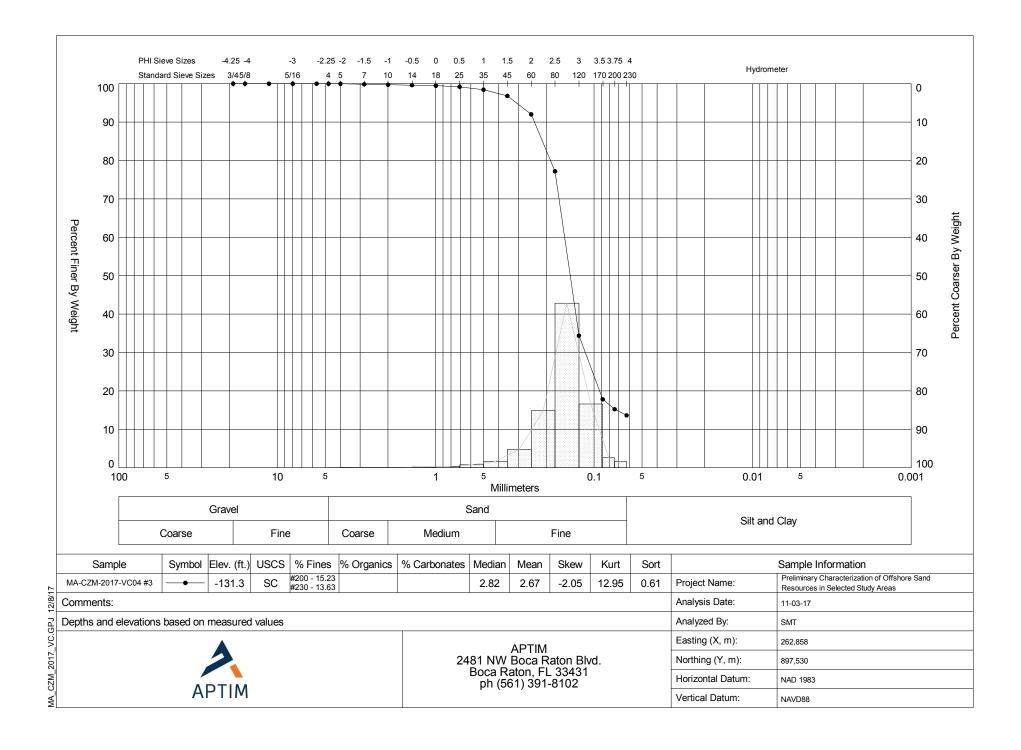

7.89

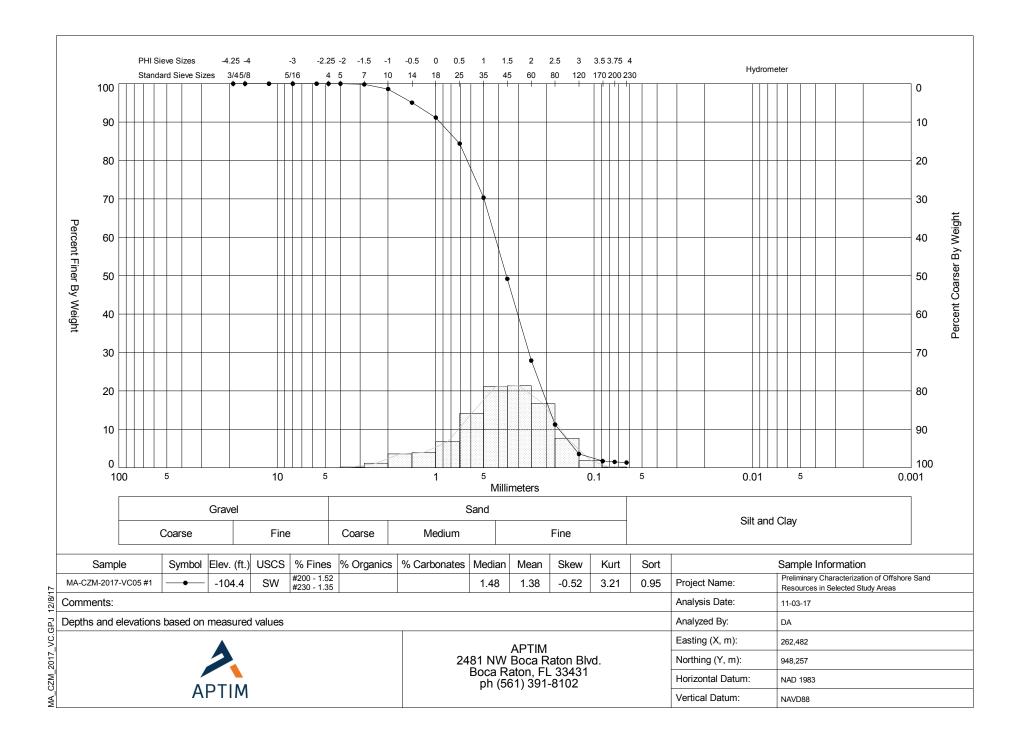

Appendix C (digital only)

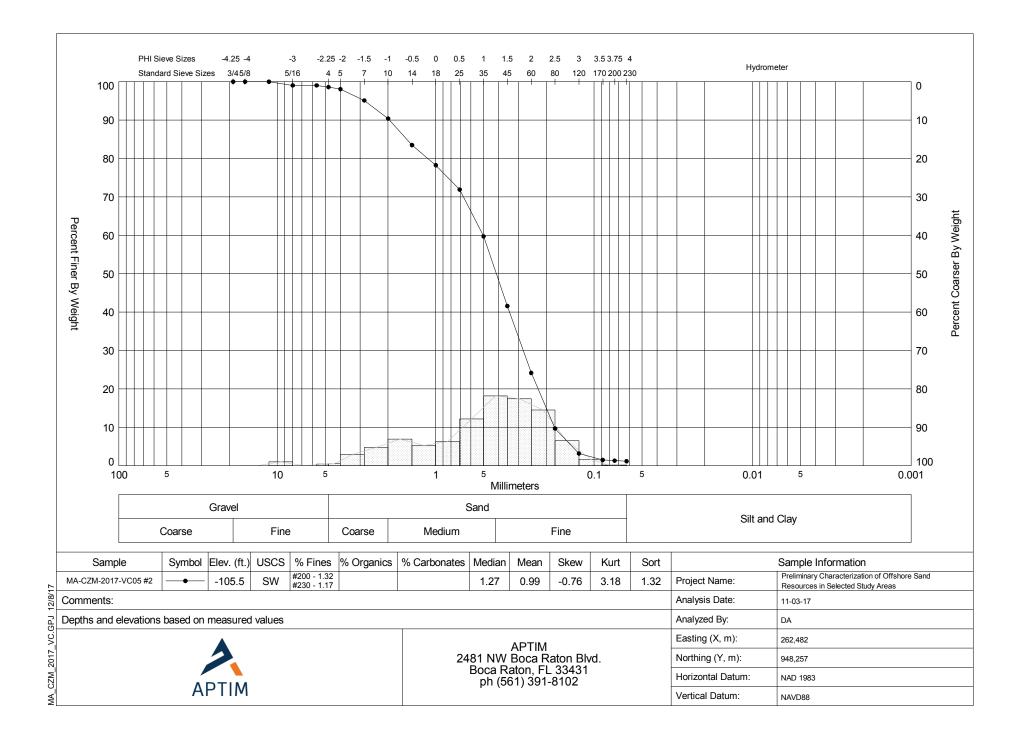

Vibracore Granularmetric Reports

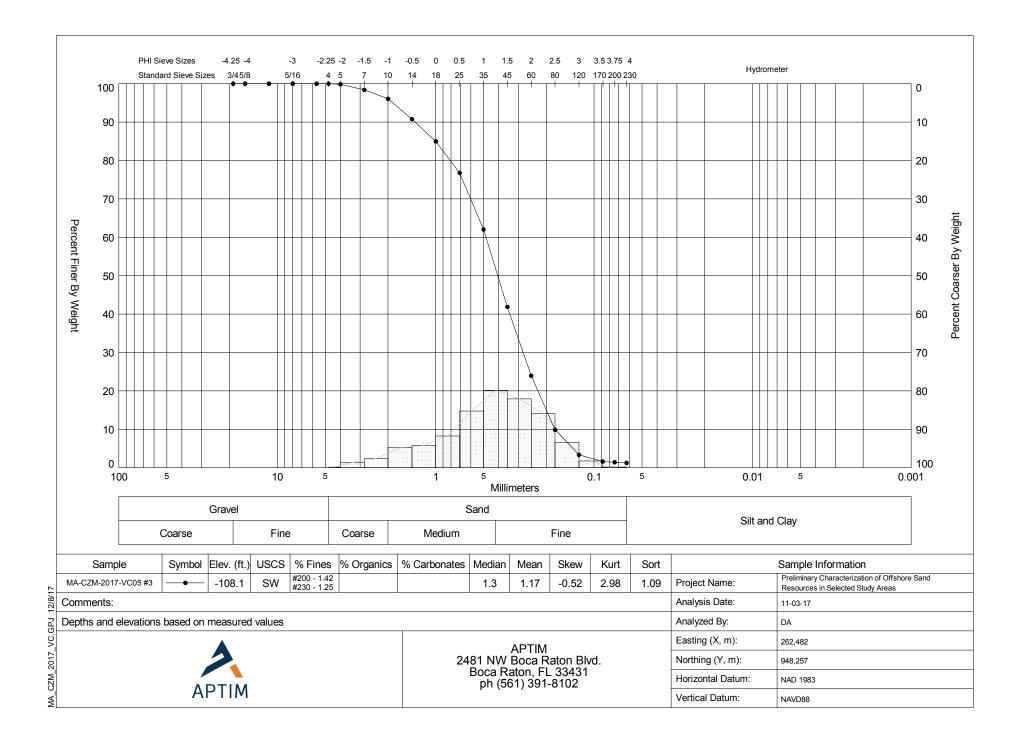
Appendix D

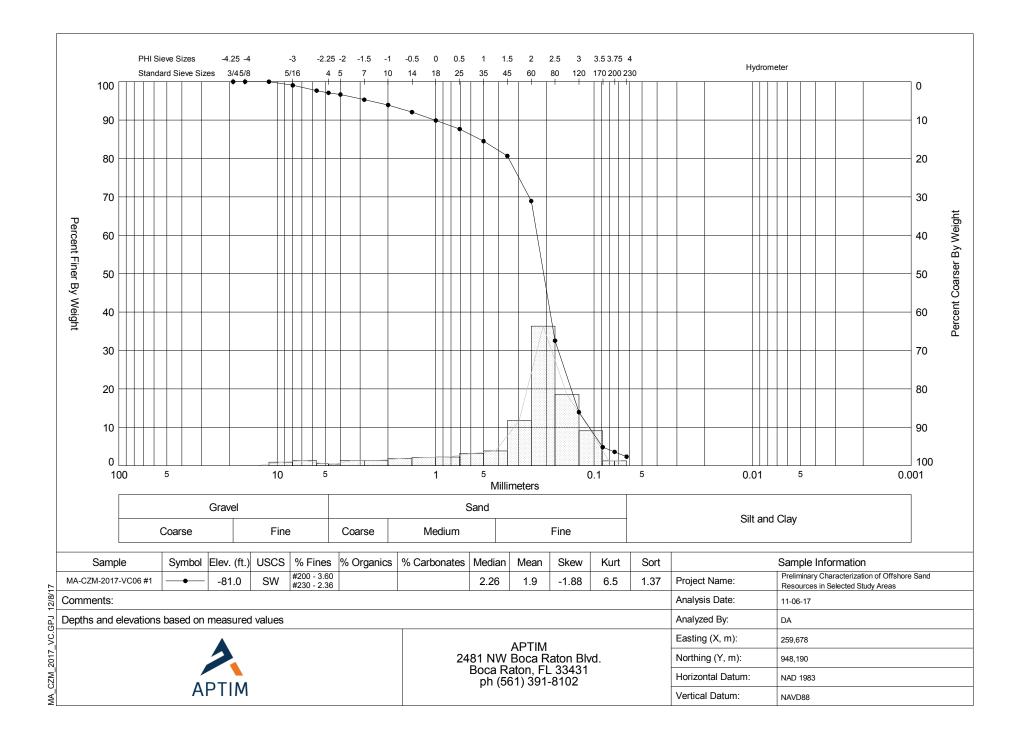

Vibracore Granularmetric Curves

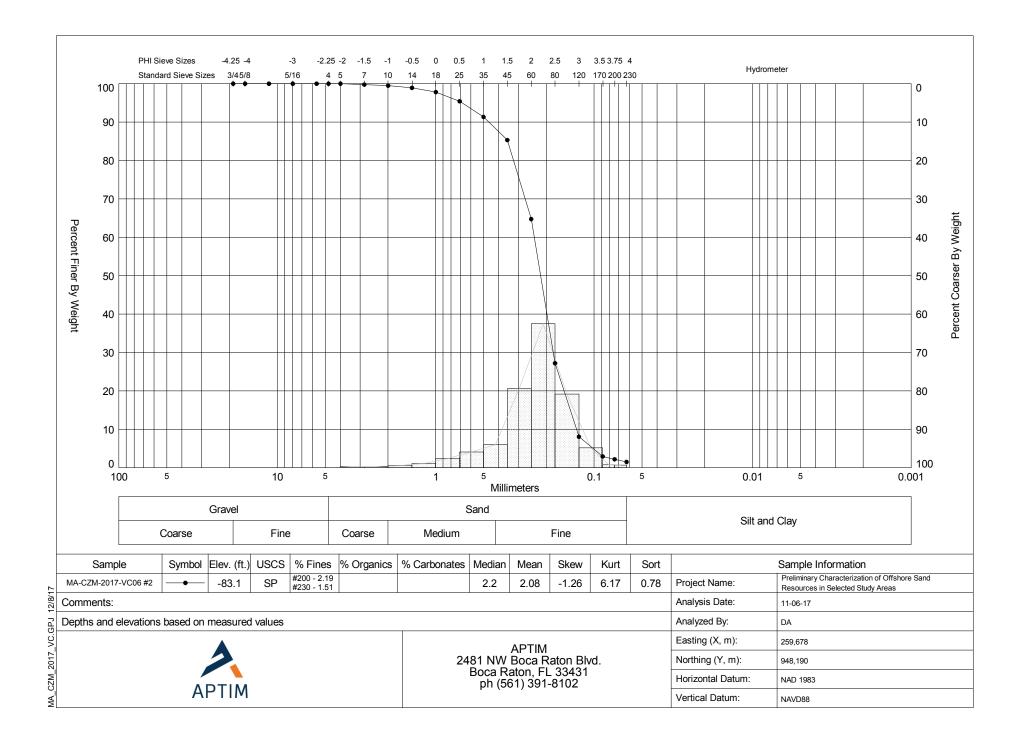


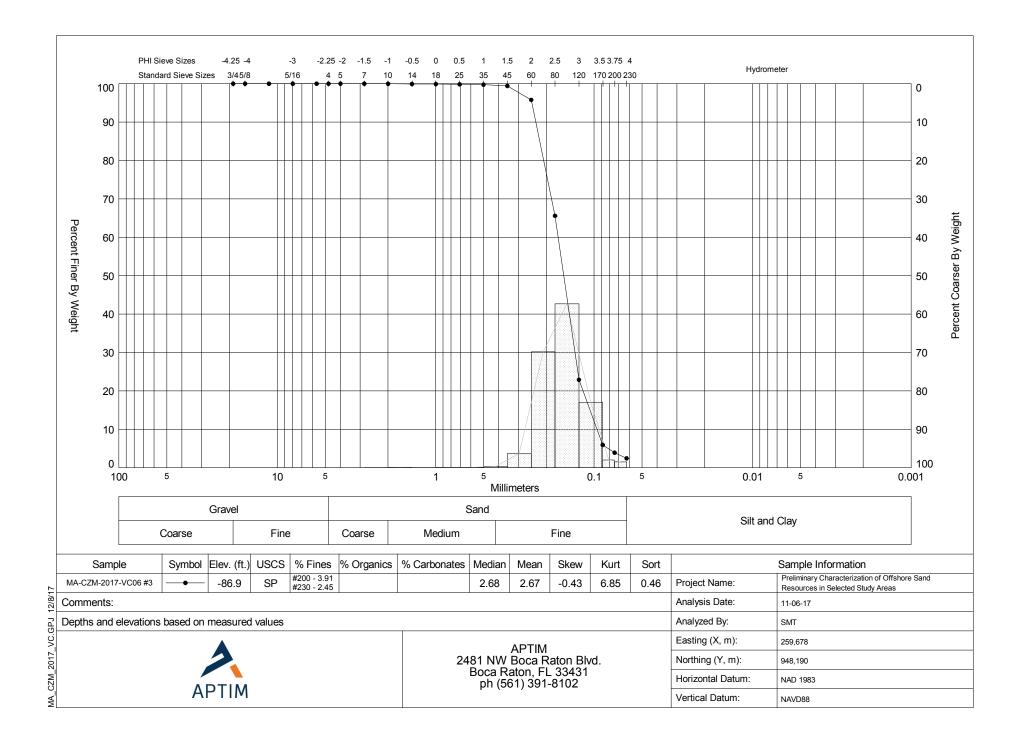


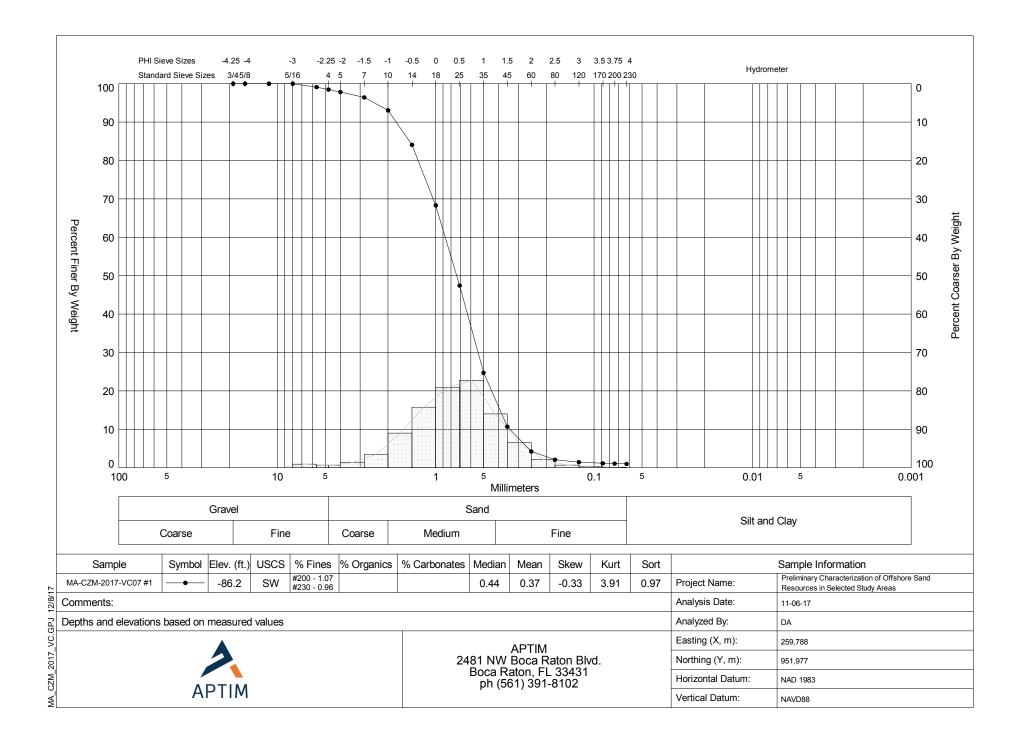


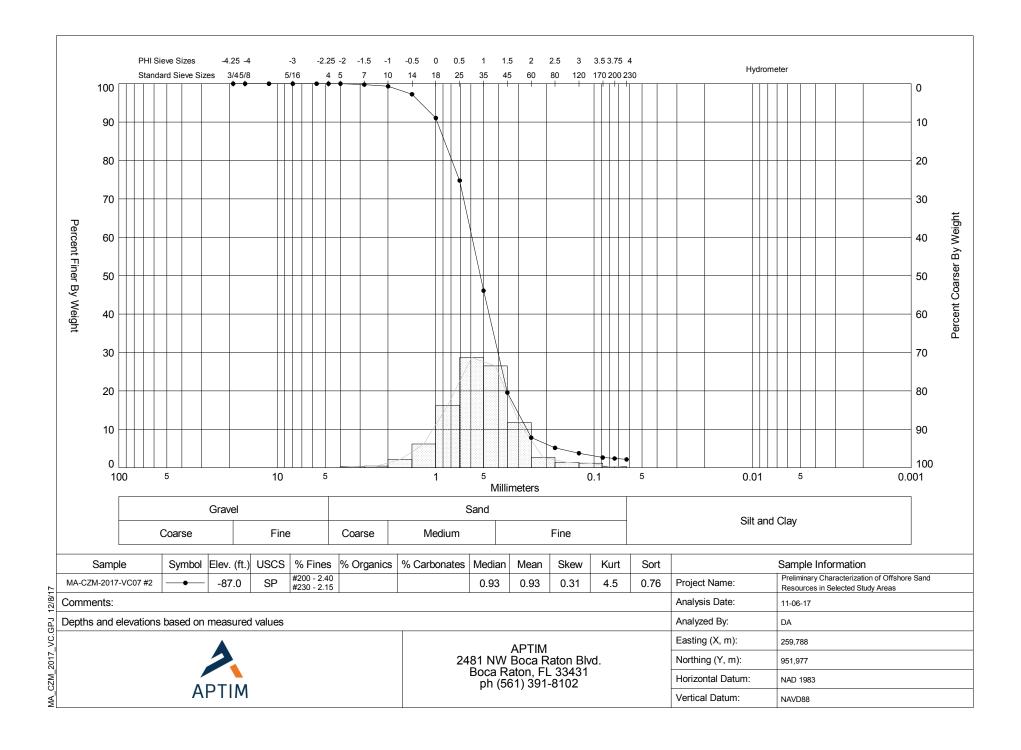


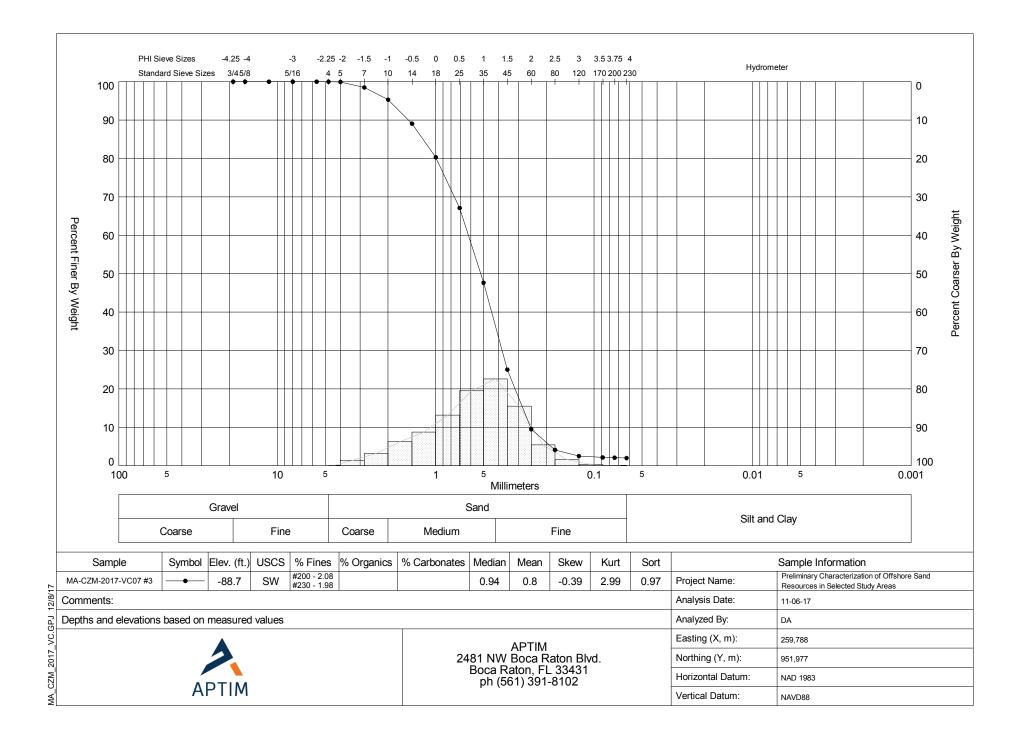


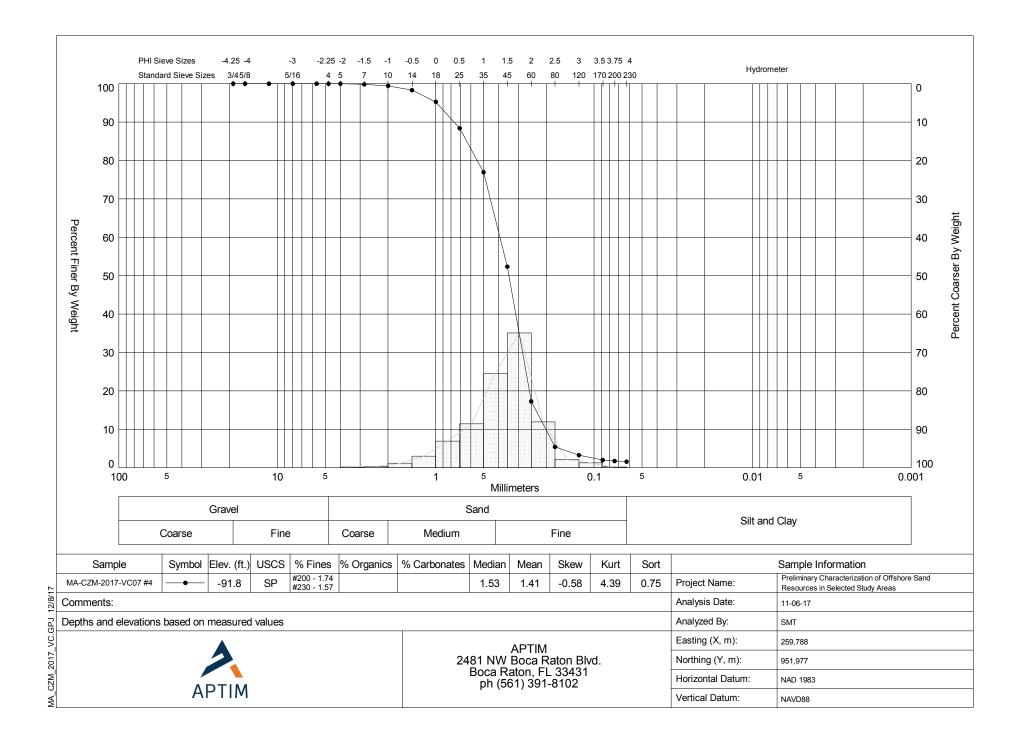


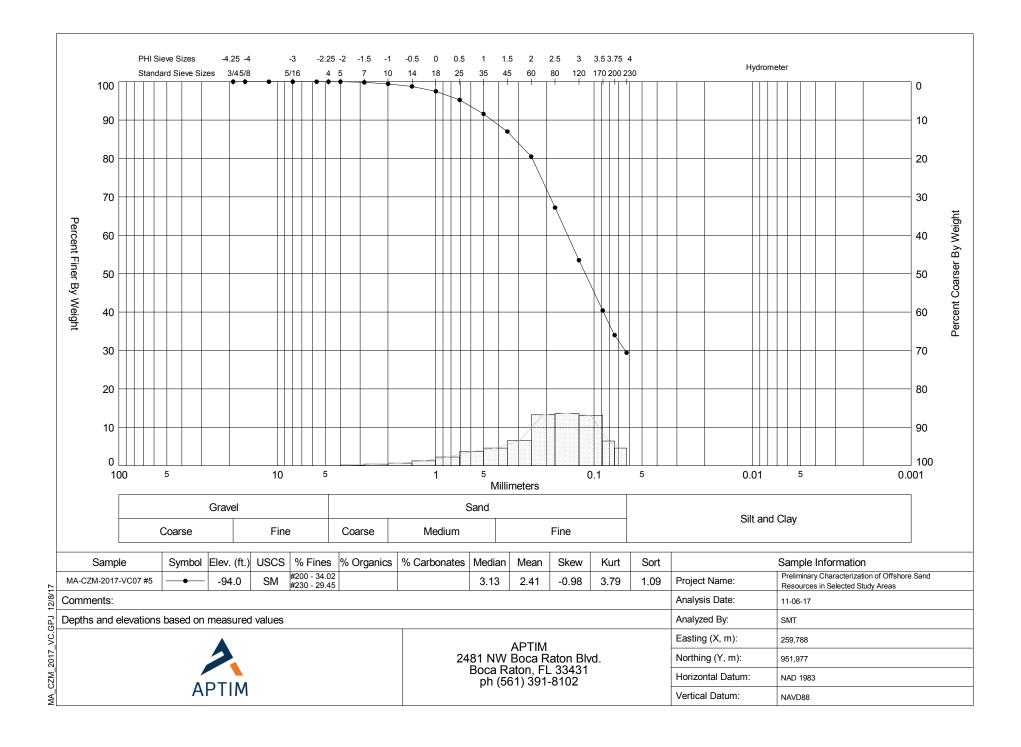


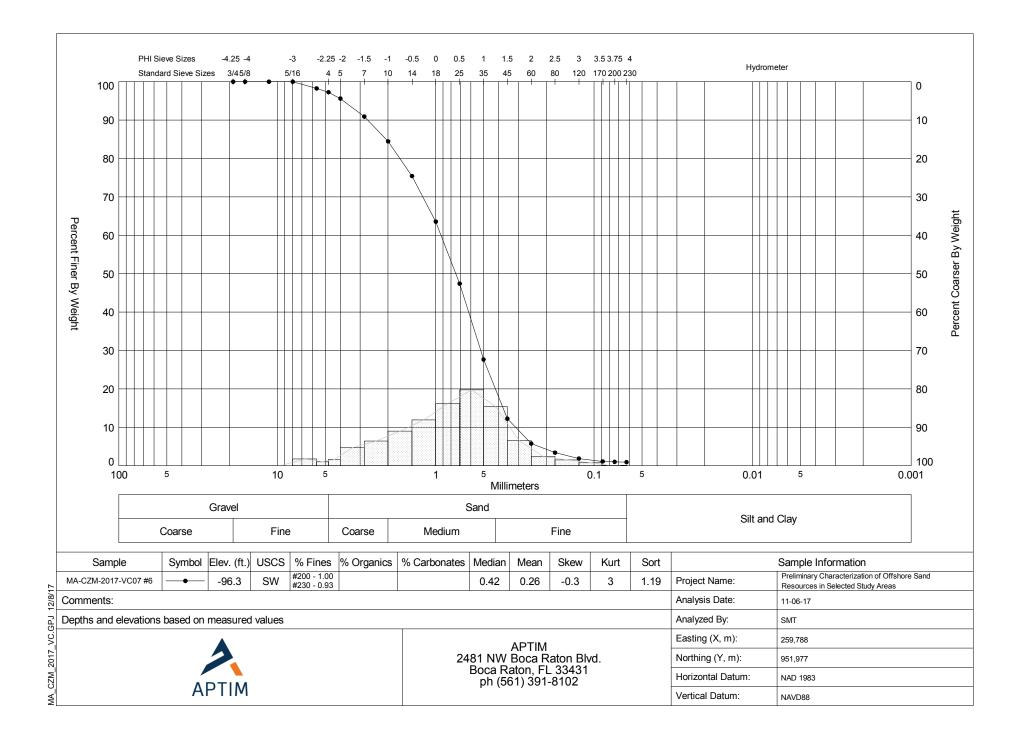


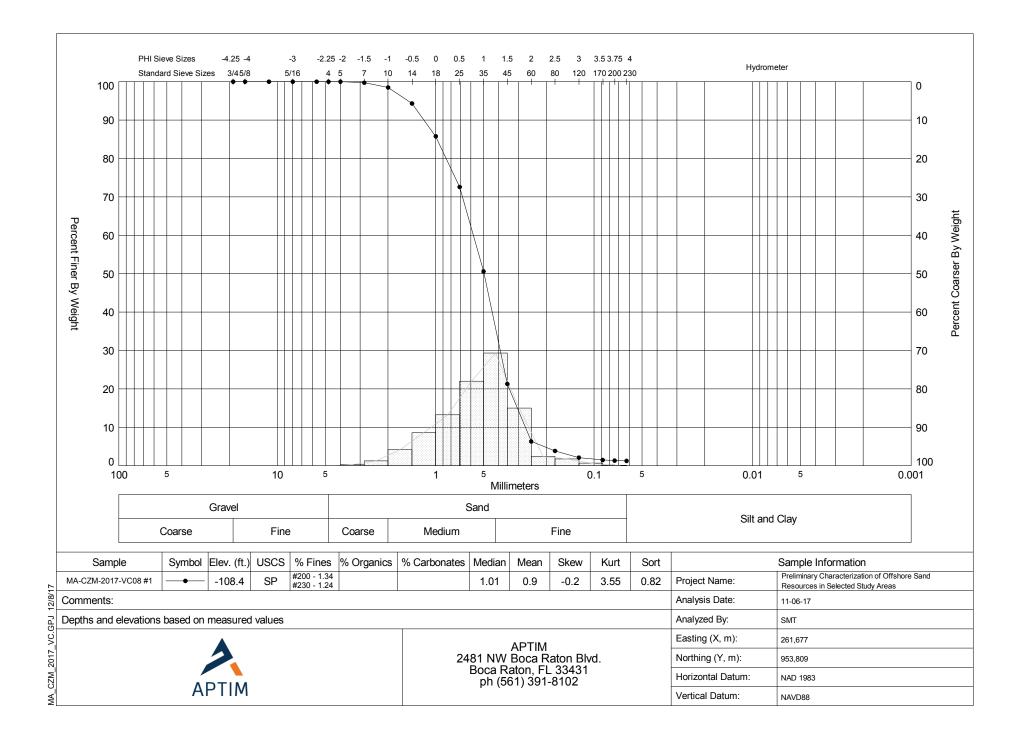


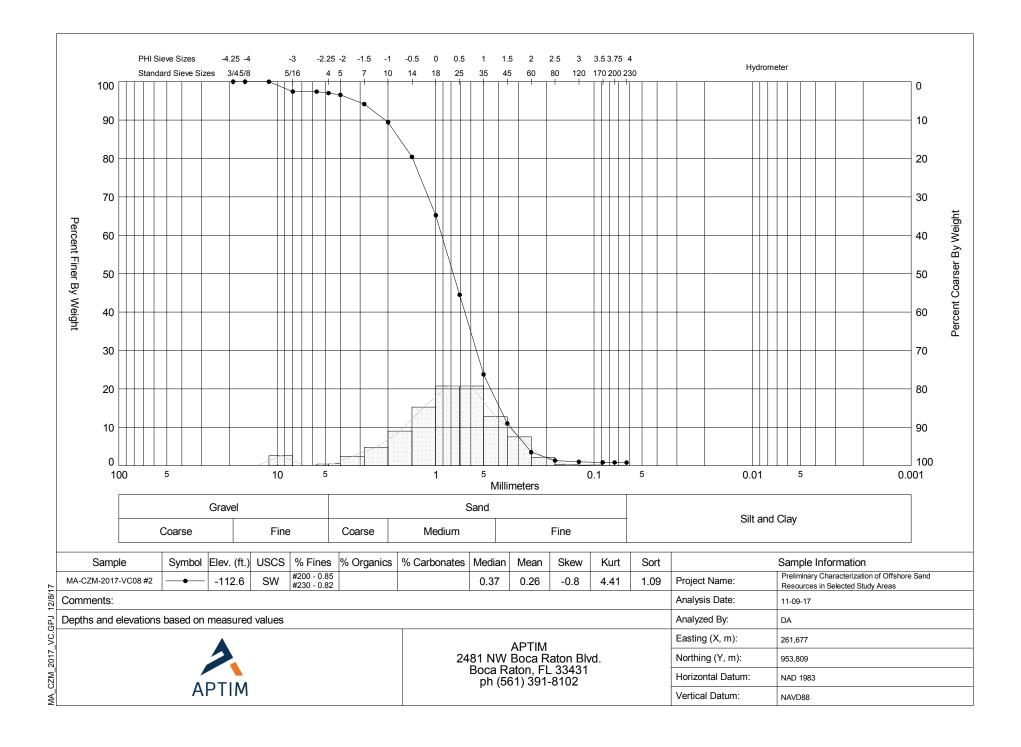


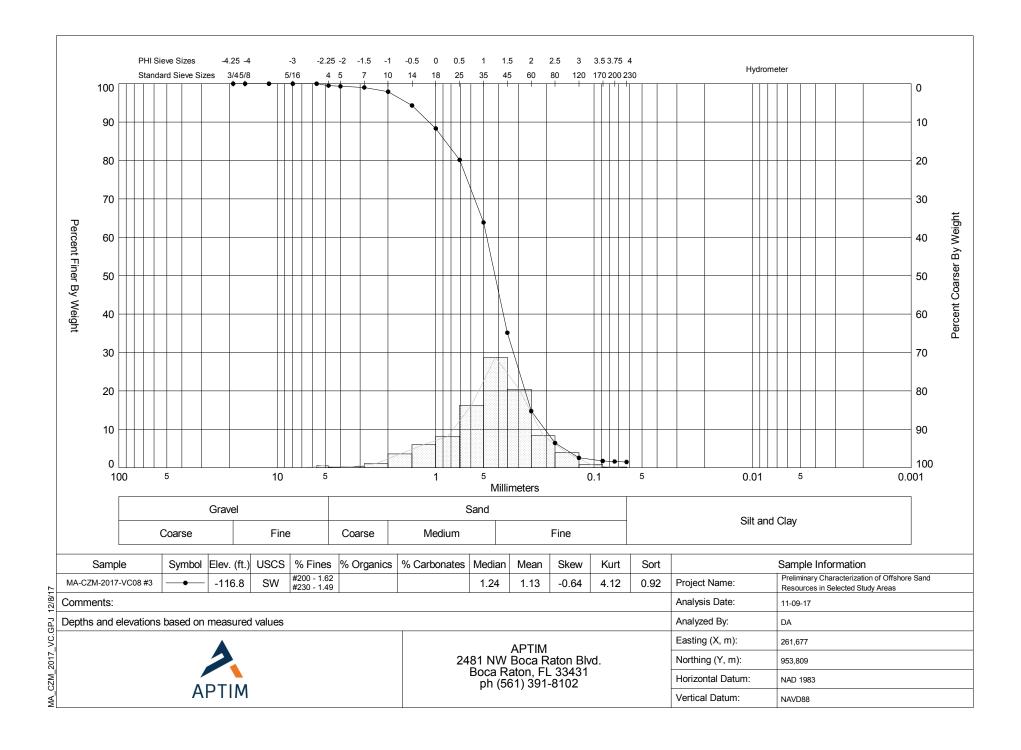


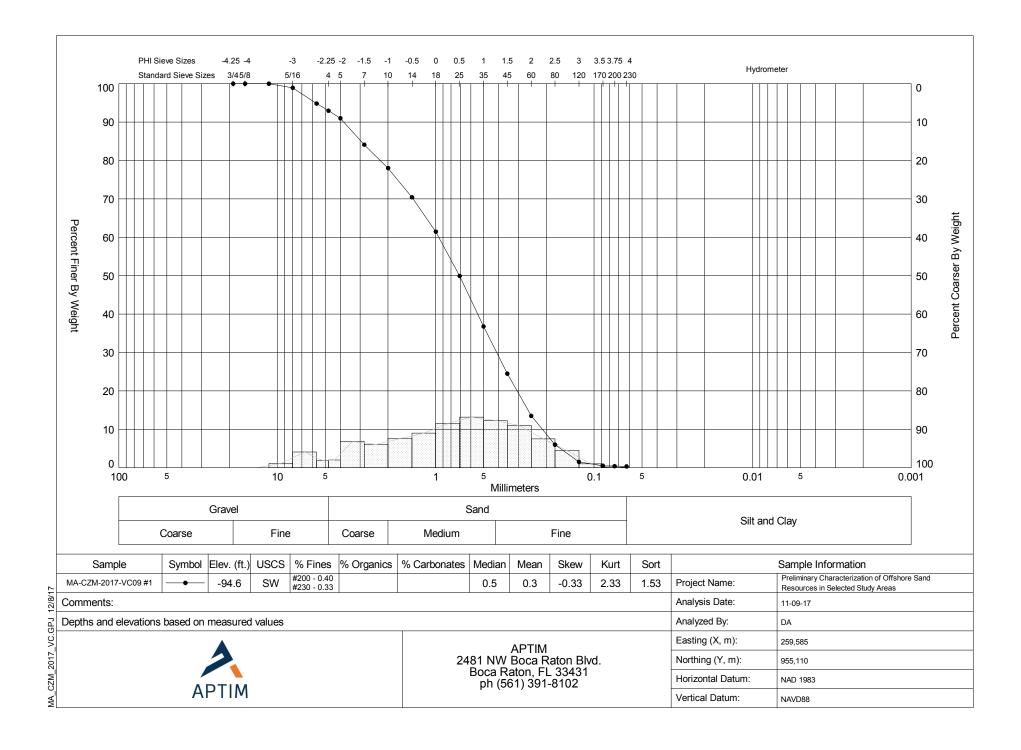


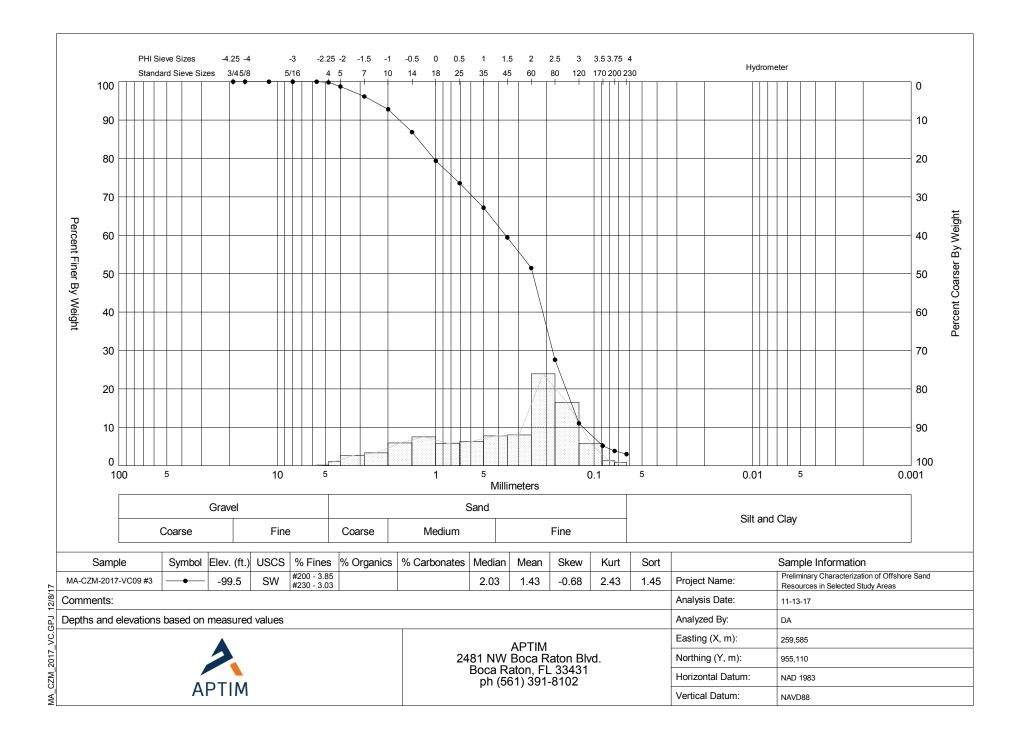


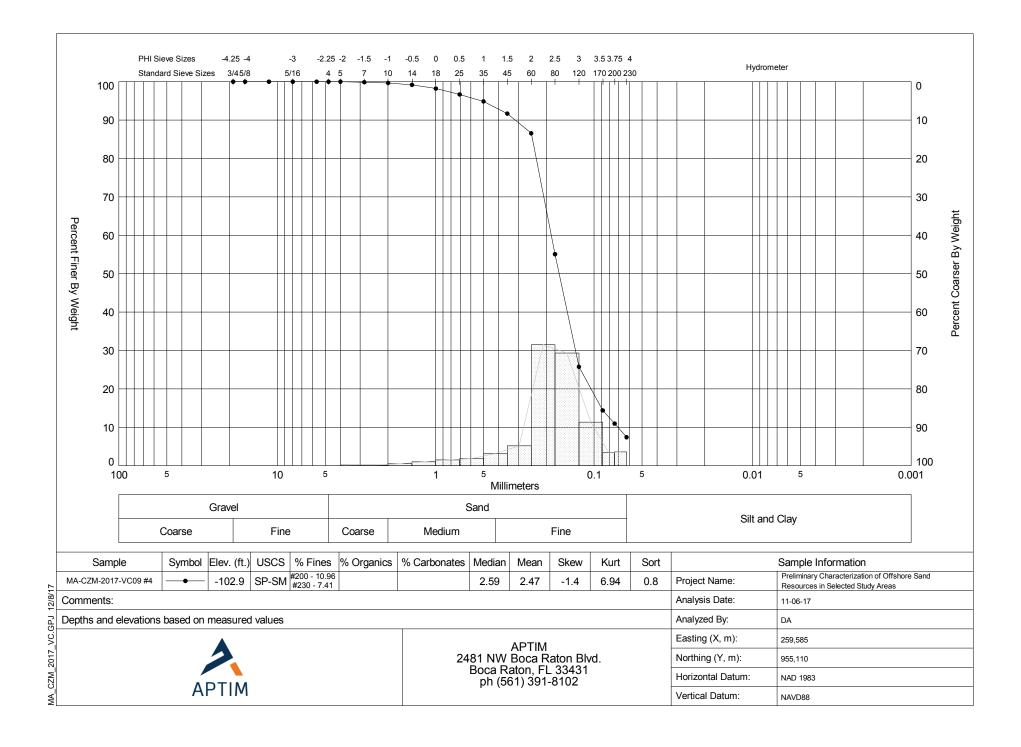


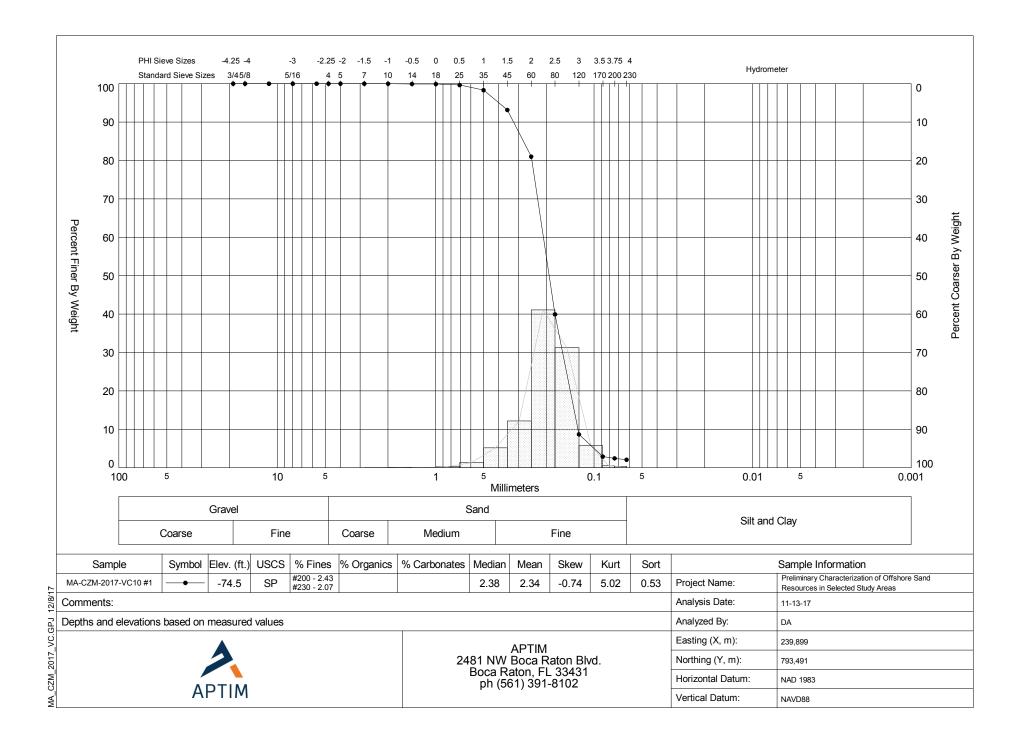


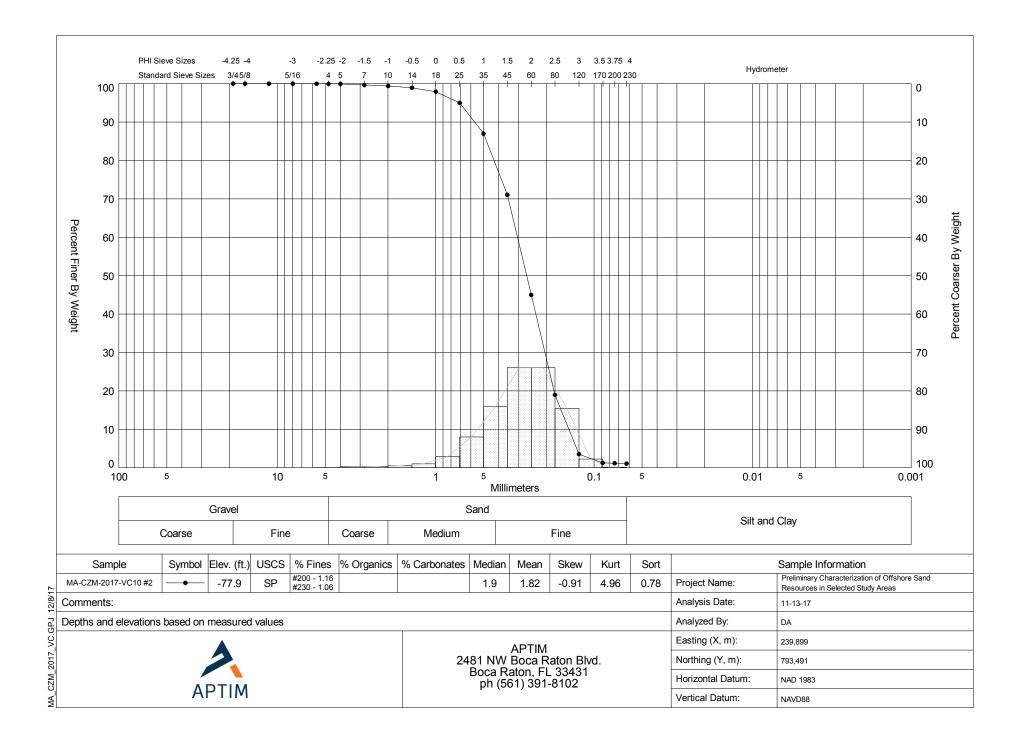


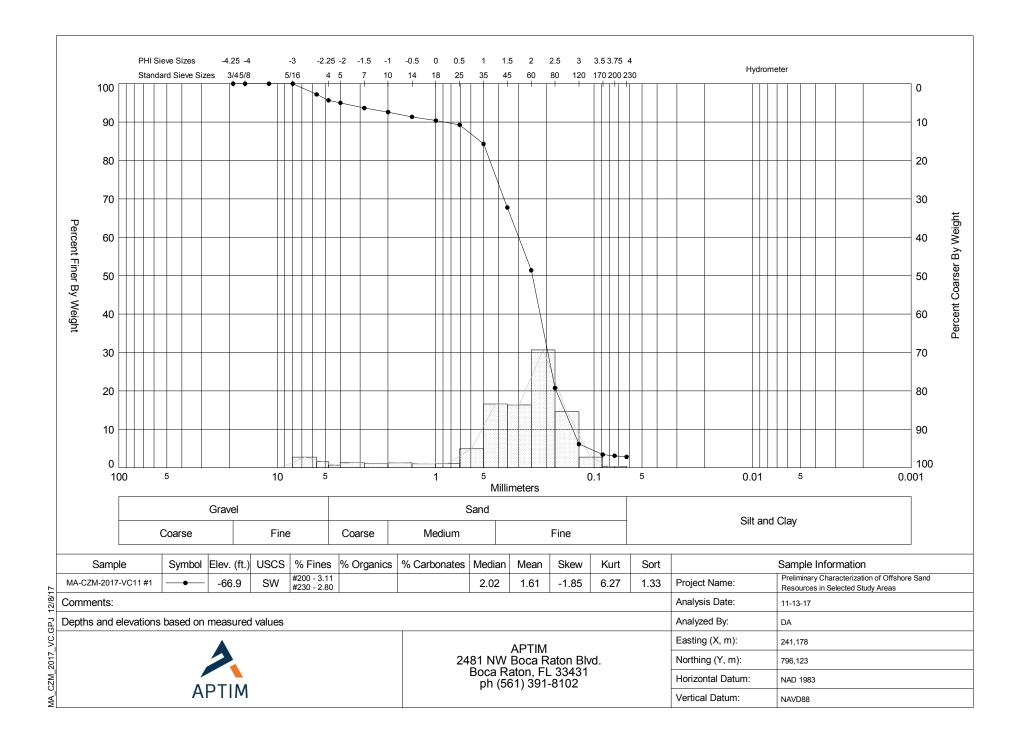


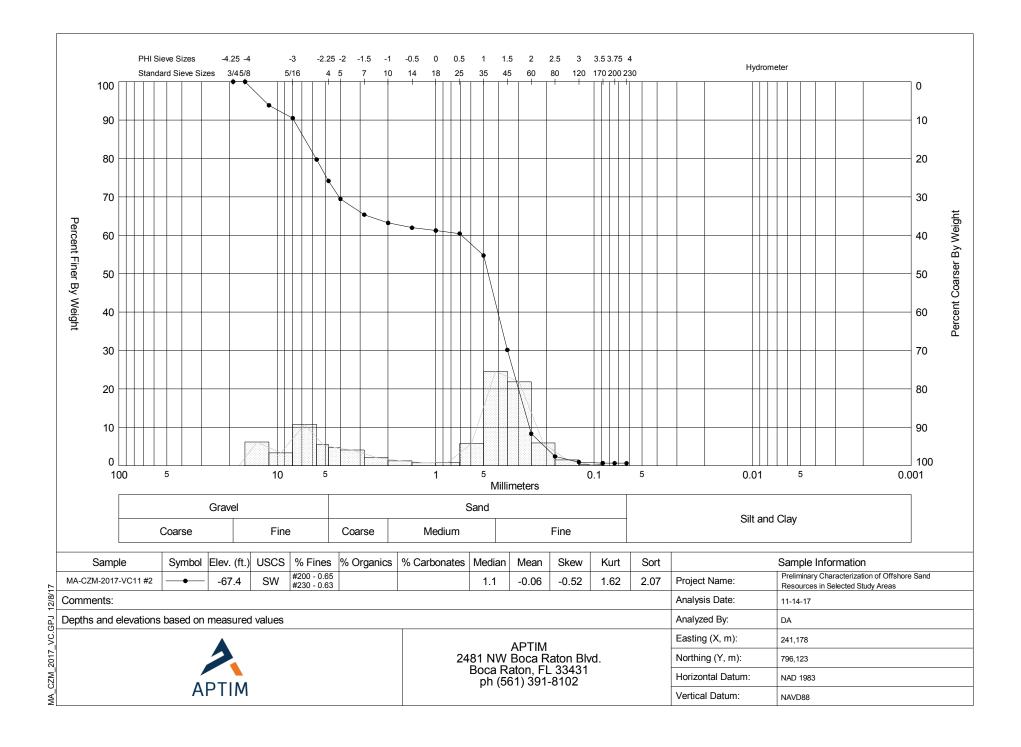


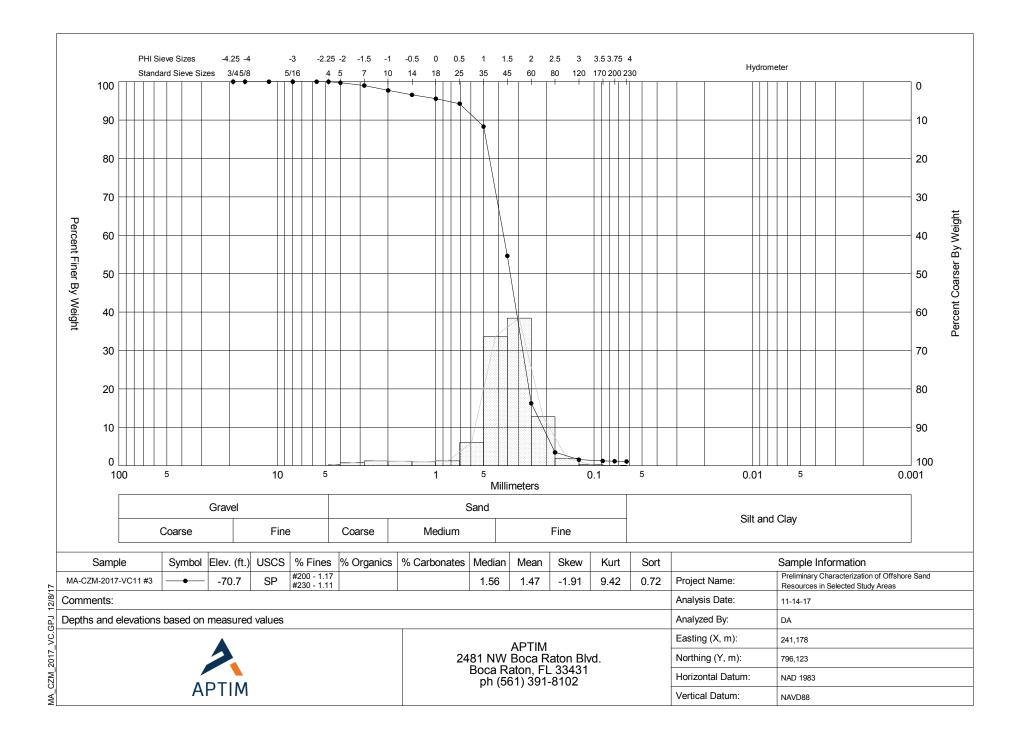


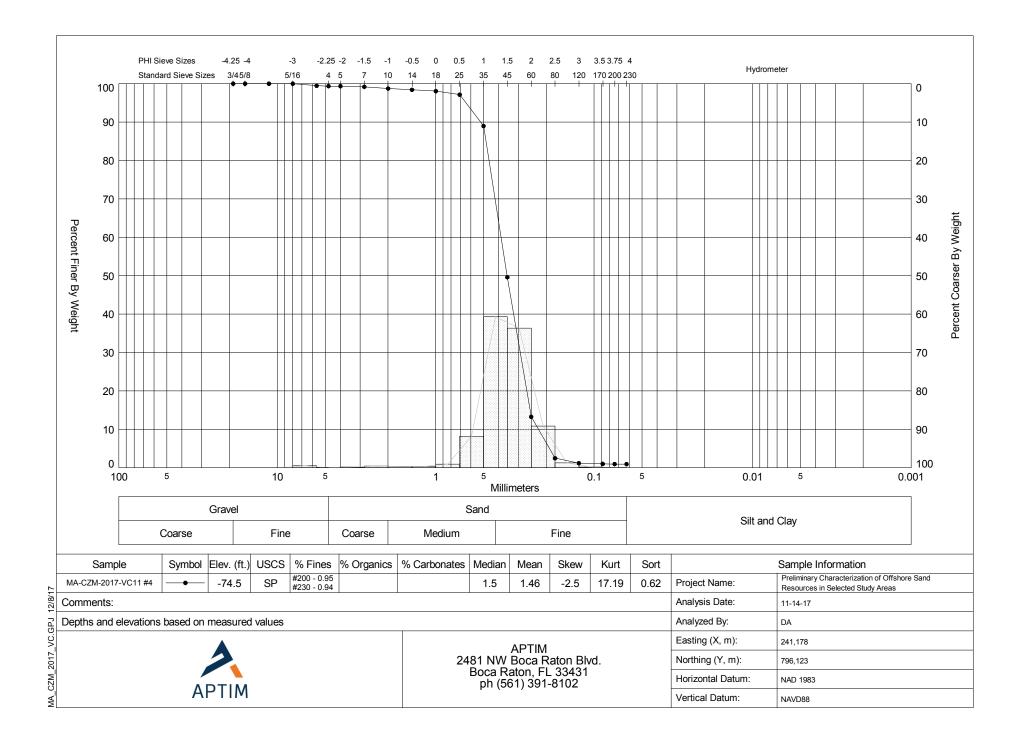


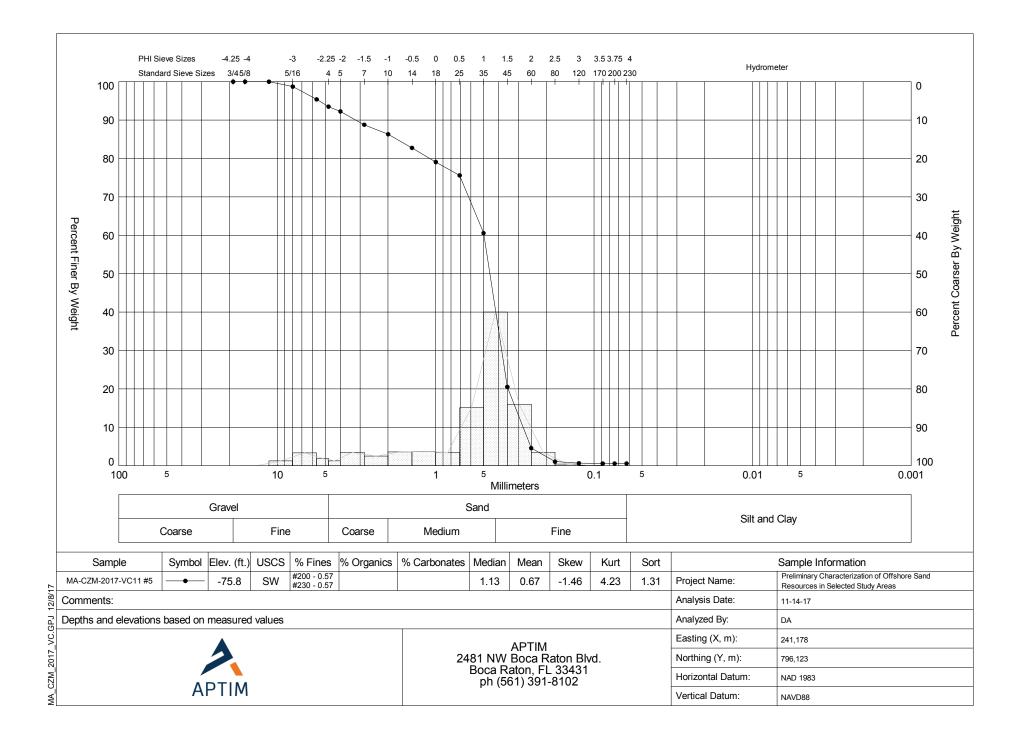


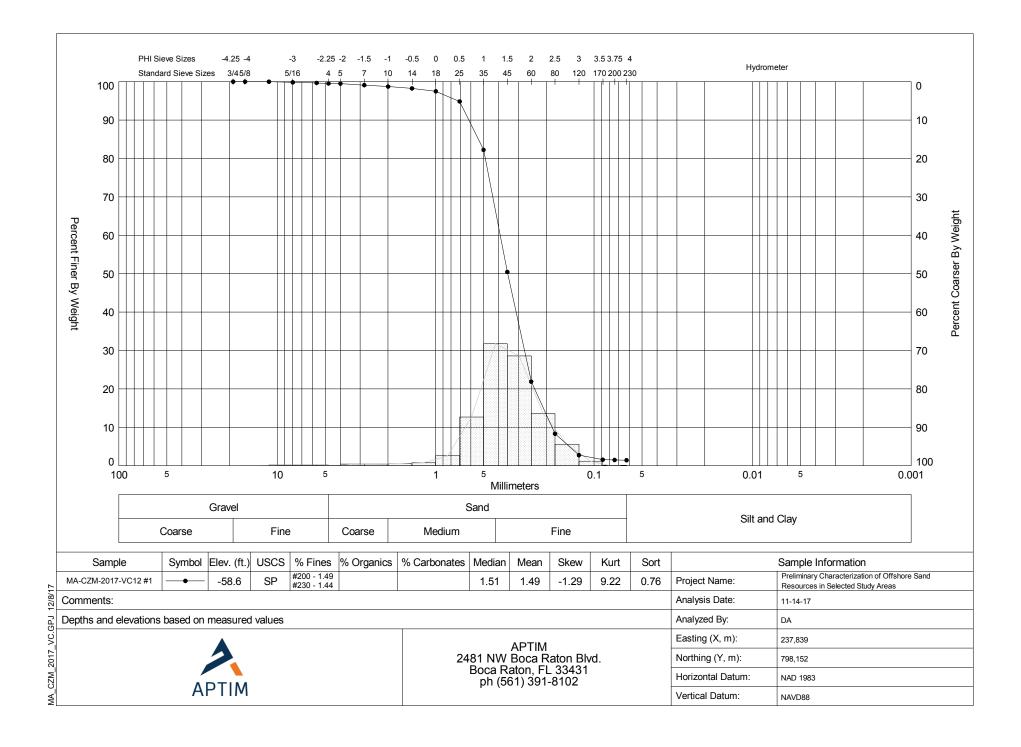


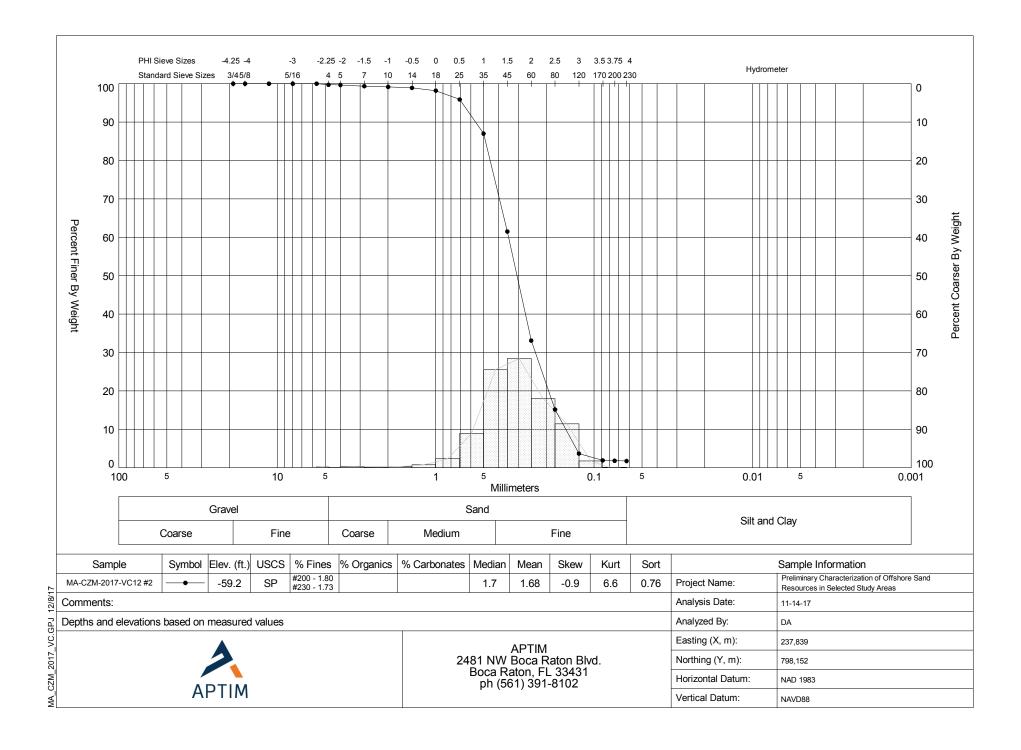


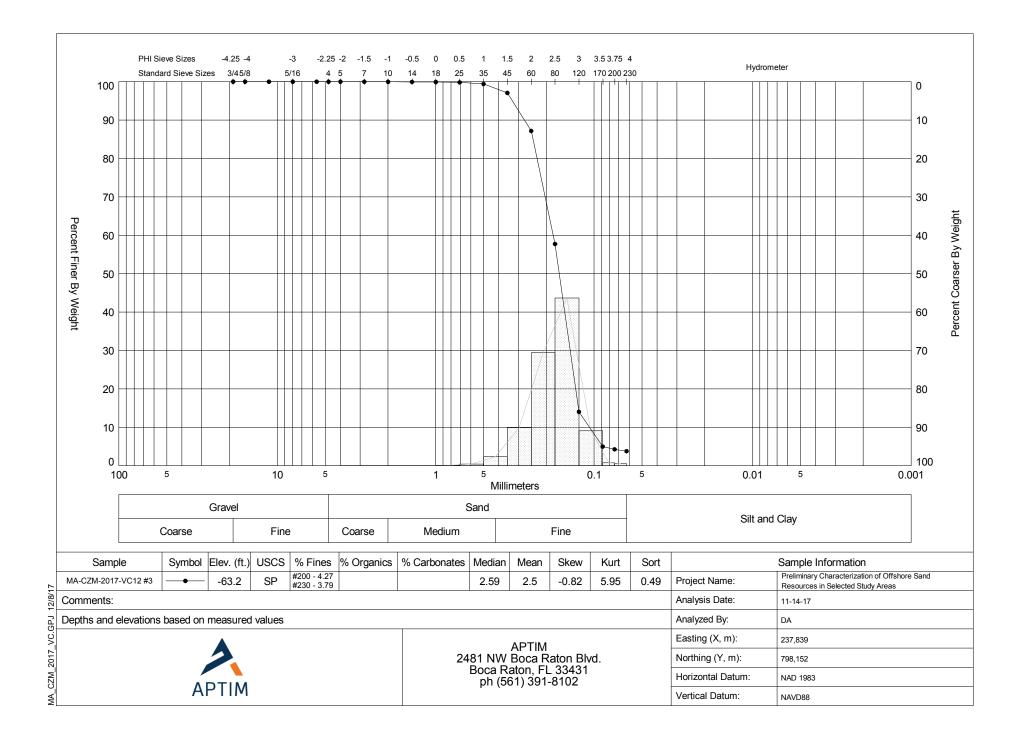


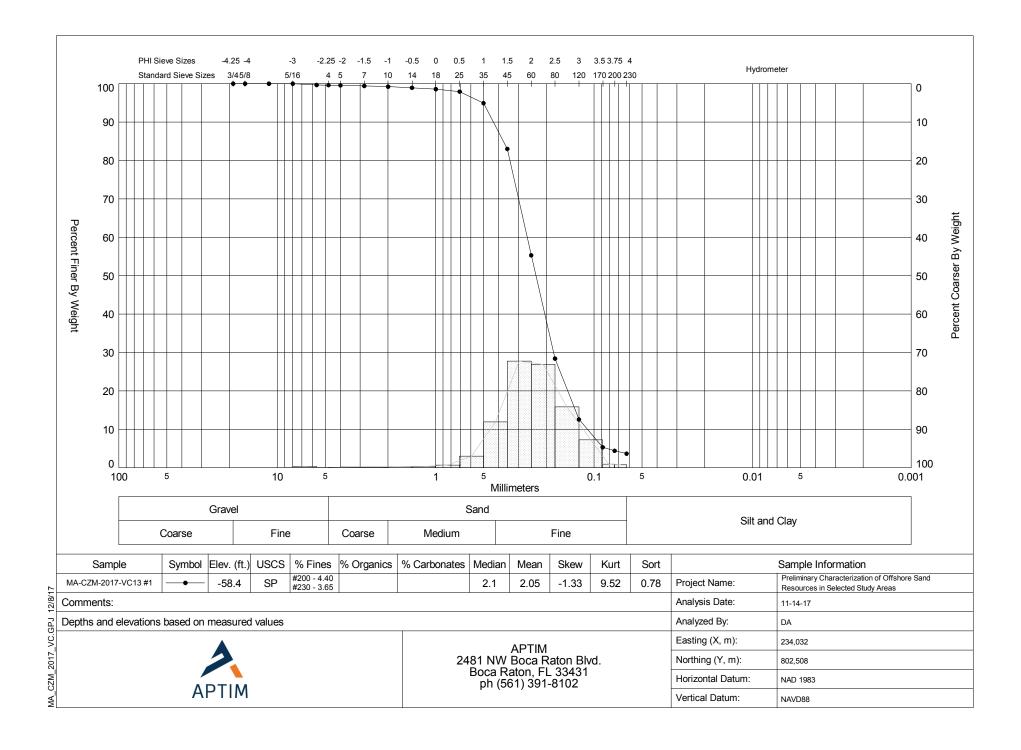


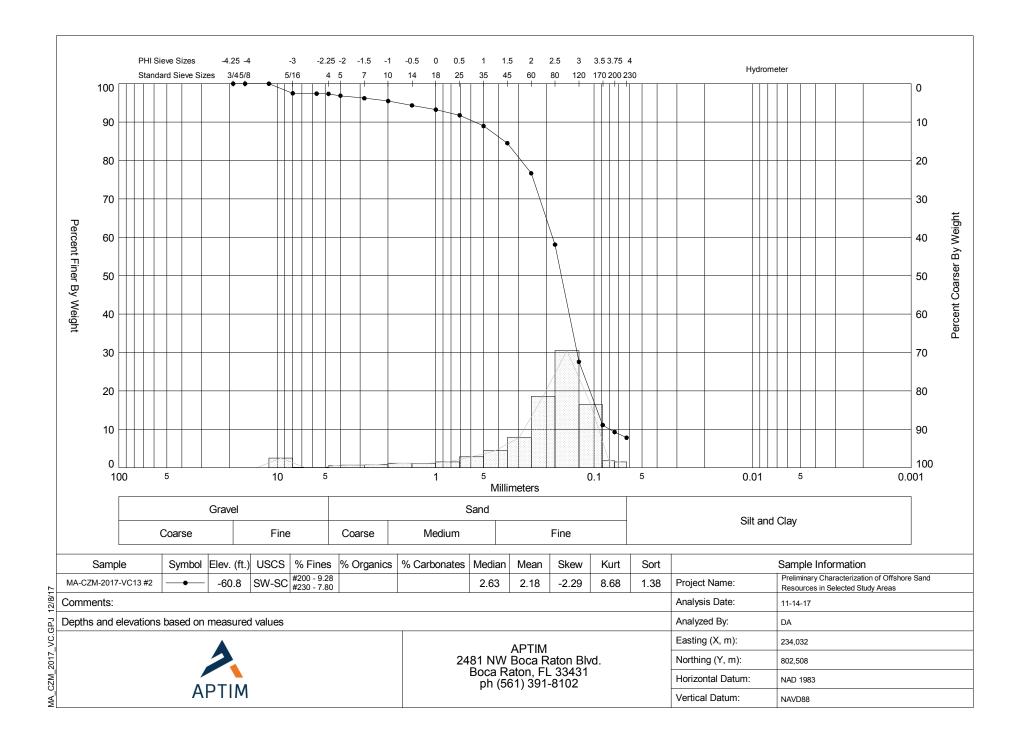


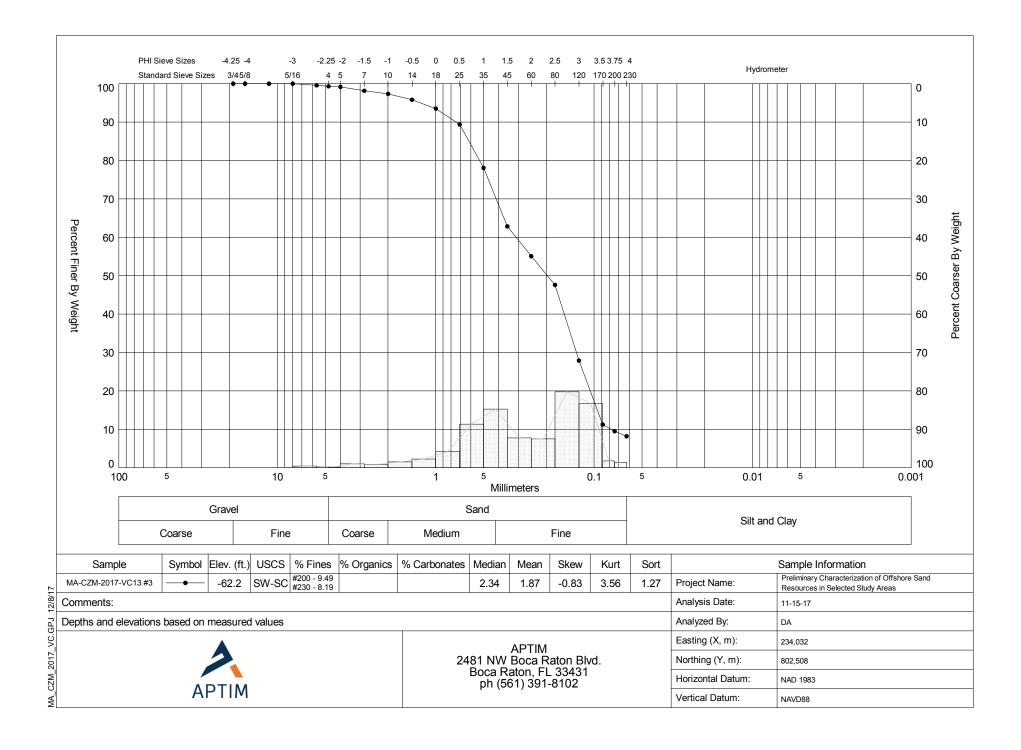


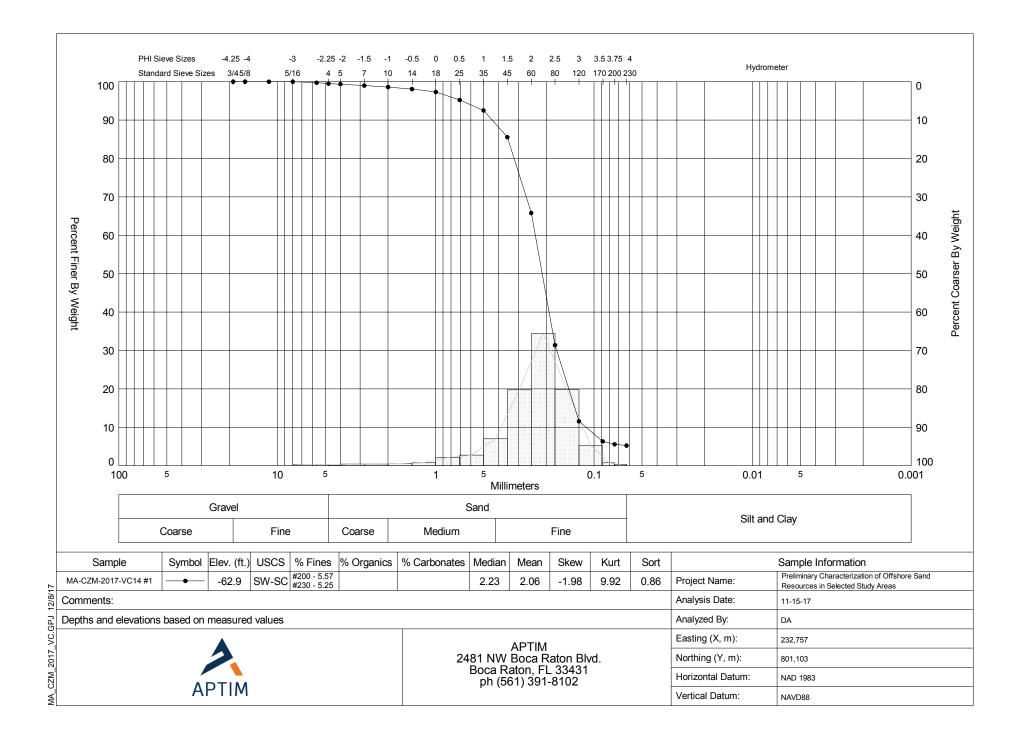


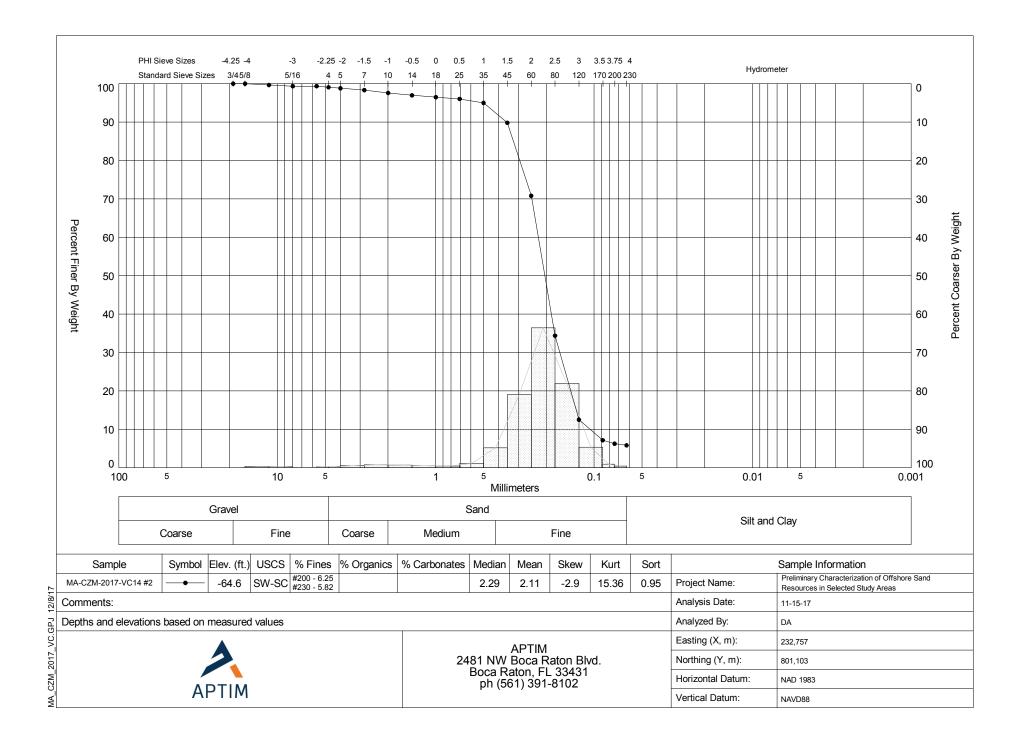


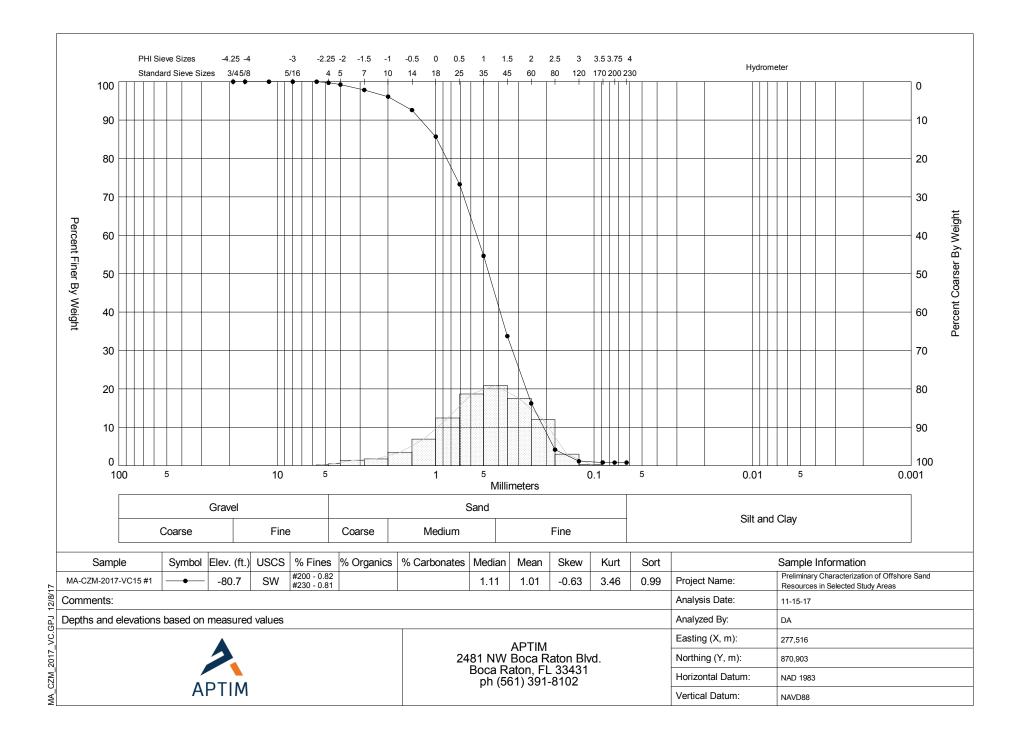


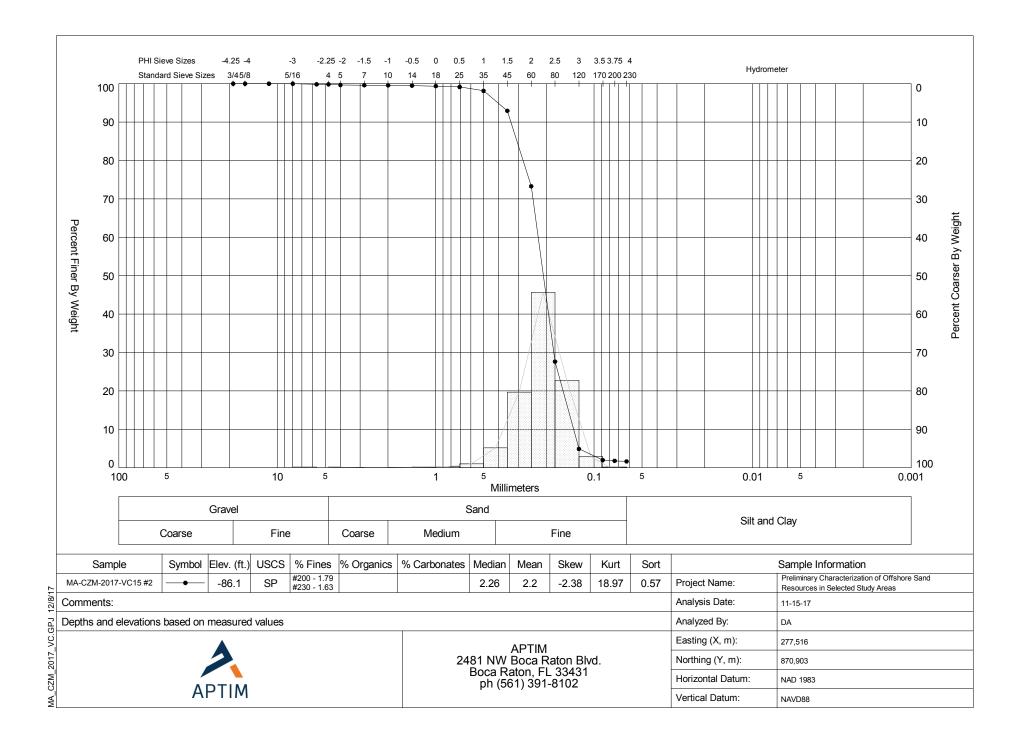


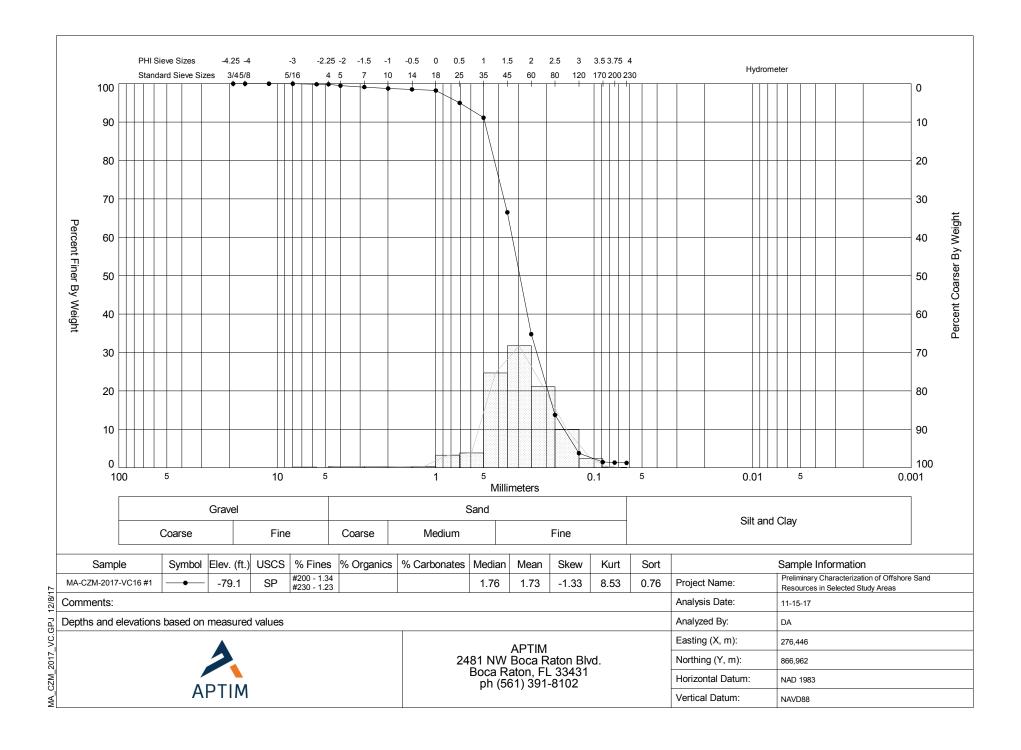


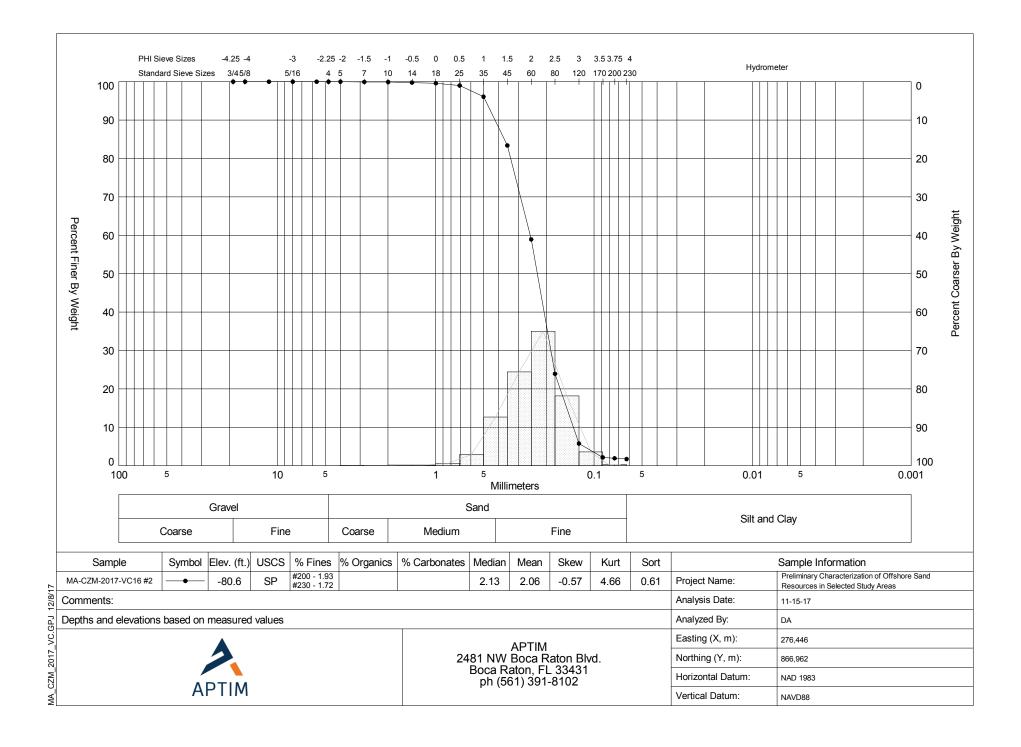


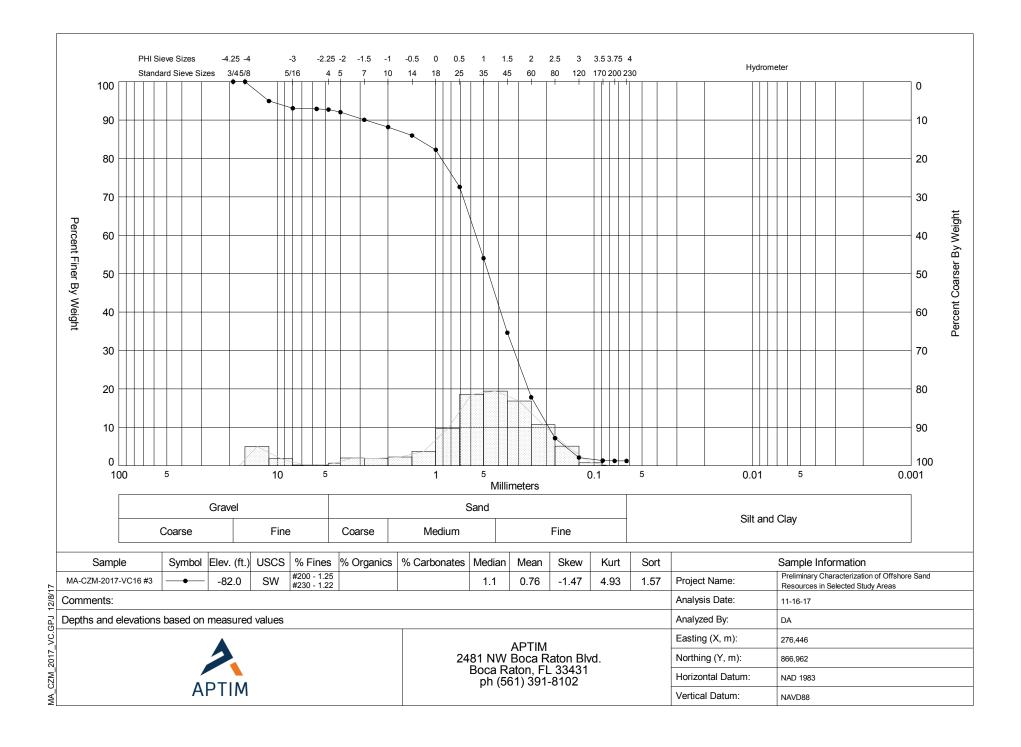


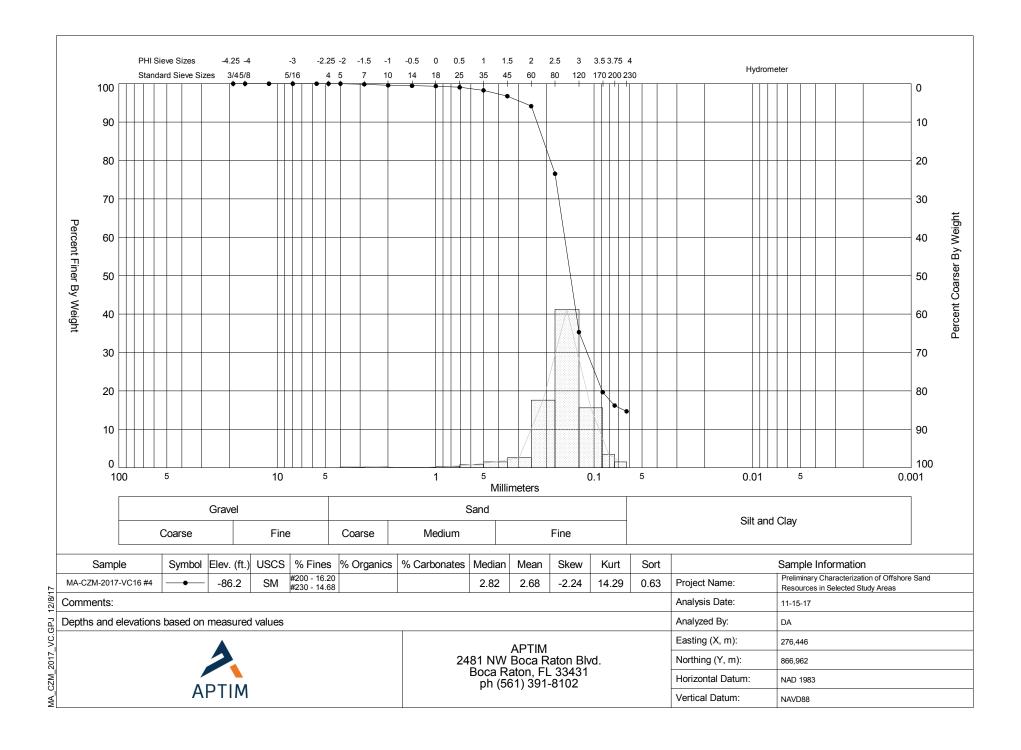


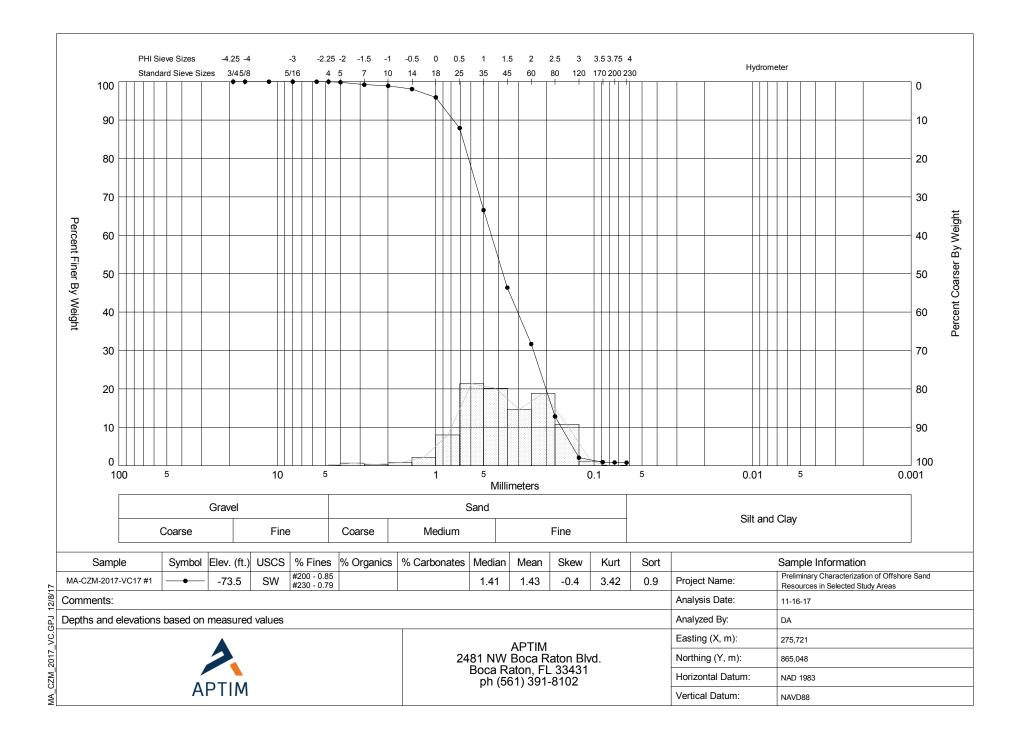


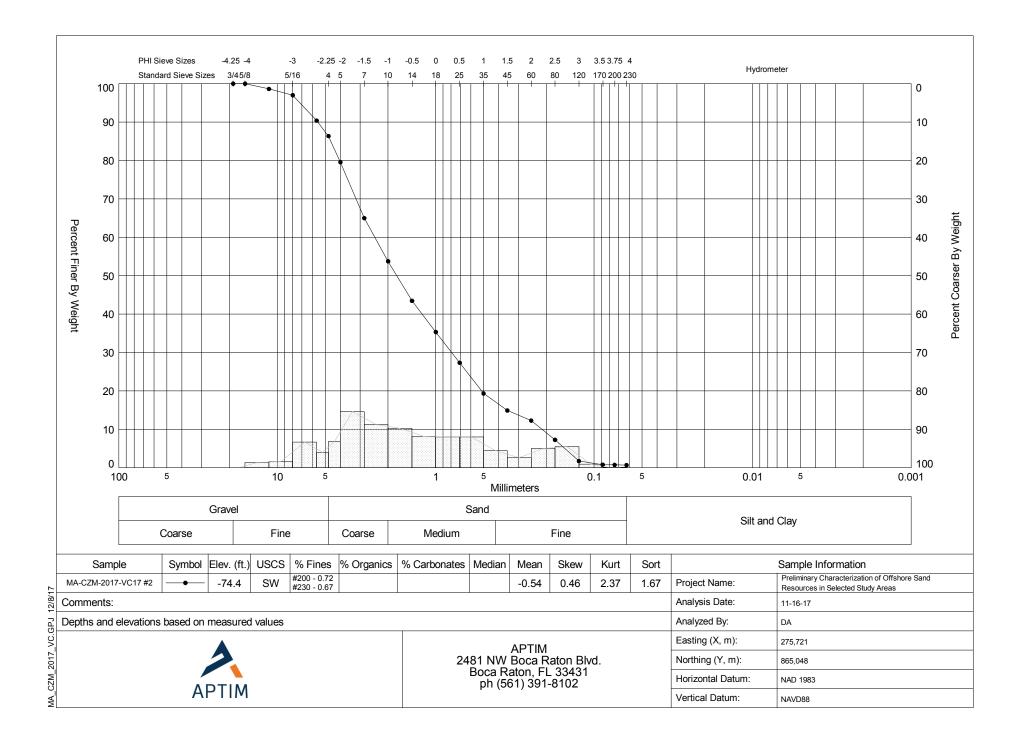


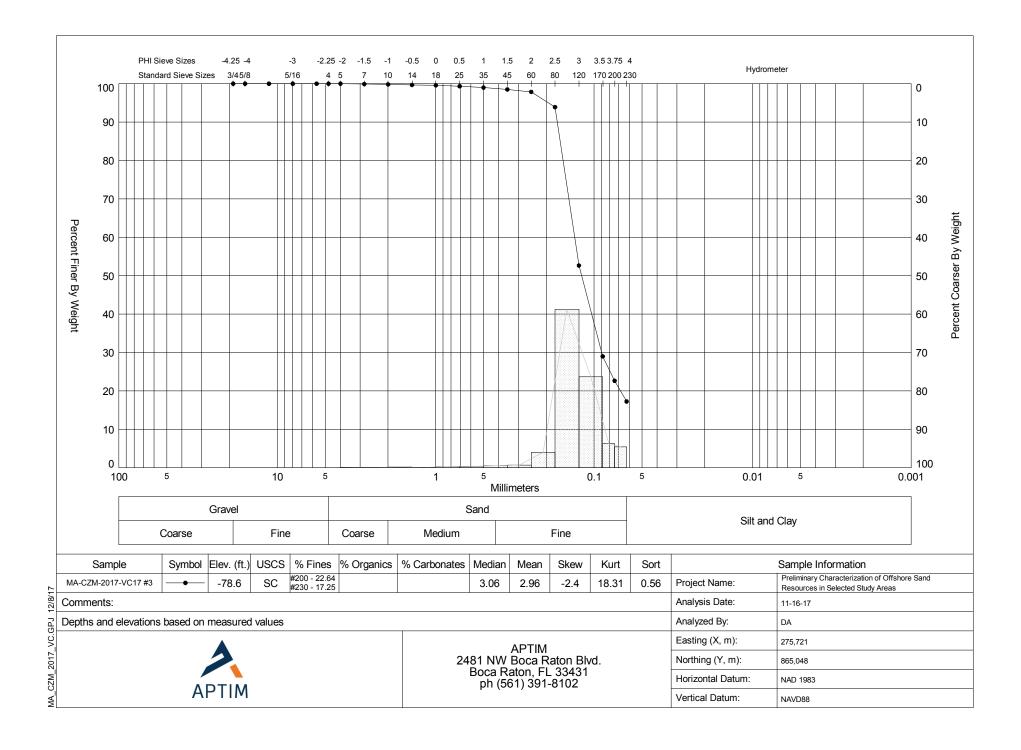


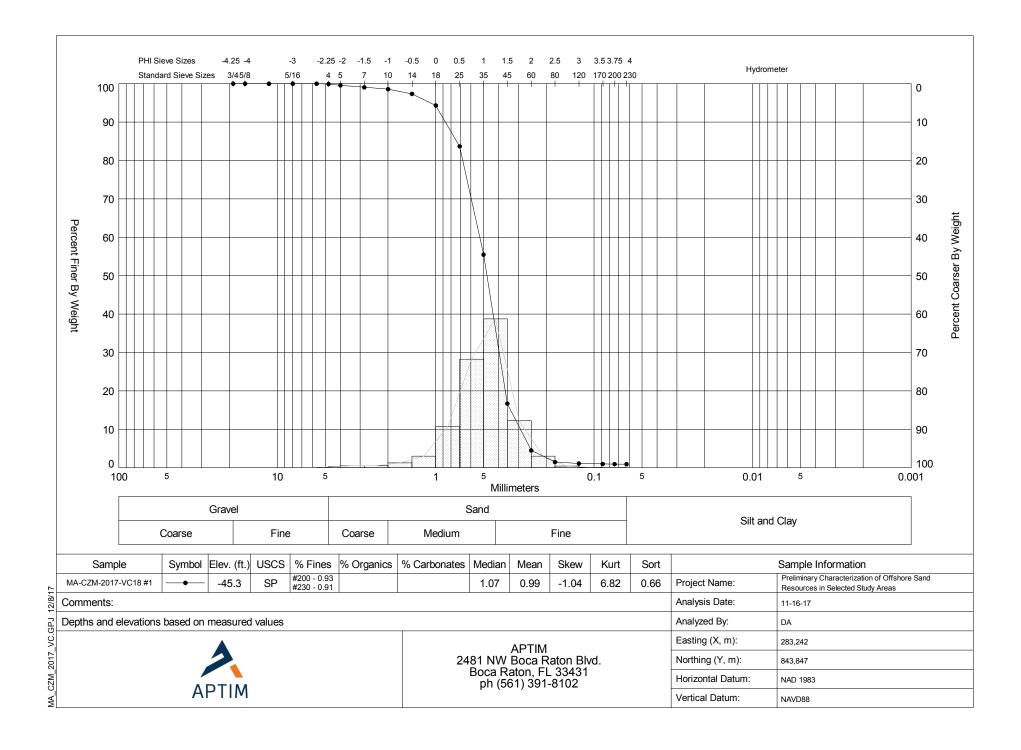


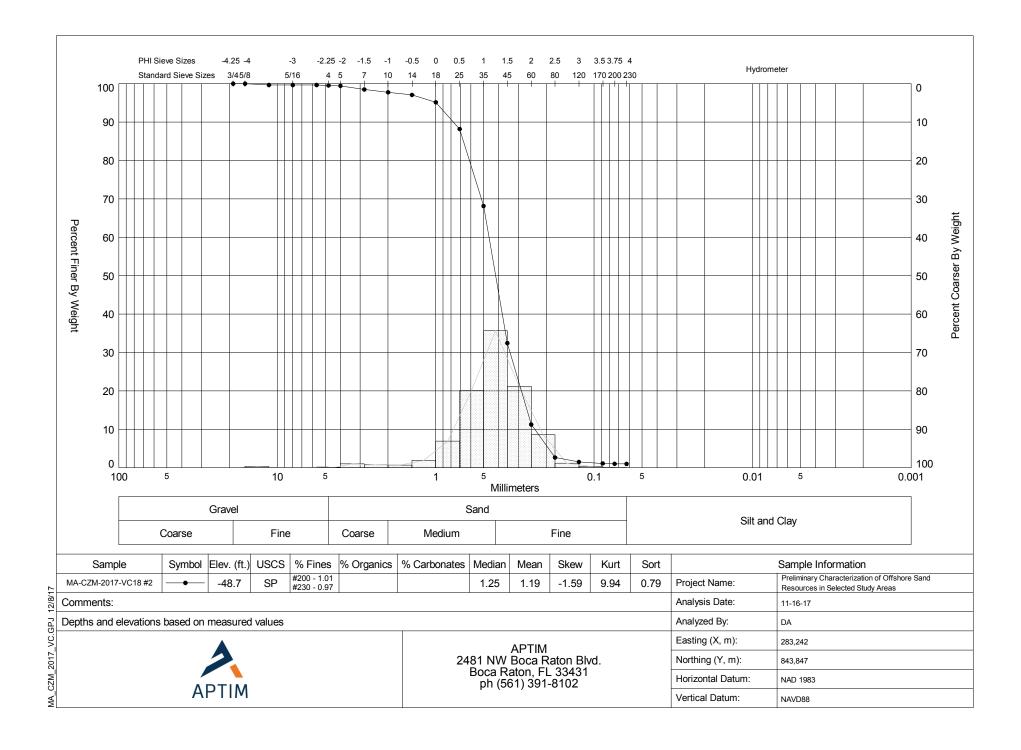


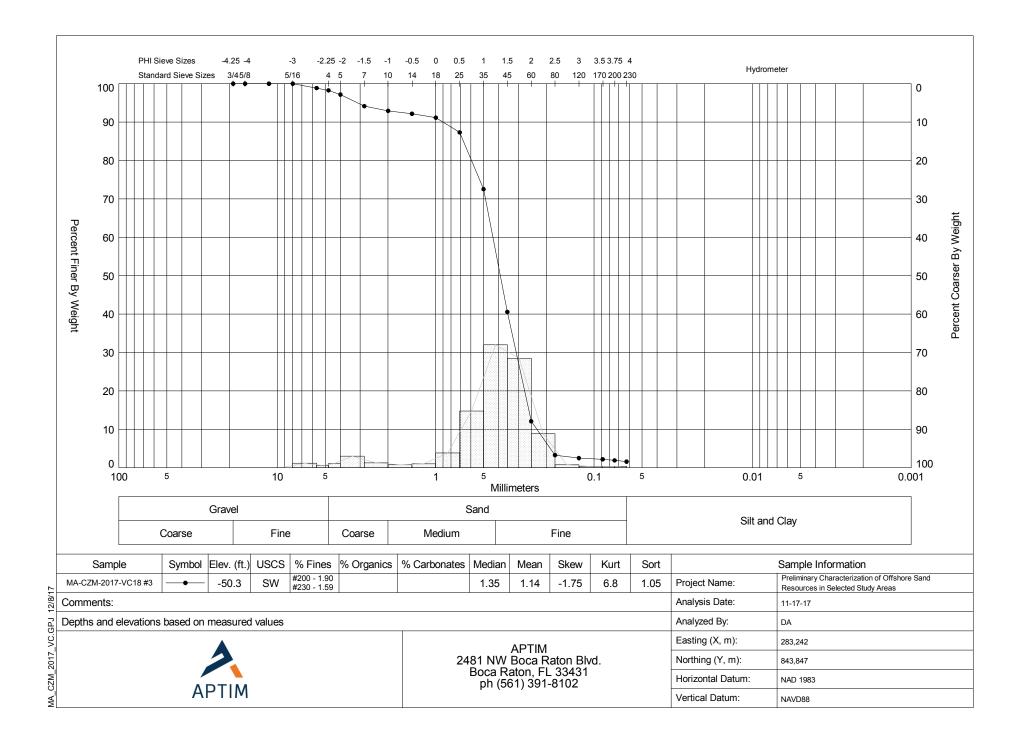


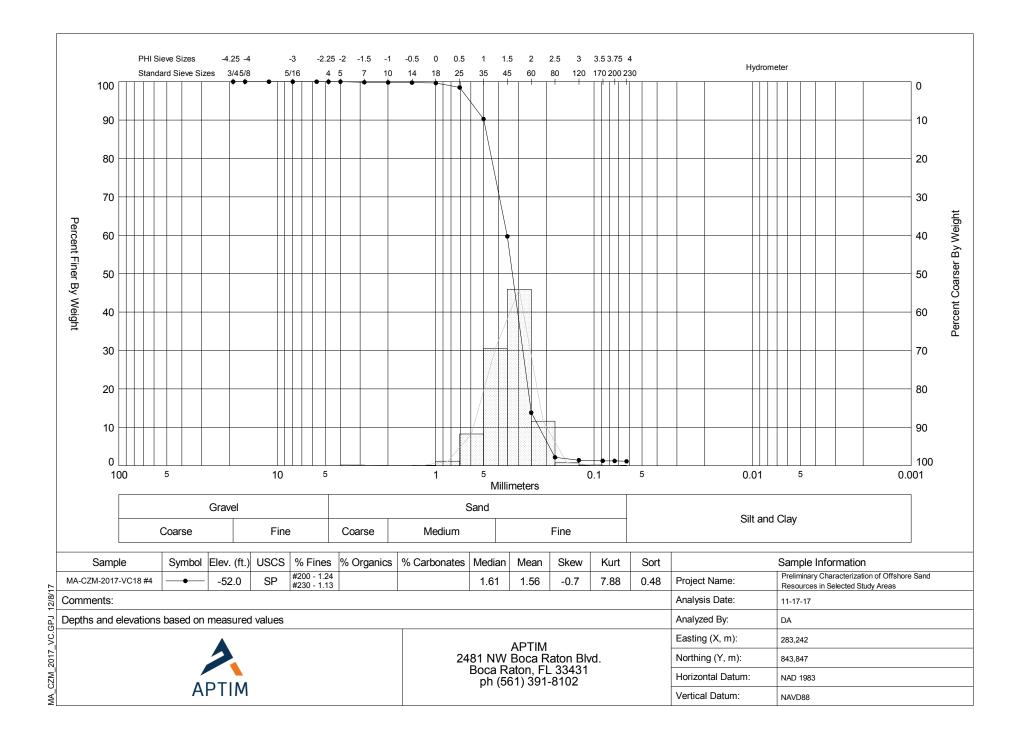


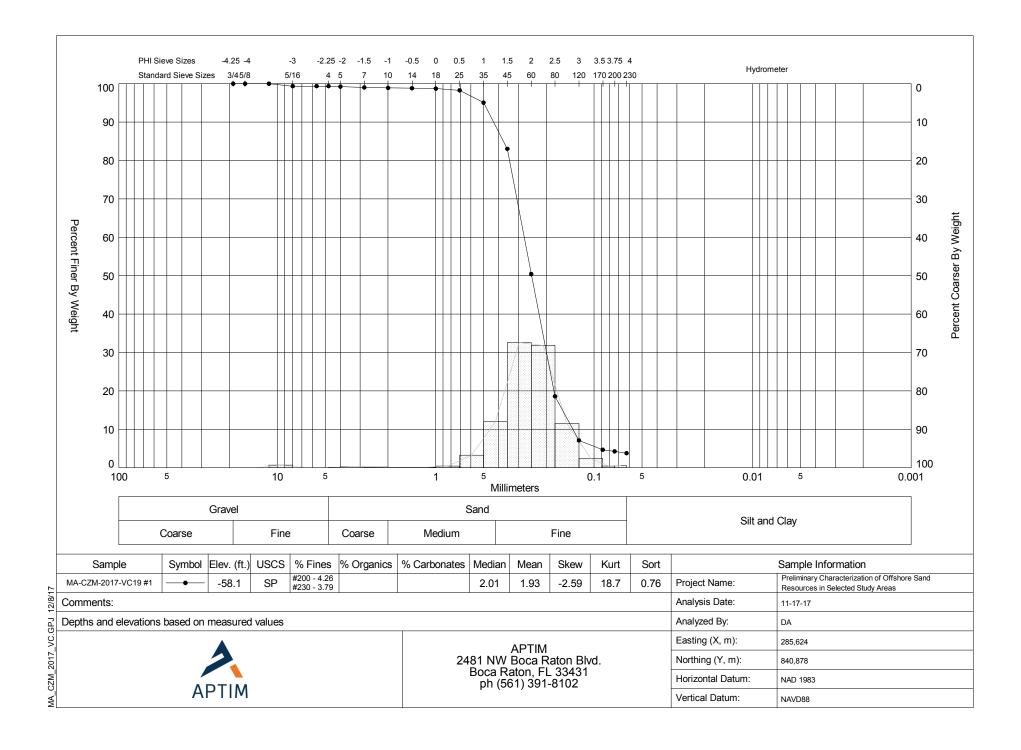


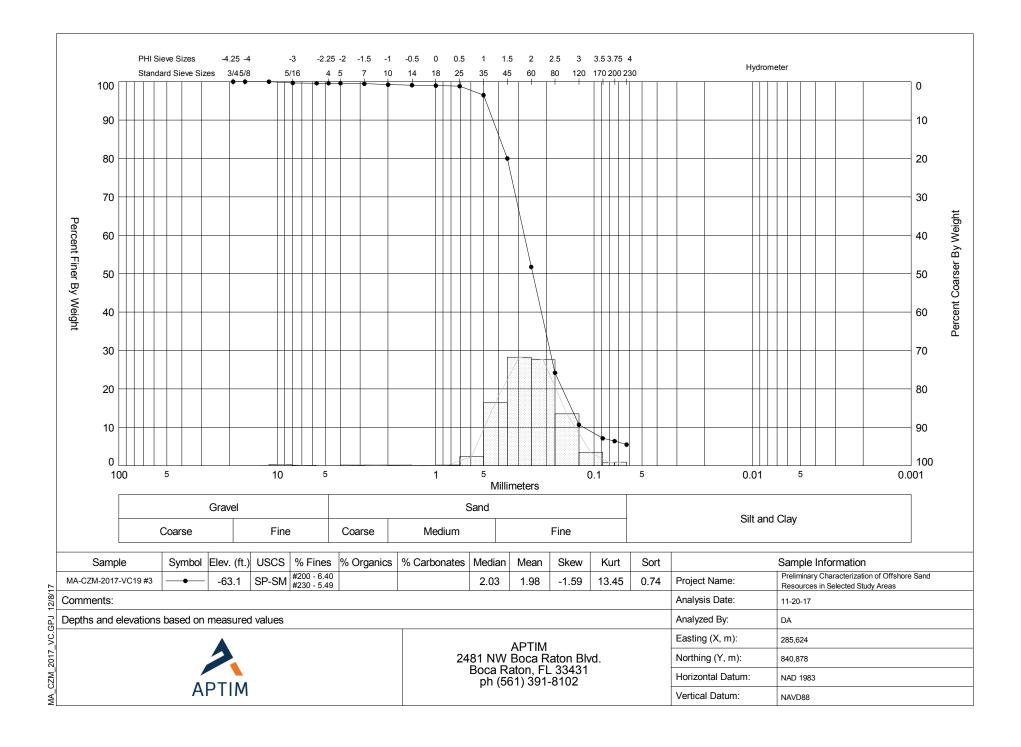


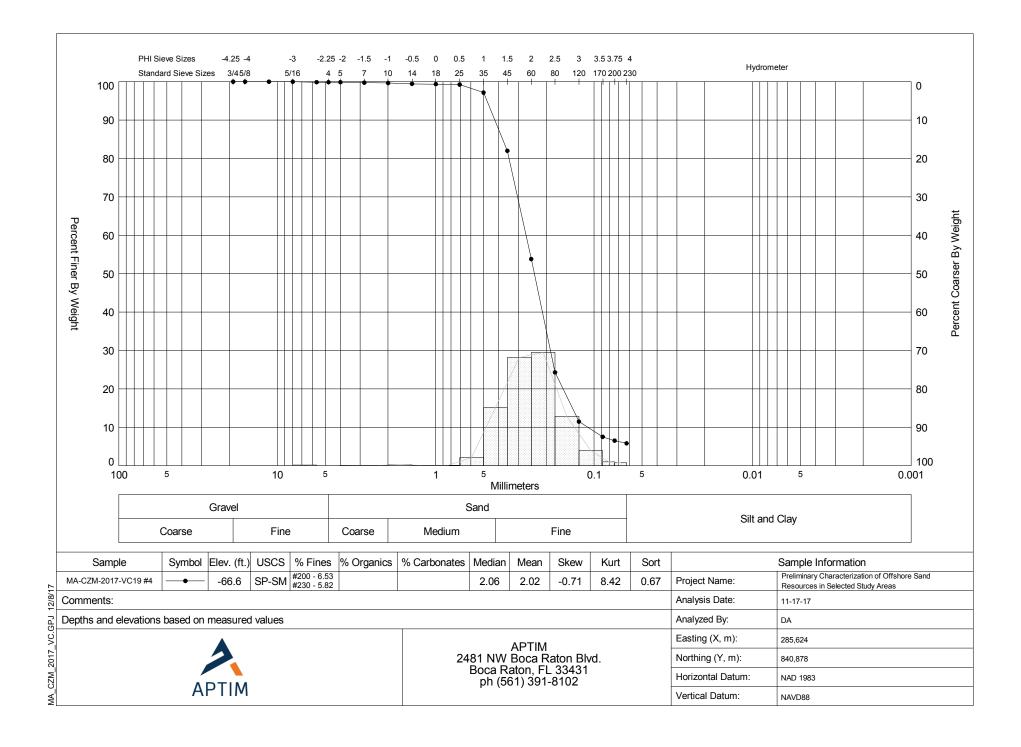


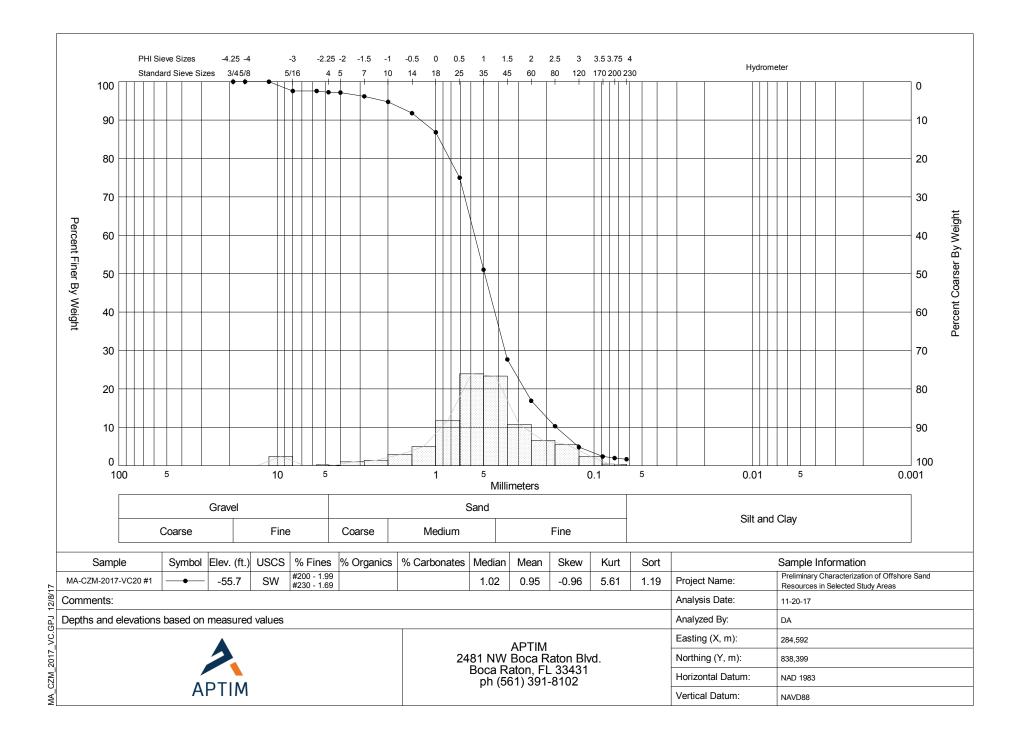


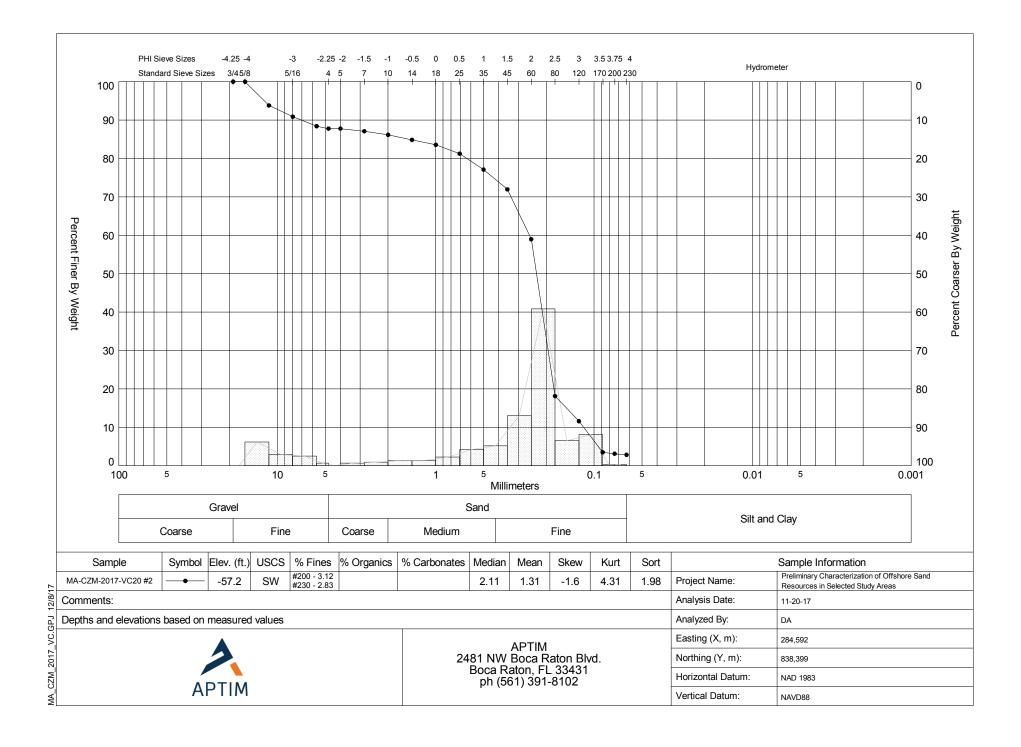


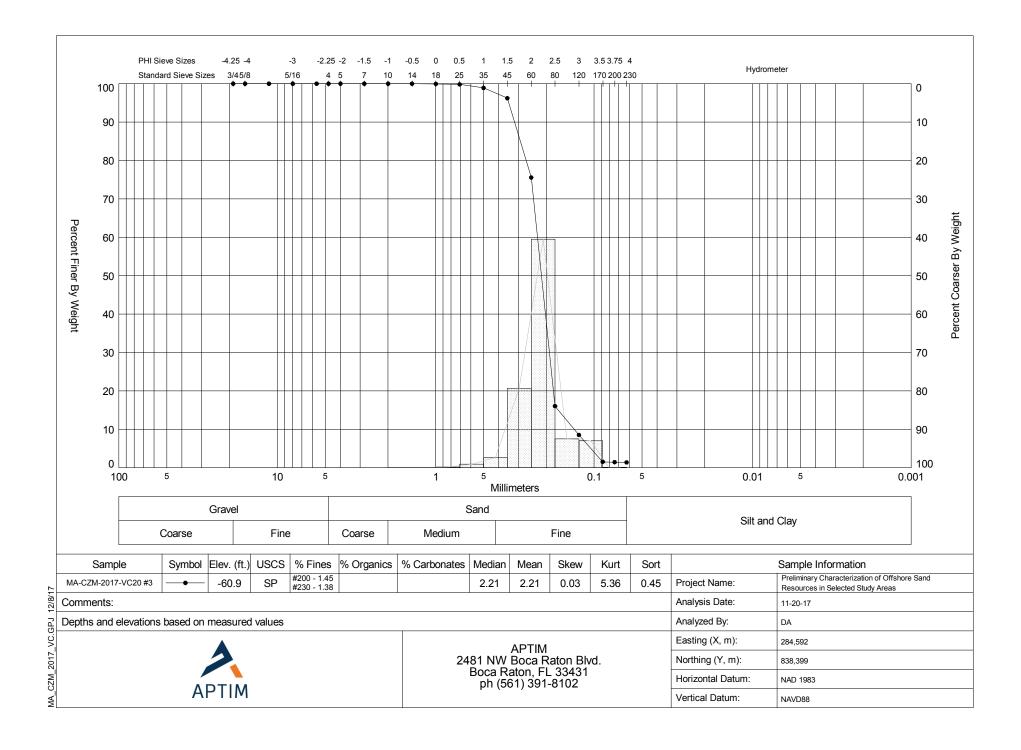


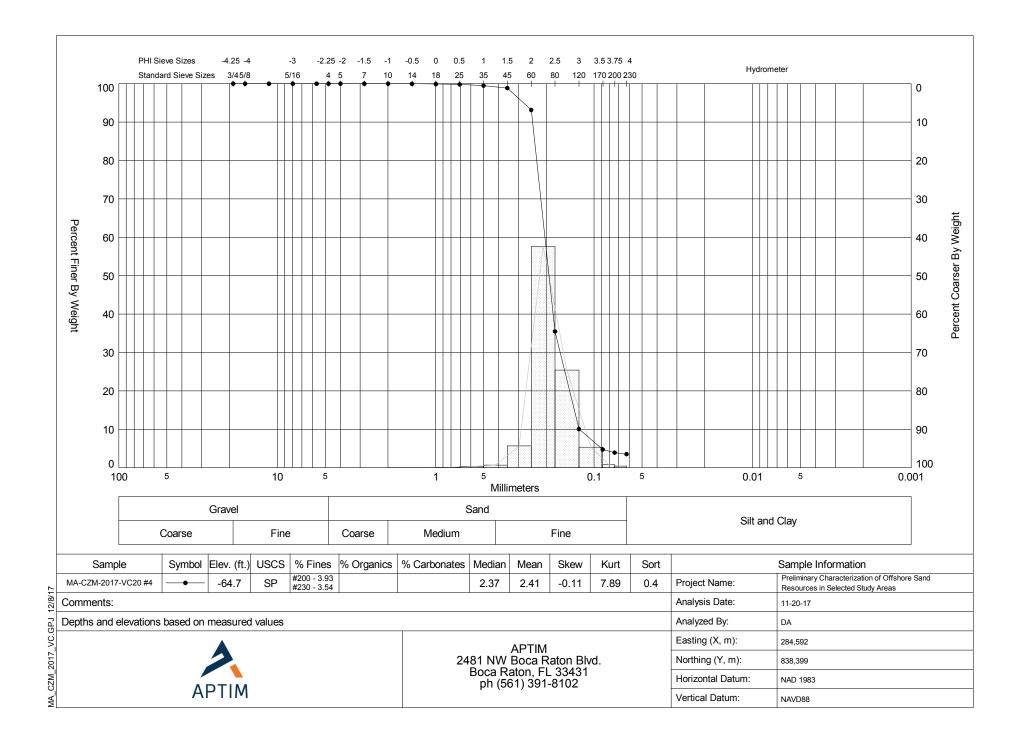






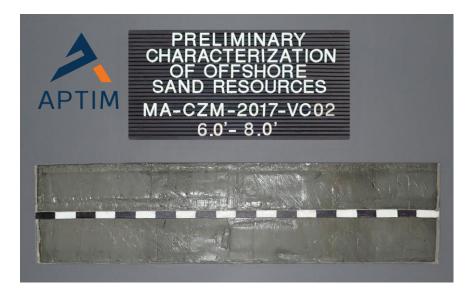


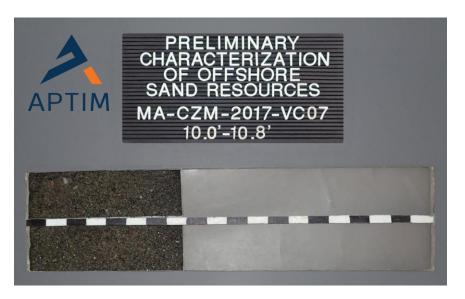


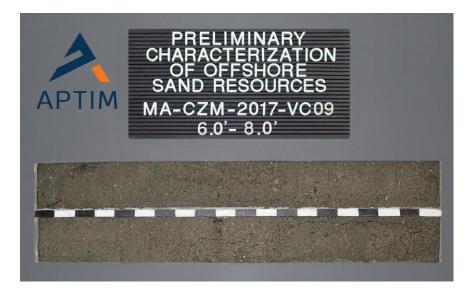


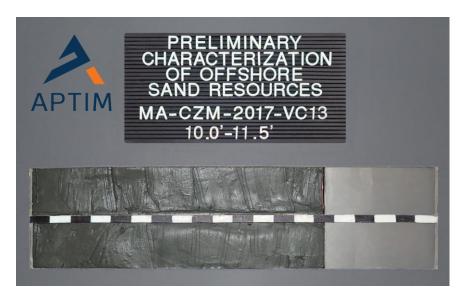
Appendix E

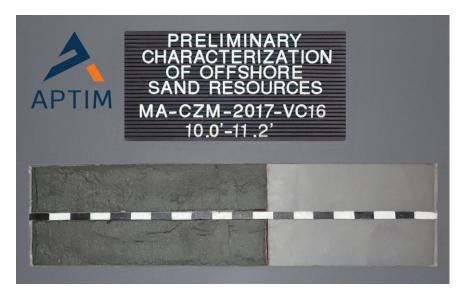
Vibracore Photographs











Appendix F

Grab Sample Logs

Grab Designation BLI71-G1

G	RAB LO	G	DIVISION		['	IAICM	LATION				HEET 1 Of 1 SHEETS
. PRO	JECT		1		<u> </u>	e. SIZ	E AND TYPE	OF BIT	N/A		
			ation of Offshore Sa	nd		10. CC	ORDINATE	SYSTEM/DAT		ITAL V	ERTICAL
Resc	ources in Se	elected S	Study Areas		APTIM		MA State P	lane Mainland	NAD 1	983	Raw Water
. GRAI	B DESIGNAT	ION	LOCATION	COORDINAT	ES (m)	11. M	NUFACTU	RER'S DESIGN	ATION OF SAMP	LER	
В	UZ1-G1		X = 232,	761 Y = 80	02,637		Ted Young	modified van	Veen grab samp	oler	
	PLING AGEN R Environm			CONTRACTO	R FILE NO.	12. TO	TAL SAMPI	LES	DISTURBED 1	UND	ISTURBED (UD
	E OF SAMPL	.ER		•		13. TC	TAL NUMB	ER CORE BOX	ES N/A	•	
	hip Ryther	DAR	DEG. FRO	NA PEA	RING	14. EL	EVATION G	ROUND WATE	R N/A		
\boxtimes \vee	ERTICAL NCLINED	INAD	VERTICA	Ľ		15. DA	TE GRAB		STARTED 11-09-17 08		PLETED 1-09-17
. THIC	KNESS OF	OVERBU	RDEN N/A	•		16. EL	EVATION T	OP OF GRAB		(uncorrecte	
DEPT	TH SAMPLE	INTO R	ROCK N/A			17. TC	TAL RECOV	ERY FOR GR	AB N/A		
. тот	AL DEPTH O	F GRAB	N/A				gnature <i>a</i> K M	ND TITLE OF	INSPECTOR		
LEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICA Depths and elevation	TION OF MAT is based on m		%	KH.		REMAI	RKS	
-57.0	0.0		SAND, fine gra fragments, trace : fragments up to (0.7 olive gra	ace silt, shell 5" whole shell,		шо	Depth = 0.0' Mean (mm): 0.33, Phi Sorting: 0.65 Fines (230): 1.37% (SP)				
-	-										
ŀ	-										
	_										
ŀ	-										
						1		I			

Grab Designation BUZ2-G2

G	RAB LO	G	DIVISION	"	NSTAL				OF 1 SHEETS
. PRO.			•	A 9	. SIZE	AND TYPE	E OF BIT N/A		
			zation of Offshore Sand	_	0. CO	ORDINATE	SYSTEM/DATUM	HORIZONTAL	VERTICAL
Resc	ources in Se	elected	Study Areas	APTIM			lane Mainland	NAD 1983	Raw Water
	B DESIGNAT	ION	LOCATION COORDINATE	- ` '			RER'S DESIGNATION		
	UZ2-G2		X = 233,048 Y = 80		1	Ted Young	modified van Veen g		
	PLING AGEN R Environm		CONTRACTO	R FILE NO.	2. то	TAL SAMPL	LES DISTU	RBED	UNDISTURBED (UD)
	E OF SAMPL		<u>:</u>	1:	3. TO	TAL NUMB	ER CORE BOXES	: N/A	
С	hip Ryther			⊢			ROUND WATER	N/A	
	CTION OF G	RAB	DEG. FROM BEA	RING	7. LL	LVAIION O	START		COMPLETED
	NCLINED			1:	5. DA	TE GRAB	!	09-17 10:24	11-09-17
. тніс	KNESS OF	OVERBU	URDEN N/A	1	6. EL	EVATION T	OP OF GRAB	-66.0 Ft. (unco	rrected)
DEPT	TH SAMPLE	INTO	ROCK N/A	1	7. то	TAL RECOV	VERY FOR GRAB	N/A	
TOTA	AL DEPTH O	F GRAF	B N/A	1			AND TITLE OF INSPEC	TOR	
1012	12 22: 11: 0		· IWA		T	KM L	1		
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION OF MATE Depths and elevations based on mo		REC.	BOX OR SAMPLE		REMARKS	
-66.0	0.0		SAND, fine grained, quartz, trac trace silt, 0.25" shell fragment, (whole shell, dark greenish gray (SP-SM).	0.5" x 0.25")			Depth = 0.0' Mean (mm): 0.20 Fines (230): 6.58		.63
-	_								
-	-								
	-								
	_								

Grab Designation BUZ6-G3

G	RAB LC	G	DIVISION			ALLA				OF 1 SHEETS
. PRO	JECT		•	A	9. SI	ZE A	ND TYPE	OF BIT N	/A	,
			zation of Offshore Sand	_	10. (COOR	RDINATE	SYSTEM/DATUM	HORIZONTAL	VERTICAL
Resc	ources in Se	elected	Study Areas	APTIM				lane Mainland	NAD 1983	
	B DESIGNAT	ION	LOCATION COOR	` '	11. I				ION OF SAMPLER	
	UZ6-G3		X = 237,499			Tec	Young		en grab sampler	•
	PLING AGEN CR Environm		CONT	RACTOR FILE NO.	12. 1	гота	L SAMPL	.ES	ISTURBED 1	UNDISTURBED (UD
	E OF SAMPL		<u>!</u>		13 7	TOTA	L NIIMBI	ER CORE BOXES		!
С	hip Ryther			F						
	CTION OF G	RAB	DEG. FROM VERTICAL	BEARING	14. 1	ELEV	ATION G	ROUND WATER	N/A	LOCKED STEP
	VERTICAL INCLINED		, VERTIOAL	!	15. I	DATE	GRAB	3	FARTED 11-09-17 12:56	11-09-17
. тніс	KNESS OF	OVERBU	URDEN N/A		16. I	ELEV	ATION TO	OP OF GRAB	-60.0 Ft. (und	corrected)
. DEP1	TH SAMPLE	INTO	ROCK N/A	-				ERY FOR GRAB	N/A	
. тот	AL DEPTH O	F GRAB	B N/A		18. 3	SIGNA KM		ND TITLE OF IN	SPECTOR	
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION O Depths and elevations base		s RE	c.	BOX OR SAMPLE		REMARKS	
-60.0	0.0	1	SAND, fine grained, qual shell hash, trace whole she (0.5" x 0.25"), (0.75" x 0 0.25" rock, dark greenis (SP-SO	ell, whole shells up to .5") shell fragment, sh gray (10Y-4/1),			-v		0.20, Phi Sorting: 9.75% (SP-SC)	0.56
			(51-50	<i>,</i>).						
-	_									
-	_									
	_									
	RM 1836 MG	חר								

Grab Designation BUZ9-G4

GRAB LOG	DIVISION	INSTALLATION SHEET 1 OF 1 SHEE
. PROJECT		9. SIZE AND TYPE OF BIT N/A
Preliminary Characteriza	St. 1. A	10. COORDINATE SYSTEM/DATUM HORIZONTAL VERTICAL
Resources in Selected S	Study Areas APTIM	MA State Plane Mainland NAD 1983 Raw Wate
. GRAB DESIGNATION	LOCATION COORDINATES (m)	11. MANUFACTURER'S DESIGNATION OF SAMPLER
BUZ9-G4 . SAMPLING AGENCY	X = 240,206 Y = 795,415 CONTRACTOR FILE NO.	Ted Young modified van Veen grab sampler DISTURBED UNDISTURBED (
CR Environmental		12. TOTAL SAMPLES
. NAME OF SAMPLER	·	13. TOTAL NUMBER CORE BOXES N/A
Chip Ryther DIRECTION OF GRAB	DEG. FROM BEARING	14. ELEVATION GROUND WATER N/A
VERTICAL INCLINED	VERTICAL	15. DATE GRAB STARTED COMPLETED 11-09-17 13:48 11-09-17
. THICKNESS OF OVERBU	RDEN N/A	16. ELEVATION TOP OF GRAB -65.0 Ft. (uncorrected)
. DEPTH SAMPLED INTO R	ROCK N/A	17. TOTAL RECOVERY FOR GRAB N/A
. TOTAL DEPTH OF GRAB	N/A	18. SIGNATURE AND TITLE OF INSPECTOR
	IVA	KM
ELEV. DEPTH Q	CLASSIFICATION OF MATERIALS Depths and elevations based on measured value	S REC. XW REMARKS
-65.0 0.0	SAND, fine grained, quartz, trace shell fragments, trace shell hash, trace silt, shell fragments up to (0.5" x 0.25"), (0.5" x 0.25") whole shell, olive brown (2.5Y-4/3), (SP).	Depth = 0.0' Mean (mm): 0.27, Phi Sorting: 0.49 Fines (230): 1.72% (SP)
-		
-		
-		
AJ FORM 1836 MOD. C 17		

G	RAB LC	G											OF 1 SHEETS
. PRO						<u> </u>	9.	SIZE	AND TYPE	OF BIT	N/A		1
				fshore Sand			10	. со	ORDINATE	SYSTEM/DAT		NTAL	VERTICAL
Resc	ources in Se	elected S	Study Area	S		APTI	4	N	1A State P	lane Mainlan	d i NAD	1983	Raw Water
. GRAI	B DESIGNAT	ION	1	OCATION C	OORDIN	ATES (m)	11	. MA	NUFACTUE	RER'S DESIGN	IATION OF SAM	PLER	•
В	UZ10-G5			X = 240,28	88 Y=	792,641		Т	ed Young	modified van	Veen grab san	npler	
	PLING AGEN			C	ONTRAC	TOR FILE NO).	. то	TAL SAMPL	.ES	DISTURBED	i	UNDISTURBED (UD
	R Environm			<u> </u>			+				1	i	
	E OF SAMPL	EK					13	. то	TAL NUMB	ER CORE BOX	KES N/A		
	hip Ryther	RAR		DEG. FROM	; p	BEARING	 14	. ELE	VATION G	ROUND WAT	ER N/A		
\boxtimes \lor	VERTICAL INCLINED			VERTICAL		ZAMITO	15	. DA	TE GRAB		STARTED 11-09-17 1		COMPLETED 11-09-17
. тніс	KNESS OF	OVERBU	IRDEN	N/A			16	. ELE	VATION T	OP OF GRAB	-77.0 Ft	. (uncor	rected)
. DEPT	TH SAMPLED	INTO F	ROCK N	I/A			_			ERY FOR GR			
. тот	AL DEPTH O	F GRAB	N/A	4			18		MATURE A	ND TITLE OF	INSPECTOR		
ELEV. (ft)	DEPTH (ft)	LEGEND		ASSIFICATIO		ATERIALS 1 measured v	alues	ĸ.	BOX OR SAMPLE		REMA	ARKS	
-77.0	0.0		SAND, f whole	fine grained, shell, dark ç	quartz, gray (2.5	trace silt, 0.2 5Y-4/1), (SP)	25"				0' n): 0.19, Phi So 0): 3.90% (SP)	rting: 0.	52
ļ	-												
}	-												
1505	RM 1836 MC									l			

Grab Designation CANAL 9-G1

G	RAB LO	OG				INS.						OF 1 SHEETS
. PRO					<u> </u>	9. :	SIZE	AND TYPE	OF BIT	N/A		OF 1 SHEETS
				ffshore Sand	2				SYSTEM/DAT		ONTAL	VERTICAL
Res	ources in Se	elected	Study Area	as	ÁPTIM				ane Mainlar	!	1983	Raw Water
GRA	B DESIGNAT	TION	i	LOCATION COORE	DINATES (m)	11.				NATION OF SAN		
C	CANAL9-G1			X = 285,716	Y = 837,977		Т	ed Young	modified var	n Veen grab sar	mpler	
	PLING AGEN			CONT	RACTOR FILE NO.	12.	тот	TAL SAMPL	.ES	DISTURBED	i	UNDISTURBED (UD
	CR Environn			<u></u>		13.	TO	TAI NUMRI	ER CORE BO	tes N/A	!	
C	Chip Ryther								ROUND WAT			
	ECTION OF G	RAB		DEG. FROM VERTICAL	BEARING	1-4.		VAIION G	ROOND WAT	STARTED	i	COMPLETED
	INCLINED					15.	DAT	TE GRAB		08-03-17	09:08	08-03-17
. тніс	CKNESS OF	OVERBU	JRDEN	N/A		16.	ELE	VATION T	OP OF GRAB	-52.5 F	t. (unco	rrected)
. DEP	TH SAMPLEI	I OTNI D	ROCK	N/A		17.	то	TAL RECOV	ERY FOR GR	RAB N/A		
. тот	AL DEPTH O	F GRAB	N/.	'A		18.		nature a M	ND TITLE OF	INSPECTOR		
		۵				T	Ì					
LEV. (ft)	DEPTH (ft)	LEGEND		LASSIFICATION OI d elevations based	MATERIALS I on measured value	s R	% REC.	BOX OR SAMPLE		REM	ARKS	
-52.5	0.0		SAND, 1	fine grained, quart	z, trace shell hash,				Depth = 0	.0'		40
			trace silt,	2 (0.25" x 0.5") sl le shell, olive gray	nell fragments, 1.75'					n): 0.21, Phi Sc 0): 3.09% (SP)		.48
			WIIO	ic silen, onve gray	(31-4/2), (OI).					0). 0.00 /0 (0.)		
	-											
	_											
	_											
						- 1						

Grab Designation CANAL 7-G2

G	RAB LC	G											OF 1 SHEETS
. PRO	JECT		<u> </u>				<u> 9</u>	. SIZ	E AND TYP	E OF BIT	N/A		JIIEE19
				ffshore Sand	b		1	0. CC	ORDINATI	E SYSTEM/DAT	TUM HORIZON	TAL	VERTICAL
Reso	ources in Se	elected S	Study Area	as		AP	MIT		MA State I	Plane Mainlar	nd NAD 19	983	Raw Water
. GRA	B DESIGNAT	ION	<u> </u>	LOCATION C	OORDII	NATES (m)	1	1. MA	NUFACTU	RER'S DESIGI	NATION OF SAMPL	.ER	•
С	ANAL7-G2			X = 285,2	06 Y	= 840,521		•	Ted Young	modified var	n Veen grab samp	ler	
	PLING AGEN		•	•	CONTRA	CTOR FILE	NO.	2. TO	TAL SAME	LES	DISTURBED		JNDISTURBED (UD
	R Environm			<u> </u>							1	<u> </u>	
	hip Ryther	EK					1	3. TC	TAL NUMI	BER CORE BO	xes N/A		
	CTION OF G	RAB		DEG. FROM	, i	BEARING		4. EL	EVATION	GROUND WAT	ER N/A		
\boxtimes $'$	VERTICAL INCLINED			VERTICAL			1	5. DA	TE GRAB		STARTED 08-03-17 09:		08-03-17
тніс	KNESS OF C	OVERBU	RDEN	N/A	•		1	6. EL	EVATION '	TOP OF GRAB	•		
. DEP1	TH SAMPLED	INTO F	ROCK	N/A						VERY FOR GR			
тот	AL DEPTH O	F GRAB	N/A	A			1		SNATURE KM	AND TITLE OF	INSPECTOR		
LEV. (ft)	DEPTH (ft)	LEGEND		ASSIFICATI				REC.	BOX OR SAMPLE		REMAR	ks	
-62.0	0.0		rock, tra trace silt rocks up	fine to mediu ice shell fragn , shell fragn to 0.25", (1. rayish browr	gments, nents up 25" x 0.	trace she to (0.75" 5") shell fr	ll hash, x 0.5"), agment,				.0' n): 0.43, Phi Sorti 0): 1.40% (SP)	ng: 0.6	65
	-												
	-												
	-												
	_												
1505	RM 1836 MC	<u> </u>						_	•				

Grab Designation CANAL 2-G3

G	RAB LC	G					STALL					OF 1 SHEETS
PROJ	JECT		1		A	9.	SIZE	AND TYPE	OF BIT	N/A		
				shore Sand		10.	CO	ORDINATE	SYSTEM/DAT		AL	VERTICAL
Reso	ources in Se	elected S	Study Areas	S	APTIM		N	IA State Pl	lane Mainlan	d NAD 19	83	Raw Water
GRAE	B DESIGNAT	ION	ļ L	OCATION COO	RDINATES (m)	11.	. MAI	NUFACTUR	RER'S DESIGN	IATION OF SAMPLE	R	
C	ANAL2-G3		!	X = 283,004	Y = 844,584		Т	ed Young	modified van	Veen grab sample	er	
SAME	PLING AGEN	ICY		CON	ITRACTOR FILE NO.	12.	тот	TAL SAMPL	FS	DISTURBED	UN	IDISTURBED (UD
	R Environm			ļ		<u> </u>		AL VAIIIF L		1		
	E OF SAMPL	ER				13.	. то	TAL NUMBI	ER CORE BOX	KES N/A		
	hip Ryther				·	14.	ELE	VATION G	ROUND WATI	ER N/A		
	CTION OF G /ERTICAL	KAB		DEG. FROM VERTICAL	BEARING	<u> </u>				STARTED	CO	MPLETED
<u></u>	NCLINED		!		!	15.	. DA1	TE GRAB		08-03-17 09:4	9 (08-03-17
THIC	KNESS OF	OVERBU	RDEN	N/A		16.	ELE	VATION T	OP OF GRAB	-46.0 Ft. (u	ncorre	cted)
						17.	. TO	TAL RECOV	ERY FOR GR			,
DEPT	TH SAMPLED	INTOR	ROCK N	I/A		_			ND TITLE OF			
TOTA	AL DEPTH O	F GRAB	N/A	١				M				
LEV.	DEPTH	S.	CL	ASSIFICATION	OF MATERIALS		9/	BOX OR SAMPLE				
(ft)	(ft)	EGEND			sed on measured valu	es	REC.	AM ME		REMAR	(S	
		-				_		шo				
-46.0	0.0		SAND, fi	ne to medium	grained, quartz, trace				Depth = 0.		^ - :	
			coarse gra	ins, trace shel	I fragments, trace shouments up to 0.5", (1.	ell				n): 0.51, Phi Sortin)): 1.41% (SP)	g: 0.51	
					ayish brown (2.5Y-5/2				1 11100 (200),. 1.1170 (OI)		
				(ŠP								
L	_											
	-											
	_											
Ī	-											
- 1						- 1						

Grab Designation CANAL4-G4A

G	RAB LO	G	DIVISION	'	NSTAL	LATION			SHEET 1 OF 1 SHEETS
. PROJ	JECT		•	A 9	. SIZI	AND TYPE	OF BIT	N/A	,
			ation of Offshore Sand		0. CO	ORDINATE	SYSTEM/DATU	M HORIZONTAL	VERTICAL
			Study Areas	APTIM			lane Mainland	NAD 1983	
	B DESIGNAT		LOCATION COORD	` ′				TION OF SAMPLER	
	CANAL4-G4		X = 283,105 CONTR	ACTOR FILE NO.		ea roung		een grab sampler	UNDISTURBED (UD
	R Environm			1	2. TO	TAL SAMPL	LES	1	
. NAM	E OF SAMPL	.ER	•	1	3. ТО	TAL NUMB	ER CORE BOXE	s N/A	•
	hip Ryther			1	4. EL	EVATION G	ROUND WATER	N/A	
	ECTION OF G VERTICAL	RAB	DEG. FROM VERTICAL	BEARING				TARTED	COMPLETED
<u> </u>	INCLINED			1	5. DA	TE GRAB	į	08-03-17 10:09	08-03-17
. тніс	KNESS OF	OVERBU	JRDEN N/A	1	6. EL	EVATION T	OP OF GRAB	-46.0 Ft. (und	corrected)
. DEPT	TH SAMPLE	INTO I	ROCK N/A	1	7. TO	TAL RECOV	ERY FOR GRAE	B N/A	
. тот/	AL DEPTH O	F GRAB	N/A	1			ND TITLE OF I	ISPECTOR	
			IVA		 	(M			
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION OF Depths and elevations based		REC.	BOX OR SAMPLE		REMARKS	
-46.0	0.0		SAND, fine to medium grashell fragments, trace shell fragments up to 0.5", (2 fragment, (1.0" x 0.5") shell (5Y-4/2), (S	hash, trace silt, shell 2.0" x 0.5") shell fragment, olive gray				0.43, Phi Sorting: 2.49% (SW)	0.89
	-								
	-								
-	-								
-	-								
	RM 1836 MC								

Grab Designation CANAL6-G5

G	RAB LO	OG	DIVISION		INSTAL	LATION			SHEET 1 OF 1 SHEETS
. PRO	JECT			A	9. SIZI	AND TYPE	OF BIT	N/A	,
			zation of Offshore Sand		10. CO	ORDINATE	SYSTEM/DATU		VERTICAL
Resc	ources in Se	elected	Study Areas	APTIM	N	//A State P	lane Mainland	NAD 1983	Raw Water
	B DESIGNAT		LOCATION COOR	` '				ATION OF SAMPLER	
	ANAL6-G5		X = 283,539	· · · · · · · · · · · · · · · · · · ·	٦	ed Young		/een grab sampler	·
	PLING AGEN		CONT	RACTOR FILE NO.	12. TO	TAL SAMPI	LES	DISTURBED 1	UNDISTURBED (UD
	R Environm		!				<u>!</u>		!
	hip Ryther						ER CORE BOXE		
DIRE	CTION OF G	RAB	DEG. FROM VERTICAL	BEARING	14. EL	EVATION G	ROUND WATE		
	VERTICAL INCLINED		VERTICAL		15. DA	TE GRAB		STARTED 08-03-17 10:28	08-03-17
тніс	KNESS OF	OVERB	URDEN N/A				OP OF GRAB	-55.0 Ft. (unc	orrected)
. DEPT	TH SAMPLED	D INTO	ROCK N/A	-			VERY FOR GRA		
. тот/	AL DEPTH O	F GRAE	B N/A			M	1		
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION O Depths and elevations base		REC.	BOX OR SAMPLE		REMARKS	
-55.0	0.0		Sandy CLAY, very soft, (shell, very dark greenish g	(0.5" x 0.25") whole gray (10Y-3/1), (CL).			Depth = 0.0 NS)'	
-	_								
-	-								
L	_								
ļ	_								
							<u> </u>		
J FOR	RM 1836 MC	OD.							

Grab Designation DLIX3-G1

G	RAB LO	OG	DIVISION	'		INS						SHEET 1 OF 1 SHEETS
I. PRO	JECT				A	9.	SIZE	AND TYPE	OF BIT	N/A		5 JHEE19
			ation of Offs			10.	CO	ORDINATE	SYSTEM/DAT		ZONTAL	VERTICAL
Resc	ources in Se	elected (Study Areas		APTIM		N	1A State Pl	lane Mainlan	d i NA	D 1983	Raw Water
. GRAI	B DESIGNAT	TION	LC	OCATION COO	RDINATES (m)	11.	MA	NUFACTUR	RER'S DESIGN	IATION OF SA	MPLER	
	UX3-G1				Y = 871,888		Т	ed Young	modified van	Veen grab s		
	PLING AGEN R Environm			CON	ITRACTOR FILE NO.	12.	тот	TAL SAMPL	.ES	DISTURBED		UNDISTURBED (UD)
	E OF SAMPL	.ER				13.	тот	TAL NUMBI	ER CORE BOX	KES N/A		
	hip Ryther		1.		BEARING	14.	ELE	VATION G	ROUND WAT	ER N/A		
\boxtimes $'$	VERTICAL INCLINED	KAB		DEG. FROM VERTICAL	BEARING	15.	DA	TE GRAB		STARTED 11-06-17	08:37	COMPLETED 11-06-17
. тніс	KNESS OF	OVERBU	IRDEN	N/A	•	16.	ELE	VATION T	OP OF GRAB	•		corrected)
. DEPT	TH SAMPLE	D INTO F	ROCK N/	A		17.	то	TAL RECOV	ERY FOR GR	AB N/	A	
. тот	AL DEPTH O	F GRAB	N/A			18.		MATURE A	ND TITLE OF	INSPECTOR		
ELEV. (ft)	DEPTH (ft)	LEGEND			OF MATERIALS sed on measured valu	es R	% REC.	BOX OR SAMPLE		RE	MARKS	
101.0	0.0	_	coarse grain	ns, trace shel e silt, shell fra	grained, quartz, trace I fragments, trace she gments up to (0.75") ayish brown (2.5Y-4/2) (_ u	Depth = 0. Mean (mm Fines (230	0' n): 0.39, Phi (n): 0.95% (SF	Sorting: 0	.61
				(0.	,							
-	_											
-	_											
	-											

Grab Designation DLIX4-G2

DESIGNATIO JX4-G2 LING AGENCY R Environmer OF SAMPLEF TION OF GRA ERTICAL ICLINED KNESS OF OV H SAMPLED II L DEPTH OF C	ted Students of the state of th	LOCA X =	276,756 CONT	APTIM APTIM Part of the state	10. 11. 12. 13. 14. 15.	. CO MA TO TO.	A State Pl NUFACTUR ed Young I	SYSTEM/DAT lane Mainlan RER'S DESIGN modified van LES	d NA NATION OF SA Veen grab s DISTURBED 1 KES N/A	ampler	VERTICAL Raw Water UNDISTURBED (UD
DESIGNATION UX4-G2 LING AGENCY REDIVIONMENT OF SAMPLER TION OF GRASERTICAL ICLINED KNESS OF OV H SAMPLED II L DEPTH OF COMMENT (ft)	ted Students of the state of th	LOCA X = DEC VEF	276,756 CONT	Y = 871,868 TRACTOR FILE NO.	11. 12. 13. 14.	. MA T . TO	MA State Please	lane Mainlan RER'S DESIGN modified van LES ER CORE BOX	d NA HATION OF SA Veen grab s DISTURBED 1 KES N/A	AD 1983 AMPLER ampler	Raw Water
DESIGNATIO JX4-G2 LING AGENCY R Environmer OF SAMPLER IID OF GRA ERTICAL ICLINED KNESS OF OV H SAMPLED II L DEPTH OF C	n tal	LOCA X =	CONT	Y = 871,868 TRACTOR FILE NO.	12. 13. 14.	. MA T . TO' . TO'	NUFACTUR ed Young FAL SAMPL	RER'S DESIGN modified van .ES ER CORE BOX	Veen grab s DISTURBED 1 KES N/A	ampler ampler	•
DX4-G2 LING AGENCY R Environmer OF SAMPLER LIDENTION OF GRA ERTICAL ICLINED KNESS OF OV H SAMPLED II L DEPTH OF C	tal ERBURDI ITO ROC	DEN N/A	CONT	Y = 871,868 RACTOR FILE NO.	12. 13. 14.	. TO'	ed Young	modified van .ES ER CORE BO)	Veen grab s DISTURBED 1 CES N/A	ampler	UNDISTURBED (UD
EING AGENCE R Environmer OF SAMPLER LIP RYTH LIP RYTHER LIP RYTHER LIP RYTH LIP RYTHER LIP RYTH LIP	BERBURDI	DEC VEF EN N/A K N/A	CONT 3. FROM RTICAL	RACTOR FILE NO.	13.	. TO	TAL SAMPL	ES CORE BO)	DISTURBED 1 (ES N/A		UNDISTURBED (UD
R Environmer OF SAMPLER IDENTIFY TO THE TENTIFY T	BERBURDI	EN N/A	3. FROM RTICAL		13.	. TO	TAL NUMBI	ER CORE BO)	1 (ES N/A		UNDISTURBED (UD
OF SAMPLES ip Ryther itiON OF GRA ERTICAL ICLINED IN SAMPLED II L DEPTH OF C	ERBURDI	EN N/A	RTICAL	BEARING	15	. ELI			(ES N/A	•	
TION OF GRAERTICAL ICLINED INESS OF OV I SAMPLED II L DEPTH OF C	ERBURDI	EN N/A	RTICAL	BEARING	15.		VATION G	ROUND WAT	-D 11/1		
ERTICAL ICLINED ENESS OF OV H SAMPLED II L DEPTH OF C DEPTH (ft)	ERBURDI	EN N/A	RTICAL	BEARING	╄	DA.			er N/A		
SAMPLED II L DEPTH OF C	ITO ROC	K N/A	\	<u>:</u>	16.	. DA	TE GRAB		STARTED		COMPLETED
DEPTH OF C	RAB					. ELI	VATION TO	OP OF GRAB	•	7 08:54 Ft. (unco	
DEPTH (ft)	_				17.	. то	TAL RECOV	ERY FOR GR			
DEPTH (ft)	_	1477			18			ND TITLE OF	INSPECTOR		
) Den					r	M M				
0.0	1 200			OF MATERIALS ed on measured valu	es	REC.	BOX OR SAMPLE		RE	EMARKS	
	fı fr	ragments, t agments up	race shell had to (0.75" x	quartz, trace shell ash, trace silt, shell (0.5"), (2.25" x 2.0") y (5Y-4/1), (SP).				Depth = 0. Mean (mm Fines (230	.0' n): 0.20, Phi ()): 2.54% (SF	Sorting: 0 ²)	.49
	1 1836 MOD		whole sh	whole shell, dark gra	whole shell, dark gray (5Y-4/1), (SP).	whole shell, dark gray (5Y-4/1), (SP).	whole shell, dark gray (5Y-4/1), (SP).	whole shell, dark gray (5Y-4/1), (SP).			

Grab Designation DLIX7-G3A

G	RAB LC	G	DIVISIO	- -			STALI					SHEET 1 OF 1 SHEETS
PROJ	JECT		l		<u> </u>	9.	SIZE	AND TYPE	OF BIT	N/A		J CHEETS
				shore Sand		10	. со	ORDINATE	SYSTEM/DAT		AL	VERTICAL
Reso	ources in Se	elected S	Study Area	S	APTI	M	Ν	IA State P	lane Mainlan	d ¦ NAD 19	83	Raw Water
GRAE	B DESIGNAT	ION	L	OCATION CO	ORDINATES (m)	11				IATION OF SAMPL		
D	UX7-G3A		į	X = 274,738	Y = 867,514		Т	ed Young	modified van	Veen grab sample	er	
SAME	PLING AGEN	ICY		COI	NTRACTOR FILE N	o				DISTURBED		DISTURBED (UD
С	R Environm	nental				12	. 10	TAL SAMPL	.ES	1		
NAMI	E OF SAMPL	ER				13	. то	TAL NUMBI	ER CORE BOX	ES N/A	·	
С	hip Ryther					-						
	CTION OF G	RAB		DEG. FROM VERTICAL	BEARING	14	. ELE	VATION G	ROUND WATE			
	/ERTICAL NCLINED			VERTICAL	<u> </u>	15	. DA	TE GRAB		STARTED 11-06-17 09:		MPLETED 1-06-17
тніс	KNESS OF (OVERBU	JRDEN	N/A		16	. ELE	VATION T	OP OF GRAB	-66.0 Ft. (ι	ıncorrec	ted)
DEPT	H SAMPLED	INTO F	ROCK N	I/A					ERY FOR GR			
TOTA	AL DEPTH O	F GRAB	N/A	١		18		M ATURE A M	ND TITLE OF	INSPECTOR		
LEV. (ft)	DEPTH (ft)	LEGEND			OF MATERIALS sed on measured v	values	" REC.	BOX OR SAMPLE		REMAR	ks	
-66.0	0.0	_	fragmen fragme	its, trace shell ents up to 0.5",	, quartz, trace she hash, trace silt, sl , 2 (1.0" x 0.5") sh hole shells, 0.25" r Y-4/2), (SP).	hell ell				0' 1): 0.22, Phi Sortir 1): 2.75% (SP)	ng: 0.57	
-	-											
-	-											
									ı			

Grab Designation DLIX9-G4

G	RAB LO)G				1						OF 1 SHEETS
. PRO	JECT				A	9.	SIZE	AND TYPE	OF BIT	N/A		1 O. I SHEET
			ation of Offs			\vdash			SYSTEM/DAT		RIZONTAL	VERTICAL
Reso	ources in Se	elected \$	Study Areas		APTIM		Ν	1A State Pl	ane Mainlan	d i N	NAD 1983	Raw Water
. GRA	B DESIGNAT	ION	LC	CATION COO	RDINATES (m)	11.	MA	NUFACTUR	ER'S DESIGN	IATION OF	SAMPLER	•
	OUX9-G4				Y = 865,531		T	ed Young	modified van			
	PLING AGEN			CON	TRACTOR FILE NO.	12.	то	TAL SAMPL	.ES	DISTURBE 1	ED	UNDISTURBED (U
	IE OF SAMPL			!		13.	TO	TAI NUMRI	ER CORE BO	•	Δ	!
С	Chip Ryther					\vdash			ROUND WAT			
	CTION OF G	RAB	ļ	DEG. FROM PERTICAL	BEARING	14.	ELI	VALION G	ROUND WAT	ER N/A	\	COMPLETED
	INCLINED					15.	DA	TE GRAB			17 09:41	!
. тніс	CKNESS OF	OVERBU	JRDEN	√A		16.	ELE	VATION TO	OP OF GRAB	-88.	0 Ft. (unco	orrected)
. DEPI	TH SAMPLE	INTO F	ROCK N/	Δ		17.	то	TAL RECOV	ERY FOR GR	AB	V/A	·
				•		18.	SIG	NATURE A	ND TITLE OF	INSPECTO	R	
. тот	AL DEPTH O	F GRAB	N/A			<u> </u>	K	M				
ELEV. (ft)	DEPTH (ft)	LEGEND			OF MATERIALS sed on measured valu	es F	% REC.	BOX OR Sample		1	REMARKS	
-88.0	0.0		trace shel 0.5") rock	hash, rocks s, 0.75" and	tz, little silt, trace roc up to 0.5", 2 (0.75" x 1.5" shell fragments,)Y-2.5/1), (SM).	k,			Depth = 0 Mean (mn Fines (230	.0' n): 0.18, Ph)): 16.18%	ii Sorting: '	1.59
	-											
	-											
	-											
	_											
	RM 1836 M											

Grab Designation DUX6-G5

G	RAB LO	G	DIVISION	[I AI	LLATION			SHEET 1 OF 1 SHEETS
. PRO.	JECT		•	A :	e. SIZ	E AND TYPE	OF BIT N	Α	
			zation of Offshore Sand	_	10. C	ORDINATE	SYSTEM/DATUM	HORIZONTAL	VERTICAL
Kesc	ources in Se	elected	Study Areas	APTIM			lane Mainland	NAD 1983	Raw Water
	B DESIGNAT	ION	LOCATION COOR	` '				ON OF SAMPLER	
	UX6-G5		X = 277,206			Ted Young	modified van Ve		•
	PLING AGEN R Environm		CONT	RACTOR FILE NO.	12. T	OTAL SAMPI	FS	STURBED 1	UNDISTURBED (UD)
	E OF SAMPL				13. TO	OTAL NUMB	ER CORE BOXES	N/A	<u>:</u>
	hip Ryther				14. EI	EVATION G	ROUND WATER	N/A	
	CTION OF G VERTICAL	RAB	DEG. FROM VERTICAL	BEARING				ARTED	COMPLETED
<u></u>	NCLINED					ATE GRAB	•	11-06-17 09:58	11-06-17
. тніс	KNESS OF	OVERBU	URDEN N/A				OP OF GRAB	-95.0 Ft. (unco	orrected)
. DEPT	TH SAMPLEI	OTNI C	ROCK N/A				VERY FOR GRAB	N/A	
. тот	AL DEPTH O	F GRAB	N/A			GNATURE A KM	AND TITLE OF INS	SPECTOR	
LEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION O Depths and elevations base		%	K.		REMARKS	
-95.0	0.0		Clayey SAND, fine graine trace shell fragments, tra fragments and rocks up to x 1.75") shell fragmer (10Y-2.5/1)	ace shell hash, shell o (0.75" x 0.5"), (2.75" nt, greenish black		a ø	Depth = 0.0' NS		
			(1010.7)	, (0-2).					
	-								
-	-								
	-								
	-								

Grab Designation HULL4-G1

G	RAB LO	G	DIVISION	[J I AL	LATION			SHEET 1 OF 1 SHEETS
. PRO.			•	A !	9. SIZ	E AND TYPE	E OF BIT N/	'A	
			ation of Offshore Sand		10. CC	ORDINATE	SYSTEM/DATUM	HORIZONTAL	VERTICAL
Resc	ources in Se	elected	Study Areas	APTIM		MA State P	Plane Mainland	NAD 1983	Raw Water
	B DESIGNAT	ION	LOCATION COORE	` '				ON OF SAMPLER	
	ULL4-G1		X = 263,324			Ted Young	modified van Ve		•
	PLING AGEN R Environm		CONTE	RACTOR FILE NO.	12. TO	TAL SAMPL	I FS	STURBED 1	UNDISTURBED (UD)
	E OF SAMPL		!		13 T	TAI NIIMB	ER CORE BOXES	N/A	!
С	hip Ryther			-					
	CTION OF G	RAB	DEG. FROM VERTICAL	BEARING	14. EL	EVATION G	ROUND WATER	N/A	
	/ERTICAL NCLINED		Jan 1942	<u> </u>	15. DA	TE GRAB		O8-17-17 12:03	COMPLETED 08-17-17
. тніс	KNESS OF	OVERBL	JRDEN N/A		16. EL	EVATION T	OP OF GRAB	-122.0 Ft. (un	corrected)
. DEP1	TH SAMPLE	INTO I	ROCK N/A	<u> </u>			VERY FOR GRAB	N/A	
. тот	AL DEPTH O	F GRAB	N/A			GNATURE A KM	AND TITLE OF INS	SPECTOR	
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION OF Depths and elevations based		% REC	BOX OR SAMPLE		REMARKS	
122.0	0.0		SAND, fine grained, qua coarse grains, trace rock, 0.5"), 0.25" whole shell, di (SW-SM	rocks up to (0.75" x ark gray (2.5Y-4/1),			Depth = 0.0' Mean (mm): 0 Fines (230): 1	0.19, Phi Sorting: 0.51% (SW-SM)	1.20
-	-								
-	-								
	-								
	-								

Grab Designation HULL5-G2

Resc	iminary Cha		1				+						OF 1 SHEETS
Resc							9.	SIZE	AND TYPE	OF BIT	N/A		
				fshore Sand			10	. со	ORDINATE	SYSTEM/DAT		AL	VERTICAL
GRAI	ources in Se	elected S	Study Area	IS		APTIM		N	1A State P	lane Mainlan	d NAD 198	83	Raw Water
	B DESIGNAT	TION	į i	LOCATION C	OORDINA	ATES (m)	11	. MA	NUFACTUE	RER'S DESIGN	IATION OF SAMPLE	R	•
H	HULL5-G2			X = 262,60	9 Y=	: 898,061	\perp	Т	ed Young	modified van	Veen grab sample	er	
	IPLING AGEN CR Environm			C	ONTRAC	TOR FILE NO.	12	. то	TAL SAMPL	.ES	DISTURBED 1	UI	NDISTURBED (UD
NAM	IE OF SAMPL			·			13	. то	TAL NUMB	ER CORE BOX	(ES N/A	•	
	Chip Ryther			·			14	. ELE	VATION G	ROUND WAT	ER N/A		
\boxtimes \lor	ECTION OF G VERTICAL INCLINED	FRAB		DEG. FROM VERTICAL		BEARING	15	. DA1	TE GRAB		STARTED		OMPLETED
	CKNESS OF	OVERBUI	RDEN	! N/A	!		16	. ELE	VATION T	OP OF GRAB	08-17-17 12:1 -110.0 Ft. (08-17-17 rected)
DEP	TH SAMPLE	D INTO R	OCK N	V/A			17	. то	TAL RECOV	/ERY FOR GR			
TOT	AL DEPTH O	F GRAB	N/A				18			ND TITLE OF	INSPECTOR		
			107						M Km				
LEV. (ft)	DEPTH (ft)	LEGEND		ASSIFICATIO		ATERIALS I measured val	ues	REC.	BOX OR SAMPLE		REMARK	(S	
10.0	0.0		trace roo hash, trac (0.75" x 0	ck, trace she ce silt, shell fi .5"), 0.75" ar	ell fragme ragment nd 0.5" v	ace coarse grai ents, trace she s and rocks up whole shells, w	ll to				.0' n): 0.34, Phi Sortin 0): 5.19% (SW-SM		2
			dark gr	ayish brown	(2.5Y-3	/2), (SW-SM).							
	-												
	_												
ļ	_												
ŀ	-												

Grab Designation HULL 7-G3A

GRAB LO	OG	DIVISION	ľ		LLATION			OF 1 SHEET
. PROJECT		1	<u> </u>	9. SIZ	E AND TYPE	OF BIT	N/A	l O. I SHEET
		tion of Offshore Sand		10. C	OORDINATE	SYSTEM/DAT		L VERTICAL
Resources in S	elected St	Study Areas	APTIM		MA State P	lane Mainlan	d	3 Raw Water
GRAB DESIGNA	rion	LOCATION COOR	DINATES (m)	11. M			ATION OF SAMPLE	
HULL7-G3A		X = 261,231	Y = 898,100		Ted Young	modified van	Veen grab sample	r
. SAMPLING AGE	NCY	CONT	RACTOR FILE NO.	40 -			DISTURBED	UNDISTURBED (U
CR Environr	nental			12. T	OTAL SAMPL	LES	1	į
. NAME OF SAMP	LER			13. T	OTAL NUMB	ER CORE BOX	ES N/A	
Chip Ryther				14 E	EVATION C	ROUND WATI		
DIRECTION OF	RAB	DEG. FROM VERTICAL	BEARING	14. E	LEVATION G	ROUND WATE		
□ VERTICAL □ INCLINED		VERTICAL		15. D	ATE GRAB		STARTED 08-17-17 12:46	COMPLETED 08-17-17
THICKNESS OF	OVERBUR	RDEN N/A		16. E	LEVATION T	OP OF GRAB	-101.0 Ft. (ι	incorrected)
. DEPTH SAMPLE	D INTO RO	OCK N/A	-			VERY FOR GR		
TOTAL DEPTH C	F GRAB	N/A		18. S	I gnature a KM	AND TITLE OF	INSPECTOR	
ELEV. DEPTH (ft)	LEGEND	CLASSIFICATION O Depths and elevations base		% REC	BOX OR		REMARK	s
-		SAND, fine grained, quartz trace rock, trace shell fra hash, trace silt, shell fragio.5"), rocks up to (1.25" x rock, (2.0" x 1.0") rock, 2 dark gray (2.5Y-4/-	gments, trace shell ments up to (0.75" x (1.0"), (2.0" x 1.25") (1.0") whole shells,				0' 1): 0.23, Phi Sorting 1): 4.28% (SW-SM)	
- J FORM 1836 M								

Grab Designation HULL 2-G4

G	RAB LO	G	DIVISIO	ON		INS	TALI	LATION				SHEET 1 OF 1 SHEETS
. PRO	JECT		<u> </u>		A	9.	SIZE	AND TYPE	OF BIT	N/A		0. 1 SHEETS
				ffshore Sand					SYSTEM/DA		ONTAL	VERTICAL
Res	ources in Se	elected	Study Area	as	APTIM		Λ	1A State P	lane Mainlar	:	D 1983	Raw Water
GRA	B DESIGNAT	ION	i	LOCATION COORE	DINATES (m)	11.	MA	NUFACTUR	RER'S DESIG	NATION OF SA	MPLER	•
H	IULL2-G4			X = 257,862	Y = 896,014		T	ed Young	modified var	n Veen grab sa	ampler	
	PLING AGEN CR Environm			CONT	RACTOR FILE NO.	12.	TO	TAL SAMPL	.ES	DISTURBED 1	i !	UNDISTURBED (UD
NAM	E OF SAMPL			<u>. </u>		13.	TO	TAL NUMB	ER CORE BO	•	•	
	hip Ryther			·	·	14.	ELI	EVATION G	ROUND WAT	ER N/A		
\boxtimes	ECTION OF G VERTICAL INCLINED	iRAB		DEG. FROM VERTICAL	BEARING	15.	DA ⁻	ΓE GRAB		STARTED 08-17-17	13:06	COMPLETED 08-17-17
	KNESS OF	OVERB	URDEN	: N/A	<u>:</u>	16.	ELI	EVATION T	OP OF GRAB	•	t. (unco	
. DEP	TH SAMPLE	INTO	ROCK	N/A		17.	TO	TAL RECOV	ERY FOR GI	RAB N/A	4	
. тот	AL DEPTH O	F GRAE	3 N/	'A		18.		INATURE A IM	ND TITLE O	FINSPECTOR		
LEV. (ft)	DEPTH (ft)	LEGEND		LASSIFICATION OF d elevations based	MATERIALS on measured value	s I	REC.	BOX OR SAMPLE		REI	MARKS	
-72.0	0.0	-	0.25")	shell fragment and	z, trace silt, (0.5" x d rock, 0.25" shell h brown (2.5Y-3/2),			шо		i.0' n): 0.24, Phi S 0): 2.36% (SP		.46
	-											
	-											
	_											
	-											
J FOF	RM 1836 M	OD.										

Grab Designation HULL 1-G5A

		_							ab Designation	JII HOLLI-G			
GRAB L	OG	DIVISION	ı			IN	STAL	LATION			SHEE	T 1 1 SHEETS	
PROJECT					<u> </u>	9.	SIZE	AND TYPE	OF BIT N	//A			
Preliminary Cha Resources in S				nd	APTI	10	. со	ORDINATE	SYSTEM/DATUN		!	ricaL w Water	
GRAB DESIGNA	TION	L	OCATION	COORDIN	NATES (m)	_				ION OF SAMPLER		w water	
HULL1-G5A			X = 257,1	135 Y	= 895,878		Т	ed Young	modified van Ve	een grab sampler			
SAMPLING AGE				CONTRA	CTOR FILE N	0. 12	2. то	TAL SAMPI	LES	ISTURBED	UNDIST	JRBED (UD)	
CR Environs			<u>i</u>						<u> </u>	1	<u> </u>		
Chip Ryther	LEK					13	. то	TAL NUMB	ER CORE BOXES	N/A			
DIRECTION OF	CTION OF GRAB /ERTICAL NCLINED					14	. ELI	EVATION G	ROUND WATER	N/A			
VERTICAL INCLINED						15	. DA	TE GRAB		STARTED COMPLETED 08-17-17 13:24 08-17-17			
_						1		EVATION T	OP OF GRAB		•	-17	
THICKNESS OF	PTH SAMPLED INTO ROCK N/A				-				-69.0 Ft. (und	corrected)			
DEPTH SAMPLE								VERY FOR GRAB					
TOTAL DEPTH	DTAL DEPTH OF GRAB N/A					"	18. SIGNATURE AND TITLE OF INSPECTOR KM						
	_					<u> </u>							
LEV. DEPTH (ft)	DEPTH (ft) CLASSIFICATION OF MATERIALS Depths and elevations based on measured v					values	REC.	BOX OR SAMPLE		REMARKS	i		
69.0 0.0		fragments fragments	ts, trace sl s up to (0.5 ery dark g	hell hash 5" x 0.25	rtz, trace she n, trace silt, s i"), 2 (0.5") w rown (2.5Y-3	hell hole			Depth = 0.0' Mean (mm): (Fines (230): 2	0.28, Phi Sorting: 2.28% (SP)	0.58		

G	RAB LO)G											OF 1 SHEETS
. PRO			•			A	9.	SIZE	AND TYPE	OF BIT	N/A		,
	iminary Cha ources in Se				nd	APTIM				SYSTEM/DAT	!		VERTICAL Raw Water
. GRA	B DESIGNAT	ION	į	LOCATION	COORDI	NATES (m)	11.				IATION OF SAMPL		
	/IER10-G1			X = 261,		= 946,847	\bot	Т	ed Young	modified van	Veen grab sampl		
	PLING AGEN CR Environm				CONTR	ACTOR FILE NO.	12	. то	TAL SAMPL	LES	DISTURBED 1	- '	UNDISTURBED (UD
	E OF SAMPL						13	. то	TAL NUMB	ER CORE BOX		•	
	Chip Ryther						-			ROUND WATI			
	ECTION OF G VERTICAL	RAB		DEG. FRO	DM L	BEARING					STARTED	į	COMPLETED
	INCLINED			!		 	15.	. DA	E GRAB		09-13-17 12:	45	09-13-17
THIC	CKNESS OF	OVERBU	RDEN	N/A			16	ELE	VATION T	OP OF GRAB	-84.0 Ft. (ı	uncorr	rected)
DEP	TH SAMPLED	INTO R	оск	V/A			17.	. то	TAL RECOV	ERY FOR GR	AB N/A		
тот	AL DEPTH O	F GRAB	N/A	Δ			18.			ND TITLE OF	INSPECTOR		
			147					K	M				
LEV. (ft)	DEPTH (ft)	LEGEND				MATERIALS on measured va	lues	% REC.	BOX OR SAMPLE		REMAR	KS	
-84.0	0.0	;	rock, trac	ce silt, rocl 0" whole s	ks up to	ained, quartz, tr 0.5", (1.0" x 0.7 k yellowish brow SW).	5") l				0' n): 1.15, Phi Sortir n): 0.39% (SW)	ng: 1.(09
	-												
	-												
	_												
	-												
	RM 1836 MG												

Grab Designation MER8-G2

G	RAB LO	JG					ı						OF 1 SHEETS
1. PRO	JECT						9.	SIZI	AND TYPE	E OF BIT	N/A		
	iminary Cha				nd		10). CO	ORDINATE	SYSTEM/DA		RIZONTAL	VERTICAL
Reso	ources in Se	elected S	Study Area	as		AP1	IM	ľ	ИA State P	lane Mainla	nd N	NAD 1983	Raw Water
2. GRA	B DESIGNAT	TION	i	LOCATION	COORDI	NATES (m)	11	I. MA	NUFACTUE	RER'S DESIG	NATION OF	SAMPLER	•
	/IER8-G2			X = 260,		′ = 948,669		1	Ted Young	modified va			
	PLING AGEN				CONTR	ACTOR FILE	NO.	2. то	TAL SAMPL	LES	DISTURBE	:D	UNDISTURBED (UD
	R Environm			j			-+				<u> </u>		<u>i</u>
	IE OF SAMPL Chip Ryther	.EK					13	в. то	TAL NUMB	ER CORE BO	XES N/	A	
	CTION OF G	RAB		DEG. FRO	DM	BEARING	14	l. EL	EVATION G	ROUND WAT	TER N/A	١	
\boxtimes v	VERTICAL INCLINED			DEG. FRO	L	 	15	5. DA	TE GRAB		STARTED 09-13-1	17 13:08	COMPLETED 09-13-17
6. THIC	CKNESS OF	OVERBU	RDEN	N/A			16	. EL	EVATION T	OP OF GRAE	-83.	0 Ft. (unc	orrected)
7. DEP1	TH SAMPLE	INTO R	оск	N/A						VERY FOR G		N/A	
в. тот	AL DEPTH O	F GRAB	N/	'A			18		SNATURE A (M	AND TITLE O	F INSPECTO	R	
ELEV. (ft)	DEPTH (ft)	EGEND				MATERIALS on measured	d values	REC.	ĞМ		ı	REMARKS	
02.0	0.0	-							8 00	Donth = (2.0'		
-83.0	0.0		trace rock 0.5"), (1	k, trace she 1.25" x 0.5"	ell hash,) shell fr	d, quartz, tra rocks up to (agment, ver -3/2), (SW).	(0.75" x y dark			Depth = (Mean (mi Fines (23	m): 1.00, Ph 80): 1.65% (\$	i Sorting: ' SW)	1.12
-	-												
-	-												
	-												
ļ													

Grab Designation MER7-G3B

G	RAB LO	OG	DIVISION			LLATION			SHEET 1 OF 1 SHEETS
. PRO				A	9. SI	ZE AND TYP	E OF BIT N/A	\	
			ration of Offshore Sand		10. C	OORDINATE	SYSTEM/DATUM	HORIZONTAL	VERTICAL
Resc	ources in Se	elected	Study Areas	APTIM		MA State F	Plane Mainland	NAD 1983	Raw Water
	B DESIGNAT	TION	<u> </u>	ORDINATES (m)	11. N		RER'S DESIGNATIO		
	/IER7-G3B			Y = 949,990		Ted Young	modified van Veer		•
	PLING AGEN CR Environm		COI	NTRACTOR FILE NO.	12. T	OTAL SAMP	LES DIS	TURBED	UNDISTURBED (UD)
	IE OF SAMPL		!		13 T	OTAL NUME	BER CORE BOXES	N/A	!
	Chip Ryther								
DIRE	CTION OF G	RAB	DEG. FROM	BEARING	14. E	LEVATION (GROUND WATER	N/A	•
	VERTICAL INCLINED		VERTICAL		15. D	ATE GRAB		ARTED 9-13-17 13:30	COMPLETED 09-13-17
. тніс	CKNESS OF	OVERBU	JRDEN N/A				TOP OF GRAB	-98.0 Ft. (unco	orrected)
. DEP1	TH SAMPLE	I OTNI	ROCK N/A				VERY FOR GRAB AND TITLE OF INSF	N/A	
. тот	AL DEPTH O	F GRAB	N/A		10. 3	KM	AND THEE OF INSP	LUTUK	
LEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION Depths and elevations ba		s RE	BOX OR		REMARKS	
-98.0	0.0		SAND, medium to coars rock, trace silt, rocks up rocks, dark yellowish br	to 0.5", 2 (0.75" x 0.5")		Depth = 0.0' VS: MER10-G1	1	
			, ,	(, ()					
•	_								
	-								
	-								
	-								
		1							

Grab Designation MER4-G4

G	RAB LC	G							OF 1 SHEETS
. PRO	JECT		•	<u> </u>	9. SIZ	E AND TYPE	OF BIT N	'A	
			zation of Offshore Sand		10. C	OORDINATE	SYSTEM/DATUM	HORIZONTAL	VERTICAL
Resc	ources in Se	elected	Study Areas	APTIM			lane Mainland	NAD 1983	Raw Water
	B DESIGNAT	ION	LOCATION COOR	` ′	11. N			ON OF SAMPLER	
	IER4-G4		X = 260,341			Ted Young	modified van Ve		•
	PLING AGEN R Environm		CONT	RACTOR FILE NO.	12. T	OTAL SAMPI	FS :	STURBED 1	UNDISTURBED (UD)
	E OF SAMPL		<u> </u>		40 -	OTAL NUMB			!
	hip Ryther			-			ER CORE BOXES	N/A	
DIRE	CTION OF G	RAB	DEG. FROM	BEARING	14. E	LEVATION G	ROUND WATER	N/A	
	/ERTICAL NCLINED		VERTICAL		15. D	ATE GRAB		ARTED 09-13-17 13:58	09-13-17
. тніс	KNESS OF (OVERB	URDEN N/A				OP OF GRAB	-95.0 Ft. (unco	orrected)
. DEPT	TH SAMPLED	O INTO	ROCK N/A				VERY FOR GRAB	N/A	
. тот	AL DEPTH O	F GRAE	B N/A		10. 3	KM	IND THE OF INS	PECIOR	
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION O Depths and elevations base		, REC	BOX OR		REMARKS	
-95.0	0.0		SAND, medium grained, grains, trace rock, trace s 0.25" shell fragment, (fragment, very dark grayis (SW).	silt, rocks up to 0.5", 0.75" x 0.5") shell h brown (10YR-3/2),			Depth = 0.0' Mean (mm): 0 Fines (230): 0	0.93, Phi Sorting: 7 0.92% (SW)	1.12
			(GVV).						
-	-								
	-								
	.								
ŀ	-								
	RM 1836 MC								

Grab Designation MER2-G5

G	RAB LO)G											OF 1 SHEETS
1. PRO	JECT						9.	SIZE	AND TYPE	OF BIT	N/A		
	minary Cha				nd		10	. со	ORDINATE	SYSTEM/DA	TUM HOR	ZONTAL	VERTICAL
Resc	ources in Se	elected S	Study Are	as		AP	TIM	Ν	/IA State Pl	lane Mainlar	nd NA	AD 1983	Raw Water
	B DESIGNAT	TION	į			INATES (m)	I .				NATION OF S		
	IER2-G5	101/	<u>i</u>	X = 261,		/ = 955,438		T	ed Young	modified var	Veen grab s		
	PLING AGEN R Environm				CONTR	ACTOR FILE	NO. 12	. то	TAL SAMPL	LES .	DISTURBED	•	UNDISTURBED (UD)
	E OF SAMPL						13	ь то	TAL NUMBI	ER CORE BO	•		
С	hip Ryther						-			ROUND WAT			
	CTION OF G	RAB		DEG. FRO	DM L	BEARING	- -		-VAIION G	ROUND WAT	STARTED		COMPLETED
	NCLINED					 	15	. DA	TE GRAB			7 14:24	
6. THIC	KNESS OF	OVERBU	RDEN	N/A			16	. ELI	EVATION T	OP OF GRAB	-107.	0 Ft. (unc	corrected)
7 DEDI	TU CAMBI E	NITO F	10.CK	NI/A			17	. то	TAL RECOV	/ERY FOR GF		/A	,
r. DEP	TH SAMPLEI	JINIOR	tock	N/A							INSPECTOR		
в. тот	AL DEPTH O	F GRAB	N	/A				k	M				
ELEV. (ft)	DEPTH (ft)	EGEND				MATERIALS on measure	d values	% REC.	BOX OR SAMPLE		RI	EMARKS	
-107.0	0.0		rock, tra	ce silt, rock gment, 0.5	s up to 0	rained, quari 0.75", (0.5" ; shell, (1.0" x 'R-3/3), (SW	x 0.25") (0.25")			Depth = 0 Mean (mr Fines (23	i.0' n): 1.09, Phi 0): 0.91% (S'	Sorting: 1 W)	.23
	-												
-	-												
	-												
		OD.								•			

Appendix G

Grab Sample Granularmetric Reports

Granularmetric Report

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: BUZ1-G1

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Analysis Date: 11-29-17; Analyzed By: SMT Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected): MA State Plane Mainland 232,761 802,637 -57.0 Raw Water USCS: Munsell: Wet - 5Y-4/2 Comments: Dry - 5Y-6/2 SP Washed - 5Y-7/2 Dry Weight (g): Wash Weight (g): Pan Retained (q): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 1.54 #230 - 1.37 99.75 98.45 0.03 0.05 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7/16" -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 5.66 0.00 0.00 0.00 0.00 3.5 -2.504 -2.254.76 0.15 0.15 0.15 0.15 5 0.04 0.04 -2.004.00 0.19 0.19 7 -1.502.83 0.09 0.09 0.28 0.28 10 -1.00 2.00 0.12 0.12 0.40 0.40 14 -0.501.41 0.20 0.20 0.60 0.60 18 0.00 1.00 0.34 0.34 0.94 0.94 25 0.50 0.71 1.30 1.30 2.24 2.24 35 1.00 0.50 10.40 10.43 12.64 12.67 45 29.95 30.03 42.59 42.70 1.50 0.35 60 2.00 0.25 30.17 30.25 72.76 72.95 80 2.50 0.18 17.96 18.01 90.72 90.96 120 3.00 0.13 6.09 6.11 96.81 97.07 170 3.50 0.09 1.22 1.22 98.29 98.03 200 3.75 0.07 0.17 0.17 98.20 98.46 230 4.00 0.06 0.17 0.17 98.37 98.63 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 2.83 2.31 2.06 1.62 1.21 1.06 0.63 Moment Mean Phi Mean mm Sorting Skewness **Kurtosis** Statistics 1.62 0.33 0.65 -0.486.51

IA_CZM_2017_GRABS.GPJ 12

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: BUZ2-G2

Analysis Date: 11-30-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected):

222 040

233,04	8		801,88	5	MA Sta	ate Plane Maiı	nland	-66.0	Raw Water
uscs: SP-SM	Munsel		et - 10Y-4/1 Ory - 5Y-5/2 ed - 5Y-6/3	Comments	3:				
Dry Weight (g):	Wash Weight (Pan Retained ((g):	Sieve Loss (%):	Fines (%): #200 - 8.04	Organics (%):	Carbonates	(%): Shell Hash (%):
98.64	92.50)	0.30)	0.05	#200 - 8.04 #230 - 6.58			
Sieve Number	Sieve S (Phi		Sieve S (Millime		Grams Retained	% Weigh Retained		n. Grams etained	C. % Weight Retained
3/4"	-4.25	5	19.0	3	0.00	0.00		0.00	0.00
5/8"	-4.00)	16.0	0	0.00	0.00		0.00	0.00
7/16"	-3.50)	11.3	1	0.00	0.00		0.00	0.00
5/16"	-3.00)	8.00)	0.00	0.00		0.00	0.00
3.5	-2.50)	5.66	3	0.00	0.00		0.00	0.00
4	-2.25	5	4.76	3	0.00	0.00		0.00	0.00
5	-2.00)	4.00)	0.00	0.00		0.00	0.00
7	-1.50)	2.83	3	0.00	0.00		0.00	0.00
10	-1.00)	2.00)	0.02	0.02		0.02	0.02
14	-0.50)	1.41	1	0.04	0.04		0.06	0.06
18	0.00)	1.00)	0.06	0.06		0.12	0.12
25	0.50)	0.71	1	0.37	0.38		0.49	0.50
35	1.00)	0.50)	1.49	1.51		1.98	2.01
45	1.50)	0.35	5	6.02	6.10		8.00	8.11
60	2.00)	0.25	5	19.50	19.77	2	27.50	27.88
80	2.50)	0.18	3	28.22	28.61		55.72	56.49
120	3.00)	0.13	3	25.46	25.81	8	31.18	82.30
170	3.50		0.09	9	8.31	8.42	8	39.49	90.72
200	3.75		0.07	7	1.22	1.24	9	90.71	91.96
230	4.00		0.06	3	1.44	1.46	9	92.15	93.42
Phi 5	Phi 1	6	Phi 2	25	Phi 50	Phi 75	F	Phi 84	Phi 95
	3.10)	2.86	6	2.39	1.93		1.70	1.25

MA_CZM_2017_GRABS.GPJ 12/5/17

Moment

Statistics

Mean Phi

2.31

Mean mm

0.20

Sorting

0.63

Skewness

-0.24

Kurtosis

3.62

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: BUZ6-G3

Analysis Date: 11-30-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected): MA State Plane Mainland 237,499 798,970 -60.0 Raw Water USCS: Munsell: Wet - 10Y-4/1 Comments: Dry - 5Y-5/2 SP-SC

SP-SC	Washed	d - 2.5Y-6/3				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 10.09 Orga	nics (%): Carbonates	(%): Shell Hash (%):
99.96	90.42	0.13	0.07	#230 - 9.75		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.00	0.00	0.00	0.00
7	-1.50	2.83	0.04	0.04	0.04	0.04
10	-1.00	2.00	0.02	0.02	0.06	0.06
14	-0.50	1.41	0.04	0.04	0.10	0.10
18	0.00	1.00	0.03	0.03	0.13	0.13
25	0.50	0.71	0.05	0.05	0.18	0.18
35	1.00	0.50	0.40	0.40	0.58	0.58
45	1.50	0.35	4.61	4.61	5.19	5.19
60	2.00	0.25	19.41	19.42	24.60	24.61
80	2.50	0.18	30.19	30.20	54.79	54.81
120	3.00	0.13	26.23	26.24	81.02	81.05
170	3.50	0.09	8.03	8.03	89.05	89.08
200	3.75	0.07	0.83	0.83	89.88	89.91
230	4.00	0.06	0.34	0.34	90.22	90.25

Phi 75

2.01

Phi 84

1.78

Skewness

-0.37

Phi 95

1.48

Kurtosis

4.69

.GPJ 1	Phi 5	Phi 16		Phi 25	Р	hi 50	
GRABS		3.18		2.88	2	2.42	
M_2017_	Moment	Mean Phi		Mean m	m	Sor	ting
MA_CZM	Statistics	2.33		0.20		0.	56
Σ							

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: BUZ9-G4

Analysis Date: 11-30-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected):

MA State Plane Mainland -65.0 Raw Water 240,206 795,415

USCS:	Munsell:	Wet - 2.5Y-4/3	Comments:				
		Dry - 2.5Y-6/3					
SP	V	Vashed - 2.5Y-7/3					
Dry Weight (g):	Wash Weight (g)). Pan Retained (a). Siev	n Loss (%):	Fines (%):	Organics (%):	T_{c}

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.79 Organ	nics (%): Carbonates	(%): Shell Hash (%):
97.89	96.25	0.01	0.03	#230 - 1.72		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.00	0.00	0.00	0.00
7	-1.50	2.83	0.01	0.01	0.01	0.01
10	-1.00	2.00	0.04	0.04	0.05	0.05
14	-0.50	1.41	0.05	0.05	0.10	0.10
18	0.00	1.00	0.04	0.04	0.14	0.14
25	0.50	0.71	0.18	0.18	0.32	0.32
35	1.00	0.50	1.45	1.48	1.77	1.80
45	1.50	0.35	14.71	15.03	16.48	16.83
60	2.00	0.25	42.35	43.26	58.83	60.09
80	2.50	0.18	30.42	31.08	89.25	91.17
120	3.00	0.13	3.81	3.89	93.06	95.06
170	3.50	0.09	3.02	3.09	96.08	98.15
200	3.75	0.07	0.06	0.06	96.14	98.21
230	4.00	0.06	0.07	0.07	96.21	98.28
		•				

5									
GPJ	Phi 5	Phi 16	Phi 25	Phi 50	Phi	75	Phi 84	Phi 95	
GRABS	2.99	2.38	2.24	1.88	1.5	9	1.47	1.11	
M_2017	Moment	Mean Phi	Mean m	m S	orting	S	kewness	Kurtosis	
MA_CZM	Statistics	1.9	0.27		0.49		0.15	5.35	
			·			•			

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: BUZ10-G5

Analysis Date: 11-29-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected):

240 288 702 641 MA State Plane Mainland 77 0 Raw Water

240,28	8		792,64	1	MA St	MA State Plane Mainland -77.0 Raw				
uscs:	Munse		t - 2.5Y-4/1 Ory - 5Y-5/2 d - 2.5Y-6/3	Comment	s:					
Dry Weight (g):	Wash Weight (Pan Retained ((g):	Sieve Loss (%):	Fines (%): #200 - 4.62	Organics (%):	Carbonates	(%):	Shell Hash (%):
101.61	97.8	6	0.14	4	0.07					
Sieve Number	Sieve S (Phi		Sieve S (Millime		Grams Retained	% Weight Retained		Grams ained		% Weight etained
3/4"	-4.2	5	19.0	3	0.00	0.00	0.	.00		0.00
5/8"	-4.00)	16.0	0	0.00	0.00	0.	.00		0.00
7/16"	-3.50)	11.3	1	0.00	0.00	0.	.00		0.00
5/16"	-3.00)	8.00)	0.00	0.00	0.	.00		0.00
3.5	-2.50)	5.66	3	0.00	0.00	0.	.00		0.00
4	-2.2	5	4.76	3	0.00	0.00	0.	.00		0.00
5	-2.00)	4.00)	0.00	0.00	0.	.00		0.00
7	-1.50)	2.83	3	0.00	0.00	0.	.00		0.00
10	-1.00)	2.00)	0.00	0.00	0.	.00		0.00
14	-0.50)	1.41	1	0.01	0.01	0.	.01		0.01
18	0.00)	1.00)	0.13	0.13	0.	.14		0.14
25	0.50)	0.7	1	0.09	0.09	0.	.23		0.23
35	1.00)	0.50)	0.22	0.22	0.	.45		0.45
45	1.50)	0.35	5	2.35	2.31	2.	.80		2.76
60	2.00)	0.25	5	14.98	14.74	17	7.78		17.50
80	2.50)	0.18	3	35.71	35.14	53	3.49		52.64
120	3.00)	0.13	3	33.06	32.54	86	6.55		85.18
170	3.50)	0.09	9	9.20	9.05	95	5.75		94.23
200	3.75	5	0.07	7	1.17	1.15	96	5.92		95.38
230	4.00)	0.06	6	0.73	0.72	97	'.65		96.10
							,			
Phi 5	Phi 1	6	Phi 2	25	Phi 50	Phi 75	Ph	i 84		Phi 95
3.67	2.98	3	2.84	4	2.46	2.11	1.	.95		1.58

Sorting

0.52

Skewness

-0.25

Kurtosis

4.18

MA_CZM_2017_GRABS.GPJ 12/5/17

Moment

Statistics

Mean Phi

2.43

Mean mm

0.19

Granularmetric Report

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: CANAL9-G1

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Analysis Date: 11-20-17; Analyzed By: DA Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected): 285,716 MA State Plane Mainland 837,977 -52.5 Raw Water USCS: Munsell: Wet - 5Y-4/2 Comments: Dry - 5Y-6/2 SP Washed - 5Y-7/2 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 3.47 #230 - 3.09 95.15 92.28 0.07 0.01 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7/16" -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 5.66 0.00 0.00 0.00 0.00 3.5 -2.504 -2.254.76 0.00 0.00 0.00 0.00 5 0.00 0.00 -2.004.00 0.00 0.00 0.00 7 -1.502.83 0.00 0.00 0.00 10 -1.00 2.00 0.02 0.02 0.02 0.02 14 -0.501.41 0.11 0.12 0.13 0.14 18 0.00 1.00 0.24 0.25 0.37 0.39 25 0.50 0.71 0.53 0.56 0.90 0.95 35 1.00 0.50 1.19 1.25 2.09 2.20 45 2.49 2.62 4.58 4.82 1.50 0.35 60 2.00 0.25 13.74 14.44 18.32 19.26 80 2.50 0.18 54.95 57.75 73.27 77.01 120 3.00 0.13 15.82 16.63 89.09 93.64 170 3.50 0.09 2.39 2.51 91.48 96.15 200 3.75 0.07 0.36 0.38 91.84 96.53 230 4.00 0.06 0.36 0.38 92.20 96.91 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 3.27 2.71 2.48 2.27 2.05 1.89 1.51 Moment Mean Phi Mean mm Sorting Skewness **Kurtosis** Statistics 2.23 0.21 0.48 -1.169.13

IA_CZM_2017_GRABS.GPJ 12

Granularmetric Report

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: CANAL7-G2

Analysis Date: 11-20-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected): MA State Plane Mainland 285,206 840,521 -62.0 Raw Water USCS: Munsell: Wet - 2.5Y-5/2 Comments: Dry - 2.5Y-6/2 SP Washed - 2.5Y-7/2 Dry Weight (g): Pan Retained (g): Wash Weight (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 1.48 #230 - 1.40 100.85 99.45 0.01 0.02 C. % Weight % Weight Cum. Grams Sieve Size Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 0.00 0.00 0.00 0.00 16.00 0.00 0.00 0.00 7/16" -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 5.66 0.00 0.00 0.00 0.00 3.5 -2.504 -2.254.76 0.41 0.41 0.41 0.41 5 -2.004.00 0.19 0.19 0.60 0.60 7 -1.502.83 0.48 0.48 1.08 1.08 10 -1.00 2.00 0.29 0.29 1.37 1.37 14 -0.501.41 0.34 0.34 1.71 1.71 18 0.00 1.00 0.85 0.84 2.56 2.55 25 0.50 0.71 3.32 3.29 5.88 5.84 35 1.00 0.50 22.98 22.79 28.86 28.63 45 45.85 45.46 74.71 74.09 1.50 0.35 60 2.00 0.25 16.51 16.37 91.22 90.46 80 2.50 0.18 5.98 5.93 97.20 96.39 120 3.00 0.13 1.74 1.73 98.94 98.12 170 0.09 0.35 0.35 99.29 98.47 3.50 200 3.75 0.07 0.05 0.05 99.34 98.52 230 4.00 0.06 0.08 0.08 99.42 98.60 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 2.38 1.80 1.53 1.24 0.92 0.72 0.37 Moment Mean Phi Mean mm Sorting Skewness **Kurtosis**

GRABS.GPJ CZM_2017_

Statistics

1.22

0.43

0.65

-1.21

10.2

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: CANAL2-G3

Analysis Date: 11-21-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected):

MA State Plane Mainland -46.0 Raw Water 283,004 844,584

0808:	wunsell: Wet - 2.5Y-5/2	Comments:
SP	Dry - 2.5Y-6/3 Washed - 2.5Y-6/2	

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.44 Organ	nics (%): Carbonates	(%): Shell Hash (%
100.27	98.87	0.02	0.01	#230 - 1.41		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weigl Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.00	0.00	0.00	0.00
7	-1.50	2.83	0.33	0.33	0.33	0.33
10	-1.00	2.00	0.12	0.12	0.45	0.45
14	-0.50	1.41	0.35	0.35	0.80	0.80
18	0.00	1.00	1.37	1.37	2.17	2.17
25	0.50	0.71	11.59	11.56	13.76	13.73
35	1.00	0.50	35.23	35.14	48.99	48.87
45	1.50	0.35	39.17	39.06	88.16	87.93
60	2.00	0.25	9.13	9.11	97.29	97.04
80	2.50	0.18	1.28	1.28	98.57	98.32
120	3.00	0.13	0.17	0.17	98.74	98.49
170	3.50	0.09	0.05	0.05	98.79	98.54
200	3.75	0.07	0.02	0.02	98.81	98.56
230	4.00	0.06	0.03	0.03	98.84	98.59

2/2/										
3.GPJ 1	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	'5	Phi 84	Phi 95	
GRABS	1.89	1.45	1.33		1.01	0.66	3	0.53	0.12	
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis	
MA_CZM	Statistics	0.98	0.51		0.9	51		-0.53	6.53	_

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: CANAL4-G4A

Analysis Date: 11-20-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

97.09

97.51

95.46

95.87

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected):

283,105 MA State Plane Mainland -46.0 Raw Water 842,255 USCS: Munsell: Wet - 5Y-4/2 Comments:

Dry - 5Y-6/2 SW Washed - 5Y-6/2 Dry Weight (g): Shell Hash (%): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Fines (%): #200 - 2.91 #230 - 2.49 98.33 96.02 0.10 0.05 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained (Millimeters) Retained Retained (Phi) 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 7/16" 0.98 1.00 1.00 -3.5011.31 0.98 5/16" -3.008.00 0.43 0.44 1.41 1.44 -2.505.66 0.10 0.10 1.51 1.54 3.5 4 -2.254.76 0.00 0.00 1.51 1.54 5 1.64 -2.004.00 0.13 0.13 1.67 7 0.39 -1.502.83 0.38 2.02 2.06 10 -1.00 2.00 0.17 0.17 2.19 2.23 14 -0.501.41 0.13 0.13 2.32 2.36 18 0.00 1.00 0.55 0.56 2.87 2.92 25 0.50 0.71 5.05 5.14 7.92 8.06 35 1.00 0.50 19.68 20.01 27.60 28.07 45 1.50 39.25 39.92 67.99 0.35 66.85 60 2.00 0.25 20.51 20.86 87.36 88.85 80 2.50 0.18 5.45 5.54 92.81 94.39 120 3.00 0.13 1.12 1.14 93.93 95.53 170 3.50 0.09 0.98 1.00 94.91 96.53

Phi 95
0.20
Kurtosis
15.58

0.55

0.41

0.56

0.42

0.07

0.06

3.75

4.00

200

230

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: DUX3-G1

Analysis Date: 11-21-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected):

MA State Plane Mainland 278,992 871,888 -101.0 Raw Water

USCS: Munsell: Wet - 2.5Y-4/2 Comments: Dry - 2.5Y-6/2 Washed - 2.5Y-6/2 SP

SP	Washed	I - 2.5Y-6/2				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 1.00 Organ	nics (%): Carbonates	(%): Shell Hash (%):
103.09	102.14	0.00	0.04	#230 - 0.95		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0.00
4	-2.25	4.76	0.00	0.00	0.00	0.00
5	-2.00	4.00	0.00	0.00	0.00	0.00
7	-1.50	2.83	0.04	0.04	0.04	0.04
10	-1.00	2.00	0.21	0.20	0.25	0.24
14	-0.50	1.41	0.49	0.48	0.74	0.72
18	0.00	1.00	1.38	1.34	2.12	2.06
25	0.50	0.71	4.78	4.64	6.90	6.70
35	1.00	0.50	17.60	17.07	24.50	23.77
45	1.50	0.35	35.03	33.98	59.53	57.75
60	2.00	0.25	30.46	29.55	89.99	87.30
80	2.50	0.18	10.26	9.95	100.25	97.25
120	3.00	0.13	1.50	1.46	101.75	98.71
170	3.50	0.09	0.28	0.27	102.03	98.98
200	3.75	0.07	0.02	0.02	102.05	99.00
230	4.00	0.06	0.05	0.05	102.10	99.05

12/5									
.GPJ	Phi 5	Phi 16	Phi 25	P	hi 50	Phi 7	' 5	Phi 84	Phi 95
GRABS	2.39	1.94	1.79		1.39	1.02	2	0.77	0.32
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZI	Statistics	1.36	0.39		0.	61		-0.43	4.43

117

Granularmetric Report

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: DUX4-G2

Analysis Date: 11-29-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected): 276,756 MA State Plane Mainland 871,868 -82.0 Raw Water USCS: Munsell: Wet - 5Y-4/1 Comments: Dry - 5Y-6/2 SP Washed - 5Y-7/1 Dry Weight (g): Wash Weight (g): Pan Retained (q): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 2.61 #230 - 2.54 96.78 94.36 0.01 0.03 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7/16" -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 5.66 0.00 0.00 0.00 0.00 3.5 -2.504 -2.254.76 0.00 0.00 0.00 0.00 5 0.00 0.00 -2.004.00 0.00 0.00 7 -1.502.83 0.00 0.00 0.00 0.00 10 -1.00 2.00 0.01 0.01 0.01 0.01 14 -0.501.41 0.01 0.01 0.02 0.02 18 0.00 1.00 0.10 0.10 0.12 0.12 25 0.50 0.71 0.23 0.24 0.35 0.36 35 1.00 0.50 1.14 1.18 1.49 1.54 5.89 45 4.21 4.35 5.70 1.50 0.35 60 2.00 0.25 12.85 13.28 18.55 19.17 80 2.50 0.18 45.39 46.90 63.94 66.07 120 3.00 0.13 26.17 27.04 90.11 93.11 170 3.50 0.09 3.90 4.03 94.01 97.14 200 3.75 0.07 0.24 0.25 94.25 97.39 230 4.00 0.06 0.07 0.07 94.32 97.46 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 3.23 2.83 2.67 2.33 2.06 1.88 1.40 Moment Mean Phi Mean mm Sorting Skewness **Kurtosis**

GRABS.GPJ CZM_2017_

Statistics

2.3

0.20

0.49

-0.79

5.32

Granularmetric Report

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: DUX7-G3A

Analysis Date: 11-29-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected):

MA State Plane Mainland 274,738 867,514 -66.0 Raw Water

USCS: Munsell: Wet - 10YR-3/4 Comments: Dry - 10YR-5/3 SP Washed - 10YR-6/3 Dry Weight (g): Wash Weight (g): Pan Retained (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 2.98 #230 - 2.75 98.55 95.93 0.05 0.04 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7/16" -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 5.66 0.00 0.00 0.00 0.00 3.5 -2.504 -2.254.76 0.00 0.00 0.00 0.00 5 0.03 -2.004.00 0.03 0.03 0.03 7 -1.502.83 0.03 0.03 0.06 0.06 10 -1.00 2.00 0.04 0.04 0.10 0.10 14 -0.501.41 0.10 0.10 0.20 0.20 18 0.00 1.00 0.11 0.11 0.31 0.31 25 0.50 0.71 0.37 0.38 0.68 0.69 35 1.00 0.50 1.39 1.41 2.07 2.10 45 8.83 8.96 10.90 11.06 1.50 0.35 60 2.00 0.25 15.00 15.22 25.90 26.28 80 2.50 0.18 47.35 48.05 73.25 74.33 120 3.00 0.13 16.92 17.17 90.17 91.50 170 0.09 4.84 4.91 96.41 3.50 95.01 97.02 200 3.75 0.07 0.60 0.61 95.61 230 4.00 0.06 0.23 0.23 95.84 97.25 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 3.36 2.78 2.52 2.25 1.96 1.66 1.16 Moment Mean Phi Mean mm Sorting Skewness **Kurtosis**

GPJ GRABS. CZM_2017_

Statistics

2.19

0.22

0.57

-0.8

6.62

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: DUX9-G4

Analysis Date: 11-29-17; Analyzed By: SMT

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected):

MA State Plane Mainland 276,697 865,531 -88.0 Raw Water Munsell: Wet - 10Y-2.5/1 Comments: USCS:

SM			ry - 5Y-5/2 ed - 5Y-6/2								
Dry Weight (g):	Wash V	Weight (g):	Pan Retained ((g):	Sieve Loss (%):	Fines (%): #200 - 18.32	Organ	nics (%):	Carbonates (%):	Shell Hash (%):
96.93		81.65	0.39	9	0.00	#230 - 16.18					
	Qi/	0.40 Sizo	Siovo	Sizo	Grame	% Moigh	+	Cum	Grame	C	% Maight

96.93	81.65	0.39	0.00	#200 - 16.32 #230 - 16.18		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	1.96	2.02	1.96	2.02
5/16"	-3.00	8.00	2.52	2.60	4.48	4.62
3.5	-2.50	5.66	0.36	0.37	4.84	4.99
4	-2.25	4.76	0.00	0.00	4.84	4.99
5	-2.00	4.00	0.12	0.12	4.96	5.11
7	-1.50	2.83	0.24	0.25	5.20	5.36
10	-1.00	2.00	0.05	0.05	5.25	5.41
14	-0.50	1.41	0.16	0.17	5.41	5.58
18	0.00	1.00	0.08	0.08	5.49	5.66
25	0.50	0.71	0.31	0.32	5.80	5.98
35	1.00	0.50	0.41	0.42	6.21	6.40
45	1.50	0.35	0.51	0.53	6.72	6.93
60	2.00	0.25	1.06	1.09	7.78	8.02
80	2.50	0.18	9.30	9.59	17.08	17.61
120	3.00	0.13	37.06	38.23	54.14	55.84
170	3.50	0.09	23.09	23.82	77.23	79.66
200	3.75	0.07	1.96	2.02	79.19	81.68
230	4.00	0.06	2.07	2.14	81.26	83.82

12/5/									
	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	' 5	Phi 84	Phi 95
GRABS.GPJ			3.40	2	2.92	2.60)	2.42	-2.46
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	SI	kewness	Kurtosis
MA_CZM	Statistics	2.44	0.18		1.	59		-3.06	11.46

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: HULL4-G1

Analysis Date: 11-21-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected):

MA State Plane Mainland 263,324 897,006 -122.0 Raw Water

200,024			001,000			to i laric iviali	122.0 I taw Water			
USCS:		Dry	: - 2.5Y-4/1 · - 2.5Y-5/1	Comment	ts:					
SW-SM		Washed	Washed - 2.5Y-6/1							
Dry Weight (g):	Wash V	Weight (g):	Pan Retained (g):		Sieve Loss (%):	Fines (%): #200 - 11.63	Organics (%):	Carbonates (%):		Shell Hash (%):
95.64		85.80	0.2	1	0.01	#230 - 10.51				
Sieve Number	Si	eve Size (Phi)	Sieve Size (Millimeters)		Grams Retained	% Weight Retained		. Grams etained	1	. % Weight Retained
3/4"		-4.25	19.03		0.00	0.00 0		0.00		0.00
5/8"		-4.00	16.00		0.00	0.00		0.00		0.00
7/16"		-3.50	11.31		0.00	0.00		0.00		0.00
5/16"		-3.00	8.00		0.00	0.00 0		0.00		0.00
3.5		-2.50	5.66		0.72	0.75 0		0.72		0.75
4		-2.25	4.76	3	1.46	1.53		2.18		2.28

		(Pni)	(IVIIIIImeters)	Retained	Retained	Retained	Retained	
3/4'	3/4" -4.25		19.03	0.00	0.00	0.00	0.00	
5/8'	•	-4.00 16.00		0.00	0.00	0.00	0.00	
7/16	;"	-3.50	.50 11.31		0.00	0.00	0.00	
5/16	;"	-3.00	8.00	0.00	0.00	0.00	0.00	
3.5		-2.50	5.66	0.72	0.75	0.72	0.75	
4		-2.25	4.76	1.46	1.53	2.18	2.28	
5	-2.00		4.00	0.00	0.00	2.18	2.28	
7		-1.50	2.83	0.88	0.92	3.06	3.20	
10		-1.00	2.00	0.45	0.47	3.51	3.67	
14		-0.50		0.69	0.72	4.20	4.39	
18		0.00	1.00	0.85	0.89	5.05	5.28	
25		0.50	0.71	1.13	1.18	6.18	6.46	
35		1.00	0.50	1.98	2.07	8.16	8.53	
45		1.50	0.35	3.43	3.59	11.59	12.12	
60		2.00	0.25	4.31	4.51	15.90	16.63	
80		2.50	0.18	8.45	8.84	24.35	25.47	
120)	3.00	0.13	45.19	47.25	69.54	72.72	
170)	3.50	0.09	13.02	13.61	82.56	86.33	
200)	3.75	0.07	1.95	2.04	84.51	88.37	
230)	4.00	0.06	1.07	1.12	85.58	89.49	

12/5/1										
GPJ	Phi 5	Phi 16	Phi 25 Phi		hi 50	Phi 75 2.47		Phi 84	Phi 95	
GRABS		3.41	3.08	3.08 2				1.93	-0.16	
M_2017_	Moment	Mean Phi	Mean m			Sorting 5		kewness	Kurtosis	
MA_CZM	Statistics	2.36	0.19					-2.52	9.64	

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: HULL5-G2

Analysis Date: 11-21-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected):

MA State Plane Mainland -110.0 Raw Water 262,609 898,061

0808:	Munsell:	Wet - 2.5Y-3/2	Comments:
		Dry - 2.5Y-5/1	
SW-SM	W:	ashed - 2 5Y-5/2	

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 5.67 Organ	nics (%): Carbonates	(%): Shell Hash (%):	
99.88	94.86	0.10	0.04	#230 - 5.19			
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained	
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00	
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00	
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00	
5/16"	-3.00	8.00	4.50	4.51	4.50	4.51	
3.5	-2.50	5.66	3.67	3.67	8.17	8.18	
4	-2.25	4.76	0.72	0.72	8.89	8.90	
5	-2.00	4.00	0.95	0.95	9.84	9.85	
7	-1.50	2.83	1.76	1.76	11.60	11.61	
10	-1.00	2.00	0.98	0.98	12.58	12.59	
14	-0.50	1.41	1.32	1.32	13.90	13.91	
18	0.00	1.00	1.15	1.15	15.05	15.06	
25	0.50	0.71	1.49	1.49	16.54	16.55	
35	1.00	0.50	2.66	2.66	19.20	19.21	
45	1.50	0.35	5.10	5.11	24.30	24.32	
60	2.00	0.25	11.92	11.93	36.22	36.25	
80	2.50	0.18	27.95	27.98	64.17	64.23	
120	3.00	0.13	20.64	20.66	84.81	84.89	
170	3.50	0.09	8.23	8.24	93.04	93.13	
200	3.75	0.07	1.20	1.20	94.24	94.33	
230	4.00	0.06	0.48	0.48	94.72	94.81	

12/5											
GPJ	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 75		Phi 84		Phi 95	
GRABS		2.98	2.76	2.25		1.53		0.32		-2.93	
M_2017_	Moment	Mean Phi	Mean m	m	n Sorting		Skewness			Kurtosis	
MA_CZM	J STATISTICS	atistics 1.56 0.34		1.82		-1.59			4.36		

Granularmetric Report

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: HULL7-G3A

Analysis Date: 11-20-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected): MA State Plane Mainland 261,231 898,100 -101.0 Raw Water USCS: Munsell: Wet - 2.5Y-4/1 Comments: Dry - 2.5Y-6/1 SW-SM Washed - 2.5Y-6/1 Dry Weight (g): Wash Weight (g): Pan Retained (q): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 5.28 #230 - 4.28 98.51 94.52 0.19 0.04 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 0.00 0.00 0.00 0.00 16.00 0.00 0.00 0.00 7/16" -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 5.66 2.00 2.03 2.00 2.03 3.5 -2.504 -2.254.76 1.03 1.05 3.03 3.08 5 0.19 -2.004.00 0.19 3.22 3.27 7 -1.502.83 2.00 2.03 5.22 5.30 10 -1.00 2.00 1.36 1.38 6.58 6.68 14 -0.501.41 0.75 0.76 7.33 7.44 18 0.00 1.00 1.02 1.04 8.35 8.48 25 0.50 0.71 1.21 1.23 9.56 9.71 35 1.00 0.50 2.47 2.51 12.03 12.22 45 4.76 4.83 16.79 17.05 1.50 0.35 60 2.00 0.25 9.90 10.05 26.69 27.10 80 2.50 0.18 23.97 24.33 50.66 51.43 120 3.00 0.13 22.41 22.75 73.07 74.18 170 0.09 18.98 19.27 93.45 3.50 92.05 200 3.75 0.07 1.25 1.27 93.30 94.72 230 4.00 0.06 0.99 1.00 94.29 95.72 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 3.82 3.25 3.02 2.47 1.90 1.39 -1.57Moment Mean Phi Mean mm Sorting Skewness **Kurtosis**

1A_CZM_2017_GRABS.GPJ 12

Statistics

2.09

0.23

1.39

-1.96

6.6

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: HULL2-G4

Analysis Date: 11-21-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected):

257,862 MA State Plane Mainland -72.0 Raw Water 896,014

USCS:	Munsell:	Wet - 2.5Y-3/2	Comments:
		Dry - 2.5Y-4/2	
SP	Wa	ashed - 2.5Y-5/3	

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 2.70 Organ	nics (%): Carbonates	(%): Shell Hash (%):
96.89	94.71	80.0	0.02	#230 - 2.36		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00
3.5	-2.50	5.66	0.12	0.12	0.12	0.12
4	-2.25	4.76	0.00	0.00	0.12	0.12
5	-2.00	4.00	0.00	0.00	0.12	0.12
7	-1.50	2.83	0.07	0.07	0.19	0.19
10	-1.00	2.00	0.00	0.00	0.19	0.19
14	-0.50	1.41	0.01	0.01	0.20	0.20
18	0.00	1.00	0.02	0.02	0.22	0.22
25	0.50	0.71	0.24	0.25	0.46	0.47
35	1.00	0.50	0.85	0.88	1.31	1.35
45	1.50	0.35	3.13	3.23	4.44	4.58
60	2.00	0.25	35.08	36.21	39.52	40.79
80	2.50	0.18	48.01	49.55	87.53	90.34
120	3.00	0.13	4.50	4.64 92.03		94.98
170	3.50	0.09	1.90	1.96	93.93	96.94
200	3.75	0.07	0.35	0.36	94.28	97.30
230	4.00	0.06	0.33	0.34	94.61	97.64

MA_CZM_2017_GRABS.GPJ 12/5/17

Phi 5

Phi 16

Phi 25

3.01	2.44	2.35	2.09		1.78	3	1.66	1.51
Moment	Mean Phi	Mean m	m	Sorting	g	SI	kewness	Kurtosis
Statistics	2.06	0.24		0.46			-1.64	22.67

Phi 50

Phi 75

Phi 84

Phi 95

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: HULL1-G5A

257,135

Analysis Date: 11-21-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

-69.0 Raw Water

MA State Plane Mainland

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected):

USCS: Munsell: Wet - 2.5Y-3/2 Comments:

895,878

Dry - 2.5Y-4/2 QD

SP	Washe	d - 2.5Y-6/2					
Ory Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 2.54	rganics (%):	Carbonates (%):	Shell Hash (%)
99.74	97.53	0.04	0.03	#230 - 2.28			
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. G Retair		. % Weigh Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0	0.00
7/16"	-3.50	11.31	0.00	0.00	0.00	0	0.00
5/16"	-3.00	8.00	0.00	0.00	0.00	0	0.00
3.5	-2.50	5.66	0.00	0.00	0.00	0	0.00
4	-2.25	4.76	0.00	0.00	0.00	0	0.00
5	-2.00	4.00	0.00	0.00	0.00	0	0.00
7	-1.50	2.83	0.03	0.03 0.03		3	0.03
10	-1.00	2.00	0.00	0.00	0.0	3	0.03
14	-0.50	1.41	0.00	0.00	0.0	3	0.03
18	0.00	1.00	0.02	0.02	0.0	5	0.05
25	0.50	0.71	0.22	0.22	0.2	7	0.27
35	1.00	0.50	1.38	1.38	1.6	5	1.65
45	1.50	0.35	21.86	21.92	23.5	51	23.57
60	2.00	0.25	49.21	49.34	72.7	'2	72.91
80	2.50	0.18	13.58	13.62	86.3	30	86.53
120	3.00	0.13	3.07	3.08	89.3	37	89.61
170	3.50	0.09	7.50	7.52	96.8	37	97.13
200	3.75	0.07	0.33	0.33	97.2	20	97.46
230	4.00	0.06	0.26	0.26	97.4	16	97.72

Phi 50

1.77

Phi 75

1.51

Sorting

0.58

Phi 84

1.33

Skewness

1

Phi 95

1.08

Kurtosis

4.67

GPJ.	Phi 5	Phi 16	Phi 25			
_GRABS.GPJ	3.36	2.41	2.08			
CZM_2017_	Moment	Mean Phi	Mean m	m		
MA_CZI	Statistics	1.85	0.28	0.28		

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MER10-G1

Analysis Date: 11-22-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected):

MA State Plane Mainland 261,287 946,847 -84.0 Raw Water

USCS: Munsell: Wet - 10YR-3/4 Comments: Dry - 10YR-5/3 Washed - 10YR-6/3 SW

vvaorica	- 10YR-6/3				
Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 0.41 Organ	nics (%): Carbonates	(%): Shell Hash (%):
111.02	0.00	0.00	#230 - 0.39		
Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
-4.25	19.03	0.00	0.00	0.00	0.00
-4.00	16.00	0.00	0.00	0.00	0.00
-3.50	11.31	0.00	0.00	0.00	0.00
-3.00	8.00	2.14	1.92	2.14	1.92
-2.50	5.66	0.79	0.71	2.93	2.63
-2.25	4.76	0.80	0.72	3.73	3.35
-2.00	4.00	1.89	1.70	1.70 5.62	
-1.50	2.83	5.07	4.55	10.69	9.60
-1.00	2.00	10.19	9.14 20.88		18.74
-0.50	1.41	22.93	20.57	43.81	39.31
0.00	1.00	22.65	20.32	66.46	59.63
0.50	0.71	16.06	14.41	82.52	74.04
1.00	0.50	14.09	12.64	96.61	86.68
1.50	0.35	7.96	7.14	104.57	93.82
2.00	0.25	3.96	3.55	108.53	97.37
2.50	0.18	1.79	1.61	110.32	98.98
3.00	0.13	0.46	0.41	110.78	99.39
3.50	0.09	0.18	0.16	110.96	99.55
3.75	0.07	0.04	0.04	111.00	99.59
4.00	0.06	0.02	0.02	111.02	99.61
	Wash Weight (g): 111.02 Sieve Size (Phi) -4.25 -4.00 -3.50 -3.00 -2.50 -2.25 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 3.75	Wash Weight (g): Pan Retained (g): 111.02 0.00 Sieve Size (Phi) Sieve Size (Millimeters) -4.25 19.03 -4.00 16.00 -3.50 11.31 -3.00 8.00 -2.50 5.66 -2.25 4.76 -2.00 4.00 -1.50 2.83 -1.00 2.00 -0.50 1.41 0.00 0.71 1.00 0.50 1.50 0.35 2.00 0.25 2.50 0.18 3.00 0.13 3.50 0.09 3.75 0.07	Wash Weight (g): Pan Retained (g): Sieve Loss (%): 111.02 0.00 0.00 Sieve Size (Phi) Sieve Size (Millimeters) Grams Retained -4.25 19.03 0.00 -4.00 16.00 0.00 -3.50 11.31 0.00 -3.00 8.00 2.14 -2.50 5.66 0.79 -2.25 4.76 0.80 -2.00 4.00 1.89 -1.50 2.83 5.07 -1.00 2.00 10.19 -0.50 1.41 22.93 0.00 1.00 22.65 0.50 0.71 16.06 1.00 0.50 14.09 1.50 0.35 7.96 2.00 0.25 3.96 2.50 0.18 1.79 3.00 0.13 0.46 3.50 0.09 0.18 3.75 0.07 0.04	Wash Weight (g): Pan Retained (g): Sieve Loss (%): Fines (%): Organ 111.02 0.00 0.00 #230 - 0.41 Organ Sieve Size (Phi) Sieve Size (Millimeters) Grams Retained % Weight Retained -4.25 19.03 0.00 0.00 -4.00 16.00 0.00 0.00 -3.50 11.31 0.00 0.00 -3.00 8.00 2.14 1.92 -2.50 5.66 0.79 0.71 -2.25 4.76 0.80 0.72 -2.00 4.00 1.89 1.70 -1.50 2.83 5.07 4.55 -1.00 2.00 10.19 9.14 -0.50 1.41 22.93 20.57 0.00 1.00 22.65 20.32 0.50 0.71 16.06 14.41 1.50 0.35 7.96 7.14 2.00 0.25 3.96 3.55 2.50 0.18	Wash Weight (g): Pan Retained (g): Sieve Loss (%): #200 - 0.41 #200 - 0.41 #200 - 0.41 #200 - 0.41 Corpanics (%): Carbonates Sieve Size (Phi) Sieve Size (Millimeters) Grams Retained % Weight Retained Cum. Grams Retained -4.25 19.03 0.00 0.00 0.00 -4.00 16.00 0.00 0.00 0.00 -3.50 11.31 0.00 0.00 0.00 -3.00 8.00 2.14 1.92 2.14 -2.50 5.66 0.79 0.71 2.93 -2.25 4.76 0.80 0.72 3.73 -2.00 4.00 1.89 1.70 5.62 -1.50 2.83 5.07 4.55 10.69 -1.00 2.00 10.19 9.14 20.88 -0.50 1.41 22.93 20.57 43.81 0.00 1.00 22.65 20.32 66.46 0.50 0.71 16.06 14.41 82.52 1.00

-149								
GPJ	Phi 5	Phi 16	Phi 25	Phi 50	Phi	75	Phi 84	Phi 95
GRABS	1.67	0.89	0.54	-0.24	-0.8	35	-1.15	-2.01
A_2017	Moment	Mean Phi	Mean m	m S	orting	S	kewness	Kurtosis
MA_CZM	Statistics	-0.2	1.15		1.09		-0.1	3.51

Granularmetric Report

Depths and elevations based on measured values

Project Name: Preliminary Characterization of Offshore Sand

Resources in Selected Study Areas

Sample Name: MER8-G2

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Analysis Date: 11-29-17; Analyzed By: SMT Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected): MA State Plane Mainland 260,292 948,669 -83.0 Raw Water USCS: Munsell: Wet - 10YR-3/2 Comments: Dry - 2.5Y-5/3 SW Washed - 2.5Y-6/3 Dry Weight (g): Pan Retained (g): Wash Weight (g): Sieve Loss (%): Organics (%): Carbonates (%): Shell Hash (%): Fines (%): #200 - 1.69 #230 - 1.65 105.56 104.16 0.05 0.27 C. % Weight Sieve Size % Weight Cum. Grams Sieve Size Grams Sieve Number Retained Retained Retained (Phi) (Millimeters) Retained 3/4" -4.2519.03 0.00 0.00 0.00 0.00 5/8" -4.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7/16" -3.5011.31 0.00 5/16" -3.008.00 0.00 0.00 0.00 0.00 5.66 0.00 0.00 0.00 0.00 3.5 -2.504 -2.254.76 1.22 1.16 1.22 1.16 5 0.90 -2.004.00 0.85 2.12 2.01 7 -1.502.83 6.37 6.03 8.49 8.04 10 -1.00 2.00 12.91 12.23 21.40 20.27 14.88 14 -0.501.41 15.71 37.11 35.15 18 0.00 1.00 15.90 15.06 53.01 50.21 25 0.50 0.71 17.26 16.35 70.27 66.56 35 1.00 0.50 13.42 12.71 83.69 79.27 45 9.13 8.65 87.92 1.50 0.35 92.82 60 2.00 0.25 6.81 6.45 99.63 94.37 80 2.50 0.18 2.92 2.77 102.55 97.14 120 3.00 0.13 0.86 0.81 103.41 97.95 170 3.50 0.09 0.30 0.28 98.23 103.71 200 3.75 0.07 80.0 0.08 103.79 98.31 230 4.00 0.06 0.04 0.04 103.83 98.35 Phi 5 Phi 16 Phi 25 Phi 50 Phi 75 Phi 84 Phi 95 2.11 1.27 0.83 -0.01 -0.84-1.17-1.75 Moment Mean Phi Mean mm Sorting Skewness **Kurtosis**

IA_CZM_2017_GRABS.GPJ 12

Statistics

0

1.00

1.12

0.25

2.59

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

Sample Name: MER4-G4

Analysis Date: 11-22-17; Analyzed By: DA

APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected): 260,341 MA State Plane Mainland -95.0 Raw Water 953,193 USCS: Munsell: Wet - 10YR-3/2 Comments: Dry - 2.5Y-5/3 Washed - 2.5Y-6/3 SW

Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 0.98 Orga	anics (%): Carbonates	(%): Shell Hash (%):	
104.50	103.58	0.00	0.04	#230 - 0.92			
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained	
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00	
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00	
7/16"	-3.50	11.31	0.00	0.00	0.00	0.00	
5/16"	-3.00	8.00	0.00	0.00	0.00	0.00	
3.5	-2.50	5.66	2.09	2.00	2.09	2.00	
4	-2.25	4.76	0.85	0.81	2.94	2.81	
5	-2.00	4.00	1.67	1.60	4.61	4.41	
7	-1.50	2.83	5.14	4.92	9.75	9.33	
10	-1.00	2.00	8.27	7.91	18.02	17.24	
14	-0.50	1.41	11.34	10.85	29.36	28.09	
18	0.00	1.00	12.19	11.67	41.55	39.76	
25	0.50	0.71	19.01	18.19	60.56	57.95	
35	1.00	0.50	21.06	20.15	81.62	78.10	
45	1.50	0.35	13.75	13.16	95.37	91.26	
60	2.00	0.25	5.98	5.72 101.35		96.98	
80	2.50	0.18	1.64	1.57 102.99		98.55	
120	3.00	0.13	0.31	0.30	103.30	98.85	
170	3.50	0.09	0.14	0.13	103.44	98.98	
200	3.75	0.07	0.04	0.04	103.48	99.02	
230	4.00	0.06	0.06	0.06	103.54	99.08	

4									
GPJ	Phi 5	Phi 16	Phi 25	Р	hi 50	Phi 7	' 5	Phi 84	Phi 95
GRABS	1.83	1.22	0.92	(0.28	-0.6	4	-1.08	-1.94
M_2017	Moment	Mean Phi	Mean m	m	Sor	ting	S	kewness	Kurtosis
MA_CZM	Statistics	0.11	0.93		1.	12		-0.41	2.87

Project Name: Preliminary Characterization of Offshore Sand Resources in Selected Study Areas

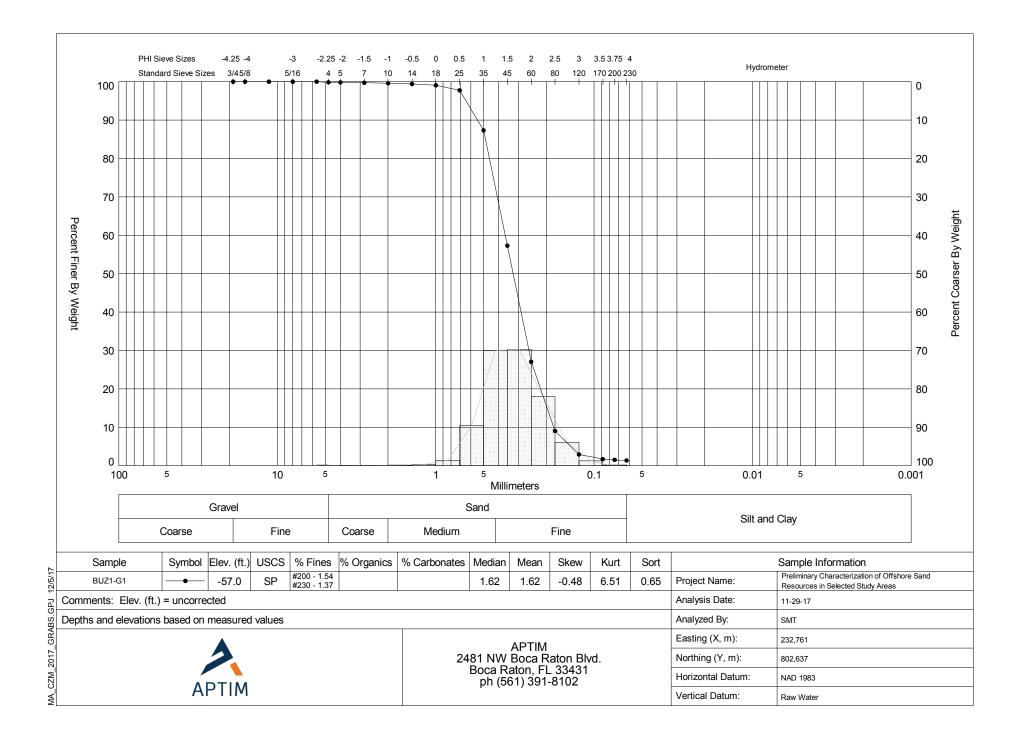
Sample Name: MER2-G5

Analysis Date: 11-22-17; Analyzed By: DA

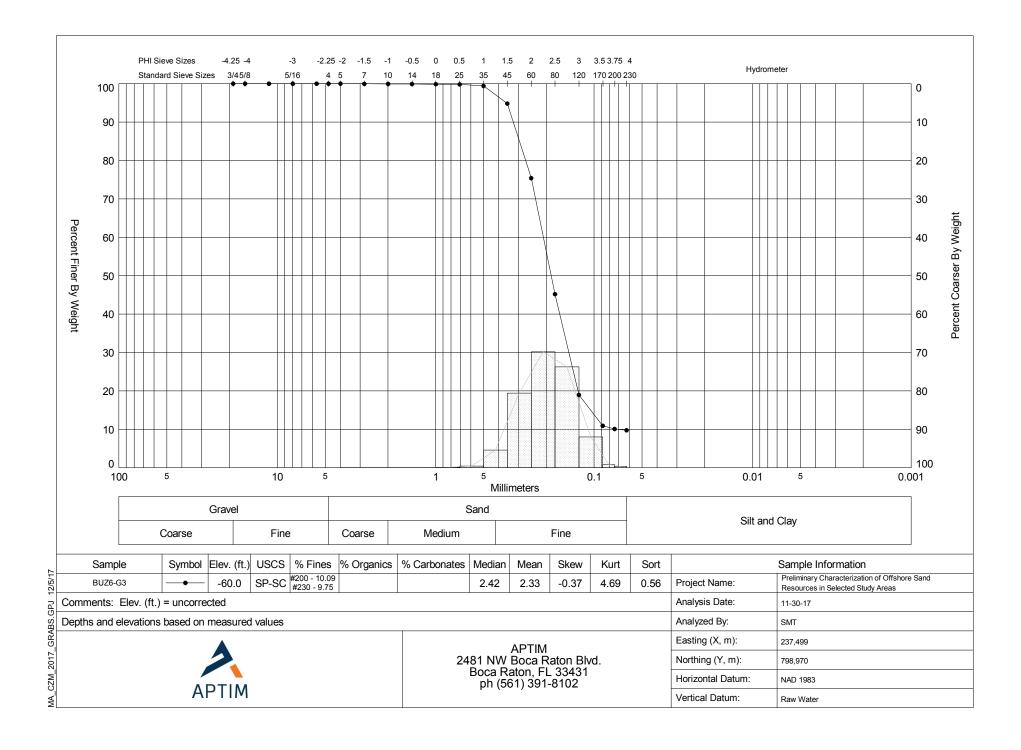
APTIM 2481 NW Boca Raton Blvd. Boca Raton, FL 33431 ph (561) 391-8102

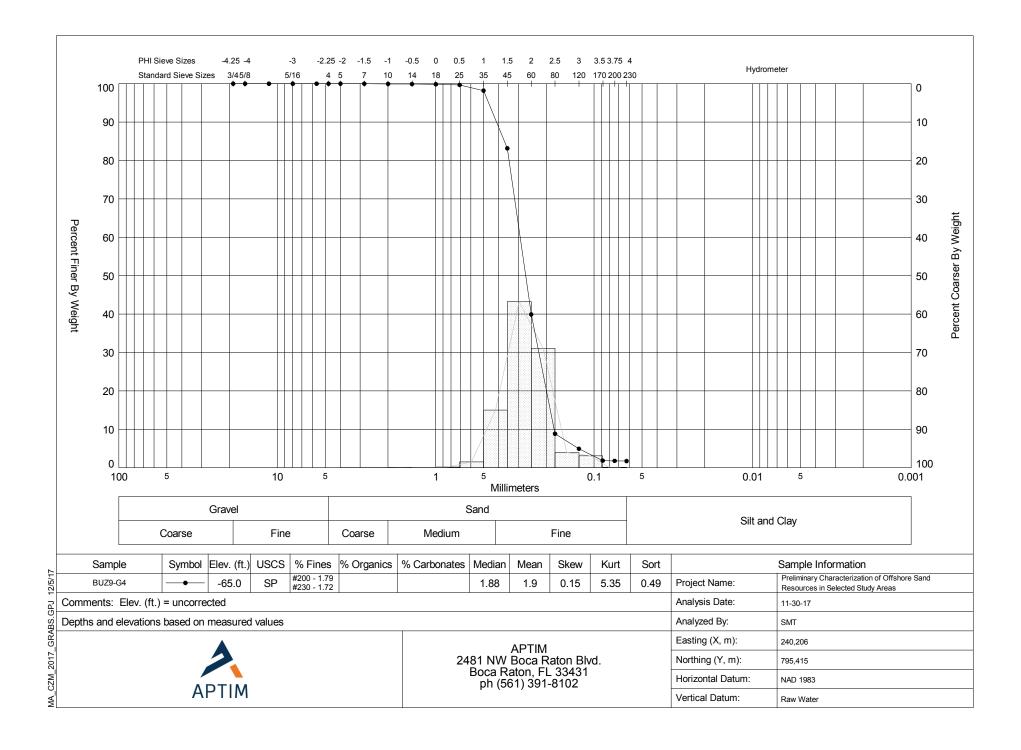
Easting (m): Northing (m): Coordinate System: Elevation (ft., uncorrected): MA State Plane Mainland 261,021 955,438 -107.0 Raw Water USCS: Munsell: Wet - 10YR-3/3 Comments: Dry - 2.5Y-5/3 Washed - 2.5Y-6/3 SW

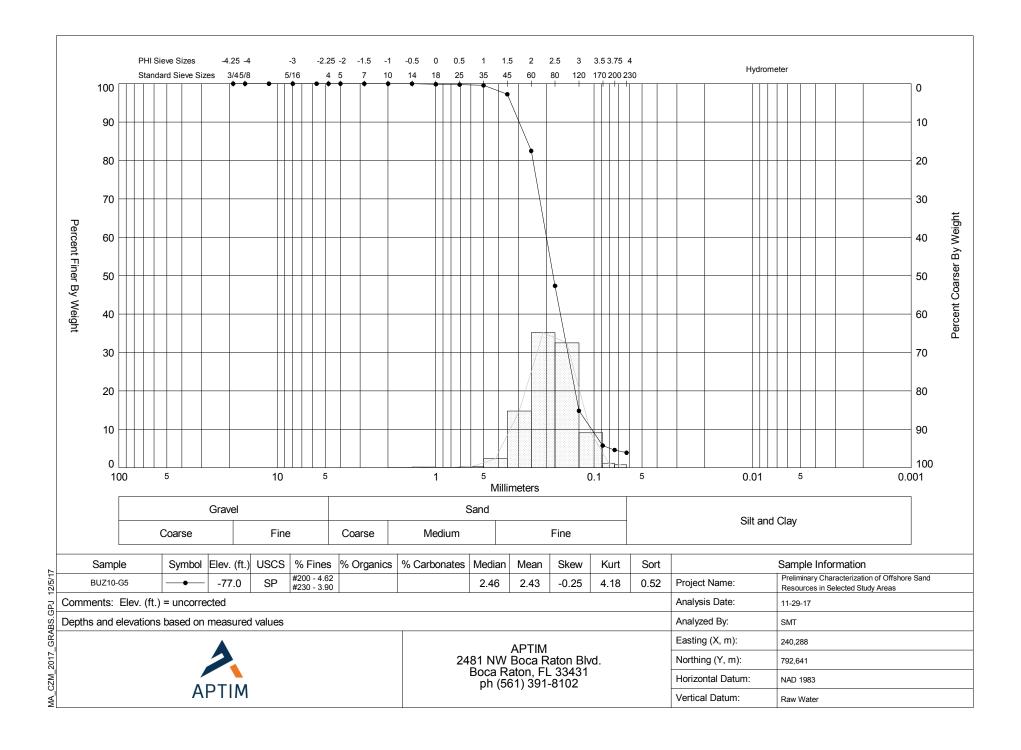
344	v v doi ic	J - 2.51-0/5				
Dry Weight (g):	Wash Weight (g):	Pan Retained (g):	Sieve Loss (%):	Fines (%): #200 - 0.97 Orga	nics (%): Carbonates	(%): Shell Hash (%):
106.03	105.08	0.00	0.00	#230 - 0.91		
Sieve Number	Sieve Size (Phi)	Sieve Size (Millimeters)	Grams Retained	% Weight Retained	Cum. Grams Retained	C. % Weight Retained
3/4"	-4.25	19.03	0.00	0.00	0.00	0.00
5/8"	-4.00	16.00	0.00	0.00	0.00	0.00
7/16"	-3.50	11.31	2.94	2.77	2.94	2.77
5/16"	-3.00	8.00	0.00	0.00	2.94	2.77
3.5	-2.50	5.66	2.17	2.05	5.11	4.82
4	-2.25	4.76	0.97	0.91	6.08	5.73
5	-2.00	4.00	1.36	1.28	7.44	7.01
7	-1.50	2.83	5.56	5.24 13.00		12.25
10	-1.00	2.00	8.95	8.44	21.95	20.69
14	-0.50	1.41	13.14	12.39	35.09	33.08
18	0.00	1.00	15.06	14.20	50.15	47.28
25	0.50	0.71	21.43	20.21	71.58	67.49
35	1.00	0.50	16.87	15.91	88.45	83.40
45	1.50	0.35	10.45	9.86	98.90	93.26
60	2.00	0.25	4.17	3.93	103.07	97.19
80	2.50	0.18	1.34	1.26	104.41	98.45
120	3.00	0.13	0.37	0.35	104.78	98.80
170	3.50	0.09	0.19	0.18	104.97	98.98
200	3.75	0.07	0.05	0.05	105.02	99.03
230	4.00	0.06	0.06	0.06	105.08	99.09

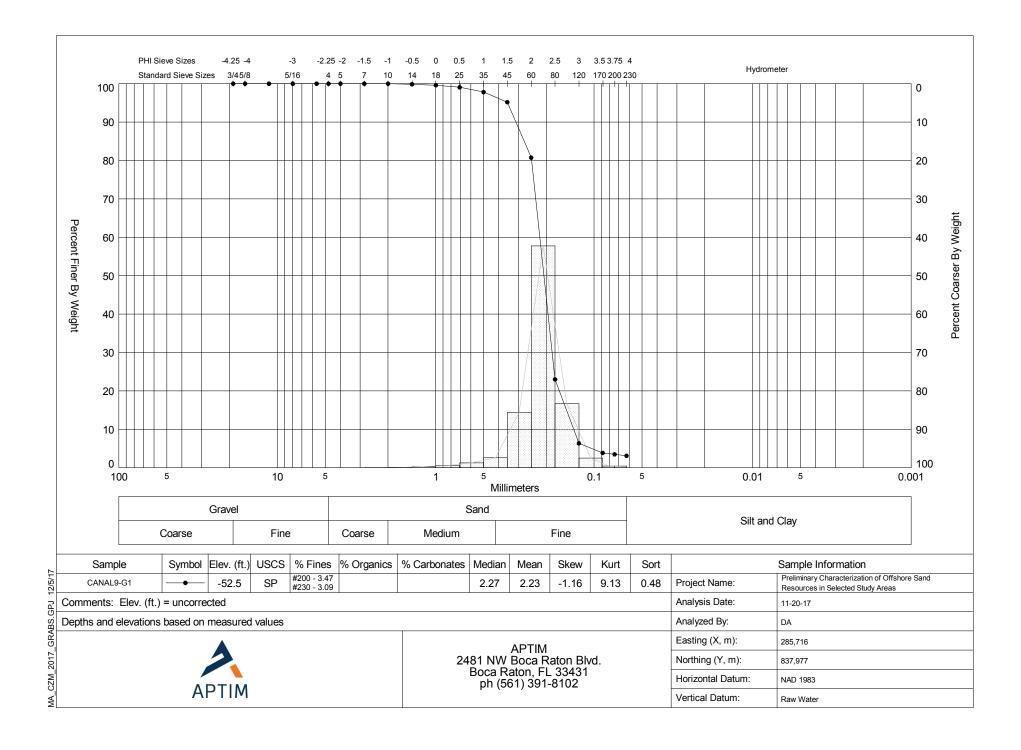

2								
GPJ.	Phi 5	Phi 16	Phi 25	Phi 50	Phi 7	75	Phi 84	Phi 95
GRABS	1.72	1.03	0.74	0.07	-0.8	3	-1.28	-2.45
M_2017	Moment	Mean Phi	Mean m	m So	orting	S	kewness	Kurtosis
MA_CZM	Statistics	-0.13	1.09	,	.23		-0.67	3.81

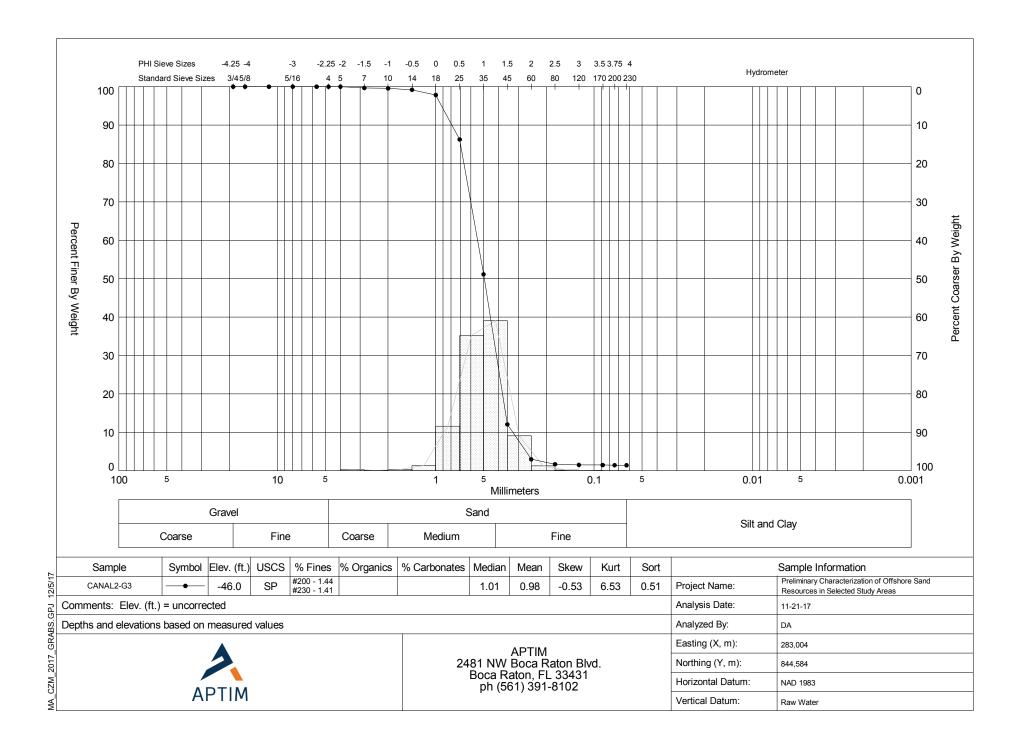

Appendix H (digital only)

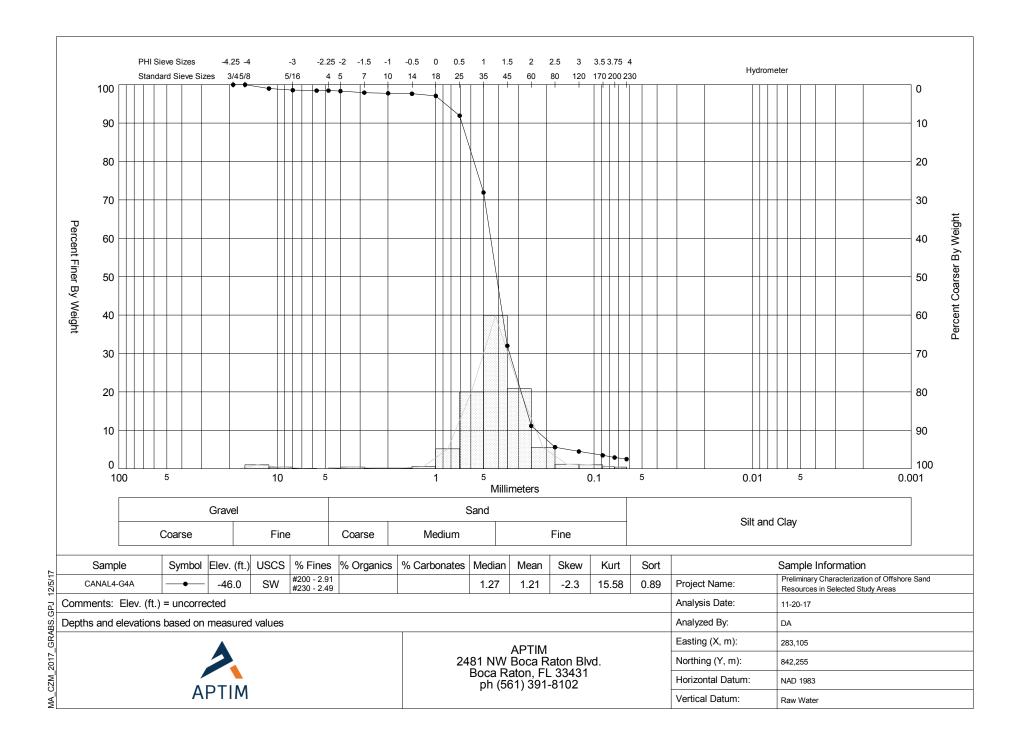

Grab Sample Granularmetric Reports

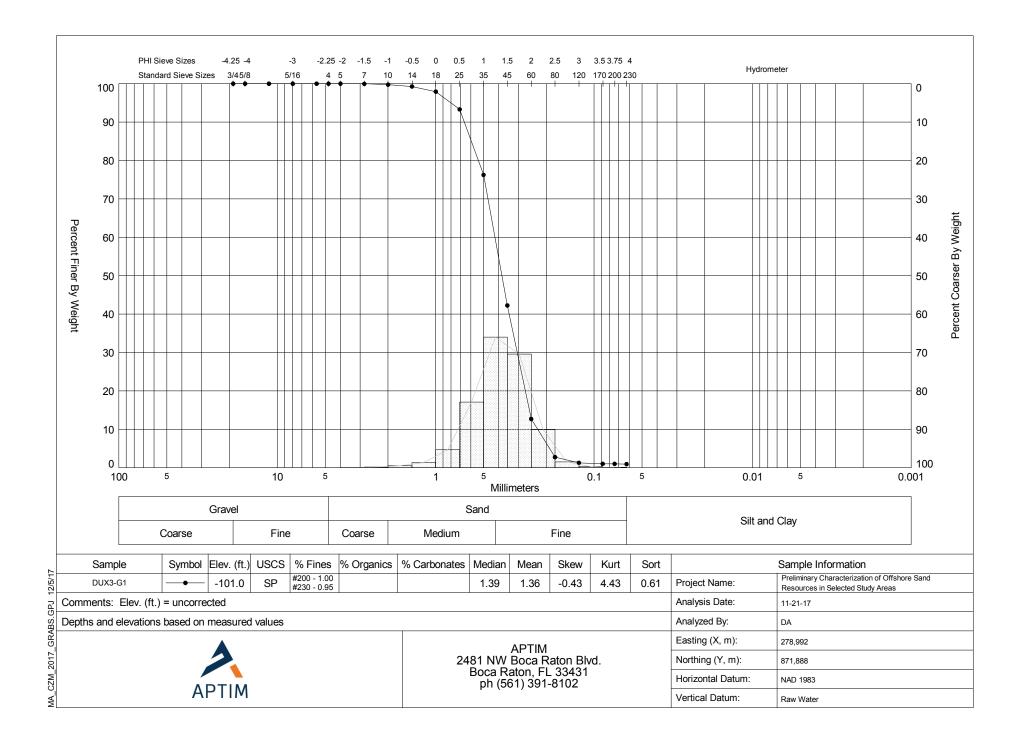

Appendix I

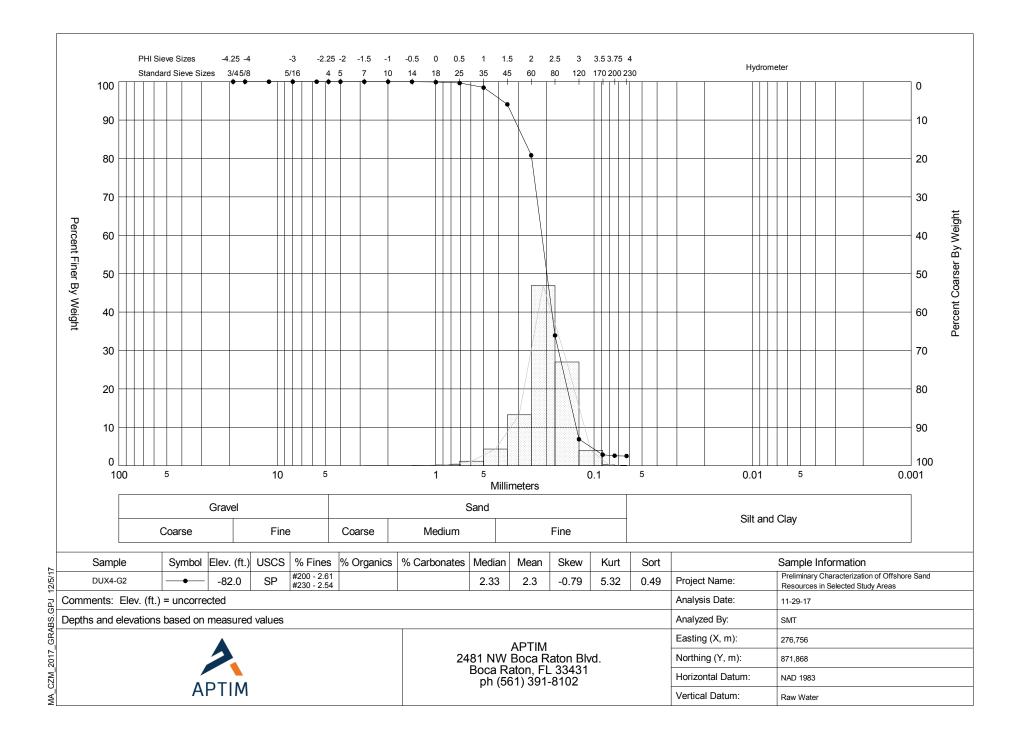

Grab Sample Granularmetric Curves

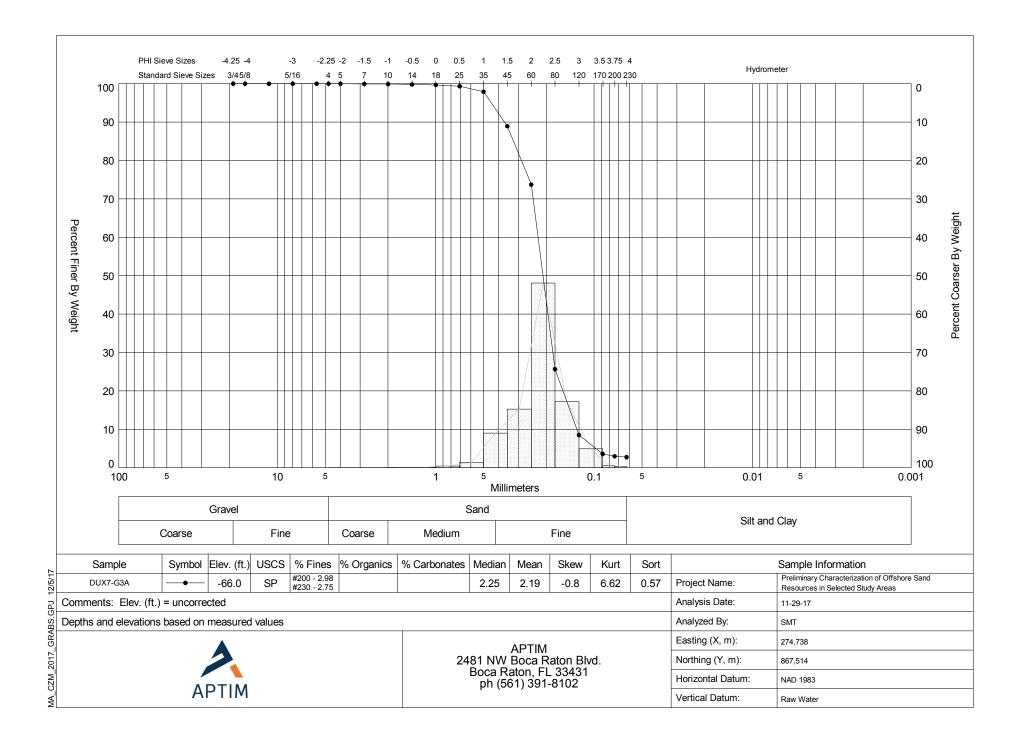


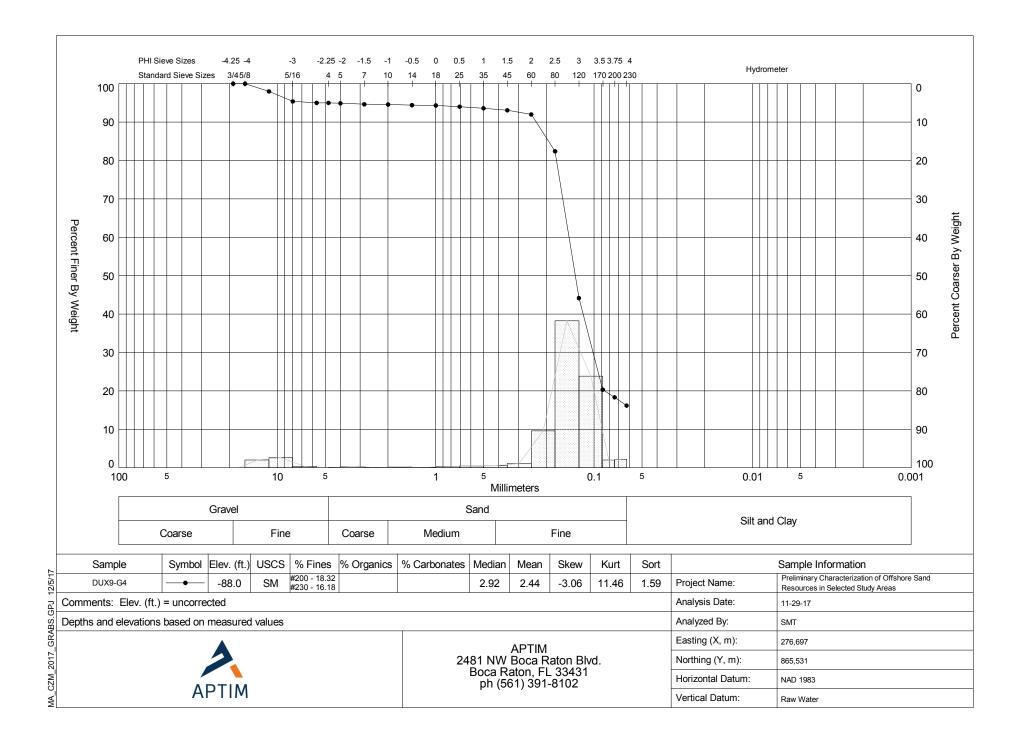


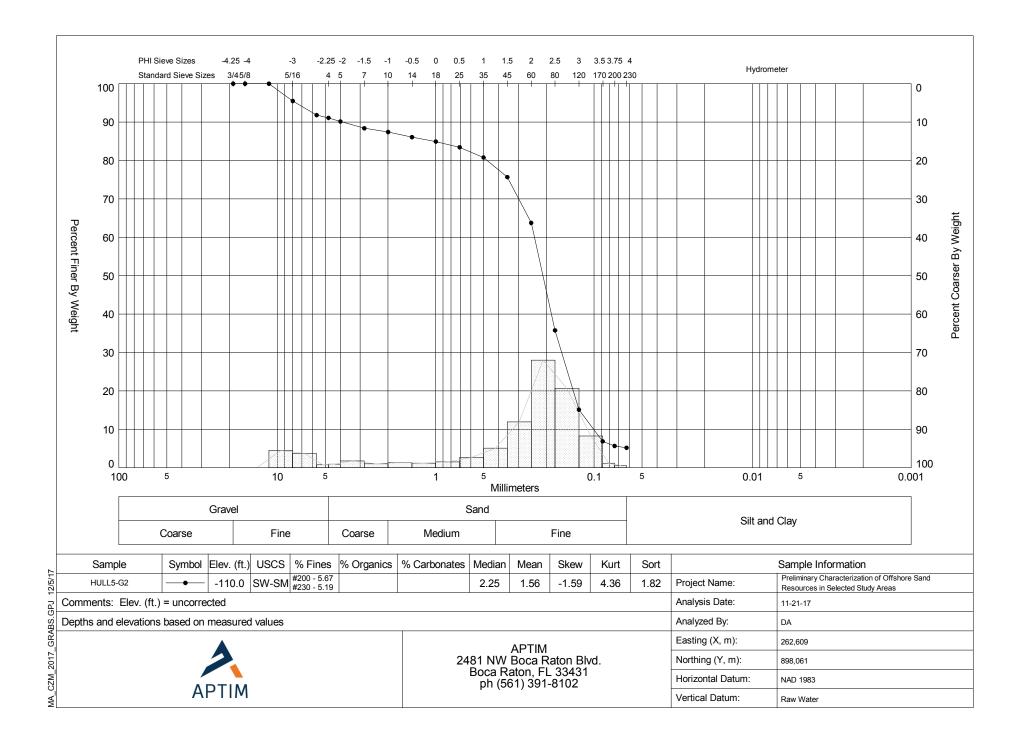


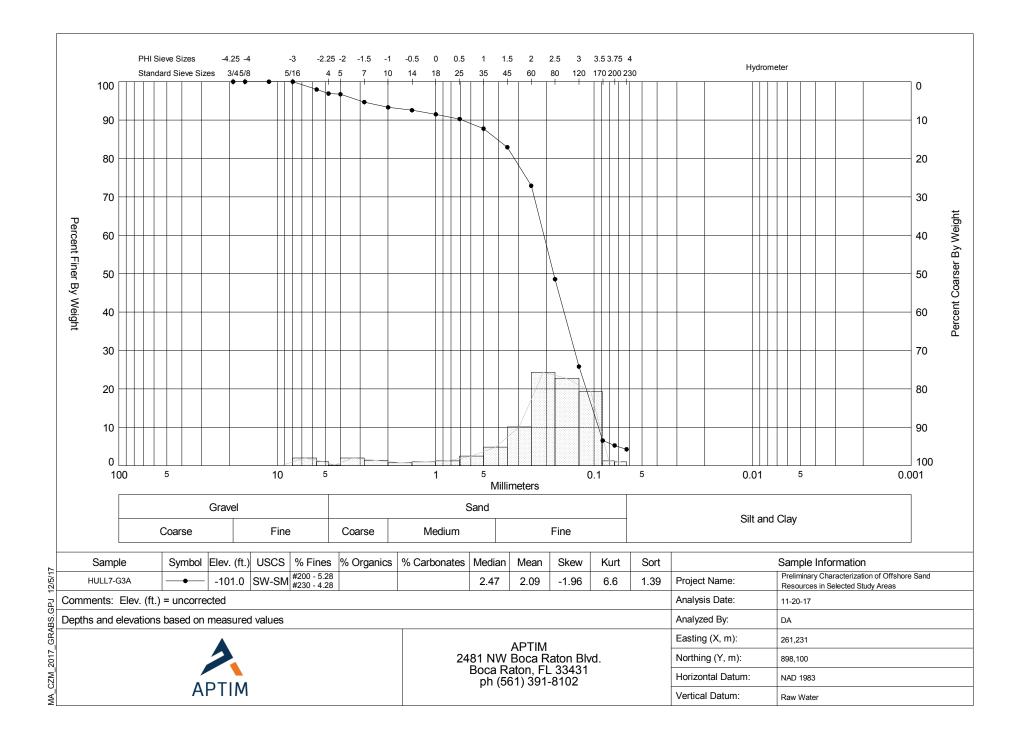


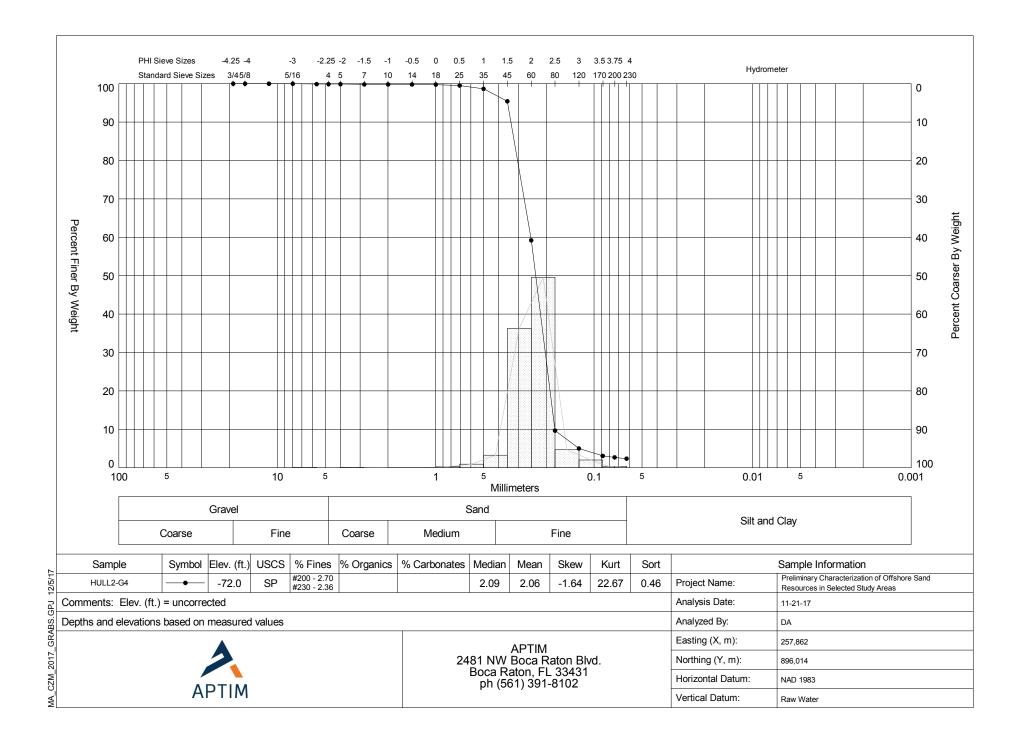


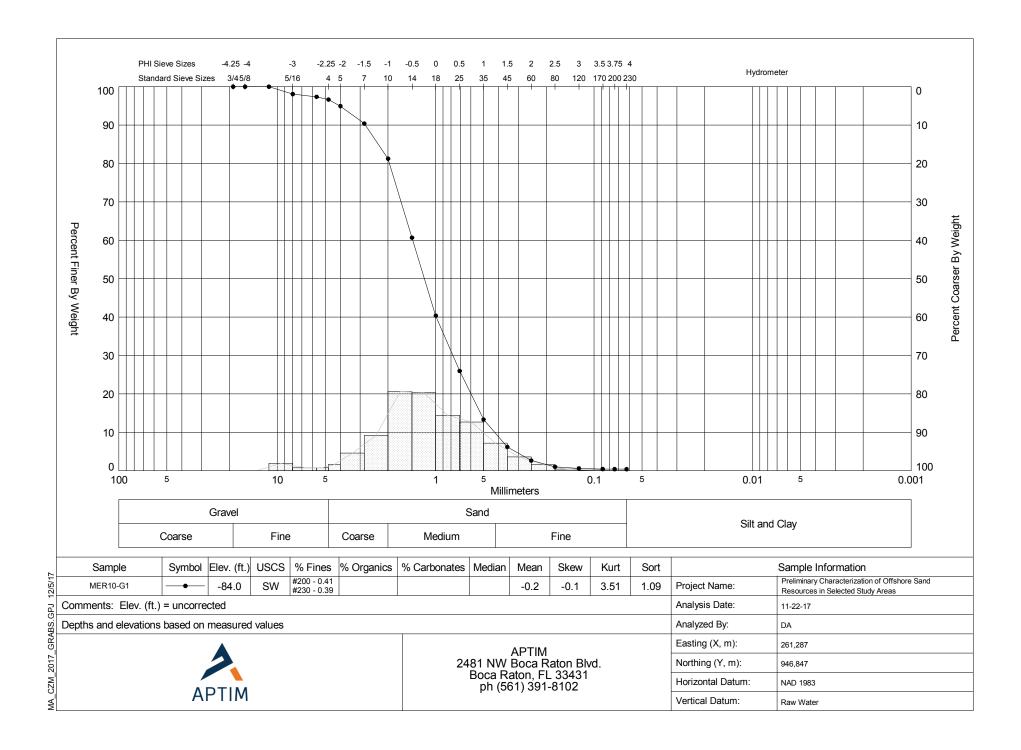


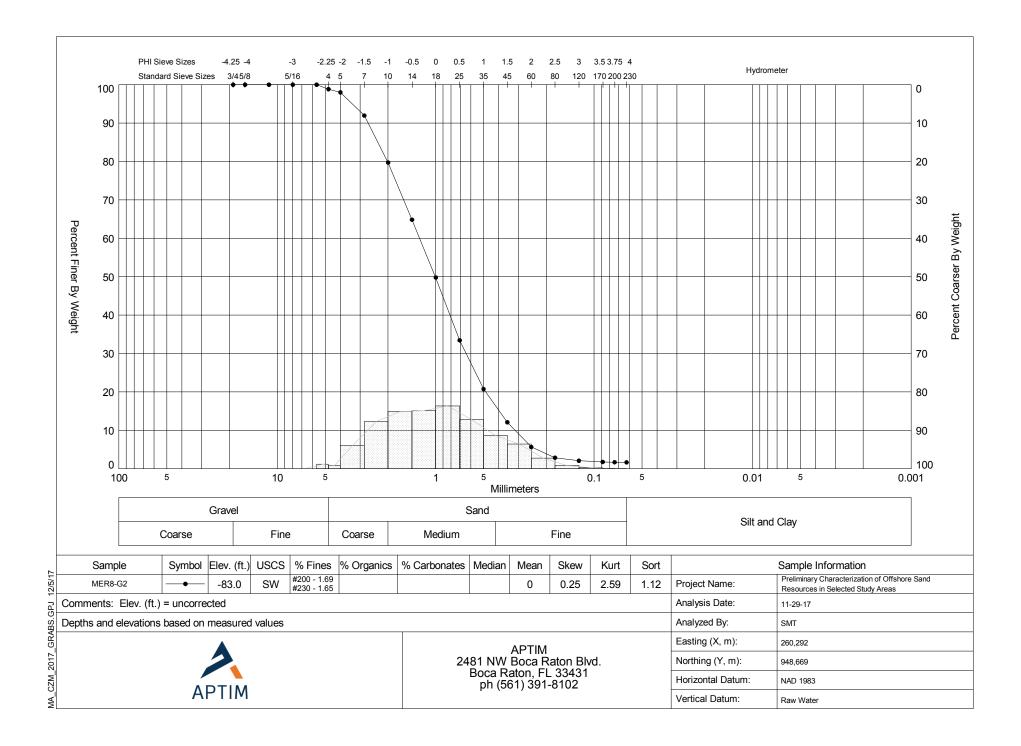


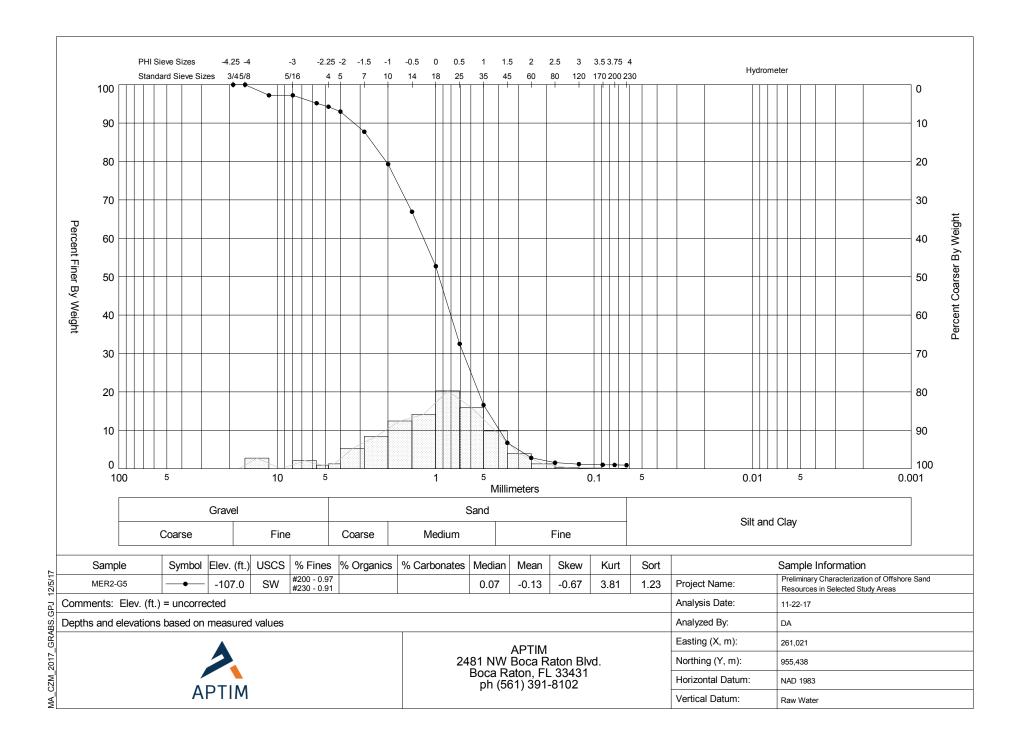






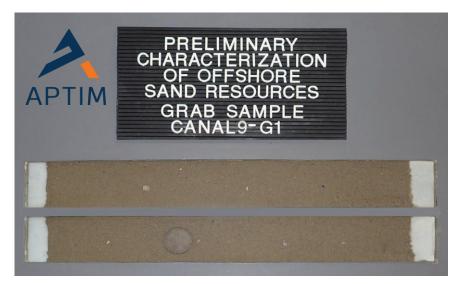


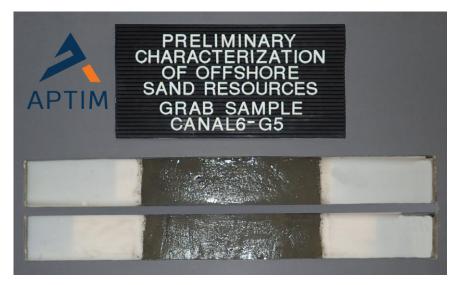




Appendix J

Grab Sample Photographs





Appendix K

Video Transect Plates

Pebbles in trough of course grained sand waves

Peak of low relief sand waves showing amphipod tubes

Sand wave height estimated at one foot provides optimal scallop habitat

Plate 1. Area 1 – Gulf of Maine, Merrimack River - Dominant Sand Wave Substrate

Concealed Goosefish on top of sand wave



Goosefish fleeing from the video sled

Flounder in sand wave bottom

Plate 2. Area 1 – Gulf of Maine, Merrimack River - Representative Fish Species

Lobster defending his territory

Jonah Crab in sand wave trough

Sea scallop in trough of sand waves

Plate 3. Area 1 – Gulf of Maine, Merrimack River - Representative Invertebrates

Polymastia sponge and encrusting red algae in dispersed boulder habitat

Rhodymenia red algae, horse mussels, blood stars in boulders

Northern sea stars in boulder habitat

Plate 4. Area 2 - Mass Bay off Nantasket Beach, Hull - Representative hard bottom habitat

Amphipod tubes in fine grained sand bottom

Montague shrimp in fine grain sand

Sand dollars in fine grained sand

Plate 5. Area 2 – Mass Bay off Nantasket Beach, Hull - Flat Sand, Mud Bottom Habitat

Red hake in depression

Longhorn sculpin in pebble/cobble habitat

Winter flounder in pebble/cobble bottom

Plate 6. Area 2 – Mass Bay off Nantasket Beach, Hull - Representative Fish Species

Adult sea scallop in pebble/cobble habitat

Rock crab in flat/sand mud bottom

Burrowing anemone in pebble/cobble habitat

Plate 7. Area 2 – Mass Bay off Nantasket Beach, Hull - Representative Invertebrates

Amphipod tubes in fine grained sand bottom

Shell aggregate bottom type

Shell hash in flat sand, mud habitat

Plate 8. Area 3 – Cape Cod Bay outside Duxbury Bay - Representative Substrate

Partially buried sea robin in shell aggregate bottom habitat

Juvenile red hake in shell aggregate bottom

Goosefish in flat sand, mud bottom habitat

Plate 9. Area 3 – Cape Cod Bay outside Duxbury Bay - Representative Fish Species

Rock crab in defensive posture in fine grained sand

Live ocean quahog in fine grained sand bottom

Foraging moon snail in flat sand, mud habitat

Plate 10. Area 3 – Cape Cod Bay outside Duxbury Bay - Representative Invertebrates

Silty sand bottom substrate

Rock disposal material with bushy bryozoan at the Cape Cod Canal Disposal Site

Amphipod tubes in flat sand/mud bottom

Plate 11. Area 4 – Cape Cod Bay E-NE of the Canal, Sandwich - Representative Substrate

Red hake in fine sand grained bottom

Scup at rock disposal material at the Cape Cod Canal Disposal Site

Buried sculpin behind shell in flat sand, mud habitat

Plate 12. Area 4 – Cape Cod Bay E-NE of the Canal, Sandwich-Representative Fish

Rock Crab in fine grained sands

Sand dollars in flat sand, mud bottom

Jonah crab and amphipod tubes in fine grained sands

Plate 13. Area 4 – Cape Cod Bay E-NE of the Canal, Sandwich- Representative Invertebrates

Bread crumb sponge and northern star coral in dispersed boulder bottom

Pebble/cobble bottom habitat

Dispersed boulder bottom with bushy bryozoans

Plate 14. Area 5 – Buzzards Bay off Cuttyhunk Island - Representative Hard Bottom

Fine grained sand ripple bottom at Area 5

Floating branching red algae at sand ripple bottom

Amphipod tubes in fine grain sand bottom

Plate 15. Area 5 – Buzzards Bay off Cuttyhunk Island - Representative Sandy Substrate

Skate on the move in flat sand/mud bottom habitat

Red hake in sand ripple bottom

Sea robin in pebble/cobble bottom

Plate 16. Area 5 – Buzzards Bay off Cuttyhunk Island - Representative Fish Species

Hermit crab climbing debris in fine grain sand bottom

Plumed worm tubes with shell at flat sand, mud bottom

Squid at flat sand, mud habitat

Plate 17. Area 5 – Buzzards Bay off Cuttyhunk Island - Representative Invertebrates

Appendix L

Video Transect Tables

TABLE 1

CZM SEDIMENT CLASSIFICATION

(Barnhardt, W.A. et al., 1998)

<u>Priginal</u>		CZM Modified	
MUD			
1ud/sand	а	FINE	
1ud/gravel			
/lud/rock	b	Fine with Gravel	
AND	С	Fine with Rock	
andy/mud			
and/gravel	d	Gravel with Fine	
and/rock			
	е	GRAVEL	
RAVEL			
iravel/mud	f	Gravel with Rock	
iravel/sand			
iravel/rock	g	Rock with Fine	
оск	h	Rock with Gravel	
ock/mud			
ock/sand	i	ROCK	
ock/gravel			

Barnhardt, W.A., J. T. Kelley, S.M. Dickson, and D.F. Belknap. 1998. *Mapping the Gulf of Maine with Side-Scan Sonar: A New Bottom-Type Classification for Complex Seafloors*. Journal of Coastal Research 14(2): 646-659

TABLE 2
BOTTOM HABITAT-SUBSTRATE CLASSIFICATION (Auster, 1998)

Habitat	Description	Rationale	Complexity Score
Category			
1	Flat sand/mud	Areas with no vertical structure such as	1
		depressions, ripples or epifauna	
2	Sand waves	Troughs provide shelter from current;	2
		previous observations indicate that species	
		such as red hake hold position on the down	
		current sides of sand waves and ambush	
		drifting demersal zooplankton and shrimp	
3	Biogenic structures	Burrows, depressions, cerianthid anemones,	3
		hydroid patches; features that are created	
		or used by mobile fauna for shelter	
4	Shell aggregates	Provide complex interstitial spaces for	4
		shelter; also provide a complex, high-	
		contrast background that may confuse	
		visual predators	
5	Pebble-cobble	Provide small interstitial spaces and may be	5
		equivalent in shelter value to shell	
		aggregate, but less ephemeral than shell	
6	Pebble-cobble with sponge	Attached fauna such as sponges provide	10
	cover	additional spatial complexity for a wider	
		range of size classes of mobile organisms	
7	Partially buried or	Partially buried boulders exhibit high	12
	dispersed boulders	vertical relief; dispersed boulders on cobble	
		pavement provide simple crevices; the	
		shelter value of this type of habitat may be	
		less or greater than previous types based on	
		the size class and behavior of associated	
		species	
8	Piled boulders	Provide deep interstitial spaces of variable	15
		sizes	

Auster, P.J. 1998. *The conceptual model of the impacts of fishing gear on the integrity of fish habitat.* Conservation Biology V12 (6): 1198-1203.

TABLE 3 OBSERVED SPECIES LIST AND CODES FOR FIELD DATA SHEETS

FAUNA

PORIE	ERA
-------	-----

BCSBread crumb spongeHalichondria paniceaPOLPolymastia SpongePolymastia robusta

CNIDARIA

CERBurrowing anemoneCerianthus borealisANClonal Plumose AnemoneMetritium senileNSCNorthern star coralAstrangia poculata

HYD Hydroids Hydrozoa

HYDSTSolitary hydroidsHybocodon pendulaHYDTBTubularian hydroidsTubularia crocea

BRYOZOA

BRY Bushy bryozoan Bugula sp.

MOLLUSCA

CW Channeled Whelk Busycotypus canaliculatus **OYS** Common Oyster Crassostrea virginica **EMS** Eastern Mudsnail Ilyanassa obsoleta SQ Long-Finned Squid Loligo pealei Northern Horse Mussel HM Modiolus modiolus MS

MS Northern moon snail Lunatia heros
OQ Ocean quahog Artica islandica

SS Sea Scallop Placopecten magellanicus
SL Slipper limpet Crepidula fornicata

ANNELIDA

Polychaeta

LW Lug worm Arenicola sp.

PW Parchment worm Chaetopterus variopedatus

PLWPlumed wormDiopatra cupreaWHSedentary polychaetesPolychaeta

ARTHROPODA

Crustacea

LOB American Lobster Homarus americanus

Barnacle **BAR** Balanus sp. **AMP** Four-eyed amphipod Ampelisca sp. HC Flat claw hermit crab Pagurus polllicaris HC Long-wrist hermit crab Pagurus Iongicarpus RC Jonah crab Cancer borealis LC Lady crab Ovalipes ocellatus

TABLE 3 OBSERVED SPECIES LIST AND CODES FOR FIELD DATA SHEETS

ARTHROPODA	(cont.)	
AILLINGI ODA		

SH Montague's Shrimp Pandalus montagui

MYS Opossum shrimp Mysis sp.

RCRock crabCancer irroratusSCSpider crabLubinia emarginata

ECHINODERMATA

HEN Blood Star Henricia sanguinolenta

NSS Northern sea star Asteria vulgaris

SD Sand dollar Echinarachnius parma

PSO Scarlet Psolus *Psolus fabricii*

VERTEBRATA

Elasmobrachiomorphi

SK Little Skate Raja erinacea

Osteichthyes

CU Cunner Tautogolabrus adspersus

GF Goosefish Lophius americanus

SCP Longhorn sculpin Myoxocephalus octodecimspinosu

Northern sea robin SR Prionotus carolinus RH Red Hake **Urophycis** chuss RG **Rock Gunnel** Pholis gunnellus SP Scup Stenotomus chrysops **SFLD** Summer Flounder Paralichthys dentatus **WFLD** Windowpane Flounder Scophthalmus aquosus

FLD Winter Flounder Pseudopleuronectes americanus

CHORDATA

DID White invasive tunicate *Didemnum candidum*

FLORA

CHLOROPHYTA

ULVA Sea Lettuce *Ulva lactuca*

RHODOPHYTA

BRALG Branching red alga Rhodophyta

RALGDulseRhodymenia palmataERALGEncrusting red algaeLithothamamnium sp.CHIrish MossChondrus crispus

TABLE 3 OBSERVED SPECIES LIST AND CODES FOR FIELD DATA SHEETS

Relative abundance biota

R	rare - 3 or	less observed	during segment
---	-------------	---------------	----------------

- occasional >3 but infrequent
- **C** common frequently observed during segment
- A abundant consistently and/or continuously seen throughout segment

TABLE 4 VIDEO FIELD DATA GULF OF MAINE EAST OF THE MOUTH OF THE MERRIMACK RIVER

BENTHIC SURVEY FIELD SHEET DATE: WEATHER: sunny, w wind 10 mph, seas 1-2 ft JR.BM.VL 9/12/2017-9/13/2017 AREA: 1-Merrimack River **CZM** Auster Habitat-Transect ID Start **Raw Water** Line Out -Rel. **Raw Water File Name** Sed type Substrate Dom. fauna **Notes/Comments End Time** Time Depth (ft) Layback (ft) Abund. Depth (ft) and segment type 9/12/2017 mer-1a 0-250m 001 0924 9:24:00 81 125 2 sd rc¹, sd-13, mys-3, sh, sfld, gf (juv.) а 0 sd-15, mys-4 (obs.)², amp-2, rc, fld, rh, ss, scp-2, lob-2, sfld 2 250-500m 9:39:00 85 125 а mys а 500-750m 9:52:00 87 125 а 2 mys а sd-12, mys-6, amp-2, fld-2, sh, rc, ss, lob, hc 10:06:00 88.3 mer-2 0-250m 002 1022 10:22:00 97 150 2 ss-28, rc-2, sd, mys-6, scp-3, sh, lob-3, fld, hc⁵, rh-2 а SS 250m 10:36:00 100 150 а 2 ss-3 (hooked lobster pot ended transect) 10:39:00 100 mer-2a lob-2,ss-24, rh-4, mys-4 (gravel in sand wave trough), fld, fld 0-250m 004 1054 10:54:00 100 150 а 2 mys/ss а (juv.), sh, scp-5, rc, (gravel in sand wave trough), rh (juv.) ss-17, mys 5, amp-2, fld-2, scp (gravel in sand wave troughs), 250-500m 11:13:00 103 150 2 hc. wfld. rc. rh mys/ss 11:33:00 105 а а mer-3 0-250m 005 1206 12:06:00 78 125 а 2 amp rc-2, hc, amp-4, mys-4, lob, scp (juv.), rh-2, fld а 250-500m 12:22:00 82 125 2 mys/lob a/c amp-3, mys-3, lob-4, rh-2, fld-2, hc, scp а amp-5, mys-6, lob-4, sh, fld-2, rh, hc, scp, sd-3, rc, sd (ended 125 then 150 40m early due to lobster pot, go pro was off when camera 500-710m 12:37:00 2 came up) 12:50:00 87 85 (at 12:41:00) а mys/lob a/c mer-4 rh, ss-10, mys-3, amp-4, sk, lob, cu, (13:20:00 moving from 0-250m 004 1311 13:11:00 91 150 а 2 а lobster pot). (back on the bottom 13:22:00) 13:25:00 95 mys mer-4a lob-4, ss-13, scp-4, mys-4, sk, amp-2, rc (moving from lobster 13:35:00 pot 13:49:00) 0-360m 006_1335 95 150 а 2 mys а mys-6, ss-21, amp-4, scp-3, fld-4, scp-2, rh (gravel in sand 13:53:00 99 150 2 wave troughs) 14:07:00 101 360-500m а mys а

TABLE 4 VIDEO FIELD DATA GULF OF MAINE EAST OF THE MOUTH OF THE MERRIMACK RIVER

AREA:	1-Merrimac	k River			CZM	Auster					
Transect ID and segment	File Name	Start Time	Raw Water Depth (ft)	Line Out - Layback (ft)	Sed type	Habitat- Substrate type	Dom. fauna	Rel. Abund.	Notes/Comments	End Time	Raw Water Depth (ft)
mer-5			T	1		T	I			ı	
0-165m	005_1430	14:30:00	65	100	а	2	amp/lob	С	mys, rc-2, lob-3, amp-3, bralg (moving from lobster pot)	14:40:00	70
165-500m		14:42:00	74	125	а	2	amp/lob	С	amp-8, fld, mys-2, rh (juv.), rc-4, lob-3, hc-2, scp, sh,		
500-750m		14:57:00	80	125	а	2	amp	а	amp-7, rc-2, mys-3, lob, hc	15:12:00	84
mer-6			T			T	T			1	
0-250m	006_1523	15:23:00	90	125	а	2	mys	а	rc-3, hc, ss-8, amp-5, mys-6, lob, scp-2, rc-2, fld (ended transect at 250m, at edge of shape file)	15:37:00	92
mer-6a											
0-250m	006_1548	15:48:00	95	150	а	2	mys	а	amp-3, mys-4, rc, fld, ss, sd, (small boulder; gravel in sand wave troughs)		
250-500m		16:03:00	97	150	а	2	mys	а	amp-3, mys-6, rh-2, ss-8, fld-2, rc-3, scp, rh (juv.) sh		
500-750m		16:22:00	98	150	а	2	mys	а	ss-21, amp-3, mys-4, rh-3, ss-20, sh-3, hc, rc, rh	16:39:00	98.1
9/13/2017											
mer-7			T	1		T	,			1	
0-250m	007_0835	8:35:00	95	150	а	1 and 2 ⁴	mys/ss	а	mys-5, hc, fld-5,amp-3, ss-13, (small sand ripples), rc-2, rh, fish (08:44:00)		
250-500m		8:47:00	96	150	а	1 and 2	mys/ss	а	rc, mys-8, ss-29, scp, lob, amp-2, hc, fld,		
500-750m		8:59:00	98	150	а	1 and 2	SS	С	ss-54, mys-7, lob, hc, scp-2, amp-3, fld-2, (gravel in sand wave troughs)	9:12:00	98
mer-8									1		
0-250m	008_0929	9:29:00	77	115/125 (09:34)	а	2	mys	а	amp-5, mys-5, ss-3, hc, rc, (ocean quahog shells),scp-2, lob, sd		
250-500m		9:44:00	79	125	а	2	amp/ss	а	rh, amp-7, mys-3, hc-2, ss-21, scp, rc-2, hc, sk, lob		
500-750m		9:59:00	81	125	а	2	amp/ss	а	ss-34, amp-8, mys-5, sk, rc-3, lob, (ocean quahog shells)	10:15:00	82
mer-9			ı	1		T	ľ			T	
0-250m	009_1039	10:39:00	75	125	а	2	amp	а	hc-4, amp-6, mys-3, ss-12, hc, amp-4, fld-2, rh, rc		
250-500m		10:53:00	77	125	а	2	mys	а	amp-2, ss-21, mys-4, rc-2, hc, fld		
500-750m		11:05:00	78	125	а	2	mys	а	amp-4, mys-8, rc-3, lob-4, (gravel in sand wave the troughs), hc-2, rh-2, fld-2, sh	11:18:00	81

TABLE 4
VIDEO FIELD DATA GULF OF MAINE EAST OF THE MOUTH OF THE MERRIMACK RIVER

AREA:	1-Merrimac	k River			CZM	Auster					
Transect ID and segment	File Name	Start Time	Raw Water Depth (ft)	Line Out - Layback (ft)	Sed type	Habitat- Substrate type	Dom. fauna	Rel. Abund.	Notes/Comments	End Time	Raw Water Depth (ft)
mer-10											
0-250m	010_1130	11:30:00	83	125	а	2	mys		scp-4, fld, ss-35, sh, mys-7, amp-4, (gravel in sand wave troughs), rh-3, rc		
250-500m		11:43:00	86	125	а	2	mys	а	ss-32, mys-12, amp-6, rh-2, rh, hc, fld		
500-750m		11:57:00	89	125	а	2	mys		scp-3, mys-4, amp-4, ss-30, hc-3, sk, rc-4, fld, (gravel in sand wave troughs;ocean quahog shells)	12:12:00	87

Notes:

¹ Jonah and rock crabs were difficult to differentiate all were identified as rc

² Mysid shrimp (mys) numbers are the number of observations not counts of individuals - numerous individuals were present for each observation

³ (1) - Auster code in parentheses is a secondary Habitat-Substrate type that is estimated to cover about 10-15% of the bottom

⁴ 1 and 5 - Auster code is an example of a combination bottom Habitat-Substrate type having areas of flat sand/mud and pebble cobble in approximately equal proportions

⁵ hc - Hermit crab includes both the long-wrist hermit crab (*Pagarus longicarpus*) and the flatclaw hermit crab (*P. pollicaris*)

TABLE 5 VIDEO FIELD DATA MASSACHUSETTS BAY OFF NANTASKET BEACH, HULL

BENTHIC SURVEY FIELD SHEET JR.BM.SM DATE: 8/16/2107 and 8/17/17 **WEATHER:** sunny, nw wind 10 mph, seas 1 ft AREA: CZM 2-Nantasket Beach, Hull Auster Habitat-**Raw Water** Transect ID File Start Line Out -Rel. **Raw Water** Sed type **Substrate** Dom. fauna **Notes/Comments End Time** Depth (ft) and segment Name Time Depth (ft) Lavback (ft) Abund. tvpe 8/16/2017 hull-10 rc1-10, ss-14, cu-5, school of cu, fish 8:36:00, (occasional boulders), scp-010 829 8:30:01 98 150 d 5 2, lob-2, did-2, hen, nss 0-250m rc scp-2, fish 8:46:00, ss-12, did-2, (boulder), rc-7, fish 8:49:00, (transition to sand patch 8:50:00), fld-2, rg-2, fish 8:54:00, (lobster pot forced to surface 8:55:35 then deployed again), cu, hyd, scp, pso 250-500m 8:45:00 100 150 d 5 rc lob-2, nss, ss-54, did (patch), hyd-3, rc-4, (lobster pot with lob), rg-2, cu, hen-4, eralg, hydtb 500-750m 8:59:39 94 150 d 5 SS 9:13:45 84 hull-9 sq, nss, ss-46, (lobster pot), cu, rc, hyd, sponge-2, rh-3, occasional scp, 0-250m 009_924 9:24:32 88 150 d 5 SS did, eralg ss-59, nss, rh-6, eralg-2, scp-4, sponge-2, hyd, hen-3, rh-4, cu-3, rg, (sand waves with gravel on top 9:42:00; sand patch 9:44:00), rc. scp-2. 90 d 2 and 54 did-2. hvdst 250-500m 9:37:20 150 SS ss-35, fld-2, rc-3, sponge-4, rh-7, hen-2, scp, rh-5, cu-5, eralg, did (couple of sand patches) 10:08:00 92 500-750m 9:53:53 91 150 c and d 2 and 5 SS hull-8 rc-3, ss-14, rh, rc-4, (sand patchs 10:28:00; fine sand with occasional pebble 10:29:00), scp, scp (juv.), (fine sand with shell 10:33:00), sk 008 1020 101 0-250m 10:20:00 150 c and d 2 and 5 SS scp-2, rc-8, (shells) (bouder 10:37:30), (lobster pot gear surfaced-10:38, on bottom 10:38:40), ss-16, (back into sand shell 10:42:00), fld-3, rh, hen, (fine sand 10:46:00), (back into rocks 10:48:00), hc 250-500m 10:34:50 103 155 d 1 and 4 SS (fine sand, shells) ss-9, rc-4, scp, (patches of rock and pebbles), did, hyd, (rocks and pebbles, back into fines 10:56, slight sand ripples 10:57, some shell), rh. cu. (occasional small boulder, rocks 11:00:00, sand 500-750m 10:50:00 105 155 b and d 1 and 5, (4)³ 11:02), scp (juv.),rg, (small boulder, boulder, gravel cobble 11:07) 11:07:00 106 SS hull-7 cu-7, cu school-2, ss-44, rc-5, (rocky), hen-3, lob-2, hyd-2, (few 0-250m 007 1131 11:31:00 103 150 b and c 5 (1) boulders), fld, (patch of sand 11:41:00, fine sand 11:45:00-11:46:00) SS ss-39, oys, nss-2, hyd-2, (patch of sand 11:49, small boulder 11:50), cu-8, cu school, hen-2, lob, scp-2, ast, (sand 11:52 patchy), fld-3, rc-3, 250-500m 11:47:40 98 150 b and c 5 (1) (sandy patches 11:55), rg, (sand 11:57), (boulder) SS ss-26+, an, lob, rc-4,(large boulder), fld-2, (boulders, sand patch 12:07 some shell), scp, (back into pebble cobble 12:14), rg,cu-2, (sand 12:16), wh, (pebble cobble 12:17), hc⁵ 500-750m 12:04:30 100 150 b and c 5 SS 12:20:25 101

TABLE 5
VIDEO FIELD DATA MASSACHUSETTS BAY OFF NANTASKET BEACH, HULL

				VID.		Ditti wii		5 1111 0	OFF NANTASKET BEACH, HULL		
AREA:	2-Nantas	ket Beach	, Hull		CZM	Auster					
Transect ID and segment	File Name	Start Time	Raw Water Depth (ft)	Line Out - Layback (ft)	Sed type	Habitat- Substrate type	Dom. fauna	Rel. Abund.	Notes/Comments	End Time	Raw Water Depth (ft)
hull-6											
nun o									0 = 00 · com (inv.) = 0 = 4 (composite 40.40) (chall cabble		
0-250m	006_1234	12:34:00	121	175	d	1 and 5	SS	а	cer-8, ss-38+, scp (juv.), scp-3,rc-4, (some sand 12:42), (shell cobble bottom), (bottom H-S 5), sh-3, (sand 12:44), hydst-2, (rocky), hyd		
0 200111	000_1201	12.01.00	121		ŭ	T dild 0	- 55	- u	(conty), (conton : 2 o), on o, (cana : 2 : 1), 1) act 2, (conty), 1) a		
250-500m		12:49:30	120	175	d	5 and 7	SS	С	rc-3,ss-49, sh-2, cer-6,scp-3, sk		
230-300111		12.49.50	120	173	u	3 and 1	33				
500-750		13:03:50	109	175	d, h and i	5 and 7	SS	а	rc, cer-2, ss-44+, cu-10,cunner school-3, scp-4, (bouders), lob-2, nss, hm (boulders (H-S 7-8)	13:17:45	96
000 700	ļ	10.00.00	100		a, ii alia i	o una r	1 00		initi (bodidato (i i e i o)	10.17.10	- 55
hull-5											
									rc-5, ss-2, rh, sh,(avoiding lobster pot gear on surface-13:50 back on		
									bottom 13:50:50, lobster pot on surface-13:54-55),(shell hash bottom),		
0-250m	005_13:42	13:42:00	110	175	а	2 (4)	rc	0	(caught up with a lobster pot had to pull gear and restart)	13:59:00	110
hull-5a											
0-250m	005_14:06	14:06:00	112	175	а	1 (4)	rc	0	sh-3, rc-5, fld, (burrow), rh		
							fld in sand; cu in hard		fld-4, rc-2, rh, (pebbles starting to get hard bottom 14:26), hyd, cu-5, cu school, hen-3, sponge-3, pol-sponge, (cobbles to boulders), hyd, nss,		
250-500m		14:19:00	118	175	а	1 (5)	bottom	0	bcs	14:33:00	106
					- 1	. (0)					
hull-4			T	ı	1		ı			T	
									ss-5+, scp (juv.), sh, fld-2, (fine sand (1,a) 14:58), mys, cer, rh-3, burrow-		
0-250m	004_1454	14:54:00	126	175	b	1 and 5	ss	0	2, rc,amp tubes, (cobble), number of ss 15:04		
									rc-5, fld-2, 1509:44 gf, rg-2,ss-18,(pebble patches 1,5 combo15:14), hyd,		
250-500m		15:07:50	125	175	а	1 (5)	SS	С	cu-2, (more rocky bottom), cer-2,(sand 15:17(1-a)), scp (juv.), rh, mys 2		
500-750m		15:21:40	125	175	а	1	SS	С	mys, ss-25, rh-7, burrow, scp-2,scp (juv.),rg-2, ss-24, fld-3, rc-2, hc	15:36:55	128
8/17/2017											
hull-1											
0-250m	001_846	8:46:00	80	110	а	1	rc	а	rc-26, rc in burrow-2, (burrows), fld, rg-2,unknown fish 9:00		
250-500m		9:00:38	77	110	а	1	sd	а	ss, rc-11, sd-4+, (sd dominant at 9:04), fld-3		
500-750m		9:16:10	76	110	а	1	rc	а	rc-48, (burrows),rc in burrow-3, (almost sand ripples 9:20), rh, rg-2	9:34:00	76
			•	•				•	· · · · · · · · · · · · · · · · · · ·		

TABLE 5
VIDEO FIELD DATA MASSACHUSETTS BAY OFF NANTASKET BEACH, HULL

AREA:	2-Nantasi	ket Beach	, Hull		CZM	Auster					
Transect ID and segment	File Name	Start Time	Raw Water Depth (ft)	Line Out - Layback (ft)	Sed type	Habitat- Substrate type	Dom. fauna	Rel. Abund.	Notes/Comments	End Time	Raw Water Depth (ft)
hull-2								_		_	
0-250m	002_943	9:43:00	82	125	a and b	1 and 5	sd	a and b	scp-2, scp (juv.),ss-2 (some fine sand but pebble cobble dominant), rc-3, gf (9:47), (110 ft cable out at 9:49), fld-2, (less gravel more fine 9:50 (1-a)), sd-5 dominant 9:55, sh, (burrows)		
250-500m		10:04:00	76	110	а	1	sd	а	sd-5+, rh-2, rc-5, ss-4, fld, (boulder harder bottom 10:18 (5,b)), sponge- 2, did		
500-600m		10:19:00	67	110	b and f	5 and 7	cu	С	cu-4, school of cu, rc-2,eralg, (occasional boulder, shell), ss-5, rc-2, hen-2, (more boulders), sponge, ralg ,lob, ch (ended early at ~600m gear caught up on boulder)	10:30:00	62
hull-3	.				-				,		
0-250m	003_1046	10:46:00	104	150	d	5	ss	а	lob, ss-14++, cu-10, eralg, did-2, cu, hyd, 10:51:48 unknown fish, hen, sponge, rc		
250-500m		10:59:39	107	150	c and d	5	SS	а	ss-4++ ,did,cu-6, an-7, sponge, hc, rc-4, (a little sandier 1/5), cer-2, rg		
500-750m		11:13:00	110	150	c and d	1 and 5	SS	а	fld-2, ss-11, an-6, sponge, hyd, cer-10, rc-4, scp	11:28:00	120

Notes:

¹ Jonah and rock crabs were difficult to differentiate all were identified as rc

² Mysid shrimp (mys) numbers are the number of observations not counts of individuals - numerous individuals were present for each observation

³ (1) - Auster code in parentheses is a secondary Habitat-Substrate type that is estimated to cover about 10-15% of the bottom

⁴ 1 and 5 - Auster code is an example of a combination bottom Habitat-Substrate type having areas of flat sand/mud and pebble cobble in approximately equal proportions

⁵ hc - Hermit crab includes both the long-wrist hermit crab (*Pagarus longicarpu* s) and the flatclaw hermit crab (*P. pollicaris*)

TABLE 6 VIDEO FIELD DATA CAPE COD BAY OUTSIDE DUXBURY BAY

BENTHIC SURVEY FIELD SHEET

JR,BM,LP

DATE:

11/3/2017

WEATHER: sunny, w wind 10 mph, seas 1-2 ft

BENTHIC SU	KVET FIE	LD 9HF	E I	JR,BM,LP	ı	DATE:			WEATHER: sunny, w wind 10 mph, seas 1-2 ft			
AREA:	3 - Outsid	e Duxbur	y Bay, Cape	Cod Bay	CZM	Auster						
Transect ID and segment	File Name	Start Time	Raw Water Depth (ft)	Line Out - Layback (ft)	Sed type	Habitat- Substrate type	Dom. fauna	Rel. Abund.	Notes/Comments	End Time	Raw Water Depth (ft)	
dux-1												
									fld-2, sh, (shell hash),rg (juv.)-3, sk, rc 1-4, oq (shell hash), mys²-2, scp-			
0-250m	001_0904	9:04:00	123	220	а	1	mys	0	2, lob			
250-500m		9:19:00	122	220	а	1	mys	0	mys-2,(shell hash), scp-2, rc	9:32:00	124	
dux-2	I	<u> </u>					1	<u> </u>		T	l	
	002_1027	10:27:00							video no good, sled got tangled	10:29:00		
dux-2a							1	T		T	I	
0-250m	002_1037	10:37:00	131	225	а	1	mys	С	rc-4, (shell hash), fld-5, rg (juv.), (shell common), scp			
250-500m		10:47:00	123	225	а	1	mys	С	rh (juv.)-5, rh, rc, (shell hash), rc-2, fld-5, mys-3, sk, oq shell, scp, lob	10:57:00	128	
dux-3												
0-250m	003_1127	11:27:00	104	200	а	1	sd	а	sd-9, mys-3, rh (juv.)-4, (shell hash), lob, rc, ms			
0 200111	000_1127	11.27.00	104	200	u		Ju	u	50 3, my 5 6, m (juv.) 4, (shoir nash), 166, 16, m5			
250-500m		11:35:00	104	200	а	1	sd	С	sd-12, mys-4, (shell hash), rh (juv.)-3, rc-2	11:43:00	105	
dux-4	,						T	1			T	
0-250m	004_1202	12:02:00	77	150	а	1	mys	С	rc-3, rh (juv.)-3, sh, mys-3, sd-8, rc-2, sd-6			
250-500m		12:09:00	82	150	а	1	mys	С	sd-3, mys-2, (shell hash), rc-5, (ms sand collar), (shell hash), oq shell, lob-2	12:18:00	87	
dux-7												
0-250m	007_1252	12:52:00	68	150	а	1	sd	С	lob, mys-3, sd-10, sh, rc-2, (sand ripples)			
250-500m		12:59:00	67	150	а	1	sd	С	sh, mys-5, sd-14, rc-3, fld	13:08:00	66	
dux-8												
0-250m	008_1323	13:23:00	90	200	а	1	mys	С	rc, lob, mys-5, sd-6, sh-2, (oq shell), rh (juv.),sk			
250-500m		13:32:00	94	200	а	1 and 4 ⁴	mys	С	mys-4, sd-3, (shell hash), sh-2, sd, (oq shell), rc-6, sh-2, rh (juv.)-3, (shell hash), scp (juv.)-3,scp	13:43:00	95	
dux-9	1	10.02.00	<u> </u>	200	a	I and 4	ı iiiyə		<u> допол паоп), оор дах.)-о,зор</u>	10.40.00	1 33	
0-250m	009_1400	14:00:00	88	175	а	1	mys	а	mys-3, rc, lob, rh (juv.)-2			
250-500m	1400	14:09:00	86	175	a	1	mys	a	my-4s,rc-4, rh (juv.)	14:17:00	87	
dux-5	1	1					,		1		<u>.</u>	

TABLE 6
VIDEO FIELD DATA CAPE COD BAY OUTSIDE DUXBURY BAY

AREA:	3 - Outsid	e Duxbur	у Вау, Саре	Cod Bay	CZM	Auster					
Transect ID and segment	File Name	Start Time	Raw Water Depth (ft)	Line Out - Layback (ft)	Sed type	Habitat- Substrate type	Dom. fauna	Rel. Abund.	Notes/Comments	End Time	Raw Water Depth (ft)
0-230m	005_1437	14:37:00	109	200	а	1	mys	а	mys-3, rh (juv.)-3, rh, lob, (gear caught lobster pot - transect ended)	14:45:00	106
dux-5a											
0-300m	005_1455	14:55:00	94	200/180(15:02)	a and b	1 and 5	mys	а	mys-6, (shell hash), (oq shell), rh (juv.)-3, (shell hash), scp (juv.), rc-2	15:06:00	91
dux-6											
0-250m	006_1523_0	15:23:00	86	175	а	1	mys	С	mys-2, rh (juv.)-2, (shell hash), scp, rc-3, sk, fld		
250-500m		15:30:00		175	a and b	1 and 5	mys		rh (juv.)-4, (burrows common), mys, rh, rc-7, mys-2, (pebble cobble bottom 13:37)	15:37:00	91
dux-10	I	10.00.00			u unu b	T dild 0	l iiiyo		journal Total y	10.07.00	<u> </u>
0-250m	010_1550	15:50:00	58	125	a and b	1 and 5	mys		mys-3, (floating eel grass strands), sd-4, sk-3, rc, sh-4, rh (juv.), scp, (oq shell)		
250-550m	250m	16:02:00		125	а	1	mys		rc-7, hc, fld, mys-5, sk (juv.), rc-5, (floating eel grass strands),sh, (went off bottom,back on bottom(16:11) (shell hash), sd-4	16:15:00	62

Notes:

¹ Jonah and rock crabs were difficult to differentiate all were identified as rc

² Mysid shrimp (mys) numbers are the number of observations not counts of individuals - numerous individuals were present for each observation

³ (1) - Auster code in parentheses is a secondary Habitat-Substrate type that is estimated to cover about 10-15% of the bottom

⁴ 1 and 5 - Auster code is an example of a combination bottom Habitat-Substrate type having areas of flat sand/mud and pebble cobble in approximately equal proportions

⁵ hc - Hermit crab includes both the long-wrist hermit crab (*Pagarus longicarpus*) and the flatclaw hermit crab (*P. pollicaris*)

BENTHIC SURVEY FIELD SHEET

JR,BM,SM

DATE:

8/2/2107

WEATHER: sunny, sw wind 10 mph, seas 1 ft

RENTHIC SO	RVEY FIEL	D SHEE	: !	JR,BM,SM		DATE:	8/2/2107		WEATHER: sunny, sw wind 10 mph, seas 1 ft		
AREA:	4 - Cape C	od Bay,	E-NE of Canal	, Sandwich	CZM	Auster					
Transect ID and segment	File Name	Start Time	Raw Water Depth (ft)	Line Out - Layback (ft)	Sed type	Habitat- Substrate type	Dom. fauna	Rel. Abund.	Notes/Comments	End Time	Raw Wate Depth (ft)
canal-9		ſ	T		1		1			1	
0-250m	009_0855	8:55:00	47	100	b	2	sd	а	sd numerous, fld, lob, (some cobbles), rc 1, (sand ripples), sh,		
250-500m		9:04:00	49	100	b	2	sd	а	sd numerous, ghost trap and unidentified fish, hc ⁵ , rc,scp, ms,		
500-750m		9:13:00	51	100	b	1	sd	а	sd numerous, ms-2, (lobster pot gear to the surface), hc, sk, rc, bralg, cu-2, (rock, lobster gear)		
750-1000m		9:21:00	56	100	b	2	sd	а	sd numerous, sh-3	9:29:00	58
canal-8		r		I		_	1			T	
canal-8	008_953	9:52:00	62.5	125					Branching ralg, (lost Outland camera connection, line no good)		
canal-8a		I	I	T	I	I	1				
0-250m	008_1023	10:23:00	57	125	а	1	sd	а	sd numerous, fld, hc, (surf clam shell),		
250-500m		10:32:00	58	125	а	1	sd	а	sd numerous, hc, rc-2		
500-750m		10:41:00	58	125	а	1	sd	а	sd numerous, unknown fish (10:43),		
750-1000m		10:49:00	59	125	а	1	sd	а	sd numerous, rc-3, hc-4, unknown fish(10:55:10), wh-3	10:58:10	59
canal-7		T	_								
0-250m	007_1112	11:12:00	58	125	а	1	sd	а	sd numerous (laser out of focus), rc, fld(11:13), lob, rc, (surf clam shell-2)		
250-500m		11:20:17	57	125	а	1	sd	а	sd numerous, rc, (surf clam shell)		
500-750m		11:29:12	59	125	a	1	sd	а	sd numerous, hc-4, (surf clam shell-5), fld		
750-1000m		11:37:36	58	125	а	1	sd	а	sd numerous, (surf clam shell-2), sk-2, hc-4, hl, sh-2, lob	11:47:00	56.5
canal-10		I	T	T	T	Г	T			T	
0-250m	010_1214	12:14:00	53	110	а	1 and 3 ⁴	sd	а	sd numerous, hc, fld-2, sfld, lob-2, rc, (surf clam shell), hl		
250-500m		12:20:40	52	110	а	1 and 3	sd	а	sd numerous, hl-3, (surf clam shell), (lobster pot gear to the surface), hc-2, rc-2 (lobster borrows), ms		
500-750m		12:27:43	53	110	а	1 and 3	sd	С	sd common, lob, rc, sk		
750-1000m		12:33:39	55	110	а	1 and 3	sd	С	sd common, (lobster pot gear to the suface), (oq shell),(burrows), rc, hl, fld, hc, (go pro data coverage not complete)	12:41:38	56

TABLE 7 VIDEO FIELD DATA CAPE COD BAY EAST OF THE CAPE COD CANAL, SANDWICH

AREA:	1 - Cane C	od Bay F	E-NE of Canal		CZM	Auster		01 1111	E CAPE COD CANAL, SANDWICH		
Transect ID and segment	File Name	Start	Raw Water Depth (ft)	Line Out - Layback (ft)	Sed type	Habitat-	Dom. fauna	Rel. Abund.	Notes/Comments	End Time	Raw Water Depth (ft)
canal-6											
0-250m	006_1302	13:02:00	45	100	a	1 and 3	sd	С	sd common, sk-2, rc, (burrow, mounds), hc, (lobster pots gear to the surface)		
250-500m		13:08:48	49.5	100	a	1 and 3	sd	С	sd common, (burrows),(lobster pot gear to the surface), (surf clam shell), unknown(13:10), (lobster pot on bottom), patches of ralg, (soft bottom)		
500-750m		13:15:19	52	150	а	3	sd	0	sd common, number of wh, rc-2, unknown (13:16), (burrows), patches bralg, lob, sfld, sk, outside of study area's shapefile (13:20)		
750-1000m		13:23:00	55.5	150	а	3	sd	0	occassional sd, unknown (13:24), rc-2, (burrows), fld	13:31:19	56.5
canal-5											
0-250m	005_1343	13:43:00	43	100	b	1	sd	а	numerous sd, lob-2, rc-2, hc, bralg, diatoms on top of sand, fld, (unknown 13:51)		
250-500m		13:51:30	47	100	b	1	sd	а	numerous sd, hc, bralg, ulva, green alg, scp, hc, unknown(13:57),		
500-750m		14:00:00	49	100	b	1 and 3	sd	а	numerous sd, diatoms on sediment surface,(burrows),(lobster pot gear to the surface 14:02), hc, bralg, hl, (let out 20 ft of line)		
750-1000m		14:07:00	51	120	а	1 and 3	sd	С	sd common, burrows, unknown (14:09), diatoms on sediment surface common, (wind increase 10-15 knots, seas 2 ft), unknown 14:15	14:16:45	53
canal-4	•				•	•				•	
0-250m	004_1427	14:27:00	39	100	b	1	sd	а	sd numerous, lob, hc, diatoms covering sediment surface, (lobster pot gear to the surface),bralg, hc,		
250-500m		14:35:10	39	100	b	1	sd	а	sd numerous, hc-2, bcs, sk, diatoms on the sediment surface		
500-750m		14:42:57	39	100	b	1	sd	а	sd numerous, hc-3, diatoms on the sediment surface, lob, bralg		
750-1000m		14:50:00	48	100	b	1	sd	С	sd common, rc-3, bralg, diatoms on the sediment surface, unknown (14:51:44), (burrows), sk-, hc, unknown fish (14:56)	14:57:20	53
canal-3											
0-250m	003_1515	15:15:00	40	100	b	1	sd	а	sd numerous, fld, diatoms on sediment surface , hc-5, fld, sk, (hit lobster pot)		
250-500m		15:20:00	42	100	b	1	sd	а	sd numerous, hc-3, diatoms on sediment surface, lob		
500-750m		15:31:00	41.5	100	b	1	sd	a	sd numerous, diatoms on sediment surface, fld, hc-5, lob-3, (lobster pot gear to the surface), sh		
750-1000m		15:38:00	42	100	b	1	sd	а	sd numerous, diatoms on the sediment surface, rc, hc-2, lob, fld	15:45:00	43 2

TABLE 7 VIDEO FIELD DATA CAPE COD BAY EAST OF THE CAPE COD CANAL, SANDWICH

AREA:	4 - Cape C	od Bay, I	E-NE of Canal	, Sandwich	CZM	Auster					
Transect ID and segment	File Name	Start Time	Raw Water Depth (ft)	Line Out - Layback (ft)	Sed type	Habitat- Substrate type	Dom. fauna	Rel. Abund.	Notes/Comments	End Time	Raw Water Depth (ft)
canal-2											
0-250m	002_1557	15:57:00	36	90	b	1	sd	а	sd numerous, sk-2, hc-6, diatoms on the sediment surface, rc-6 (trace of pebbles)		
250-500m		16:04:00	40	90	b	1 and 5	sd	а	sd numerous,hc-3, diatoms on sediment surface, bralg, ms, (pebbles in trough), fld, lob-2, unknown (16:10:50) rc		
500-750m		16:13:00	42	90	b	1 and 5	sd	а	sd numerous, lob-3, rc-4, (shell), fld-2, (some sand waves)		
750-1000m		16:20:00	42	90	b	1	sd	а	sd numerous, (lobster pot gear to the surf), lob-2, hc-4, (sand waves), rc-2, sk-2, hc-2, ms	16:27:28	43
canal-1											
0-270m	004_17:01	17:07:00	78	200	a	1	mys	а	mys ² abundant, sp, (patch of rock), fld-3, rc-2, (harder material)		
270-500m		17:16:00	79.5	200	a	1	mys	а	mys abundant (cobble, events of rock disposal), (burrows H-S of 1 and 3), rc-2, (lobster pot gear to the surface), fld-2, (turn boat to get around lobster pots), unknown fish 12:23		
500-750m		17:24:00	80.5	200	a	1 (3)	mys	а	mys abundant, fld, (burrows H-S of 1 and 3, really fine silty bottom), unknown fish 17:33:08,		
750-1000m		17:34:00	81	200	а	1 (3)	mys	а	mys abundant, (burrow) rh-2, (silty bottom), rc, fld, (rocks, dredged material) (burrow)		
1000-1250m		17:44:00	81	200	а	1 (3)	mys	а	mys abundant (silty bottom, fines), rc-8, fld, (burrows), sponge, rh-2	17:53:45	81.5

¹ Jonah and rock crabs were difficult to differentiate all were identified as rc

² Mysid shrimp (mys) numbers are the number of observations not counts of individuals - numerous individuals were present for each observation

³ (1) - Auster code in parentheses is a secondary Habitat-Substrate type that is estimated to cover about 10-15% of the bottom

⁴ 1 and 5 - Auster code is an example of a combination bottom Habitat-Substrate type having areas of flat sand/mud and pebble cobble in approximately equal proportions

⁵ hc - Hermit crab includes both the long-wrist hermit crab (*Pagarus longicarpu* s) and the flatclaw hermit crab (*P. pollicaris*)

TABLE 8 VIDEO FIELD DATA BUZZARDS BAY OFF CUTTYHUNK ISLAND

DATE: **BENTHIC SURVEY FIELD SHEET** JR,BM,JD 11/9/2017 WEATHER: sunny, w wind 10 mph, seas 1-2 ft **CZM** AREA: 5 - Buzzards Bay off Cuttyhunk Island Auster Habitat-**Raw Water** Line Out -**Raw Water** Transect ID Start Rel. **File Name** Sed type **Notes/Comments End Time** Substrate Dom. fauna Depth (ft) Abund. Depth (ft) and segment Time Layback (ft) type buz-1 hc-17, (shell hash), cw egg case, (occasional pebble/cobble hc⁵ 0-250m 001 0740 7:40:00 55 80 bottom), (small boulder),cw, rh,cer, bar (barnacles),pw a and b 1 and 5 С 250-500m 7:59:00 57 80, 90 (08:08) hc-18, cw-3, sd, plw (floating eelgrass strand-2 observations) 8:19:00 60 а hc buz-5 (hard bottom at start of transect), hyd and bry in hard bottom, $1(7)^3$ nsc, bar, hc-26, sd-7, (floating eelgrass strand) 0-250m 005 0836 8:36:00 54 90 a (g) hc 1 and 5⁴ at (9:16) then 1 hc-20, sd, (pebble cobble 9:15), (floating aglae), sl- 5, spc-5, at (9:23) 250-500m 9:02:00 53 9:25:00 85 a and b sl cw, oys 53 С buz-2 0-250m 9:46:00 002 0946 66 110 hc-20, lc, cw-3, (floating eelgrass strand) а hc 250-500m 10:06:00 65 110 10:20:00 66 1 hc cw-2,hc-12,hc, sq, rh,sr-2 0 а buz-4 0-250m 001 1046 10:46:00 55 100 а 1 and 2 hc С hc-14, (sand ripples with pebbles in trough), sd-2, rh 250-500m 250m 11:02:00 53 100 1 hc hc-14, (sand ripples), sd-4 11:19:00 52 а buz-3 0-250m 003 1129 11:29:00 65 110 1 hc hc-18, cw, sd-2, cer, sr, sq, od, fld, rh-2 а 250-500m 11:47:00 65 110 1 hc hc-21, sd-3, rh 12:04:00 65 а buz-6 0-250m 12:21:00 006_1221 61 110 hc hc-21, (sand ripples), cw, od, rh, (floating eelgrass strands) а 250-500m 12:37:00 61 110 1 hc hc-11, bcs, nsc (boulder) 12:50:00 61 а buz-7 13:04:00 0-250m 007_1304 67 110 1, 2 and 7 sr, sd, cer, (boulders), bcs, nsc-2 (boulder), cu-2, hyd-2 a, b and g bcs

TABLE 8
VIDEO FIELD DATA BUZZARDS BAY OFF CUTTYHUNK ISLAND

AREA:	5 - Buzzards	s Bay off	Cuttyhunk Is	sland	CZM	Auster					
Transect ID and segment	File Name	Start Time	Raw Water Depth (ft)	Line Out - Layback (ft)	Sed type	Habitat- Substrate type	Dom. fauna	Rel. Abund.	Notes/Comments	End Time	Raw Water Depth (ft)
250-500m		13:20:00	67	110	a, b and g	1, 2 and 7	bcs		nsc-6, hyd-2, bcs-9, (boulder), (boulder) cu-4,(boulder), (boulders), hen, sp-2	13:33:00	69
buz-8											
0-250m	008_13:59	13:59:00	62	110	а	1	hc	0	(sand ripples), hc-4, lob		
250-500m	250m	14:11:00	63	110	а	1	hc	0	(sand ripples), hc-5	14:23:00	63
buz-9											
0-250m	009_1433	14:33:00	65	110	а	1	hc	r	(floating eelgrass strands), (sand ripples), hc-3, rh-3, fld, lw egg sack		
250-500m	250m	14:45:00	64	110	а	1	hc	С	hc-10, sp-2, ms, rh	14:56:00	65
buz-10											
0-250m	010_1506	15:07:00	75	115	а	1	hc	0	hc-5, rh-4, cw		
250-500m	250m	15:20:00	75	115	a	1	hc	0	ems, rh-7, hc-5, (floating eelgrass strand), sk	15:35:00	77

¹ Jonah and rock crabs were difficult to differentiate all were identified as rc

² Mysid shrimp (mys) numbers are the number of observations not counts of individuals - numerous individuals were present for each observation

³ (1) - Auster code in parentheses is a secondary Habitat-Substrate type that is estimated to cover about 10-15% of the bottom

⁴ 1 and 5 - Auster code is an example of a combination bottom Habitat-Substrate type having areas of flat sand/mud and pebble cobble in approximately equal proportions

⁵ hc - Hermit crab includes both the long-wrist hermit crab (*Pagarus longicarpus*) and the flatclaw hermit crab (*P. pollicaris*)

TABLE 9
SUMMARY FOR POTENTIAL OFFSHORE SAND RESOURCES SITE
AREA 1 - GULF OF MAINE EAST OF THE MERRIMACK RIVER
September 12-13, 2017

					Raw Water	
		Abundance of		CZM - Barnhardt et. al	Depth (ft)	
Transect ID	Dominant_Fauna	Dominant Spp.	Auster (1998) - primary	(1998)	start	end
mer-1a						
0-250m	Sand dollar	Occasional	Sand waves	Fine	81	85
250-500m	Mysid shrimp	Abundant	Sand waves	Fine	85	87
500-750m	Mysid shrimp	Abundant	Sand waves	Fine	87	88
mer-2						
0-250m	Sea scallop	Common	Sand waves	Fine	97	100
mer-2a						
0-250m	Mysid shrimp/Sea scallop	Abundant	Sand waves	Fine	100	103
250-500m	Mysid shrimp/Sea scallop	Abundant	Sand waves	Fine	103	105
mer-3						
0-250m	Amphipod	Abundant	Sand waves	Fine	78	82
250-500m	Mysid shrimp/Lobster	Abundant/Common	Sand waves	Fine	82	85
500-710m	Mysid shrimp/Lobster	Abundant/Common	Sand waves	Fine	85	87
mer-4						
0-250m	Mysid shrimp	Abundant	Sand waves	Fine	91	95
mer-4a						
0-360m	Mysid shrimp	Abundant	Sand waves	Fine	95	99
360-500m	Mysid shrimp	Abundant	Sand waves	Fine	99	101
mer-5						
0-165m	Amphipod/Lobster	Common	Sand waves	Fine	65	70
165-500m	Amphipod/Lobster	Common	Sand waves	Fine	70	80
500-750m	Amphipod	Abundant	Sand waves	Fine	80	84
mer-6						
0-250m	Mysid shrimp	Abundant	Sand waves	Fine	90	92
mer-6a						
0-250m	Mysid shrimp	Abundant	Sand waves	Fine	95	97
250-500m	Mysid shrimp	Abundant	Sand waves	Fine	97	98
500-750m	Mysid shrimp	Abundant	Sand waves	Fine	98	98

TABLE 9
SUMMARY FOR POTENTIAL OFFSHORE SAND RESOURCES SITE
AREA 1 - GULF OF MAINE EAST OF THE MERRIMACK RIVER
September 12-13, 2017

					Raw Water	
		Abundance of		CZM - Barnhardt et. al	Depth (ft)	
Transect ID	Dominant_Fauna	Dominant Spp.	Auster (1998) - primary	(1998)	start	end
mer-7						
0-250m	Mysid shrimp/Sea scallop	Abundant	Fine sand, Mud/Sand Waves	Fine	95	96
250-500m	Mysid shrimp/Sea scallop	Abundant	Fine sand, Mud/Sand Waves	Fine	96	98
500-750m	Sea scallop	Common	Fine sand, Mud/Sand Waves	Fine	98	98
mer-8						
0-250m	Mysid shrimp	Abundant	Sand waves	Fine	77	79
250-500m	Amphipod/Sea scallop	Abundant	Sand waves	Fine	79	81
500-750m	Amphipod/Sea scallop	Abundant	Sand waves	Fine	81	82
mer-9						
0-250m	Amphipod	Abundant	Sand waves	Fine	75	77
250-500m	Mysid shrimp	Abundant	Sand waves	Fine	77	78
500-750m	Mysid shrimp	Abundant	Sand waves	Fine	78	81
mer-10						
0-250m	Mysid shrimp	Abundant	Sand waves	Fine	83	86
250-500m	Mysid shrimp	Abundant	Sand waves	Fine	86	89
500-750m	Mysid shrimp	Abundant	Sand waves	Fine	89	87

TABLE 10 SUMMARY FOR POTENTIAL SAND RESOURCE SITE AREA 2 - MASSACHUSETTS BAY OFF NANTASKET BEACH, HULL August 16-17, 2017

		Abundance of		Auster (1998) -	CZM - Barnhardt et. al	Raw Water Depth (ft)	
Transect ID hull-1	Dominant_Fauna	Dominant Spp.	Auster (1998) - primary	secondary ²	(1998)	start	end
0-250m	Rock Crab ¹	Abundant	Flat Sand, Mud		Fine	80	77
250-500m	Sand Dollar	Abundant	Flat Sand, Mud		Fine	77	76
			·				
500-600m hull-2	Rock Crab	Abundant	Flat Sand, Mud		Fine	76	76
0-250m	Sand Dollar	Abundant	Flat Sand,Mud/Pebble, Cobble		Fine/Fine with gravel	82	76
250-500m	Sand Dollar	Abundant	Flat Sand, Mud		Fine	76	67
500-600m	Cunner	Common	Pebble, Cobble/Partially Buried or Dispersed Boulders		Fine with gravel/Gravel with rock	67	62
hull-3							
0-250m	Sea Scallop	Abundant	Pebble, Cobble		Gravel with fine	104	107
250-500m	Sea Scallop	Abundant	Pebble, Cobble		Fine with rock/Gravel with fine	107	110
500-750m	Sea Scallop	Abundant	Flat Sand,Mud/Pebble, Cobble		Fine with rock/Gravel with fine	110	120
hull-4							
0-250m	Sea Scallop	Occasional	Flat Sand, Mud/Pebble, Cobble		Fine with gravel	126	125
250-500m	Sea Scallop	Common	Flat Sand, Mud	Pebble, Cobble	Fine	125	125
500-750m	Sea Scallop	Common	Flat Sand, Mud		Fine	125	128
hull-5							
0-250m	Rock Crab	Occasional	Sand waves	Shell Aggregate	Fine	110	110
hull-5a							
0-250m	Rock Crab	Occasional	Flat Sand, Mud	Shell Aggregate	Fine	112	118
250-500m	Winter Flounder/Cunner	Occasional	Flat Sand, Mud	Pebble, Cobble	Fine	118	106

TABLE 10 SUMMARY FOR POTENTIAL SAND RESOURCE SITE AREA 2 - MASSACHUSETTS BAY OFF NANTASKET BEACH, HULL August 16-17, 2017

						Raw Water	
		Abundance of		Auster (1998) -	CZM - Barnhardt et. al	Depth (ft)	
Transect ID	Dominant_Fauna	Dominant Spp.	Auster (1998) - primary	secondary ²	(1998)	start	end
hull-6							
0-250m	Con Conllon	Abundant	Flat Cand Mud/Dabble Cabble		Gravel with fine	121	120
0-230111	Sea Scallop	Abullualit	Flat Sand, Mud/Pebble, Cobble		Graver with fille	121	120
			Pebble, Cobble/Partially Buried or				
250-500m	Sea Scallop	Common	Dispersed Boulders		Gravel with fine	120	109
			Pebble, Cobble/Partially Buried or		Gravel with fine/Rock with		
500-750m	Sea Scallop	Abundant	Dispersed Boulders		gravel/Rock	109	96
hull-7							
					Fine with gravel/Fine with		
0-250m	Sea Scallop	Common	Pebble, Cobble	Flat Sand, Mud	rock	103	98
					Fine with gravel/Fine with		
250-500m	Sea Scallop	Common	Pebble, Cobble	Flat Sand, Mud	rock	98	100
					Fine with gravel/Fine with		
500-750m	Sea Scallop	Common	Pebble, Cobble		rock	100	101
hull-8							
					Fine with rock/Gravel with		
0-250m	Sea Scallop	Common	Sand Waves/Pebble, Cobble		fine	101	103
250-500m	Sea Scallop	Occasional	Flat Sand, Mud/Shell Aggregate		Gravel with fine	103	105
	·		, , , ,		Fine with gravel/Gravel with		
500-750m	Sea Scallop	Occasional	Flat Sand, Mud/Pebble, Cobble	Shell Aggregate	fine	105	106
hull-9							
0-250m	Sea Scallop	Common	Pebble, Cobble		Gravel with fine	88	90
250-500m	Sea Scallop	Common	Sand Waves/Pebble, Cobble		Gravel with fine	90	91
					Gravel with fine/Fine with		
500-750m	Sea Scallop	Common	Sand Waves/Pebble, Cobble		rock	91	92

TABLE 10 SUMMARY FOR POTENTIAL SAND RESOURCE SITE AREA 2 - MASSACHUSETTS BAY OFF NANTASKET BEACH, HULL August 16-17, 2017

Transect ID	Dominant_Fauna	Abundance of Dominant Spp.	Auster (1998) - primary	Auster (1998) - secondary ²	CZM - Barnhardt et. al (1998)	Raw Water Depth (ft) start	end
hull-10							
0-250m	Rock Crab	Common	Pebble, Cobble		Gravel with fine	98	100
250-500m	Rock Crab	Common	Pebble, Cobble		Gravel with fine	100	94
500-750m	Sea Scallop	Common	Pebble, Cobble		Gravel with fine	94	84

¹ Rock crabs and Jonah crabs could not be differentiated in the field when viewing video

 $^{^{\}rm 2}\,$ A secondary Habitat-Substrate type is estimated to cover about 10-15% of the bottom

TABLE 11 SUMMARY FOR POTENTIAL OFFSHORE SAND RESOURCES SITE AREA 3 - CAPE COD BAY OUTSIDE DUXBURY BAY

November 3, 2017

		Abundance of			Raw Water	
Transect ID	Dominant_Fauna	Dominant Spp.	Auster (1998) - primary	CZM - Barnhardt et. al (1998)	Depth (ft) start	end
dux-1						
0-250m	Mysid Shrimp	Occasional	Flat Sand, Mud	Fine	123	122
250-500m	Mysid Shrimp	Occasional	Flat Sand, Mud	Fine	122	124
dux-2						
0-250m	video no good			Fine		
dux-2a						
0-250m	Mysid Shrimp	Common	Flat Sand, Mud	Fine	131	123
250-500m	Mysid Shrimp	Common	Flat Sand, Mud	Fine	123	128
dux-3						
0-250m	Sand Dollar	Abundant	Flat Sand, Mud	Fine	104	104
250-500m	Sand Dollar	Common	Flat Sand, Mud	Fine	104	105
dux-4						
0-250m	Mysid Shrimp	Common	Flat Sand, Mud	Fine	77	82
250-500m	Mysid Shrimp	Common	Flat Sand, Mud	Fine	82	87
dux-5						
0-230m	Mysid Shrimp	Abundant	Flat Sand, Mud	Fine	109	106
dux-5a						
0-300m	Mysid Shrimp	Abundant	Flat Sand, Mud/Pebble, Cobble	Fine/Fine with gravel	94	91
dux-6						
0-250m	Mysid Shrimp	Common	Flat Sand, Mud	Fine	86	89
250-500m	Mysid Shrimp	Common	Flat Sand, Mud/Pebble, Cobble	Fine/Fine with gravel	89	91
dux-7						
0-250m	Sand Dollar	Common	Flat Sand, Mud	Fine	68	67
250-500m	Sand Dollar	Common	Flat Sand, Mud	Fine	67	66
dux-8						
0-250m	Mysid Shrimp	Common	Flat Sand, Mud	Fine	90	94
250-500m	Mysid Shrimp	Common	Flat Sand, Mud/Shell Aggregate	Fine	94	95
dux-9						
0-250m	Mysid Shrimp	Abundant	Flat Sand, Mud	Fine	88	86
250-500m	Mysid Shrimp	Abundant	Flat Sand, Mud	Fine	86	87

TABLE 11 SUMMARY FOR POTENTIAL OFFSHORE SAND RESOURCES SITE AREA 3 - CAPE COD BAY OUTSIDE DUXBURY BAY

November 3, 2017

		Abundance of		Raw Water			
Transect ID	Dominant_Fauna	Dominant Spp.	Auster (1998) - primary	CZM - Barnhardt et. al (1998)	Depth (ft) start	end	
dux-10							
0-250m	Mysid Shrimp	Common	Flat Sand, Mud/Pebble, Cobble	Fine/Fine with gravel	58	62	
250-500m	Mysid Shrimp	Common	Flat Sand, Mud	Fine	62	62	

TABLE 12 SUMMARY FOR POTENTIAL OFFSHORE SAND RESOURCES SITE AREA 4 - CAPE COD BAY EAST AND NORTH OF THE CAPE COD CANAL, SANDWICH August 22, 2017

			August 22, 2017			Raw Water	
		Abundance of		Auster (1998) -	CZM - Barnhardt		
Transect ID	Dominant_Fauna	Dominant Spp.	Auster (1998) - primary	secondary ²	et. al (1998)	start	end
canal-1	Dominiant_radia		raster (1330) primary	Jecondary	(1.000)	June	
0-270m	Mysid Shrimp	Abundant	Flat Sand, Mud		Fine	78	79.5
270-500m	Mysid Shrimp	Abundant	Flat Sand, Mud		Fine	79.5	80.5
500-750m	Mysid Shrimp	Abundant	Flat Sand, Mud	Biogenic Structures	Fine	80.5	81
750-1000m	Mysid Shrimp	Abundant	Flat Sand, Mud	Biogenic Structures	Fine	81	81
1000-1250m		Abundant/Common	Flat Sand, Mud	Biogenic Structures	Fine	81	81.5
canal-2	μ,			2.080 00. 000		U	02.0
0-250m	Sand Dollar	Abundant	Flat Sand, Mud		Fine with gravel	36	40
250-500m	Sand Dollar	Abundant	Flat Sand, Mud/ Pebble, Cobble		Fine with gravel	40	42
500-750m	Sand Dollar	Abundant	Flat Sand, Mud/ Pebble, Cobble		Fine with gravel	42	42
750-1000m	Sand Dollar	Abundant	Flat Sand, Mud		Fine with gravel	42	43
canal-3							
0-250m	Sand Dollar	Abundant	Flat Sand, Mud		Fine with gravel	40	42
250-500m	Sand Dollar	Abundant	Flat Sand, Mud		Fine with gravel	42	41.5
500-750m	Sand Dollar	Abundant	Flat Sand, Mud		Fine with gravel	41.5	42
750-1000m	Sand Dollar	Abundant	Flat Sand, Mud		Fine with gravel	42	43
canal-4							
0-250m	Sand Dollar	Abundant	Flat Sand, Mud		Fine with gravel	39	39
250-500m	Sand Dollar	Abundant	Flat Sand, Mud		Fine with gravel	39	39
500-750m	Sand Dollar	Abundant	Flat Sand, Mud		Fine with gravel	39	48
750-1000m	Sand Dollar	Common	Flat Sand, Mud		Fine with gravel	48	53
canal-5							
0-250m	Sand Dollar	Abundant	Flat Sand, Mud		Fine with gravel	43	47
250-500m	Sand Dollar	Abundant	Flat Sand, Mud		Fine with gravel	47	49
500-750m	Sand Dollar	Abundant	Flat Sand, Mud/ Biogenic Structures		Fine with gravel	49	51
750-1000m	Sand Dollar	Common	Flat Sand, Mud/ Biogenic Structures		Fine	51	53
canal-6							
0-250m	Sand Dollar	Common	Flat Sand, Mud/ Biogenic Structures		Fine	45	49.5
250-500m	Sand Dollar	Common	Flat Sand, Mud/ Biogenic Structures		Fine	49.5	52
500-750m	Sand Dollar	Occasional	Biogenic Structures		Fine	52	55.5
750-1000m	Sand Dollar	Occasional	Biogenic Structures		Fine	55.5	56.5

TABLE 12 SUMMARY FOR POTENTIAL OFFSHORE SAND RESOURCES SITE AREA 4 - CAPE COD BAY EAST AND NORTH OF THE CAPE COD CANAL, SANDWICH August 22, 2017

			-			Raw Water	
		Abundance of		Auster (1998) -	CZM - Barnhardt	Depth (ft)	
Transect ID	Dominant_Fauna	Dominant Spp.	Auster (1998) - primary	secondary ²	et. al (1998)	start	end
canal-7							
0-250m	Sand Dollar	Abundant	Flat Sand, Mud		Fine	58	57
250-500m	Sand Dollar	Abundant	Flat Sand, Mud		Fine	57	59
500-750m	Sand Dollar	Abundant	Flat Sand, Mud		Fine	59	58
750-1000m	Sand Dollar	Abundant	Flat Sand, Mud		Fine	58	56.5
canal-8							
0-250m	Sand Dollar	Abundant	Flat Sand, Mud		Fine	57	58
250-500m	Sand Dollar	Abundant	Flat Sand, Mud		Fine	58	58
500-750m	Sand Dollar	Abundant	Flat Sand, Mud		Fine	58	59
750-1000m	Sand Dollar	Abundant	Flat Sand, Mud		Fine	59	59
canal-9							
0-250m	Sand Dollar	Abundant	Sand Waves		Fine with gravel	47	49
250-500m	Sand Dollar	Abundant	Sand Waves		Fine with gravel	49	51
500-750m	Sand Dollar	Abundant	Flat Sand, Mud		Fine with gravel	51	56
750-1000m	Sand Dollar	Abundant	Sand Waves		Fine with gravel	56	58
canal-10							
0-250m	Sand Dollar	Abundant	Flat Sand, Mud/Biogenic Structures		Fine	53	52
250-500m	Sand Dollar	Abundant	Flat Sand, Mud/Biogenic Structures		Fine	52	53
500-750m	Sand Dollar	Common	Flat Sand, Mud/Biogenic Structures		Fine	53	55
750-1000m	Sand Dollar	Common	Flat Sand, Mud/Biogenic Structures		Fine	55	56

¹ Rock crabs and Jonah crabs could not be differentiated in the field when viewing video

 $^{^{2}\,}$ A secondary Habitat-Substrate type is estimated to cover about 10-15% of the bottom

TABLE 13 SUMMARY FOR POTENTIAL OFFSHORE SAND RESOURCES SITE AREA 5 - BUZZARDS BAY OFF CUTTYHUNK ISLAND

November 9, 2017

		Abundance of		Auster (1998) -	CZM - Barnhardt et. al	Raw Water Depth	
Transect ID	Dominant_Fauna	Dominant Spp.	Auster (1998) - primary	secondary ²	(1998)	(ft) start	end
buz-1							
0-250m	Hermit Crab	Common	Flat Sand, Mud/Pebble, Cobble		Fine/ Fine with gravel	55	57
250-500m	Hermit Crab	Common	Flat Sand, Mud		Fine	57	60
buz-2							
0-250m	Hermit Crab	Common	Flat Sand, Mud		Fine	54	53
250-500m	Hermit Crab	Occasional	Flat Sand, Mud		Fine	53	53
buz-3							
0-250m	Hermit Crab	Common	Flat Sand, Mud		Fine	65	65
250-500m	Hermit Crab	Common	Flat Sand, Mud		Fine	65	65
buz-4							
0-250m	Hermit Crab	Common	Flat Sand, Mud/ Sand Waves		Fine	55	53
250-500m	Hermit Crab	Common	Flat Sand, Mud		Fine	53	52
buz-5							
				Partially buried or			
0-250m	Hermit Crab	Common	Flat Sand, Mud	dispered boulders	Fine	66	65
250-500m	Slipper Limpet	Common	Flat Sand, Mud/Pebble, Cobble		Fine/ Fine with gravel	65	66
buz-6							
0-250m	Hermit Crab	Common	Flat Sand, Mud		Fine	61	61
250-500m	Hermit Crab	Occasional	Flat Sand, Mud		Fine	61	61
buz-7							
0-250m	Bread crumb sponge	Rare	Flat Sand, Mud/Sand Waves/ Partially Buried or Dispersed Boulders		Fine/ Fine with gravel/ Rock with fine	67	67
			Flat Sand, Mud/Sand Waves/ Partially Buried or Dispersed		Fine/ Fine with gravel/		
	Bread crumb sponge	Occasional	Boulders		Rock with fine	67	69
buz-8							
0-250m	Hermit Crab	Occasional	Flat Sand, Mud		Fine	62	63

TABLE 13 SUMMARY FOR POTENTIAL OFFSHORE SAND RESOURCES SITE AREA 5 - BUZZARDS BAY OFF CUTTYHUNK ISLAND

November 9, 2017

		Abundance of		Auster (1998) -	CZM - Barnhardt et. al	Raw Water Depth	
Transect ID	Dominant_Fauna	Dominant Spp.	Auster (1998) - primary	secondary ²	(1998)	(ft) start	end
250-500m	Hermit Crab	Occasional	Flat Sand, Mud		Fine	63	63
buz-9							
0-250m	Hermit Crab	Rare	Flat Sand, Mud		Fine	65	64
250-500m	Hermit Crab	Common	Flat Sand, Mud		Fine	64	65
buz-10							
0-250m	Hermit Crab	Occasional	Flat Sand, Mud		Fine	75	75
250-500m	Hermit Crab	Occasional	Flat Sand, Mud		Fine	75	77

TABLE 14 SPECIES OBSERVED AT OFFSHORE SAND RESOURCE STUDY AREAS DURING VIDEO FIELD OPERATIONS

	ES OBSERVED AT OFFSHORE	AREA 1 - Gulf of ME off Mouth Merrimack River	AREA 2 - Mass Bay off Nantasket Beach, Hull	AREA 3 - Cape Cod Bay outside Duxbury Bay	AREA 4 - Cape Cod Bay, N-E of Canal, Sandwich	AREA 5 - Buzzards Bay off Cuttyhunk Island
FAUNA	Sampling Date	9/12-13/2017	8/16-17/2017	11/3,6/2017	8/2-3/2017	11/8-9/2017
PORIFERA	Haliah an dain a anian				V	
Bread crumb sponge	Halichondria panicea		X		Х	X
Polymastia sponge	Polymastia robusta		Х			
CNIDARIA						
Burrowing anemone	Cerianthus borealis	Х	Х		Х	Х
Clonal plumose anemone	Metritium senile		Х			
Hydroids	Hydrozoa		Х	Х		Х
Northern star coral	Astrangia poculata					Х
Solitary hydroids	Hybocodon pendula		Х			
Tubularian hydroids	Tubularia crocea		Х			Х
BRYOZOA						
Bushy bryozoa	Bugula sp.					X
MOLLUSCA						
Channeled whelk	Busycotypus canaliculatus				X	Χ
Common oyster	Crassostrea virginica	Х				Χ
Eastern mudsnail	Ilyanassa obsoleta					Χ
Long-finned squid	Loligo pealei		Х			Х
Northern horse mussel	Modiolus modiolus		Х			
Northern moon snail	Lunatia heros			X	X	Χ
Ocean quahog	Artica islandica	Χ		X		Χ
Sea scallop	Placopecten magellanicus	Х	Х			
Slipper limpet	Crepidula fornicata					X
ANNELIDA						
<u>Polychaeta</u>						
Lug worm	Arenicola sp.					Х
Parchment worm	Chaetopterus variopedatus					Х
Plumed worm	Diopatra cuprea					Х
Sedentary polychaetes	Polychaeta		Х	X	Х	Х

TABLE 14
SPECIES OBSERVED AT OFFSHORE SAND RESOURCE STUDY AREAS DURING VIDEO FIELD OPERATIONS

		AREA 1 - Gulf of ME off Mouth Merrimack River	AREA 2 - Mass Bay off Nantasket Beach, Hull	AREA 3 - Cape Cod Bay outside Duxbury Bay	AREA 4 - Cape Cod Bay, N-E of Canal, Sandwich	AREA 5 - Buzzards Bay off Cuttyhunk Island
ARTHROPODA						
Crustacea						
American lobster	Homarus americanus	Х	Х	Х	Х	Х
Barnacle	Balanus sp.					Х
Four-eyed amphipod	Ampelisca sp.	Х	Х	Х	Х	Х
Flat claw hermit crab	Pagurus polllicaris	Х	Х	Х	Х	Х
Long-wrist hermit crab	Pagurus longicarpus					
Jonah crab ¹	Cancer borealis	X	Х	Х	Х	
Lady crab	Ovalipes ocellatus					Χ
Montague's shrimp	Pandalus montagui	Х	Х	Х	Х	
Opossum shrimp	Mysis sp.	X	Х	Х	Х	
Rock crab ¹	Cancer irroratus	Х	Х	Х	Х	
Spider crab	Lubinia emarginata					Х
ECHINODERMATA						
Blood Star	Henricia sanguinolenta	Х	Х			Х
Northern sea star	Asteria vulgaris		Х			
Sand dollar	Echinarachnius parma	X	Х	Х	Х	Х
Scarlet psolus	Psolus fabricii		Х			
TOTAL NUMBER OF INVERTEBRATES		13	22	12	13	25

TABLE 14
SPECIES OBSERVED AT OFFSHORE SAND RESOURCE STUDY AREAS DURING VIDEO FIELD OPERATIONS

	ES OBSERVED AT OFFSHORI	2 211 (2 1112 0 0 1				11101(2
		AREA 1 - Gulf of ME off Mouth Merrimack River	AREA 2 - Mass Bay off Nantasket Beach, Hull	AREA 3 - Cape Cod Bay outside Duxbury Bay	AREA 4 - Cape Cod Bay, N-E of Canal, Sandwich	AREA 5 - Buzzards Bay off Cuttyhunk Island
VERTEBRATA				, ,		
Elasmobrachiomorphi						
Little skate	Raja erinacea	Х	Х	Х	Х	Х
<u>Osteichthyes</u>						
Cunner	Tautogolabrus adspersus	Х	Х			
Goosefish	Lophius americanus	Х	Х	Х		
Longhorn sculpin	Myoxocephalus octodecimspinosus	Х	Х	Х	Х	
Northern sea robin	Prionotus carolinus			Х		Х
Red hake	Urophycis chuss	Х	Х	Х	Х	Х
Rock gunnel	Pholis gunnellus		Х	Х		
Scup	Stenotomus chrysops		Х	Х	Х	
Summer flounder	Paralichthys dentatus	Х			Х	
Windowpane flounder	Scophthalmus aquosus	Х				
Winter flounder	Pseudopleuronectes americanus	X	Х	Х	Х	X
UROCHORDATA						
White invasive tunicate	Didemnum candidum		X			
TOTAL NUMBER OF CHOI	RDATA	8	9	8	6	4
SPECIES RICHNESS FAUNA	A	22	32	21	20	30
<u>FLORA</u>						
CHLOROPHYTA						
Sea lettuce	Ulva lactuca				Х	
RHODOPHYTA						
Branching red alga	Rhodophyta	X	Х	Х	X	
Dulse	Rhodymenia palmata		X			
Encrusting red algae	Lithothamamnium sp.		X			
Irish moss	Chondrus crispus		X			
SPECIES RICHNESS FLORA		1	4	1	2	0

Notes: ¹ Rock crabs and Jonah crabs could not be differentiated when viewing video in the field.

Appendix M (digital only)

OTI Video Transect Files

Appendix N (digital only)

GoPro HD Video Transect Videos and Photos

Appendix O (digital only)

Select Towed HD Video Transect Screen Captures

Appendix P (digital only)

Video Transect Navigation Table

Appendix Q (digital only)

GoPro HD Video Transect Videos with Timestamp